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Abstract
Large language models (LLMs) have demon-
strated remarkable performance on various med-
ical benchmarks, but their capabilities across
different cognitive levels remain underexplored.
Inspired by Bloom’s Taxonomy, we propose a
multi-cognitive-level evaluation framework for
assessing LLMs in the medical domain in this
study. The framework integrates existing medical
datasets and introduces tasks targeting three cog-
nitive levels: preliminary knowledge grasp, com-
prehensive knowledge application, and scenario-
based problem solving. Using this framework,
we systematically evaluate state-of-the-art general
and medical LLMs from six prominent families:
Llama, Qwen, Gemma, Phi, GPT, and DeepSeek.
Our findings reveal a significant performance de-
cline as cognitive complexity increases across
evaluated models, with model size playing a more
critical role in performance at higher cognitive
levels. Our study highlights the need to enhance
LLMs’ medical capabilities at higher cognitive
levels and provides insights for developing LLMs
suited to real-world medical applications.

1. Introduction
Large language model (LLM) technology has witnessed
rapid advancement (Ouyang et al., 2022; Achiam et al.,
2023; Anil et al., 2023; Touvron et al., 2023a) and shown po-
tential in various fields, including medicine. Recently, start-
of-the-art LLMs (e.g., GPT-4) have achieved expert-level
performance across medical benchmarks (Singhal et al.,
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2023a;b; Nori et al., 2023a; Qiu et al., 2024), demonstrating
their promise in real-world medical applications. However,
studies (Hager et al., 2024; Yan et al., 2025) demonstrate
that these models still face challenges in handling tasks that
more closely resemble real-world medical scenarios, such
as clinical diagnosis and treatment. This disparity raises a
critical question: how far are current LLMs from being truly
applicable in real-world medical scenarios?

Instead of directly answering this question, let’s first con-
sider a related question: what steps are required for a med-
ical student to become a qualified physician? To become
a qualified physician, a medical student typically under-
goes a series of training stages, as shown in Figure 1 (a).
First, the student acquires basic medical knowledge (e.g.,
anatomy, physiology, and pathology) through textbooks and
lectures during the study in medical school. Then, the stu-
dent learns to apply this knowledge in analyzing clinical
cases during their clinical internship. Finally, the student
practices diagnosing and treating patients under the guid-
ance of experienced physicians during their residency. Such
a training process is designed to align with the human cog-
nitive process, as outlined in Bloom’s Taxonomy (Anderson
& Krathwohl, 2001): first memorizing and understanding
knowledge, then applying it comprehensively, and finally
using it to plan and solve problems in real-world scenarios.

Similar to the training process, the evaluation process in the
human education system also follows the human cognitive
nature. For example, a typical exam sheet includes a variety
of question types (e.g., multiple-choice, short-answer, and
long-response questions) that are intentionally designed to
assess students’ abilities across different cognitive levels.
In contrast, though existing medical benchmarks provide
valuable insights into LLMs’ medical capabilities, they pri-
marily evaluate LLMs’ capabilities at specific cognitive
levels: most medical benchmarks (Jin et al., 2021; Pal et al.,
2022; Wang et al., 2024; Cai et al., 2024; Qiu et al., 2024)
evaluate LLMs’ capabilities through question-answering
(QA) tasks, which mainly focus on assessing LLMs’ pre-
liminary knowledge grasp; some other benchmarks (Hager
et al., 2024; Ouyang et al., 2024) adopt tasks such as clinical
diagnosis and treatment to evaluate LLMs’ capabilities of
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Figure 1. (a): The cognitive development process of human doctors; (b): Comparison of the existing evaluations and our proposed
multi-cognitive-level evaluation framework (inspired by Bloom’s Taxonomy) regarding cognitive levels.

scenario-based problem solving.

In this paper, we argue that the evaluation of LLMs should
also follow the cognitive development process, i.e., evalu-
ating LLMs’ medical capabilities across multiple cognitive
levels. To this end, we propose a multi-cognitive-level
evaluation framework (MultiCogEval) to provide a com-
prehensive evaluation of LLMs’ medical capabilities from
a cognitive perspective. The schema of this framework is
depicted in Figure 1 (b). Specifically, we consider three cog-
nitive levels corresponding to the training process of human
clinicians: preliminary knowledge grasp, comprehensive
knowledge application, and scenario-based problem solving.
Built on that, we design tasks that target each cognitive level
and integrate three existing medical datasets to generate test
samples for each task. To make the performance of LLMs
comparable across different cognitive levels, we align the
medical knowledge coverage across tasks at different levels
as much as possible and normalize the performance metrics
for each task.

Using this framework, we systematically evaluate existing
general and medical LLMs across 2B - 70B parameters
from six prominent families: Llama, Qwen, Gemma, Phi,
GPT, and DeepSeek. Our findings reveal that while cur-
rent SOTA LLMs generally perform well on the prelim-
inary knowledge grasp level, their performance declines
significantly as the cognitive level increases. Moreover, we
find that model size plays a more crucial role in perfor-
mance at higher cognitive levels. Our study provides a clear
landscape of LLMs’ medical capabilities across different
cognitive levels and highlights the need to enhance LLMs’
medical capabilities at higher cognitive levels. The codes
and datasets are available at https://github.com/
THUMLP/MultiCogEval. Our contributions are:

• We propose a novel evaluation framework for assessing
LLMs’ medical capabilities across multiple cognitive
levels inspired by the human cognitive process.

• Based on the proposed framework, we systematically
evaluate state-of-the-art general and medical LLMs
across six prominent families.

• We reveal a significant performance decline as cog-
nitive complexity increases across evaluated models,
offering insights for developing LLMs suited to real-
world medical applications.

2. Related Work
2.1. LLM Medical Evaluation Benchmarks

Recently, several medical evaluation benchmarks have been
proposed to assess LLMs’ medical capabilities. Most of
existing medical benchmarks typically utilize the Question-
answering (QA) form, where the questions are sourced from
medical exams (Jin et al., 2021; Pal et al., 2022; Cai et al.,
2024; Qiu et al., 2024), medical literature (Jin et al., 2019),
and consumer health questions (Ben Abacha et al., 2017;
Singhal et al., 2023a). Recent studies (Nori et al., 2023a;b;
Singhal et al., 2023a) indicate that several LLMs perform no-
tably on these benchmarks. For example, GPT-4 achieves an
accuracy of 90.2 (with complex chain-of-thoughts prompt-
ing strategy) on the medical exam benchmark MedQA, ap-
proaching expert-level performance. Other benchmarks,
such as MIMIC-IV-Ext (Hager et al., 2024) and CLIMED-
Bench (Ouyang et al., 2024), adopt scenario-based tasks
such as clinical diagnosis to evaluate LLMs’ capabilities in
solving medical problems in real-world scenarios. However,
these benchmarks primarily focus on evaluating LLMs at
specific cognitive levels and lack a holistic view of LLMs’
medical capabilities across multiple cognitive levels.

2.2. Bloom’s Taxonomy

Bloom’s Taxonomy (Bloom et al., 1956) is a widely used
framework for categorizing learning objectives. For learn-
ing objectives in the cognitive domain, Bloom’s Taxonomy
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initially proposed six levels: Knowledge, Comprehension,
Application, Analysis, Synthesis, and Evaluation. In 2001,
a revision of Bloom’s Taxonomy (Anderson & Krathwohl,
2001) was proposed, where the six levels were renamed
and reordered as follows: Remembering, Understanding,
Applying, Analyzing, Evaluating, and Creating. Inspired by
the Revised Bloom’s Taxonomy and the training process of
human clinicians, this paper introduces a multi-cognitive-
level evaluation framework to assess whether LLMs have
achieved the learning objectives in the medical domain
across varying cognitive levels.

3. Methodology
3.1. Multi-Cognitive-Level Evaluation Priciples

We first illustrate the idea of the proposed multi-cognitive-
level evaluation. Given a large language model M and a
series of cognitive levels L1, L2, . . . , Ln, the goal of the
multi-cognitive-level evaluation is to assess the capabilities
of M at each cognitive level:

f(M) = [f1(M), f2(M), . . . , fn(M)] (1)

where f refers to the whole multi-cognitive-level evalua-
tion process, fi represents the evaluation process at the i-th
cognitive level, and fi(M) denotes the corresponding eval-
uation results.

A qualified multi-cognitive-level evaluation should also ad-
here to the following principles:

• Task Relevance: The evaluation tasks should target
different cognitive levels, aligning with the knowledge-
learning process.

• Knowledge Consistency: In order to isolate the effects
of cognitive levels, it is important to ensure that the
evaluation tasks have consistent knowledge coverage
across different cognitive levels, minimizing the influ-
ence of knowledge coverage on the evaluation results.

• Metric Alignment: The performance metrics should
be aligned (normalized) across different cognitive lev-
els to ensure the comparability of the evaluation results.

In our study, we adopt these principles to develop a multi-
cognitive-level evaluation framework for assessing LLMs’
medical capabilities. Though we primarily focus on the med-
ical domain, the proposed multi-cognitive-level evaluation
principles can also be generalized to other domains.

3.2. Cognitive Levels in Medical Domain

Following the multi-cognitive-level evaluation principles,
we first define three cognitive levels for assessing LLMs’

medical capabilities by aligning with the training process of
human clinicians and referring to Bloom’s Taxonomy. The
three cognitive levels are as follows1:

• Preliminary Knowledge Grasp (L1): The first level
corresponds to the education of medical students in
medical school, where they learn and grasp basic med-
ical knowledge through textbooks and lectures. At this
level, we focus on evaluating LLMs’ capabilities in
memorizing and initially understanding medical knowl-
edge that is essential for medical practice.

• Comprehensive Knowledge Application (L2): The
second level relates to the clinical internship stage,
where students learn to apply basic medical knowledge
to handle simple clinical cases. This level aims to evalu-
ate LLMs’ capabilities in applying medical knowledge
to analyze and solve complex medical problems.

• Scenario-based Problem Solving (L3): This level cor-
responds to the residency training stage, where students
practice advanced clinical skills (e.g., diagnosis, treat-
ment) under the guidance of experienced physicians.
At this level, we aim to evaluate LLMs’ capabilities in
planning and solving problems in real-world medical
scenarios using medical knowledge.

3.3. Multi-Cognitive-Level Evaluation Framework

Based on the defined cognitive levels, we develop a multi-
cognitive-level evaluation framework that integrates existing
medical datasets and designs tasks tailored to each cognitive
level. The overview of the proposed framework is illustrated
in Figure 2. In the following sections, we will introduce the
detailed design of the evaluation tasks, dataset construction,
and performance metrics that follow the multi-cognitive-
level evaluation principles proposed in Section 3.1.

Task Design For Low-Level tasks (f1), we adopt multiple-
choice questions (MCQs) as simple knowledge recalling
tasks for Low-Level, where the model is required to recog-
nize the correct answer from multiple candidate options (see
the left part of Figure 2). Such task format is commonly
used in existing medical benchmarks and human examina-
tions to evaluate students’ basic knowledge understanding.

For Mid-Level tasks (f2), given that existing medical bench-
marks fail to adequately address this cognitive level—either
being too simplistic, as in QA-based benchmarks, or overly
complex, as in scenario-based benchmarks—we reformu-
late the original MCQs into a set of “Complex Knowledge
Application” tasks for this level. These tasks are designed
to assess the cognitive skills required for real-world medical

1In the following sections, we refer to these levels as Low-Level,
Mid-Level, and High-Level for simplicity.
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Figure 2. An overview of the proposed multi-cognitive-level medical evaluation framework.

tasks from different perspectives without relying on specific
scenarios, thereby effectively evaluating the model’s ability
in the Mid-Level. Specifically, we consider the following
task types (see the middle part of Figure 2):

• Statement Validation Questions: We transform the
question and one of the candidate options from the
original MCQs into a statement, requiring the model to
determine whether the statement is true or false. While
this task may intuitively seem simpler than MCQs, the
answer choices in MCQs can provide additional clues,
allowing the model to choose the most plausible an-
swer without fully understanding why it is correct. In
contrast, statement validation emphasizes the model’s
ability to precisely discriminate knowledge, closely
mirroring real-world clinical scenarios where options
are typically not provided. Furthermore, given that
some MCQ distractors significantly increase task diffi-
culty, we construct two statements per MCQ: one re-
flecting the correct answer and the other derived from
a distractor, maintaining their difficulty.

• Multi-Step Rectification Questions: Handling QA
tasks typically requires a single decision-making step,
whereas problem-solving in real-world scenarios often
involves multiple steps. For instance, when managing a
patient’s care, a doctor first establishes a diagnosis and
then prescribes treatment based on the diagnosis made
in the previous step. Inspired by this, we reformulate
the original MCQ into a two-step task: we first ask
the model to verify whether a provided option is the
correct answer of the MCQ, and then, if the answer is
incorrect, we ask the model to give the correct answer
from the rest of options. We generate two questions
for each MCQ: one provides the correct answer, while
the other provides a randomly sampled wrong option.

• Answer Existence Judgment Questions: QA tasks
typically operate within a constrained decision space

History of 
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Final 
Diagnosis
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Physical Exam Laboratory Test Microbiology Test Imaging Exam

Examination
Selection

Diagnose

Results
Analysis

×N Steps

...

Full-path	Diagnosis
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Figure 3. An overview of the full-path clinical diagnosis task ap-
plied in the proposed evaluation framework.

(e.g., predefined answer choices), whereas real-world
tasks involve significantly broader decision spaces. For
instance, there may be hundreds of potential candidate
diseases in clinical diagnosis, requiring more complex
decision-making to reach the correct diagnosis. To sim-
ulate this, we design a task where the model is asked to
determine whether the correct answer exists in a set of
candidate options. For each original MCQ, we gener-
ate a pair of questions with opposite labels to eliminate
the influence of random guessing: one question retains
the original options, while the correct option in the
other question is replaced with a distractor.

For High-Level tasks (f3), we follow Hager et al. (2024)
and assess LLMs’ capabilities of solving scenario-based
problems using a full-path clinical diagnosis task, as illus-
trated in Figure 3. Compared to the tasks in the Low-Level
and Mid-Level, this task simulates a real-world diagnostic
process by requiring the model to sequentially order exami-
nations and integrate information from the obtained exam-
ination results to arrive at a final diagnosis. Solving this
task requires models to perform multi-step decision-making
within a larger decision space, mirroring the complexity of
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real-world medical scenarios.

Dataset Construction For Low-Level tasks, we directly
use the questions from the MedQA (Jin et al., 2021) and
MedMCQA (Pal et al., 2022) datasets, which cover a wide
range of medical knowledge and are widely used to evaluate
LLMs’ medical capabilities. For Mid-Level tasks, as intro-
duced above, we reformulate each original MCQ into two
statement validation questions, two multi-step rectification
questions, and two answer existence judgment questions.
We apply the advanced GPT-4o to assist in data generation.
Specifically, GPT-4o is employed to (1) generate statements
based on the questions and the provided options for the
statement validation tasks and (2) generate the distractors
for the answer existence judgment tasks based on the origi-
nal question and the correct answer. We arrange for three
doctors with over three years of experience to verify the
statements and distractors generated by GPT-4o and find
that the error rate of GPT-4o is less than 5%.

For High-Level tasks, we leverage the MIMIC-IV
dataset (Johnson et al., 2023), which contains detailed elec-
tronic health records (EHRs) of patients, including the his-
tory of present illness, physical examination, laboratory
tests, microbiology tests, and imaging tests. We employ a
recognize-and-retrieve procedure to construct the dataset,
ensuring its knowledge coverage remains consistent with
previous levels (see Figure 4). Specifically, we first use the
medical NER tool MedCAT (Kraljevic et al., 2021) to iden-
tify diseases in previous-level tasks and construct a disease
pool. We then filter the admission records associated with
these diseases using ICD-10-CM codes, which are widely
employed for disease classification. To ensure alignment
between primary diagnoses and the disease pool, we extract
admission records where the primary discharge diagnosis
matches a disease in the pool. Records with more than two
diseases in the discharge diagnosis are excluded to maintain
a one-to-one mapping between records and diseases. After
processing, 2,176 admission records remain, covering 42
diseases across eight human body systems. Finally, we con-
vert these records into test samples for the full-path clinical

Table 1. The basic statistics of the constructed multi-cognitive-
level medical evaluation benchmark.

Levels Tasks Sources # Samples

Low MCQs MedQA 795
MedMCQA 2,816

Middle Reformulated
Tasks

MedQA 4,770
MedMCQA 16,896

High
Scenario-based

Diagnosis MIMIC-IV 2,176

diagnosis task. Table 1 summarizes the key statistics of
the constructed multi-cognitive-level evaluation benchmark,
while additional details, including task examples, prompts,
and answer parsing, are provided in Appendix A.

Performance Metrics We adopt the accuracy for the Low-
Level and Mid-Level tasks. For the High-Level task, we
propose full-path diagnosis accuracy, a new metric that
assesses LLMs’ diagnostic performance by considering both
procedural correctness and outcome accuracy:

Accuracyproc =
1

N

N∑
i=1

I(Diag(i)pred = Diag(i)gt )× Recall(i)exam

(2)
where Diag(i)pred and Diag(i)gt denote the predicted and ground-
truth diagnoses of the i-th admission record, respectively.
I(·) is the indicator function, and N is the number of admis-
sion records. Recall(i)exam is the examination recall of the i-th
admission record, which is calculated as:

Recall(i)exam =
# Correct Ordered Exam Items

# Total Exam Items in the Record
(3)

In this study, we prioritize examination recall, as missing
critical examination information can have far more severe
consequences than ordering non-essential tests during diag-
nosis. To ensure fairness, we compute the macro-average
of both examination recall (across examination types) and
diagnosis accuracy (across diseases), assuming equal impor-
tance for each examination type and disease in this task.

Considering that the random guessing performance may
vary across different tasks, we also calculate normalized
accuracy of each task by reducing the effect of random
guessing to ensure the comparability of the evaluation re-
sults across different cognitive levels:

Accuracynorm =
Accuracymodel − Accuracyrand

1− Accuracyrand
(4)

More details about the metrics and normalization process
are provided in Appendix B.
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Table 2. Performance (mean and standard error of the normalized accuracy (%)) of LLMs across different cognitive levels evaluated on
the proposed benchmark. Llama1’s performance on the High-Level task is unavailable due to the absence of instruction-tuned versions.
Asterisks: due to the high cost of GPT-4o and DeepSeek-V3 API, we evaluated it on ∼10% of the original dataset.

Model Low-Level Mid-Level High-Level
MedQA MedMCQA MedQA MedMCQA MIMIC-IV

Llama-7B 3.36 ± 0.82 10.40 ± 0.24 2.47 ± 0.76 4.38 ± 0.62 -
Llama-13B 13.18 ± 0.57 18.98 ± 0.22 2.62 ± 0.65 3.15 ± 0.71 -
Llama-33B 24.09 ± 0.26 26.88 ± 0.34 12.85 ± 0.62 10.44 ± 0.19 -
Llama-65B 26.64 ± 0.49 29.59 ± 0.29 16.82 ± 0.73 13.48 ± 0.44 -
Llama2-7B 15.88 ± 0.28 18.32 ± 0.22 4.21 ± 1.01 5.40 ± 0.55 2.65 ± 0.20
Llama2-13B 21.10 ± 0.30 20.94 ± 0.33 6.18 ± 1.25 7.44 ± 0.29 4.92 ± 0.15
Llama2-70B 37.99 ± 0.34 35.60 ± 0.26 20.92 ± 0.80 16.12 ± 0.53 5.16 ± 0.18
Llama3-8B 37.30 ± 0.53 39.11 ± 0.29 11.47 ± 0.43 11.40 ± 0.28 10.50 ± 0.16
Llama3-70B 63.68 ± 0.34 60.82 ± 0.28 41.79 ± 0.85 36.25 ± 0.46 17.81 ± 0.41
Qwen-7B 19.40 ± 0.31 24.85 ± 0.21 7.34 ± 0.39 7.08 ± 0.32 2.51 ± 0.31
Qwen-14B 38.05 ± 0.38 39.25 ± 0.13 17.98 ± 0.63 15.98 ± 0.32 4.14 ± 0.29
Qwen-72B 50.60 ± 0.39 50.95 ± 0.18 28.39 ± 0.70 26.28 ± 0.31 5.89 ± 0.35
Qwen2-7B 36.73 ± 0.44 39.85 ± 0.15 21.22 ± 0.51 20.93 ± 0.18 6.99 ± 0.25
Qwen2-72B 65.91 ± 0.24 60.41 ± 0.19 47.32 ± 0.43 37.19 ± 0.18 15.10 ± 0.09
Qwen2.5-7B 42.86 ± 0.49 45.39 ± 0.17 27.01 ± 0.21 24.75 ± 0.17 9.50 ± 0.04
Qwen2.5-14B 52.23 ± 0.30 51.74 ± 0.24 35.62 ± 0.37 30.73 ± 0.31 12.07 ± 0.21
Qwen2.5-32B 59.21 ± 0.21 57.17 ± 0.09 38.45 ± 0.56 33.43 ± 0.24 11.87 ± 0.22
Qwen2.5-72B 67.83 ± 0.20 61.82 ± 0.12 49.47 ± 0.69 40.57 ± 0.39 16.05 ± 0.24
Gemma-2B 6.16 ± 0.63 15.04 ± 0.24 0.52 ± 0.31 2.82 ± 0.31 0.59 ± 0.09
Gemma-7B 30.35 ± 0.42 27.41 ± 0.38 15.09 ± 0.48 13.64 ± 0.37 0.33 ± 0.09
Gemma2-2B 14.87 ± 0.34 24.18 ± 0.31 1.78 ± 0.71 3.85 ± 0.55 5.02 ± 0.33
Gemma2-9B 44.21 ± 0.18 46.20 ± 0.20 24.52 ± 0.28 23.05 ± 0.24 9.04 ± 0.28
Gemma2-27B 53.65 ± 0.31 50.45 ± 0.18 33.40 ± 0.88 30.33 ± 0.26 11.19 ± 0.64
Phi3-3.8B 37.52 ± 0.28 40.96 ± 0.20 23.10 ± 1.15 22.53 ± 0.37 2.21 ± 0.28
Phi3-7B 49.25 ± 0.30 46.95 ± 0.30 28.87 ± 0.31 21.75 ± 0.28 7.74 ± 0.16
Phi3-14B 54.06 ± 0.49 49.70 ± 0.27 31.67 ± 0.55 28.46 ± 0.24 3.89 ± 0.01
Phi4-14B 56.19 ± 0.40 52.62 ± 0.30 39.30 ± 0.42 33.46 ± 0.23 12.18 ± 0.37
GPT-4o-mini 62.67 ± 0.20 55.33 ± 0.06 42.98 ± 0.59 32.28 ± 0.66 13.81 ± 0.84
GPT-4o* 78.33 ± 0.75 64.00 ± 1.02 56.96 ± 1.84 41.65 ± 1.59 19.33 ± 0.30
DeepSeek-V3* 78.33 ± 0.75 65.78 ± 0.22 44.79 ± 0.30 40.07 ± 1.49 19.42 ± 0.17

4. Experiments
4.1. Experimental Setup

Evaluated Models To conduct a systematic evaluation on
current LLMs, we select a total of 32 general LLMs across
six LLM families, including Llama (Touvron et al., 2023a;b;
Dubey et al., 2024), Qwen (Bai et al., 2023; Yang et al.,
2024; Hui et al., 2024), Gemma (Mesnard et al., 2024; Team
et al., 2024), Phi (Abdin et al., 2024b;a), GPT-4o (OpenAI,
2024), and DeepSeek (Liu et al., 2024). We also evalu-
ate 8 medical LLMs from 4 series: ClinicalCamel (Toma
et al., 2023), Med42 (v1, v2) (Christophe et al., 2024a;b),
Meditron (Chen et al., 2023), and MMed-Llama (Qiu et al.,
2024). The detailed statistics are provided in Appendix C.

Evaluation Setting For tasks in the Low-Level and Mid-
Level, we leverage the five-shot in-context learning (Brown
et al., 2020) for evaluation, where five input-output pairs
are sampled as the demonstrative examples to guide the
model to generate the correct answer for the test sample (see
Figure 9 in Appendix A). For the High-Level task (full-path

diagnosis), as it involves multi-turn interaction, we evalu-
ate the instruction fine-tuned versions of the corresponding
models and leverage the zero-shot learning setting to eval-
uate the models’ performance. Specifically, for each test
sample, we provide the model with the instructions for the
task and ask it to order the specific exam items sequentially
and make the final diagnosis. We utilize the UMLS Metathe-
saurus (Bodenreider, 2004) along with a handcrafted syn-
onym set to identify the model’s predictions for ordered
exam items and the final diagnosis (the detection rate across
all categories reached ∼95%). We conduct repeated eval-
uations 3-5 times and report the average performance and
standard error. More details about the evaluation setting
(e.g., hyperparameters) are provided in Appendix D.

4.2. Cognitive-Level Analysis

Higher the Cognitive Level, Worse the Model Perfor-
mance We first compare the performance of LLMs across
different cognitive levels on the proposed benchmark and
present the results in Table 2. For the Mid-Level, we use the
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Figure 5. Performance of LLMs across different parameters sizes
on the proposed benchmark. The performance of Low and Mid-
Level tasks is the macro average across MedQA and MedMCQA.

average performance of the three task types to compare with
the other two levels (Detailed performance is provided in
Table 8 of Appendix E). We observe that several state-of-the-
art LLMs, such as GPT-4o, DeepSeek-V3, and Llama3-70B,
achieve remarkable performance (>60%) on the Low-Level
(preliminary knowledge grasp) tasks. However, all of these
models experience a significant performance drop (∼20%)
when evaluated on the Mid-Level tasks (comprehensive
knowledge application). Moreover, on High-Level tasks
(scenario-based problem solving), the performance of all
models further declines, with the best-performing model,
DeepSeek-V3, achieving only 19.4 full-path diagnosis ac-
curacy. This indicates that while current LLMs grasp basic
medical knowledge well, they still face significant chal-
lenges at higher cognitive levels, particularly when solving
complex problems in real-world medical scenarios.

Parameter Sizes Matter, Especially at Higher Cogni-
tive Levels We further investigate the impact of model
parameter sizes across different cognitive levels. Specifi-
cally, we examine 7B and 70B models from the Llama and
Qwen families, along with GPT-4o and GPT-4o-mini2. As
shown in Figure 5, larger models consistently outperform
their smaller counterparts within the same model series.
Additionally, the performance gap between model sizes in-
creases significantly from the Low-Level to the Mid-Level
on a logarithmic scale, suggesting that model size plays
a more critical role in enabling LLMs to tackle complex
problem-solving tasks. However, this gap narrows slightly
at the High-Level, implying that even the 70B-level models
struggle to effectively solve scenario-based problems.

2DeepSeek-V3 is not involved in this analysis since it does not
have a smaller version for comparison.
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Figure 6. Performance gains of medical LLMs over their backbone
models across different cognitive levels.

Table 3. Performance (%) of LLMs fine-tuned with/without
inference-time scaling. The performance of Low and Mid-Level
tasks is the macro average across MedQA and MedMCQA.

Model Low-Level Mid-Level High-Level
DeepSeek-V3 72.1 42.4 19.4
DeepSeek-R1 81.9 65.5 26.5
GPT-4o-mini 59.0 37.7 13.8
o3-mini 81.3 64.5 15.1

Medical-Domain Finetuning Primarily Benefits Low-
and Mid-Level Tasks To investigate the impact of
medical-domain finetuning on LLMs across different cogni-
tive levels, we compare the performance of medical LLMs
with their backbone models. As shown in Figure 6, these
specialized models generally outperform their backbone
counterparts on Low- and Mid-Level tasks, with perfor-
mance gains reaching up to 15%. However, they fail
to achieve significant improvements on High-Level tasks
and even underperform their backbone models. This phe-
nomenon indicates that while medical-domain finetuning
strengthens LLMs’ grasp of basic medical knowledge and
its comprehensive application, it remains less effective in
addressing complex real-world medical scenarios.

Inference-time Scaling Works Well, Especially for
Higher Levels We further investigate the effectiveness
of inference-time scaling on LLMs’ medical capabilities
across different cognitive levels. We select two represen-
tative models with varied parameter scales (DeepSeek-V3
and GPT-4o-mini) and their corresponding inference-time
scaling versions (DeepSeek-R1 and o3-mini) for study. As
presented in Table 3, the inference-time scaling models con-
sistently outperform their backbone models across all cog-
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Figure 7. Average diagnosis accuracy of LLMs (Llama2 and 3, Qwen1, 2, and 2.5) across diseases in the full-path clinical diagnosis task.

Table 4. Detailed performance (%) of LLMs on tasks in the Mid-
Level. StmtVal: Statement Validation; AnsExist: Answer Exis-
tence Judgment; MultiRect: Multi-Step Rectification.

Model Low Mid-Level
StmtVal AnsExist MultiRect

Llama3-70B 62.3 47.2 9.9 60.0
Qwen2.5-72B 64.8 50.2 23.8 61.0
Gemma2-27B 52.1 38.5 10.4 46.7
Phi4-14B 54.4 40.1 17.5 51.6
GPT-4o 71.2 58.8 22.4 66.3
DeepSeek-V3 72.1 53.7 6.3 67.4

nitive levels, while they achieve more significant improve-
ment on Mid-Level tasks compared to Low-Level tasks (e.g.,
+23.1 vs. +9.8 for DeepSeek-R1). Note that the performance
gap narrows on high-level tasks due to their significantly in-
creased difficulty. This suggests that inference-time scaling
is a promising approach to enhance LLMs’ medical capabil-
ities, particularly for complex problem-solving tasks.

4.3. Fine-Grained Analysis

LLMs Perform Constantly Worse Across Tasks in the
Mid-Level We further provide a fine-grained analysis of
LLMs’ performance across tasks within the Mid-Level and
compare it with the Low-Level tasks. We illustrate results
of the best-performed model from each LLM family in Ta-
ble 4, with the full results presented in Table 8. We observe
that LLMs consistently perform worse on all Mid-Level
tasks compared to Low-Level tasks. Specifically, the per-
formance drop on the answer existence judgment tasks is
more significant, where almost all models experience a per-
formance decrease of over 40%. This suggests that current
LLMs struggle with medical problems involving signifi-
cantly larger decision spaces, which is a key requirement in

Table 5. Detailed performance (%) of LLMs on the full-path clini-
cal diagnosis task. Exam Recall: the macro average of examination
recall across examination types. End-point: the accuracy of the
final diagnosis without considering the examination recall.

Model Exam Recall Diagnosis Accuracy
End-point Full-path

Llama3-70B 38.8 38.1 18.1
Qwen2.5-72B 34.4 39.6 15.8
Gemma2-27B 27.5 33.4 10.6
Phi4-14B 27.1 39.2 12.2
GPT-4o 31.8 49.2 19.3
DeepSeek-V3 30.0 53.6 19.4

real-world medical scenarios.

Low Procedural Correctness Causes Bad Performance
in Scenario-based Tasks We further analyze the perfor-
mance of large language models (LLMs) on the full-path
clinical diagnosis task. As shown in Table 5, LLMs exhibit
moderate performance in terms of end-point accuracy (i.e.,
diagnosis accuracy without considering examination recall),
with DeepSeek-V3 achieving the highest accuracy at 53.6%.
However, when taking examination recall into consideration
(full-path performance), the accuracy of all models declines
significantly, with the best-performing model, DeepSeek-
V3, achieving only 19.4% diagnosis accuracy. This decline
can primarily be attributed to low examination recall (less
than 40%) across all models, suggesting that while current
LLMs can occasionally reach the correct diagnosis, they fail
to fully consider all relevant possibilities and request the
necessary information throughout the diagnostic process.

LLM Performance Across Diseases Presents Long-Tail
Distribution Finally, we analyze the diagnosis perfor-
mance of LLMs across diseases in the full-path clinical
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Table 6. Clinician validation results on the proposed benchmark.
Clinician Acc.: the percentage of correct answers provided by
the clinicians. Clinician Subj. Diff.: the subjective difficulty by
clinicians on a scale of 1-10 (1: very easy, 10: very difficult).

Level Clinician Acc. (%) Clinician Subj. Diff.
Mean Median

Low 68.8 5.0 5.5
Mid 54.2 6.0 5.8
High 23.5 7.5 7.5

diagnosis task and present the results in Figure 7. We ob-
serve that the performance of LLMs varies significantly
across different diseases, forming a long-tail distribution,
while 70B models generally perform better than 7B models
across all diseases. This suggests that current LLMs may
struggle with diagnosing rare or complex diseases, which
are critical in real-world medical scenarios.

4.4. Clinician Validation

Finally, to ensure that the tasks at different levels of the
proposed benchmark genuinely correspond to distinct lev-
els of cognitive difficulty, we further conduct a small-scale
clinician validation study. Specifically, we randomly select
100 samples from the constructed benchmark and recruit
four licensed clincians with 3 to 8 years of experience to
assess the benchmark’s difficulty from two perspectives: (1)
their accuracy in answering the questions and (2) their sub-
jective difficulty ratings to the questions on a scale from 1
(Easy) to 10 (Hard). The evaluation results are provided in
Table 6. We found that clinicians’ accuracy also decreases
as the cognitive level increases across three levels, indicat-
ing that tasks at higher levels are indeed more challenging.
Moreover, their subjective difficulty ratings align with this
trend, further demonstrating the validity of the proposed
benchmark. More details about the clinician validation
study, including the data selection and evaluation process,
are provided in Appendix F.

5. Conclusion
In this work, we propose a multi-cognitive-level evalua-
tion framework that assesses LLMs’ medical capabilities
at three cognitive levels. Using the proposed framework,
we construct a new medical benchmark and systematically
evaluate existing LLMs on the benchmark. Our study leads
to the following key findings: (1) While the performance of
smaller LLMs (∼10B) gradually approaches that of larger
LLMs (>70B) on Low-Level tasks, the performance gap
remains significant on Mid-Level and High-Level tasks, in-
dicating that model size plays a crucial role in enabling
LLMs to tackle complex medical problems; (2) Medical-
domain finetuning significantly improves performance on

Low- and Mid-Level tasks but has limited impact on High-
Level tasks. This suggests that current medical-specific
finetuning strategies are insufficient for enhancing LLMs’
reasoning abilities in complex real-world medical scenarios;
(3) Inference-time scaling shows promise in boosting LLMs’
medical capabilities, especially in tasks requiring complex
knowledge application. However, further research is re-
quired to enhance LLMs’ High-Level capabilities, such as
planning, requesting key information, and reasoning based
on the acquired information.

Based on these findings, we offer the following insights for
applying and developing large language models to address
real-world clinical challenges: (1) Model Selection: For
low-level medical tasks such as knowledge-based question
answering, LLMs with around 10B parameters are generally
sufficient. However, for more complex clinical tasks—such
as diagnosis and treatment recommendation—larger LLMs
are necessary; (2) Medical LLM Development: Future
medical-domain finetuning efforts should focus more on
enhancing LLMs’ High-Level cognitive abilities, including
clinical planning, proactively acquiring key diagnostic and
treatment information, and conducting multi-step reasoning.
Inference-time scaling emerges as a promising direction to
support these high-level capabilities.

To the best of our knowledge, this work is the first to evaluate
LLMs’ medical capabilities across multiple cognitive levels.
While promising, the evaluation may be constrained by the
scope of medical knowledge coverage and task diversity.
Future research could further explore these areas, expanding
the range of medical domains and tasks to offer a more
holistic view of LLMs’ medical abilities.
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A. Details of Datasets

Question: A 25-year-old man comes to the office 
because of pain in his left shoulder. He says that this 
pain started 3 years ago … Which of the following 
enzymes is most likely deficient in this patient?

Options: 
A: Branched-chain alpha-ketoacid dehydrogenase
B: Cystathionine synthase deficiency
C: Homogentisic acid oxidase
D: Phenylalanine hydroxylase
E: Propionyl-CoA carboxylase

Answer: C

Question: Antimalarial drug used for causal 
prophylaxis act at which stage of developmental 
cycle?

Options: 
A: Gametogony
B: Erythrocytic schizogony 
C: Pre-erythrocytic schizogony
D: Exo-erythrocytic schizogony

Answer: C

Figure 8. Examples of Low-Level tasks. Left: a MedQA question. Right: a MedMCQA question.

A.1. Low-Level Tasks

As introduced in Section 3.3, we adopt the original multiple-choice questions in the MedQA and MedMCQA datasets
for Low-Level tasks. MedQA is a large-scale medical exam dataset, containing medical exam questions sourced from
three different regions. In this study, we use the questions in the US subset, which contains five-option multiple-choice
questions collected from the United States Medical Licensing Examination (USMLE). MedMCQA is another large-scale
medical exam dataset that contains multiple-choice questions sourced from All India Institute of Medical Sciences Entrance
Examination (AIIMS) and National Eligibility cum Entrance Test for Postgraduate (NEET-PG) in India. The questions
in MedMCQA are four-option MCQs. The language used in both datasets is English. For MedQA, we use the test set for
evaluation; for MedMCQA, we use the dev set, because the ground truth of MedMCQA’s test set is not available to the
public. We filtered out the MedMCQA questions that are marked as multiple correct answers. As a result, we have 800
questions from MedQA and 2,816 questions from MedMCQA for Low-Level tasks. Examples of Low-Level tasks are
shown in Figure 8.

(Example 1)
Question: Antimalarial drug used for causal prophylaxis act at which stage of developmental cycle?

Options: 
A: Gametogony B: Erythrocytic schizogony C: Pre-erythrocytic schizogony D: Exo-erythrocytic schizogony

Answer: C

(Example 2)
Question: Which of the following is not a vitamin K dependent procoagulant?

Options: 
A: Factor II B: Factor VII C: Factor IX D: Factor XI

Answer: D

(The other three examples)

Question: The anteroposterior curve is ____________

Options: 
A: Curve of Spee B: Curve of Wilson C: Curve of Monson D: Bonwill's curve

Answer: 

Figure 9. Input prompt format of the five-shot in-context learning setting.

We use five-shot in-context learning to evaluate the performance of LLMs on Low-Level tasks. Figure 9 shows the input
prompt format of the five-shot in-context learning setting. The input prompt consists of five examples, each of which is a
question-answer pair. After the five examples, we append the test sample, which is a question without the correct answer.
The model is required to predict the correct answer for the test sample. For answer parsing, we find that current LLMs
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always follow the correct format in the five-shot in-context learning setting. Therefore, we directly compare the generated
answer with the ground truth answer.

A.2. Mid-Level Tasks

Question: A 25-year-old man comes to the office 
because of pain in his left shoulder. because of pain 
in his left shoulder. He says that this pain started 3 
years ago and has progressively worsened. He 
denies joint trauma, fever, dysuria, or morning 
stiffness. … Statement: “Homogentisic acid oxidase 
is most likely deficient in this patient”, is the 
statement above correct or incorrect?

Answer: correct

Question: A 25-year-old man comes to the office 
because of … Which of the following enzymes is 
most likely deficient in this patient?
Options: 
A: Branched-chain alpha-ketoacid dehydrogenase
B: Cystathionine synthase deficiency
C: Homogentisic acid oxidase
D: Phenylalanine hydroxylase
E: Propionyl-CoA carboxylase
Alice chose answer D. Please verify if this is correct, 
and if not, provide the correct answer.
Answer: incorrect, answer C is the correct answer

Question: A 25-year-old man …There is a 50% 
chance that the correct answer is not included in the 
options. Please determine if the correct answer is 
among the given options and respond with yes or no. 

Options:
A: Branched-chain alpha-ketoacid dehydrogenase
B: Cystathionine synthase
C: Tyrosine aminotransferase (distractor)
D: Phenylalanine hydroxylase
E: Propionyl-CoA carboxylase
Answer: no

Figure 10. Examples of Mid-Level tasks. Left: Statement Validation tasks; Middle: Multi-step Rectification tasks; Right: Answer
Existence Judgment tasks.

We construct Mid-Level tasks by reformulating the original MCQs in MedQA and MedMCQA into statement verification
tasks, multi-step rectification tasks, and answer existence judgment tasks. For the Statement Validation task, we prompt
GPT-4o to generate a statement based on the question and a given option, using the following prompt format:

You are a medical expert and you are given a multiple choice question. Please change the question into a statement verification
based on a given option.

Example 1:

**Input**

Original Question: Gene for Dentin mineralization

Options: A: MAP1B B: PHEX C: DEN D: PHIX

Answer: B

Given Option: A

**Output**

Statement: MAP1B is the gene for Dentin mineralization.

Label: False

Example 2:

**Input**

Original Question: Child of Vasanthi was weaned from breast milk on the 5th day and was given sugarcane juice the child
developed hypoglycemia and hepatomegaly biochemical examination showed hypophosphatemia and enzyme deficiencies-
reducing substances in urine. The child is probably suffering from which of the following enzyme deficiencies -

Options: A: Fructokinase B: Aldolase B C: Glucose 6 Phosphatase D: Beta galactosidase

Answer: B

Given Option: B

**Output**

Statement: Child of Vasanthi was weaned from breast milk on the 5th day and was given sugarcane juice the child developed
hypoglycemia and hepatomegaly biochemical examination showed hypophosphatemia and enzyme deficiencies-reducing
substances in urine. The child is probably suffering from the deficiency of enzyme Aldolase B.

Label: True

Test:

**Input**

Original Question: [Original MCQ Question]

Options: [Options]

Answer: [Correct Answer]

Given Option: [Give Option]

**Output**
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We found that providing both the correct answer and the given option in the prompt can help the model generate more
accurate statements. We also provide two examples of the generation process in the prompt to help the model understand the
task. For the Answer Existence Judgment task, we prompt GPT-4o to generate a distractor based on the question and the
correct answer:

The following is a medical question along with its correct option. To increase the difficulty of the question, please generate a
misleading distractor based on the correct option. This distractor should be an incorrect answer to the question. Directly
generate the distractor without extra content.
Question: [Original MCQ Question]
Options: [Options]
Correct Option: [Correct Answer]

Distractor:

To ensure that GPT-4o can correctly generate the desire statements and distractors, we have three experienced medical
experts manually verify a batch of 100 generated statements and distractors. We found that GPT-4o can generate correct
statements and distractors with an accuracy of around 95%.

For generating questions of Mid-Level, we leverage question templates illustrated in Figure 10 to generate corresponding
questions, using options and correct answers from the original MCQs, the generated statements, and the generated distractors.
For evaluation, we use the same five-shot in-context learning setting as in Low-Level tasks.

A.3. High-Level Tasks

For the High-Level task, following Hager et al. (2024), we construct a full-path clinical-diagnosis evaluation dataset
based on the MIMIC-IV dataset. MIMIC-IV is a large-scale, de-identified, and publicly available dataset that contains
electronic health records (EHRs) of patients admitted in Beth Israel Deaconess Medical Center in Boston, MA. To make the
generated dataset align with tasks in the previous levels, we first identify and extract diseases involved in the MedQA and
MedMCQA datasets to form a disease pool, and then retrieve the corresponding admission records from the MIMIC-IV
dataset. Specifically, we first use the ICD-10-CM codes to filter the relevant admission records for each disease, and extract
the discharge diagnosis section of these admission records. To ensure that the admission records are highly relevant to
the diseases, we only keep the records that the corresponding disease is in the first place of the discharge diagnosis. We
further exclude the records that the discharge diagnosis contains multiple diseases in the disease pool. To ensure the statistic
significance of the evaluation and balance across selected diseases, we only keep the diseases that have more than 10
admission records, and randomly sample 100 admission records for disease that have more than 100 records. As a result, we
obtain 2,176 admission records for 42 diseases. The distribution of the number of admission records for each disease and
their affected human body systems are shown in Figure 11.

Figure 11. Number of admission records for each disease in the constructed full-path clinical-diagnosis evaluation dataset.

We then construct the full-path clinical-diagnosis evaluation dataset by extracting the history of present illness, physical
examination sections from the clinical notes of the admission records, and the corresponding laboratory tests, microbiology
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tests, and imaging tests from the clinical data tables. Then, we construct an agent-based evaluation setting, where the model
is required to make decisions (e.g., request specific tests, make the final diagnosis) based on the information it obtain through
the interaction process. Specifically, for each admission record, we first provide the history of present illness to the model,
using the following prompt format:

You are an experienced medical AI assistant. Your ultimate goal is to help the doctor diagnose the patient’s condition. You will
be provided with the patient’s history and the results of any tests that the doctor has already performed. You can also order
additional tests for more information, including physical examinations, laboratory tests, microbiology tests, and imaging.

The action you can choose are:

1. PE: Perform physical examination of patient and receive the observations.

2. LAB: Run laboratory tests and receive their values. You will get all the lab tests results at once.

3. MICRO: Run microbiology tests and receive their values. You will get all the microbiology tests results at once.

4. IMAGE: Do specific imaging scans and receive the radiologist report. You will get all the imaging results at once.

5. OUTPUT: Output the final diagnosis.

Note: To improve diagnostic efficiency, please perform physical examinations (PE), laboratory tests (LAB), microbiological
tests (MICRO), and imaging scans (IMAGE) only when necessary for diagnosis. When you are confident, choose the “OUTPUT”
action and you will be asked to output the corresponding diagnosis.

Your output format should be:

Rationale: (your reasoning process for choosing the next action)

Action: (one of the actions in [PE, LAB, IMAGE, MICRO, OUTPUT])

Now a patient comes to see the doctor.

Patient History: [History of Present Illness].

Please choose your next action from [PE, LAB, IMAGE, MICRO, OUTPUT].

If the model chooses the “PE” action, we provide the physical examination section of the clinical notes to the model using
the following prompt format:

Physical Examination of this patient: [Physical Examination].

Please choose your next action from [Lefted Actions].

Otherwise, if the model chooses one of the “LAB”, “MICRO”, or “IMAGE” actions, we will further ask the model to
provide the detailed list of examination items of the corresponding test type:

You choose [Model’s Action] as the next action. Please provide the specific list of [Model’s Action] you want to run:

please output your choice in the following format:

Rationale: (your reasoning process for choosing the next action)

Lab Tests: (the specific laboratory tests you want to run, separated by commas)

To parse the model’s requested examination items, we leverage the name of examination items appeared in MIMIC-IV to
form an examination pool. Then, we use UMLS to map the examination items in the pool to the corresponding CUIs, and
retrieve the corresponding synonyms of the CUIs. Finally, we extract and match the synonyms of the CUIs with the model’s
requested examination items using fuzzy matching. If the similarity between the synonyms and the model’s requested
examination items is above a certain threshold (0.9), we consider the examination items are correctly parsed. We further
conduct manual verification over the examination items that are not identified by the fuzzy matching, and construct a
mapping table between the missing examination items and their standard names in MIMIC-IV. Finally, we verify the recall
of the examination items parsing process by randomly sampled 100 recognition results randomly sampled from the evaluated
models’ outputs, and have three experienced doctors manually verify the results. We calculate the recall of the examination
items parsing process by comparing the manual verification results with the recognition results of the evaluated models. We
find that the recall is around 95% across all three types of tests.

After the parsing process, we provide the model with the results of the requested tests, and ask the model to choose the next
action:
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Here are the [Model’s Action] results of this patient:

[Results of the requested tests]

Please choose your next action from [Lefted Actions].

If the model fails to output the valid action, we will warn the model and ask the model to choose the next action again:

You have chosen an action that is not available or used the wrong format.

Your output format should be:

Rationale: (your reasoning process for choosing the next action)

Action: (one of the actions in [Lefted Actions])

Please choose your next action from [Lefted Actions].

Once the model chooses the “OUTPUT” action, we will further ask the model to output the final diagnosis:

You choose “OUTPUT” as the next action. Please output the final diagnosis for this patient.

Your output format should be:

Diagnosis: (the final diagnosis, specific disease name)

We use the zero-shot learning setting to evaluate the performance of LLMs on this full-path clinical-diagnosis task. When
the chat history length exceed the maximum token length of the model, we ask the model to summarize the chat history and
provide the summary to the model as the input prompt:

Summarize our chat history, condense the content as much as possible while preserving all essential information related to the
diagnosis. Eliminate redundant or irrelevant information, and ensure the summary maintains coherence and clarity.

Your output format should be:

Summary: (your summary of the dialogue)

For answer parsing, we construct a disease synonyms mapping based the UMLS matching and manual verification process,
and use the mapping to match the model’s output with the ground truth. We also record models’ requested examination
items to calculate the full-path clinical-diagnosis accuracy.

B. Details of Evaluation Metrics
As introduced in Section 3.3, we use accuracy as the evaluation metric for Low-Level and Mid-Level tasks. For High-Level
tasks, we use the full-path clinical-diagnosis accuracy as the evaluation metric. To make the evaluation metrics across
different levels comparable, we normalize the accuracy of Low-Level and Mid-Level tasks using Equation (4). Specifically,
for the Low-Level tasks (MCQs), we set the random accuracy as 1

Nc
, where Nc is the number of options in the MCQs. For

the Statement Validation tasks and Answer Existence Judgment tasks, we set the random accuracy as 0.5, as there are only
two possible labels. For the Multi-step Rectification tasks, we find that the random accuracy of questions with the correct
answer provided is much higher than that of questions with the wrong answer provided, because for the latter case, the
model need to further choose the correct answer from the rest of Nc− 1 options. Therefore, we consider weight the accuracy
of the questions with the correct answer provided by α and the accuracy of the questions with the wrong answer provided by
1− α to make the random accuracy independent of the random strategy. Considering a random strategy that deciding the
given option is correct with a probability of p, the random accuracy of the Multi-step Rectification tasks is calculated as:

Accuracyrand = α× p+ (1− α)× (1− p)× 1

Nc − 1

Since we want the random accuracy be invariant to the random strategy, the derivative of the random accuracy with respect
to p should be zero, which leads to α = 1

Nc
. Therefore, we set α = 1

Nc
for the Multi-step Rectification tasks, and the

random accuracy is 1
Nc

as well.

For the full-path clinical-diagnosis accuracy, since the task format is open-ended, we set the random accuracy as zero and
directly report the accuracy of the evaluated models.
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C. Details of Evaluated Models
We list the basic information of LLMs evaluated in our study in Table 7. The models are divided into general and medical-
domain specific models. We denote Phi3-mini-Instruct-128k, Phi3-small-Instruct-128k, Phi3-medium-Instruct-128k, and
Phi4 as Phi3-3.8B, Phi3-7B, Phi3-14B, and Phi4-14B, for simplicity.

Table 7. The basic information of large language models evaluated in our study, including the model type, family, backbone model,
parameter size, and training data size.

Model Type Family Model Backbone Model Parameter Size (B) Training Data Size (T)

General Domain

Llama

Llama-7B - 7 1.4
Llama-13B - 13 1.4
Llama-33B - 33 1.4
Llama-65B - 65 1.4
Llama2-7B - 7 2

Llama2-13B - 13 2
Llama2-70B - 70 2
Llama3-8B - 8 15

Llama3-70B - 70 15

Qwen

Qwen-7B - 7 3
Qwen-14B - 14 3
Qwen-72B - 72 3
Qwen2-7B - 7 7

Qwen2-72B - 72 7
Qwen2.5-7B - 7 18
Qwen2.5-14B - 14 18
Qwen2.5-32B - 32 18
Qwen2.5-72B - 72 18

Gemma

Gemma-2B - 2 3
Gemma-7B - 7 6
Gemma2-2B - 2 2
Gemma2-9B - 9 8

Gemma2-27B - 27 13

Phi

Phi3-3.8B - 3.8 3.3
Phi3-7B - 7 4.8

Phi3-14B - 14 3.8
Phi4-14B - 14 9.8

GPT GPT-4o-mini - Not Available Not Available
GPT-4o - Not Available Not Available
o3-mini - Not Available Not Available

DeepSeek DeepSeek-V3 - 671 (37 activated) 14.8
DeepSeek-R1 - 671 (37 activated) 14.8

Medical Domain Others

ClinicalCamel-70B Llama2-70B 70 2
Med42-70B Llama2-70B 70 2

Meditron-70B Llama2-70B 70 2
Med42-v2-8B Llama3-8B 8 15
Med42-v2-70B Llama3-70B 70 15
Meditron3-8B Llama3-8B 8 15
Meditron3-70B Llama3-70B 70 15

MMed-Llama3-8B Llama3-8B 8 15

D. Details of Evaluation Settings
For the Low-Level and Mid-Level tasks, we set the model temperature as 0 to ensure the model outputs the most confident
answer. We conduct five repeated experiments by randomly selecting five demonstrative samples from the rest of dataset. We
then calculate the average accuracy of the five experiments, and report the mean and standard error of the accuracy across all
test samples. For the High-Level tasks, considering that low temperature may lead to the model being too conservative, we
set the model temperature as 0.8 to encourage the model to explore more possibilities. We also verified through preliminary
experiments that LLMs produce stable outputs with this parameter setting. We conduct repeated experiments three times
and report the mean and standard error of the accuracy.
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E. Details of Evaluation Results
We list in Table 8 the detailed results of the evaluated LLMs on tasks across all cognitive levels. The results are reported in the
format of mean and standard error of the accuracy. We notice that some medical models (Meditron-70B, MMed-Llama3-8B)
achieve a near-to-zero performance on the High-Level tasks. After carefully checking the outputs of these models, we find
that these models fail to follow the instruction and tend to repeat the given instruction or output irrelevant information.

Table 8. Full performance (mean and standard error of normalized performance (%)) of Large Language Models on tasks across different
cognitive levels. Considering the high cost of GPT-4o, o3-mini, DeepSeek-V3, and DeepSeek-R1, we only evaluate these models with
three repeated experiments.

Model Low-Level Mid-Level High-LevelStmtVal AnsExist MultiRect
MedQA MedMCQA MedQA MedMCQA MedQA MedMCQA MedQA MedMCQA MIMIC-IV

Llama-7B 3.36 ± 0.82 10.40 ± 0.24 4.88 ± 0.84 4.52 ± 0.45 0.86 ± 0.70 0.55 ± 0.43 1.60 ± 0.63 8.06 ± 0.26 -
Llama-13B 13.18 ± 0.57 18.98 ± 0.22 6.47 ± 0.74 6.80 ± 0.57 -0.05 ± 0.63 0.49 ± 0.54 1.45 ± 0.26 2.17 ± 0.16 -
Llama-33B 24.09 ± 0.26 26.88 ± 0.34 16.70 ± 0.24 12.29 ± 0.48 1.86 ± 0.26 1.03 ± 0.27 19.91 ± 0.84 17.99 ± 0.34 -
Llama-65B 26.64 ± 0.49 29.59 ± 0.29 22.26 ± 0.65 17.03 ± 0.51 5.53 ± 1.01 2.59 ± 0.20 22.60 ± 0.31 20.83 ± 0.18 -
Llama2-7B 15.88 ± 0.28 18.32 ± 0.22 8.55 ± 0.70 7.15 ± 0.59 0.25 ± 1.29 0.47 ± 0.22 3.88 ± 0.43 8.58 ± 0.31 2.65 ± 0.20
Llama2-13B 21.10 ± 0.30 20.94 ± 0.33 9.58 ± 1.77 12.44 ± 0.32 1.08 ± 0.92 1.25 ± 0.35 7.84 ± 0.32 8.65 ± 0.22 4.92 ± 0.15
Llama2-70B 37.99 ± 0.34 35.60 ± 0.26 23.77 ± 0.43 17.14 ± 0.17 5.51 ± 0.76 2.58 ± 0.68 33.47 ± 0.52 28.65 ± 0.26 5.16 ± 0.18
Llama3-8B 37.30 ± 0.53 39.11 ± 0.29 22.77 ± 0.56 22.10 ± 0.31 4.83 ± 0.82 3.81 ± 0.25 6.80 ± 0.19 8.29 ± 0.15 10.50 ± 0.16
Llama3-70B 63.68 ± 0.34 60.82 ± 0.28 53.16 ± 0.46 41.29 ± 0.34 9.36 ± 1.01 10.37 ± 0.64 62.87 ± 0.29 57.07 ± 0.16 17.81 ± 0.41
Qwen-7B 19.40 ± 0.31 24.85 ± 0.21 14.19 ± 0.49 13.00 ± 0.69 2.74 ± 0.93 1.00 ± 0.25 5.09 ± 0.43 7.24 ± 0.21 2.51 ± 0.31
Qwen-14B 38.05 ± 0.38 39.25 ± 0.13 21.13 ± 0.30 18.56 ± 0.22 4.93 ± 1.21 3.06 ± 0.27 27.89 ± 0.09 26.31 ± 0.22 4.14 ± 0.29
Qwen-72B 50.60 ± 0.39 50.95 ± 0.18 36.43 ± 0.66 30.99 ± 0.36 10.42 ± 0.55 7.09 ± 0.18 38.26 ± 0.41 40.74 ± 0.49 5.89 ± 0.35
Qwen2-7B 36.73 ± 0.44 39.85 ± 0.15 28.08 ± 0.20 24.66 ± 0.30 4.00 ± 0.76 4.68 ± 0.25 31.60 ± 0.43 33.46 ± 0.24 6.99 ± 0.25
Qwen2-72B 65.91 ± 0.24 60.41 ± 0.19 55.09 ± 0.23 42.23 ± 0.23 24.00 ± 0.58 11.67 ± 0.14 62.86 ± 0.27 57.68 ± 0.26 15.10 ± 0.09
Qwen2.5-7B 42.86 ± 0.49 45.39 ± 0.17 30.29 ± 0.34 26.43 ± 0.38 13.66 ± 0.23 7.49 ± 0.32 37.08 ± 0.22 40.34 ± 0.19 9.50 ± 0.04
Qwen2.5-14B 52.23 ± 0.30 51.74 ± 0.24 40.86 ± 0.49 33.98 ± 0.29 17.36 ± 0.56 11.82 ± 0.50 48.67 ± 0.34 46.40 ± 0.15 12.07 ± 0.21
Qwen2.5-32B 59.21 ± 0.21 57.17 ± 0.09 48.05 ± 0.43 37.92 ± 0.06 14.31 ± 0.60 11.36 ± 0.36 53.01 ± 0.33 51.04 ± 0.11 11.87 ± 0.22
Qwen2.5-72B 67.83 ± 0.20 61.82 ± 0.12 55.70 ± 0.42 44.79 ± 0.53 28.98 ± 0.65 18.54 ± 0.39 63.70 ± 0.36 58.39 ± 0.13 16.05 ± 0.24
Gemma-2B 6.16 ± 0.63 15.04 ± 0.24 1.21 ± 0.41 4.12 ± 0.28 -1.28 ± 1.01 -0.34 ± 0.41 1.67 ± 0.49 4.72 ± 0.32 0.59 ± 0.09
Gemma-7B 30.35 ± 0.42 27.41 ± 0.38 17.03 ± 0.49 18.90 ± 0.10 5.16 ± 0.34 2.89 ± 0.31 23.05 ± 0.32 19.14 ± 0.43 0.33 ± 0.09
Gemma2-2B 14.87 ± 0.34 24.18 ± 0.31 4.96 ± 0.62 10.23 ± 0.45 -0.48 ± 0.58 0.68 ± 0.69 0.86 ± 0.30 0.63 ± 0.05 5.02 ± 0.33
Gemma2-9B 44.21 ± 0.18 46.20 ± 0.20 32.86 ± 0.57 27.27 ± 0.31 6.97 ± 0.74 6.76 ± 0.40 33.78 ± 0.32 35.11 ± 0.32 9.04 ± 0.28
Gemma2-27B 53.65 ± 0.31 50.45 ± 0.18 41.36 ± 0.68 35.66 ± 0.22 10.59 ± 1.17 10.14 ± 0.33 48.23 ± 0.16 45.18 ± 0.25 11.19 ± 0.64
Phi3-3.8B 37.52 ± 0.28 40.96 ± 0.20 29.01 ± 0.72 24.40 ± 0.04 10.01 ± 1.19 7.50 ± 0.29 30.31 ± 0.54 35.70 ± 0.40 2.21 ± 0.28
Phi3-7B 49.25 ± 0.30 46.95 ± 0.30 38.92 ± 0.29 27.63 ± 0.25 4.83 ± 0.45 2.13 ± 0.23 42.61 ± 0.24 35.58 ± 0.30 7.74 ± 0.16
Phi3-14B 54.06 ± 0.49 49.70 ± 0.27 40.45 ± 0.59 31.92 ± 0.26 5.79 ± 0.52 8.24 ± 0.48 48.75 ± 0.46 45.21 ± 0.20 3.89 ± 0.01
Phi4-14B 56.19 ± 0.40 52.62 ± 0.30 44.88 ± 0.55 35.28 ± 0.25 19.92 ± 1.04 15.13 ± 0.23 53.16 ± 0.26 49.98 ± 0.15 12.18 ± 0.37
GPT-4o-mini 62.70 ± 0.17 55.40 ± 0.10 47.97 ± 0.44 36.46 ± 0.59 24.98 ± 0.74 12.32 ± 0.57 56.11 ± 0.51 48.12 ± 0.19 13.81 ± 0.84
GPT-4o 78.33 ± 0.75 64.00 ± 1.02 67.83 ± 0.60 49.67 ± 0.33 33.33 ± 2.20 11.83 ± 2.91 70.92 ± 1.23 63.39 ± 0.39 19.33 ± 0.30
o3-mini 87.71 ± 0.55 74.44 ± 0.80 76.67 ± 0.17 57.50 ± 0.76 62.83 ± 0.93 30.50 ± 1.89 86.17 ± 0.91 73.56 ±1.12 15.05 ± 0.45
DeepSeek-V3 78.33 ± 0.75 65.78 ± 0.22 56.50 ± 0.63 50.83 ± 1.17 5.17 ± 0.17 7.33 ± 1.69 72.71 ± 0.40 62.06 ± 0.11 19.42 ± 0.17
DeepSeek-R1 89.79 ± 0.75 74.44 ± 0.80 77.33 ± 1.33 62.00 ± 0.29 54.17 ± 1.33 36.33 ± 1.09 87.67 ± 0.65 75.44 ± 0.11 26.54 ± 0.31
ClinicalCamel-70B 42.20 ± 0.52 37.14 ± 0.34 29.48 ± 0.32 21.68 ± 0.22 7.09 ± 1.02 4.82 ± 0.32 36.82 ± 0.63 32.80 ± 0.17 2.19 ± 0.08
Med42-70B 49.18 ± 0.28 48.11 ± 0.21 33.41 ± 0.72 21.74 ± 0.48 12.65 ± 0.54 7.37 ± 0.56 40.01 ± 0.78 36.77 ± 0.24 4.25 ± 0.28
Meditron-70B 42.52 ± 0.59 36.18 ± 0.31 28.15 ± 0.65 20.89 ± 0.47 8.18 ± 1.05 4.23 ± 0.32 37.64 ± 0.33 29.80 ± 0.36 0.32 ± 0.01
Llama3-Med42-8B 46.42 ± 0.64 47.13 ± 0.18 32.10 ± 0.65 26.31 ± 0.12 9.31 ± 0.60 7.08 ± 0.35 40.47 ± 0.29 41.81 ± 0.25 11.22 ± 0.21
Llama3-Med42-70B 65.88 ± 0.12 62.74 ± 0.19 56.23 ± 0.29 44.08 ± 0.24 20.86 ± 1.13 15.39 ± 0.21 62.68 ± 0.28 58.83 ± 0.17 12.37 ± 0.18
Meditron3-8B 40.60 ± 0.26 45.37 ± 0.20 24.10 ± 0.23 23.13 ± 0.36 4.48 ± 0.71 5.71 ± 0.34 25.28 ± 0.37 27.45 ± 0.27 7.61 ± 0.49
Meditron3-70B 68.96 ± 0.27 62.27 ± 0.17 54.82 ± 0.29 41.17 ± 0.29 6.52 ± 1.22 9.57 ± 0.55 61.70 ± 0.52 54.76 ± 0.18 10.36 ± 0.10
MMed-Llama3-8B 37.96 ± 0.43 39.20 ± 0.21 10.34 ± 0.39 21.78 ± 0.55 5.31 ± 0.27 5.82 ± 0.33 24.64 ± 0.24 24.60 ± 0.16 0.32 ± 0.01
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F. Details of Clinician Validation
To validate that the cognitive difficulties of tasks in our benchmark are consistent with the cognitive levels defined in
Section 3.2, we conducted a clinician validation. Specifically, we first randomly sampled 20 questions from each task to
form a subset of 100 questions. For Low-Level and Mid-Level tasks, we sample questions from the MedQA benchmark.
Then, we recruited four licensed clinicians with 3 to 8 years of experience to evaluate this subset from two perspectives: (1)
their accuracy in answering the questions and (2) their subjective difficulty ratings to the questions (1=Easy, 10=Hard). The
detailed labeling instructions are as follows:

Please answer the following questions based on your medical knowledge. For each question, please provide your
answer and rate the difficulty of the question on a scale from 1 to 10, where 1 means ”very easy” and 10 means
”very hard”.

• Low-Level Tasks: These tasks require basic medical knowledge and understanding of medical concepts.
Please choose the most appropriate answer from the given options.

• Mid-Level Tasks: These tasks require a more complex application of medical knowledge. For statement
validation tasks, please determine whether the statement is true or false. For answer existence judgment tasks,
please determine whether the answer exists in the given options. For multi-step rectification tasks, please
first determine whether the provided answer is correct, and if not, provide the correct answer.

• High-Level Tasks: Given the history of present illness section from an inpatient admission note, the task is
to provide the patient’s primary diagnosis.
At each step, the following operation types are allowed:
(1) Physical Examination: Request a physical examination for the patient;
(2) Laboratory Tests: Request laboratory tests for the patient;
(3) Microbiological Culture: Request microbiological cultures (e.g., blood, urine);
(4) Imaging: Request imaging tests (e.g., CT, X-ray, ultrasound);
(5) Diagnosis: A diagnosis should be provided when (a) the test results are sufficient to support a diagnosis,
or (b) all possible tests have been completed. Output the patient’s primary diagnosis (can include multiple
diagnoses), including any conditions already mentioned in the HPI.
Note: Please record the sequence in which the test types were requested for diagnosis.
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