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Abstract

Group Relative Policy Optimization (GRPO),
which is widely adopted by R1-like reasoning
models, has advanced mathematical reasoning.
Nevertheless, GRPO faces challenges in reward
sparsity, verbosity, and inadequate focus on
problem difficulty. We propose GRPO-LEAD,
enhancing GRPO with: (1) length-regularized
rewards to encourage conciseness while main-
taining accuracy; (2) explicit penalties for in-
correct solutions to improve model precision;
and (3) difficulty-aware advantage reweighting
for robust generalization on challenging prob-
lems. Comprehensive evaluations demonstrate
that GRPO-LEAD significantly improves rea-
soning accuracy, conciseness, and efficiency.
Our approach achieves state-of-the-art perfor-
mance for 14B-scale models, underscoring the
synergy of our methods with appropriate model
scale and high-quality data. Our source code,
generated dataset, and models are available af-
ter the acceptance of this paper.

1 Introduction

Recently, R1-like reasoning models have attracted
significant attention due to their impressive perfor-
mance in solving challenging mathematical reason-
ing tasks through extensive chains of thought(Luo
et al., 2025b; Wen et al., 2025). According to the
technical report introducing R1(Guo et al., 2025),
reinforcement learning (RL) fine-tuning plays a
pivotal role in enabling this reasoning capabil-
ity. In particular, Group Relative Policy Optimiza-
tion (GRPO)(Shao et al., 2024), a novel RL ap-
proach for language models, has emerged as a
promising alternative to traditional methods such
as PPO(Schulman et al., 2017) and DPO(Rafailov
et al., 2023), primarily due to its efficiency and
intrinsic compatibility with language model train-
ing. . Researchers across various domains have
successfully employed GRPO (Li et al., 2025; Liu
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et al., 2025a; Luo et al., 2025a; Dai et al., 2025),
achieving impressive outcomes.

Despite its strengths, existing GRPO implemen-
tations encounter significant limitations.A primary
issue is reward sparsity stemming from binary, rule-
based accuracy metrics; when responses within
problem groups exhibit uniform correctness or in-
correctness, the resulting uniform reward signals
offer minimal differentiation, weakening learning
gradients and hampering convergence. Moreover,
such uniform signals inadequately promote con-
cise reasoning, leading to unnecessarily verbose
outputs and inefficiencies during training and infer-
ence. Additionally, the current reward formulation
lacks explicit penalties for incorrect answers(Hu
et al., 2025a; Luo et al., 2025b; Chu et al., 2025),,
inadvertently encouraging models to guess rather
than engage in rigorous reasoning, thereby com-
promising precision. Furthermore, rewards are ap-
plied uniformly across problems regardless of their
intrinsic difficulty, causing models to excessively
optimize simpler tasks while neglecting more chal-
lenging problems that require deeper reasoning.

Furthermore, computational efficiency also
emerges as a critical practical concern, as rein-
forcement learning fine-tuning typically demands
substantial resources, limiting accessibility, experi-
mentation speed, and scalability, especially in low-
resource environments. The current GRPO formu-
lation is insufficient for encouraging concise and
precise reasoning. Consequently, reducing com-
putational requirements during both training and
inference is essential for enabling broader applica-
bility and effective real-world deployment.

Motivated by these limitations, this work intro-
duces GRPO-LEAD, a suite of targeted modifi-
cations explicitly designed to enhance GRPO’s ef-
fectiveness for mathematical reasoning tasks. The
overall framework is illustrated in figure 1. Our
key contributions include:



Q: There are 8!= 40320 eight-digit positive integers that use
each of the digits 1,2, 3,4, 5, 6, 7, 8 exactly once. Let N be

the number of these integers that are divisible by 22. Find the
difference between N and 2025.

Q: Let A be the set of positive divisors of 2025. A subset

B < A is chosen at random. What is the probability (in lowest
terms) that B is nonempty and the least common multiple of its
elements is 2025 If the probability is =, find m + n.
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Figure 1: The GRPO-LEAD framework assigns length-regularized positive rewards to correct answers and explicit
penalties to incorrect ones. A difficulty-based weight w used for advantage reweighting is determined from the
empirical correctness of responses for each question. This weight then scales the advantages derived from each
question, prioritizing harder questions over easier ones during the policy update to foster robust reasoning.

* We introduce a length-regularized reward with
an explicit penalty for incorrect solutions to
encourage solution conciseness while main-
taining accuracy.

* We apply difficulty-aware advantage reweight-
ing to focus learning on more challenging
problems, fostering robust generalization.

* Our comprehensive evaluations demonstrate
GRPO-LEAD significantly improves reason-
ing accuracy and conciseness, achieving state-
of-the-art performance in mathematical rea-
soning for 14B-scale models.

2 Related Work

2.1 Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO) is a
recently proposed algorithm designed specifically
for fine-tuning language models with group-level
normalization of rewards (Guo et al., 2025). GRPO
modifies the standard policy gradient objective by
introducing relative advantages within sets of re-
sponses corresponding to the same query, stabi-
lizing updates and promoting consistent learning
signals. Formally, GRPO defines the objective as:

where the importance sampling ratio is given by
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Here, GG denotes the number of groups (e.g., dif-
ferent queries), fli,t is the normalized advantage
within group ¢, and € defines the clipping range for
conservative updates.

2.2 Length Reward

A prevalent issue in reinforcement learning-based
fine-tuning of language models is the uncontrolled
increase in response length driven by reward sig-
nals, commonly known as reward hacking(Everitt
et al., 2017; Gao et al., 2023; Weng, 2024). This
phenomenon leads to unnecessarily verbose re-
sponses, which, although technically correct, often
lack conciseness and hinder interpretability. Fur-
thermore, such verbosity fails to reflect efficient
reasoning, limiting model utility in practical sce-
narios. Existing efforts to mitigate this problem
typically involve incentivizing shorter answers to
encourage more succinct reasoning processes. For
example, Kimi proposed an individual min-max
normalized length reward based on the lengths of
generated responses (Team et al., 2025). Yeo et
al. introduced a cosine length reward function with
fixed maximum and minimum thresholds to man-
age response lengths (Yeo et al., 2025). Aggarwal
et al. utilized a target "golden length" to directly



reward or penalize responses based on their devia-
tion from an ideal length (Aggarwal and Welleck,
2025).

However, these existing methods depend heavily
on static or predefined length heuristics, limiting
their effectiveness across diverse questions of vary-
ing complexity. In contrast, our proposed length-
dependent accuracy reward addresses these limita-
tions by dynamically calibrating rewards according
to each group’s relative response length and rollout
accuracy, promoting concise yet difficulty-aware
reasoning processes.

3 Method

To systematically address the limitations identified
in existing implementations of Group Relative Pol-
icy Optimization (GRPO), we propose a suite of
novel modifications collectively termed GRPO-
LEAD (GRPO with Length-dependent rewards,
Explicit penalties, and Advantage reweighting for
Difficulty). Our proposed method enhances the
original GRPO framework by introducing three
core innovations: 1) a length-dependent accuracy
reward to foster concise solutions, 2) an explicit
penalty mechanism to mitigate low precision rate
caused by length reward, and 3) a difficulty-aware
advantage reweighting strategy that amplifies learn-
ing signals for challenging problems. Additionally,
we examine how base model scale and supervised
fine-tuning (SFT) impact the effectiveness of rein-
forcement learning (RL) fine-tuning.

3.1 Length-Dependent Accuracy Reward

The core idea is to reward correct completions not
uniformly but in proportion to their relative con-
ciseness. Given a question ¢ and a set of model-
generated responses {o; }, we first isolate the subset
of correct responses and compute the mean ;. and
standard deviation o of their token lengths. For
a correct response o with length |o|, we define its
standardized length deviation as:

_Jol—p
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where € > (0 is a small constant added for numerical
stability. The final reward is modulated using an
exponential decay function:

exp(—az), if ois correct,

Raccuracy (0 ‘ Q) = {

0, if o0 is incorrect.
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where o > 0 is a tunable hyperparameter control-
ling the strength of length penalization.

This formulation ensures that overly long cor-
rect responses are systematically penalized, while
relatively concise ones are amplified. Unlike static
or absolute length constraints, our approach lever-
ages standardized deviation, allowing for dynamic
adaptation to the distributional properties of each
question.

3.2 Explicit Penalty for Incorrect Answers to
Enhance True Accuracy

Existing methods often prioritize maximizing
pass@]—the success rate on the first at-
tempt—typically within restricted response lengths.
However, this focus can inadvertently degrade over-
all model accuracy. The fundamental issue appears
to stem from the use of a binary accuracy reward,
rather than length-based regularization: under pres-
sure to generate responses within a limited length,
a model is encouraged to provide an answer, even
if it’s a guess, rather than no answer at all. Such
guesses can achieve a non-zero reward and inflate
pass@ 1, but they do so at the cost of overall preci-
sion by rewarding less rigorous reasoning.

To counteract this tendency and foster a more
robust distinction between correct and incorrect
outputs, we introduce a revised reward structure
that explicitly penalizes incorrect responses. This
new reward function is defined as:

exp(—az), if ois correct,

Raccuracy(o ‘ Q> = { . ..

-1, if o is incorrect,

)

where o is the output, g is the question, z represents

the standardized length deviation of a correct re-

sponse, and o > 0 is a hyperparameter controlling

the strength of the length penalization for correct
answers, consistent with prior definitions.

The expected reward for a response, given its

probability of correctness P(correct), under this

formulation is:

E[Raccuracy (0 | )] = P(correct) - exp(—az)
— (1 — P(correct))  (4)

To intuitively grasp the impact of this reward func-
tion, let us consider a simplified scenario where the
length penalty for correct answers is negligible (i.e.,
exp(—az) =~ 1). In practice, the average reward
for correct answers often normalizes close to this
value. Under this assumption, the expected reward



simplifies to:
E[R] ~ 2P(correct) — 1 5)

This approximation reveals a crucial characteris-
tic: the expected reward becomes positive only
when P(correct) > 0.5. This threshold acts as
a principled deterrent against speculative guess-
ing, compelling the model to internalize a more
stringent decision boundary for correctness. Our
empirical results confirm that this approach signifi-
cantly improves both pass@ [ and overall precision,
encouraging the model to favor accuracy over mere
completion.

3.3 Advantage Reweighting for
Difficulty-Aware Training

While length reward and advantage reweighting
can enhance precision and mitigate verbosity, uni-
formly applying rewards across all questions, ir-
respective of their intrinsic difficulty, may implic-
itly bias the model. It might learn to excessively
optimize performance on simpler tasks-—where
correct and concise responses are more readily
achieved-—while neglecting more complex ques-
tions that demand deeper reasoning. Consequently,
the performance on challenging problems can de-
grade.

Therefore, we introduce a difficulty-aware ad-
vantage reweighting strategy, which dynamically
adjust the magnitude of policy updates based on
an estimate of problem difficulty. The intuition
is to amplify learning signals for harder tasks, re-
anchoring the model towards harder tasks.

Formally, we first quantify problem difficulty.
For a given question ¢ and its associated set of
sampled responses {o0; }, we define the group’s em-
pirical correctness ratio as:

number of correct responses for g
Pq =

(6)

total number of responses for ¢

This ratio, py, serves as an inverse proxy for prob-
lem difficulty: a lower p, suggests a harder ques-
tion.

Next, we introduce a logistic reweighting factor
dependent on this ratio to modulate the advantage
estimates during the RL training step. The logistic
function is defined as:

B-A
+ 5
1+ exp [k(pg — po)]

where hyperparameters A, B, pg, k allow precise
control over the sensitivity of weighting to problem
difficulty.

(N

w(pg) = A

To apply this reweighting, we first consider the
normalized advantage estimate for a response o; to
question g:

Ai — wv (8)

Oq+ €

where 114 and o, are the mean and standard devia-
tion of rewards R(o;|q) for responses to question
q, and € is a small constant for numerical stability.
We then define the difficulty-aware advantage, A7,
as:

if A; >0

A= A, . w(pq), - 9)
o if A, <0

w(l - Pq),

This formulation ensures that for difficult problems
(Ilow pg), correct responses (which are rare and
thus highly valuable) receive substantially larger
updates due to the increased weighting w(p,). Con-
versely, incorrect responses on easier problems
(high p,) are penalized more strongly, sharpening
the decision boundary for problems where high
performance should be expected.

3.4 Impact of Data Quality on Reinforcement
Learning Effectiveness

To further enhance model capabilities, we first
performed supervised fine-tuning (SFT) on a spe-
cialized dataset of 13k math reasoning prob-
lems sourced from DeepScaler(Luo et al., 2025b)
(including historical AMC, AIME, and Omn-
iMath problems) with solutions generated by
QwQ32B(Team, 2025). Although this SFT model
initially showed signs of overfitting, subsequent
application of our proposed RL strategies rapidly
mitigated these issues. This SFT+RL approach
yielded faster convergence and significantly im-
proved pass@ 1 accuracy and overall precision com-
pared to applying RL directly to the original base
model.

Our findings also highlight the critical role of
data quality and curriculum strategies in RL. We
established a robust initial policy by applying RL
to a subset of challenging problems from the Deep-
Scaler dataset. This policy was then further refined
using a curriculum composed of the most challeng-
ing problems identified from this first RL stage and
supplemented by high-difficulty examples from the
Light-R1 dataset(Wen et al., 2025). This two-stage
curriculum markedly enhanced the model’s ability
to continuously improve on complex tasks.



Finally, we addressed a persistent formatting
issue of repetitive n-gram patterns, likely stem-
ming from an absence of clear end-of-sequence
(EOS) signals during SFT. By temporarily remov-
ing length-dependent rewards and introducing an
explicit negative reward (—1.5) for such repeated n-
grams, we achieved further improvements in preci-
sion and pass@ 1 metrics. This intervention demon-
strates the effectiveness of targeted reward modifi-
cations for mitigating specific output anomalies.

In summary, our experiments affirm that initial
model capacity, curated data curricula for RL, and
targeted reward engineering are pivotal for optimiz-
ing fine-tuning outcomes. These elements collec-
tively inform a systematic approach for enhancing
language models’ ability to produce concise, accu-
rate, and well-structured responses across tasks of
varying complexity.

4 Experimental Setup

We evaluate GRPO-LEAD, integrating length-
dependent accuracy rewards, explicit penalties for
incorrect solutions, and difficulty-aware advantage
reweighting, on DEEPSEEK-R1 DISTILLED vari-
ants (Guo et al., 2025; Yang et al., 2024). Our
experiments cover two model scales, 7B and 14B
parameters. All GRPO training is conducted using
the VERL framework.(Sheng et al., 2024).

4.1 Datasets and Filtering

Our primary training data is sourced from the
DEEPSCALER dataset (Luo et al., 2025b). We
filter out problems with difficulty ratings below
2.5, resulting in approximately 9,000 questions for
fine-tuning.

For stages 2 of our 14B model experiments, we
further refine the dataset by selecting problems
where the model’s stage-1 rollout accuracy is no
greater than 75%, yielding around 2,283 questions.
Additionally, we incorporate challenging problems
with numeric answers from the stage-2 dataset of
Light-R1 (Wen et al., 2025), resulting in 3,524
question in total.

4.2 Hyperparameters

We train with a learning rate of 1 x 1075, batch
size 32, and group size 8—generating 8 rollouts
per question for GRPO reward computation. The
KL penalty term is removed, as it was found to
suppress exploration in our experiments, which is
also suggested in similar works(Liu et al., 2025b;
Hu et al., 2025b).

For the length-dependent accuracy reward, we
set @ = 0.05, providing a moderate decay that
encourages conciseness without penalizing slight
verbosity. For difficulty-aware advantage reweight-
ing, weuse A = 0.4, B = 1.5, pp = 0.75, and
k = 10. This configuration ensures reweighting is
minimal on easy problems but sharply increases
near the 75% correctness threshold. The steep
slope (k = 10) enables strong emphasis on high-
difficulty examples, guiding the model to allocate
learning more effectively.

4.3 Model Variants and Fine-Tuning Stages

7B Model Experiments Starting from the
DeepSeek-R1 Distilled 7B Qwen-Math checkpoint,
we first apply standard GRPO on the 9k ques-
tions, producing a baseline. Then, we train 3 more
models from the DeepSeek-R1 Distilled 7B Qwen-
Math checkpoint, adding one more of the following
components subsequently: (i) Length Reward only,
(i1) Length Reward + Advantage Reweighting, (iii)
Length Reward + Advantage Reweighting + Ex-
plicit Penalty. We train for approximately 200 steps
and select the top-performing checkpoints based
on validation results. At test time, we limit the gen-
eration length to 8k for all 7B models, matching
the training length limit.

14B Model Experiments We extend the above
procedure to the DeepSeek-R1 Distilled 14B Qwen
checkpoint across multiple stages. In Stage 1, we
train for 100 steps using all GRPO-LEAD com-
ponents on the filtered 9k-question dataset. To en-
hance the model’s base capability, we first fine-tune
the model on a curated set of 13k math problems
with supervised fine-tuning (SFT), then conduct
the RL phase. This SFT stage significantly im-
proves the model’s reasoning quality, even though
it tends to increase the output length and caused
some format error.

The SFT data consists of all problems in the
DEEPSCALER dataset with difficulty greater than
1. To construct high-quality reasoning traces for
SFT, we use the QWQ-32B model(Team, 2025) to
generate step-by-step solutions.

After observing that some questions remain low
correctness, we further fine-tune for Stage 2 to fo-
cus on those underperformed problems. We also ad-
dress the repetitive output patterns by removing the
length penalty and introducing a negative reward
(—1.5) for repeated n-grams. We continue training
for 240 more steps (100 steps with initial settings



and 140 more steps with repetition penalty), yield-
ing the final model checkpoint. At test time, we
limit the generation length to 14k for all 14B mod-
els, in accordance with our training settings and
also to better compare the models’ performance in
a low-budget scenario.

4.4 Baselines and Evaluation Protocol

We compare our models with both DEEPSEEK-
R1 DISTILLED-14B-QWEN(Guo et al., 2025) (the
distilled Qwen model without GRPO-LEAD) and
LIGHT-R1-14B-DS (Wen et al., 2025), which has
the same base model as ours and was first finetuned
with 3k hard math problems with SFT, and then
fine-tuned with a cosine-based length reward (Yeo
et al., 2025) on their selected math problems for
three epochs using GRPO.

We primarily report three metrics: (1) Cons@32,
accuracy through majority voting for 32 samplings;
(2) Pass@1, the probability that the top-1 sample is
correct under a chosen decoding strategy; (3) Aver-
age Length (Len,.), measuring verbosity. Unless
otherwise specified, we decode with temperature
0.6 and sample 32 solutions per question, then com-
pute Cons@32 and Pass@1 over these samples.

5 Results

In this sction, we present a comprehensive evalu-
ation of the proposed GRPO-LEAD framework
on two mathematical benchmarks: AIME24 and
AIME2S5. Our analysis is structured as follows: we
first examine training dynamics to illustrate how
GRPO-LEAD accelerates convergence; next, we
perform an ablation study to assess the incremental
benefits of each component; and finally, we com-
pare against state-of-the-art baselines for 14B-scale
language models.

5.1 Training Dynamics

Figure 2 plots the evolution of Pass@1 on a val-
idation split over training steps for three configu-
rations of the 7B model: (i) baseline GRPO, (ii)
GRPO with length reward, and (iii) GRPO with
both length reward and advantage reweighting. We
observe two clear trends. First, adding a length-
dependent reward not only yields higher Pass@1
but also accelerates early-stage convergence, sug-
gesting that penalizing overly verbose correct solu-
tions provides a more informative learning signal.

*The validation consists of 27 challenging problems from

AIMO?2 (Frieder et al., 2024), CMU-MATH-AIMO (Sun,
2024), and AIME24.
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Figure 2: Validation® Pass@1 over training steps
for three configurations: GRPO, GRPO+L, and
GRPO+LAD. Shown by the faster convergence, Length
Reward and Advantage Reweighting provides richer re-
ward signal than the original setup.

Second, incorporating advantage reweighting (to
amplify updates on harder questions) further steep-
ens the trajectory, indicating that reweighting ad-
vantage estimates according to problem difficulty
helps the model refine reasoning on challenging
prompts more efficiently.

Overall, these dynamics confirm that GRPO-
LEAD components—particularly the length
reward—bolster training stability and speed. By
comparison, the baseline GRPO model learns more
slowly and lags behind in Pass@1 across the entire
training horizon.

5.2 Ablation Analysis

We next quantify the contribution of each GRPO-
LEAD component through a step-by-step ablation
on the 7B model. Table 1 summarizes results on
AIME24 and AIME?2S.

Length Reward Brings Conciseness to Reason-
ing We first incorporate the length-dependent ac-
curacy reward into GRPO. Compared to Deepseek-
7B, length reward slightly improves Pass@1 on
both AIME24 (0.431 — 0.438) and AIME25
(0.292 — 0.308), with an additional improvement
of Cons32 by 14.1% on AIME25. Notably, these
improvements are accompanied by a substantial
reduction of 1,715 tokens (24.5%) and 1,903 to-
kens (26.8%) in the average response length on the
two datasets, respectively. Figure 3 further demon-
strates that length reward largely enhances perfor-
mance in low-budget settings over the base model,
matching its peak performance with only 5/8 of
the token budget on the more difficult AIME25.
These results demonstrate that length reward, by
penalizing correct but overly verbose solutions, can
effectively reduce unnecessary text without com-



Ablation Setting AIME24 AIME25
Cons@32 Pass@1 Len,,; Cons@32 Pass@l Len,.
Deepseek-7B 0.767 0.431 6,990 0.467 0.292 7,113
GRPO + len. reward 0.767 0.438 5,275 0.533 0.308 5,210
+ adv. reweighting 0.767 0.458 5,323 0.567 0.325 5,437
+ explicit penalty 0.800 0.470 6,104 0.567 0.345 6,308

Table 1: Ablation results on AIME24 and AIME25. We report Cons@32 (the fraction of problems for which at
least one correct solution is found among 32 samples), Pass@1, and the average token length (Len,,s). The best

value in each column is in boldface, the second best is underlined.
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Figure 3: Performance against inference budget for training done with different ablations of LEAD. GRPO with
length reward (GRPO+L) largely enhances the performance at low budget settings compared to before training

(DeepseekR1-7B).

promising overall performance.

Advantage Reweighting Encourages Model
to Solve more Difficult Problems Further in-
corporating difficulty-aware advantage reweight-
ing (GRPO+LAD) refines performance. On
AIME?24, Pass@]1 increases from the GRPO+L
stage (0.438 — 0.458), while Cons@32 remains
0.767. For AIME25, both Pass@1 (0.308 —
0.325) and Cons@32 (0.533 — 0.567) see im-
provements. As Figure 3 shows, GRPO+LAD
demonstrates gains over GRPO+L in almost all
budget regimes on AIME25 and for budgets ex-
ceeding 5k tokens on AIME24. These results in-
dicate that advantage reweighting, by prioritizing
challenging problems, strengthens reasoning ro-
bustness and mitigates over-reliance on simpler
examples, thus validating its role in driving more
reliable generalization.

Explicit Penalty for Incorrect Answers Regular-
izes Thinking Finally, introducing an explicit
penalty for incorrect solutions (GRPO+LEAD)
yields the highest Pass@1 scores. On AIME24,
Pass@1 improves from the GRPO+LAD stage
(0.458 — 0.470) and Cons@32 climbs (0.767 —
0.800). On AIME25, Pass@1 also increases
(0.325 — 0.345), as detailed in Table 1. Notably,
these gains involve a modest increase in average
solution length on AIME24 (from approximately
5,300 to 6,104 tokens). Figure 3 illustrates this
trade-off, showing a performance sacrifice in low-
budget regimes, though GRPO+LEAD still outper-
forms GRPO+LAD with budgets higher than 5k
tokens on AIME25. These results suggest that
the explicit penalty serves as a regularizer for the
model to be more conservative about its reasoning.
Such regularization boosts performance while re-
quiring a slightly longer thinking process, which
nevertheless remains shorter than the Deepseek-7B



Model Name AIME24 AIME25

Cons@32 Pass@1l Len,,; Cons@32 Pass@l Len,,,
DeepSeek-14B 0.800 0.614 9,182 0.633 0.429 10,046
Light-R1-14B-DS 0.833 0.641 9,571 0.767 0.505 10,194
LEAD-stagel 0.833 0.629 8,790 0.767 0.523 9,371
LEAD-stage2 0.867 0.650 8,267 0.767 0.539 8,668

Table 2: Comparison of model performance on AIME24 and AIME25, showing Cons @32, Pass@1, and average
token length (Len,y,). The best value in each column is in boldface, the second best is underlined.

baseline.

Overall, these ablation results confirm that
all three enhancements—Ilength-dependent accu-
racy, difficulty-aware advantage reweighting, and
explicit penalties—collectively reduce verbosity,
strengthen mathematical skills on harder questions,
and elevate precision in final predictions.

5.3 Comparison with Baselines

We next evaluate GRPO-LEAD at the 14B scale
and compare it against two strong baselines un-
der a 14k-token generation budget: DeepSeek-14B
and the state-of-the-art Light-R1-14B-DS. Table 2
presents results on AIME24 and AIME2S5, includ-
ing both our intermediate model (LEAD-stagel)
and our final model (LEAD-stage?2).

AIMEZ24 Performance LEAD-stagel achieves
a Cons @32 of 0.833, matching Light-R1-14B-DS
and exceeding DeepSeek-14B by 4.1%. Its Pass@1
outperforms DeepSeek-14B by 2.4% and closely
approaches Light-R1-14B-DS. Crucially, LEAD-
stage1 produces more concise responses than both
baselines, with more than 800 tokens less on av-
erage. Building on these gains, LEAD-stage2
pushes performance further, delivering the high-
est Cons@32 (4% above Light-R1-14B-DS) and
the best Pass@1, while reducing average solution
length to 8,267 tokens.

AIME2S Performance LEAD-stagel yields a
Cons @32 of 0.767, matching Light-R1-14B-DS
and exceeding DeepSeek-14B by 21.2%. Its
Pass@1 (0.523) outperforms DeepSeek-14B by
21.9% and Light-R1-14B-DS by 3.6%. Crucially,
LEAD-stagel produces more concise responses
than both baselines, with its solutions averaging
9,371 tokens. Building on these gains, LEAD-
stage2 pushes performance further, delivering the
highest Cons @32 (matching Light-R1-14B-DS at
0.767) and the best Pass@1 (0.539), while reducing
average solution length to 8,668 tokens.

Overall, both LEAD-stagel and LEAD-stage2
deliver substantial improvements over DeepSeek-
14B and Light-R1-14B-DS, simultaneously boost-
ing correctness and conciseness under a con-
strained (14k-token) budget. Remarkably, train-
ing LEAD-stagel for just 100 steps—requiring
only about 24 hours on eight H20 GPUs—already
matches Light-R1-14B-DS on Cons @32 and out-
performs it on AIME25 Pass@1 while produc-
ing shorter solutions, underscoring the practical
efficiency of GRPO-LEAD for large-scale math
problem-solving.

6 Conclusion

We introduced GRPO-LEAD, a reinforcement
learning framework designed for mathematical rea-
soning tasks. By extending Group Relative Policy
Optimization with three major components—(1) a
length-dependent accuracy reward to discourage
overly verbose solutions, (2) an explicit negative
penalty that clarifies the boundary between cor-
rect and incorrect answers, and (3) a difficulty-
aware advantage reweighting scheme to prioritize
tougher problems—GRPO-LEAD addresses key
challenges in structured problem-solving.

Empirical evaluations on two AIME benchmarks
show that GRPO-LEAD not only speeds up con-
vergence but also strengthens the model’s reason-
ing capability while keeping solution paths con-
cise. Our 14B-scale experiments further confirm
that GRPO-LEAD achieves state-of-the-art per-
formance by balancing output brevity with high
problem-solving accuracy. Although open ques-
tions remain—particularly in managing partial cor-
rectness and extending these techniques to broader
domains—our findings suggest that reward shaping
and difficulty modeling are pivotal in developing
more robust and aligned language models for com-
plex mathematical reasoning.



7 Limitations

Although our techniques for encouraging con-
cise solutions and difficulty-balanced learning may
transfer to other domains, the gains reported here
are specific to mathematical reasoning tasks. Fur-
ther studies are needed to evaluate the effectiveness
of GRPO-LEAD on broader question-answering
or logical reasoning domains, where correctness
signals and domain structures can differ substan-
tially.

Additionally, we only have access to a limited
amount of compute, which prevents us from con-
ducting more comprehensive experiments. For in-
stance, we currently cannot provide the validation
curve for the 7B model in the ablation study that
adds an explicit penalty. This is due to an error in
the validation code after upgrading to the newest
VERL version, and we currently don’t have the
compute to reproduce it. The comparison with
original GRPO model is also lacked except the
curve shown in figure 2 since the checkpoint is on
the server on the rented server, which was auto-
matically released at the point we write the paper.
We also couldn’t formally perform a hyperparame-
ter search to showcase the rationale behind choos-
ing the hyperparameters for our designed modifica-
tions.
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