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Abstract001

Group Relative Policy Optimization (GRPO),002
which is widely adopted by R1-like reasoning003
models, has advanced mathematical reasoning.004
Nevertheless, GRPO faces challenges in reward005
sparsity, verbosity, and inadequate focus on006
problem difficulty. We propose GRPO-LEAD,007
enhancing GRPO with: (1) length-regularized008
rewards to encourage conciseness while main-009
taining accuracy; (2) explicit penalties for in-010
correct solutions to improve model precision;011
and (3) difficulty-aware advantage reweighting012
for robust generalization on challenging prob-013
lems. Comprehensive evaluations demonstrate014
that GRPO-LEAD significantly improves rea-015
soning accuracy, conciseness, and efficiency.016
Our approach achieves state-of-the-art perfor-017
mance for 14B-scale models, underscoring the018
synergy of our methods with appropriate model019
scale and high-quality data. Our source code,020
generated dataset, and models are available af-021
ter the acceptance of this paper.022

1 Introduction023

Recently, R1-like reasoning models have attracted024

significant attention due to their impressive perfor-025

mance in solving challenging mathematical reason-026

ing tasks through extensive chains of thought(Luo027

et al., 2025b; Wen et al., 2025). According to the028

technical report introducing R1(Guo et al., 2025),029

reinforcement learning (RL) fine-tuning plays a030

pivotal role in enabling this reasoning capabil-031

ity. In particular, Group Relative Policy Optimiza-032

tion (GRPO)(Shao et al., 2024), a novel RL ap-033

proach for language models, has emerged as a034

promising alternative to traditional methods such035

as PPO(Schulman et al., 2017) and DPO(Rafailov036

et al., 2023), primarily due to its efficiency and037

intrinsic compatibility with language model train-038

ing. . Researchers across various domains have039

successfully employed GRPO (Li et al., 2025; Liu040

*Equal contribution.

et al., 2025a; Luo et al., 2025a; Dai et al., 2025), 041

achieving impressive outcomes. 042

Despite its strengths, existing GRPO implemen- 043

tations encounter significant limitations.A primary 044

issue is reward sparsity stemming from binary, rule- 045

based accuracy metrics; when responses within 046

problem groups exhibit uniform correctness or in- 047

correctness, the resulting uniform reward signals 048

offer minimal differentiation, weakening learning 049

gradients and hampering convergence. Moreover, 050

such uniform signals inadequately promote con- 051

cise reasoning, leading to unnecessarily verbose 052

outputs and inefficiencies during training and infer- 053

ence. Additionally, the current reward formulation 054

lacks explicit penalties for incorrect answers(Hu 055

et al., 2025a; Luo et al., 2025b; Chu et al., 2025)„ 056

inadvertently encouraging models to guess rather 057

than engage in rigorous reasoning, thereby com- 058

promising precision. Furthermore, rewards are ap- 059

plied uniformly across problems regardless of their 060

intrinsic difficulty, causing models to excessively 061

optimize simpler tasks while neglecting more chal- 062

lenging problems that require deeper reasoning. 063

Furthermore, computational efficiency also 064

emerges as a critical practical concern, as rein- 065

forcement learning fine-tuning typically demands 066

substantial resources, limiting accessibility, experi- 067

mentation speed, and scalability, especially in low- 068

resource environments. The current GRPO formu- 069

lation is insufficient for encouraging concise and 070

precise reasoning. Consequently, reducing com- 071

putational requirements during both training and 072

inference is essential for enabling broader applica- 073

bility and effective real-world deployment. 074

Motivated by these limitations, this work intro- 075

duces GRPO-LEAD, a suite of targeted modifi- 076

cations explicitly designed to enhance GRPO’s ef- 077

fectiveness for mathematical reasoning tasks. The 078

overall framework is illustrated in figure 1. Our 079

key contributions include: 080
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Q: There are 8!= 40320 eight-digit positive integers that use
each of the digits 1, 2, 3, 4, 5, 6, 7, 8 exactly once. Let N be
the number of these integers that are divisible by 22. Find the
difference between N and 2025.

Q: Let 𝐴 be the set of positive divisors of 2025. A subset 
𝐵 ⊆ 𝐴 is chosen at random. What is the probability (in lowest
terms) that 𝐵 is nonempty and the least common multiple of its
elements is 2025? If the probability is 𝑚𝑛  , find 𝑚+ 𝑛.

Responses

❌ Answer: 671;  Length:6416

 ✅ Answer: 237;  Length:6097

  ❌ Answer: 671; Length: 10956

➖Answer: N/A;  Length: 14336

Reward

-1

-1

0

1.21

Advantages

Correctness: 2/8

 = ±1.49

Reward

1.10

-1

0.84

1.04

Correctness: 7/8

Advantages = ±0.65

Responses

✅ Answer: 279;  Length:5292

✅ Answer: 279;  Length:6514

  ❌ Answer: 423; Length: 10577

  ✅ Answer: 279;  Length: 11272

Policy Update

Figure 1: The GRPO-LEAD framework assigns length-regularized positive rewards to correct answers and explicit
penalties to incorrect ones. A difficulty-based weight w used for advantage reweighting is determined from the
empirical correctness of responses for each question. This weight then scales the advantages derived from each
question, prioritizing harder questions over easier ones during the policy update to foster robust reasoning.

• We introduce a length-regularized reward with081

an explicit penalty for incorrect solutions to082

encourage solution conciseness while main-083

taining accuracy.084

• We apply difficulty-aware advantage reweight-085

ing to focus learning on more challenging086

problems, fostering robust generalization.087

• Our comprehensive evaluations demonstrate088

GRPO-LEAD significantly improves reason-089

ing accuracy and conciseness, achieving state-090

of-the-art performance in mathematical rea-091

soning for 14B-scale models.092

2 Related Work093

2.1 Group Relative Policy Optimization094

Group Relative Policy Optimization (GRPO) is a095

recently proposed algorithm designed specifically096

for fine-tuning language models with group-level097

normalization of rewards (Guo et al., 2025). GRPO098

modifies the standard policy gradient objective by099

introducing relative advantages within sets of re-100

sponses corresponding to the same query, stabi-101

lizing updates and promoting consistent learning102

signals. Formally, GRPO defines the objective as:103

LGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
ri,t(θ)Âi,t,

(1)

104

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)]
105

where the importance sampling ratio is given by 106

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (2) 107

Here, G denotes the number of groups (e.g., dif- 108

ferent queries), Âi,t is the normalized advantage 109

within group i, and ϵ defines the clipping range for 110

conservative updates. 111

2.2 Length Reward 112

A prevalent issue in reinforcement learning-based 113

fine-tuning of language models is the uncontrolled 114

increase in response length driven by reward sig- 115

nals, commonly known as reward hacking(Everitt 116

et al., 2017; Gao et al., 2023; Weng, 2024). This 117

phenomenon leads to unnecessarily verbose re- 118

sponses, which, although technically correct, often 119

lack conciseness and hinder interpretability. Fur- 120

thermore, such verbosity fails to reflect efficient 121

reasoning, limiting model utility in practical sce- 122

narios. Existing efforts to mitigate this problem 123

typically involve incentivizing shorter answers to 124

encourage more succinct reasoning processes. For 125

example, Kimi proposed an individual min-max 126

normalized length reward based on the lengths of 127

generated responses (Team et al., 2025). Yeo et 128

al. introduced a cosine length reward function with 129

fixed maximum and minimum thresholds to man- 130

age response lengths (Yeo et al., 2025). Aggarwal 131

et al. utilized a target "golden length" to directly 132
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reward or penalize responses based on their devia-133

tion from an ideal length (Aggarwal and Welleck,134

2025).135

However, these existing methods depend heavily136

on static or predefined length heuristics, limiting137

their effectiveness across diverse questions of vary-138

ing complexity. In contrast, our proposed length-139

dependent accuracy reward addresses these limita-140

tions by dynamically calibrating rewards according141

to each group’s relative response length and rollout142

accuracy, promoting concise yet difficulty-aware143

reasoning processes.144

3 Method145

To systematically address the limitations identified146

in existing implementations of Group Relative Pol-147

icy Optimization (GRPO), we propose a suite of148

novel modifications collectively termed GRPO-149

LEAD (GRPO with Length-dependent rewards,150

Explicit penalties, and Advantage reweighting for151

Difficulty). Our proposed method enhances the152

original GRPO framework by introducing three153

core innovations: 1) a length-dependent accuracy154

reward to foster concise solutions, 2) an explicit155

penalty mechanism to mitigate low precision rate156

caused by length reward, and 3) a difficulty-aware157

advantage reweighting strategy that amplifies learn-158

ing signals for challenging problems. Additionally,159

we examine how base model scale and supervised160

fine-tuning (SFT) impact the effectiveness of rein-161

forcement learning (RL) fine-tuning.162

3.1 Length-Dependent Accuracy Reward163

The core idea is to reward correct completions not164

uniformly but in proportion to their relative con-165

ciseness. Given a question q and a set of model-166

generated responses {oi}, we first isolate the subset167

of correct responses and compute the mean µ and168

standard deviation σ of their token lengths. For169

a correct response o with length |o|, we define its170

standardized length deviation as:171

z =
|o| − µ

σ + ϵ
, (3)172

where ϵ > 0 is a small constant added for numerical173

stability. The final reward is modulated using an174

exponential decay function:175

Raccuracy(o|q) =

{
exp(−αz), if o is correct,
0, if o is incorrect.

(4)176

where α > 0 is a tunable hyperparameter control- 177

ling the strength of length penalization. 178

This formulation ensures that overly long cor- 179

rect responses are systematically penalized, while 180

relatively concise ones are amplified. Unlike static 181

or absolute length constraints, our approach lever- 182

ages standardized deviation, allowing for dynamic 183

adaptation to the distributional properties of each 184

question. 185

3.2 Explicit Penalty for Incorrect Answers to 186

Enhance True Accuracy 187

Existing methods often prioritize maximizing 188

pass@1—the success rate on the first at- 189

tempt—typically within restricted response lengths. 190

However, this focus can inadvertently degrade over- 191

all model accuracy. The fundamental issue appears 192

to stem from the use of a binary accuracy reward, 193

rather than length-based regularization: under pres- 194

sure to generate responses within a limited length, 195

a model is encouraged to provide an answer, even 196

if it’s a guess, rather than no answer at all. Such 197

guesses can achieve a non-zero reward and inflate 198

pass@1, but they do so at the cost of overall preci- 199

sion by rewarding less rigorous reasoning. 200

To counteract this tendency and foster a more 201

robust distinction between correct and incorrect 202

outputs, we introduce a revised reward structure 203

that explicitly penalizes incorrect responses. This 204

new reward function is defined as: 205

Raccuracy(o | q) =

{
exp(−αz), if o is correct,
−1, if o is incorrect,

(5) 206

where o is the output, q is the question, z represents 207

the standardized length deviation of a correct re- 208

sponse, and α > 0 is a hyperparameter controlling 209

the strength of the length penalization for correct 210

answers, consistent with prior definitions. 211

The expected reward for a response, given its 212

probability of correctness P (correct), under this 213

formulation is: 214

E[Raccuracy(o | q)] = P (correct) · exp(−αz) 215

− (1− P (correct)) (4) 216

To intuitively grasp the impact of this reward func- 217

tion, let us consider a simplified scenario where the 218

length penalty for correct answers is negligible (i.e., 219

exp(−αz) ≈ 1). In practice, the average reward 220

for correct answers often normalizes close to this 221

value. Under this assumption, the expected reward 222
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simplifies to:223

E[R] ≈ 2P (correct)− 1 (5)224

This approximation reveals a crucial characteris-225

tic: the expected reward becomes positive only226

when P (correct) > 0.5. This threshold acts as227

a principled deterrent against speculative guess-228

ing, compelling the model to internalize a more229

stringent decision boundary for correctness. Our230

empirical results confirm that this approach signifi-231

cantly improves both pass@1 and overall precision,232

encouraging the model to favor accuracy over mere233

completion.234

3.3 Advantage Reweighting for235

Difficulty-Aware Training236

While length reward and advantage reweighting237

can enhance precision and mitigate verbosity, uni-238

formly applying rewards across all questions, ir-239

respective of their intrinsic difficulty, may implic-240

itly bias the model. It might learn to excessively241

optimize performance on simpler tasks-—where242

correct and concise responses are more readily243

achieved-—while neglecting more complex ques-244

tions that demand deeper reasoning. Consequently,245

the performance on challenging problems can de-246

grade.247

Therefore, we introduce a difficulty-aware ad-248

vantage reweighting strategy, which dynamically249

adjust the magnitude of policy updates based on250

an estimate of problem difficulty. The intuition251

is to amplify learning signals for harder tasks, re-252

anchoring the model towards harder tasks.253

Formally, we first quantify problem difficulty.254

For a given question q and its associated set of255

sampled responses {oi}, we define the group’s em-256

pirical correctness ratio as:257

ρq =
number of correct responses for q
total number of responses for q

. (6)258

This ratio, ρq, serves as an inverse proxy for prob-259

lem difficulty: a lower ρq suggests a harder ques-260

tion.261

Next, we introduce a logistic reweighting factor262

dependent on this ratio to modulate the advantage263

estimates during the RL training step. The logistic264

function is defined as:265

w(ρq) = A+
B −A

1 + exp [k(ρq − ρ0)]
, (7)266

where hyperparameters A,B, ρ0, k allow precise267

control over the sensitivity of weighting to problem268

difficulty.269

To apply this reweighting, we first consider the 270

normalized advantage estimate for a response oi to 271

question q: 272

Ãi =
R(oi|q)− µq

σq + ϵ
, (8) 273

where µq and σq are the mean and standard devia- 274

tion of rewards R(oi|q) for responses to question 275

q, and ϵ is a small constant for numerical stability. 276

We then define the difficulty-aware advantage, A′
i, 277

as: 278

A′
i = Ãi ·

{
w(ρq), if Ãi > 0

w(1− ρq), if Ãi ≤ 0
(9) 279

This formulation ensures that for difficult problems 280

(low ρq), correct responses (which are rare and 281

thus highly valuable) receive substantially larger 282

updates due to the increased weighting w(ρq). Con- 283

versely, incorrect responses on easier problems 284

(high ρq) are penalized more strongly, sharpening 285

the decision boundary for problems where high 286

performance should be expected. 287

3.4 Impact of Data Quality on Reinforcement 288

Learning Effectiveness 289

To further enhance model capabilities, we first 290

performed supervised fine-tuning (SFT) on a spe- 291

cialized dataset of 13k math reasoning prob- 292

lems sourced from DeepScaler(Luo et al., 2025b) 293

(including historical AMC, AIME, and Omn- 294

iMath problems) with solutions generated by 295

QwQ32B(Team, 2025). Although this SFT model 296

initially showed signs of overfitting, subsequent 297

application of our proposed RL strategies rapidly 298

mitigated these issues. This SFT+RL approach 299

yielded faster convergence and significantly im- 300

proved pass@1 accuracy and overall precision com- 301

pared to applying RL directly to the original base 302

model. 303

Our findings also highlight the critical role of 304

data quality and curriculum strategies in RL. We 305

established a robust initial policy by applying RL 306

to a subset of challenging problems from the Deep- 307

Scaler dataset. This policy was then further refined 308

using a curriculum composed of the most challeng- 309

ing problems identified from this first RL stage and 310

supplemented by high-difficulty examples from the 311

Light-R1 dataset(Wen et al., 2025). This two-stage 312

curriculum markedly enhanced the model’s ability 313

to continuously improve on complex tasks. 314
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Finally, we addressed a persistent formatting315

issue of repetitive n-gram patterns, likely stem-316

ming from an absence of clear end-of-sequence317

(EOS) signals during SFT. By temporarily remov-318

ing length-dependent rewards and introducing an319

explicit negative reward (−1.5) for such repeated n-320

grams, we achieved further improvements in preci-321

sion and pass@1 metrics. This intervention demon-322

strates the effectiveness of targeted reward modifi-323

cations for mitigating specific output anomalies.324

In summary, our experiments affirm that initial325

model capacity, curated data curricula for RL, and326

targeted reward engineering are pivotal for optimiz-327

ing fine-tuning outcomes. These elements collec-328

tively inform a systematic approach for enhancing329

language models’ ability to produce concise, accu-330

rate, and well-structured responses across tasks of331

varying complexity.332

4 Experimental Setup333

We evaluate GRPO-LEAD, integrating length-334

dependent accuracy rewards, explicit penalties for335

incorrect solutions, and difficulty-aware advantage336

reweighting, on DEEPSEEK-R1 DISTILLED vari-337

ants (Guo et al., 2025; Yang et al., 2024). Our338

experiments cover two model scales, 7B and 14B339

parameters. All GRPO training is conducted using340

the VERL framework.(Sheng et al., 2024).341

4.1 Datasets and Filtering342

Our primary training data is sourced from the343

DEEPSCALER dataset (Luo et al., 2025b). We344

filter out problems with difficulty ratings below345

2.5, resulting in approximately 9,000 questions for346

fine-tuning.347

For stages 2 of our 14B model experiments, we348

further refine the dataset by selecting problems349

where the model’s stage-1 rollout accuracy is no350

greater than 75%, yielding around 2,283 questions.351

Additionally, we incorporate challenging problems352

with numeric answers from the stage-2 dataset of353

Light-R1 (Wen et al., 2025), resulting in 3,524354

question in total.355

4.2 Hyperparameters356

We train with a learning rate of 1 × 10−6, batch357

size 32, and group size 8–generating 8 rollouts358

per question for GRPO reward computation. The359

KL penalty term is removed, as it was found to360

suppress exploration in our experiments, which is361

also suggested in similar works(Liu et al., 2025b;362

Hu et al., 2025b).363

For the length-dependent accuracy reward, we 364

set α = 0.05, providing a moderate decay that 365

encourages conciseness without penalizing slight 366

verbosity. For difficulty-aware advantage reweight- 367

ing, we use A = 0.4, B = 1.5, ρ0 = 0.75, and 368

k = 10. This configuration ensures reweighting is 369

minimal on easy problems but sharply increases 370

near the 75% correctness threshold. The steep 371

slope (k = 10) enables strong emphasis on high- 372

difficulty examples, guiding the model to allocate 373

learning more effectively. 374

4.3 Model Variants and Fine-Tuning Stages 375

7B Model Experiments Starting from the 376

DeepSeek-R1 Distilled 7B Qwen-Math checkpoint, 377

we first apply standard GRPO on the 9k ques- 378

tions, producing a baseline. Then, we train 3 more 379

models from the DeepSeek-R1 Distilled 7B Qwen- 380

Math checkpoint, adding one more of the following 381

components subsequently: (i) Length Reward only, 382

(ii) Length Reward + Advantage Reweighting, (iii) 383

Length Reward + Advantage Reweighting + Ex- 384

plicit Penalty. We train for approximately 200 steps 385

and select the top-performing checkpoints based 386

on validation results. At test time, we limit the gen- 387

eration length to 8k for all 7B models, matching 388

the training length limit. 389

14B Model Experiments We extend the above 390

procedure to the DeepSeek-R1 Distilled 14B Qwen 391

checkpoint across multiple stages. In Stage 1, we 392

train for 100 steps using all GRPO-LEAD com- 393

ponents on the filtered 9k-question dataset. To en- 394

hance the model’s base capability, we first fine-tune 395

the model on a curated set of 13k math problems 396

with supervised fine-tuning (SFT), then conduct 397

the RL phase. This SFT stage significantly im- 398

proves the model’s reasoning quality, even though 399

it tends to increase the output length and caused 400

some format error. 401

The SFT data consists of all problems in the 402

DEEPSCALER dataset with difficulty greater than 403

1. To construct high-quality reasoning traces for 404

SFT, we use the QWQ-32B model(Team, 2025) to 405

generate step-by-step solutions. 406

After observing that some questions remain low 407

correctness, we further fine-tune for Stage 2 to fo- 408

cus on those underperformed problems. We also ad- 409

dress the repetitive output patterns by removing the 410

length penalty and introducing a negative reward 411

(−1.5) for repeated n-grams. We continue training 412

for 240 more steps (100 steps with initial settings 413
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and 140 more steps with repetition penalty), yield-414

ing the final model checkpoint. At test time, we415

limit the generation length to 14k for all 14B mod-416

els, in accordance with our training settings and417

also to better compare the models’ performance in418

a low-budget scenario.419

4.4 Baselines and Evaluation Protocol420

We compare our models with both DEEPSEEK-421

R1 DISTILLED-14B-QWEN(Guo et al., 2025) (the422

distilled Qwen model without GRPO-LEAD) and423

LIGHT-R1-14B-DS (Wen et al., 2025), which has424

the same base model as ours and was first finetuned425

with 3k hard math problems with SFT, and then426

fine-tuned with a cosine-based length reward (Yeo427

et al., 2025) on their selected math problems for428

three epochs using GRPO.429

We primarily report three metrics: (1) Cons@32,430

accuracy through majority voting for 32 samplings;431

(2) Pass@1, the probability that the top-1 sample is432

correct under a chosen decoding strategy; (3) Aver-433

age Length (Lenavg), measuring verbosity. Unless434

otherwise specified, we decode with temperature435

0.6 and sample 32 solutions per question, then com-436

pute Cons@32 and Pass@1 over these samples.437

5 Results438

In this sction, we present a comprehensive evalu-439

ation of the proposed GRPO-LEAD framework440

on two mathematical benchmarks: AIME24 and441

AIME25. Our analysis is structured as follows: we442

first examine training dynamics to illustrate how443

GRPO-LEAD accelerates convergence; next, we444

perform an ablation study to assess the incremental445

benefits of each component; and finally, we com-446

pare against state-of-the-art baselines for 14B-scale447

language models.448

5.1 Training Dynamics449

Figure 2 plots the evolution of Pass@1 on a val-450

idation split over training steps for three configu-451

rations of the 7B model: (i) baseline GRPO, (ii)452

GRPO with length reward, and (iii) GRPO with453

both length reward and advantage reweighting. We454

observe two clear trends. First, adding a length-455

dependent reward not only yields higher Pass@1456

but also accelerates early-stage convergence, sug-457

gesting that penalizing overly verbose correct solu-458

tions provides a more informative learning signal.459

*The validation consists of 27 challenging problems from
AIMO2 (Frieder et al., 2024), CMU-MATH-AIMO (Sun,
2024), and AIME24.
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Figure 2: Validation∗ Pass@1 over training steps
for three configurations: GRPO, GRPO+L, and
GRPO+LAD. Shown by the faster convergence, Length
Reward and Advantage Reweighting provides richer re-
ward signal than the original setup.

Second, incorporating advantage reweighting (to 460

amplify updates on harder questions) further steep- 461

ens the trajectory, indicating that reweighting ad- 462

vantage estimates according to problem difficulty 463

helps the model refine reasoning on challenging 464

prompts more efficiently. 465

Overall, these dynamics confirm that GRPO- 466

LEAD components—particularly the length 467

reward—bolster training stability and speed. By 468

comparison, the baseline GRPO model learns more 469

slowly and lags behind in Pass@1 across the entire 470

training horizon. 471

5.2 Ablation Analysis 472

We next quantify the contribution of each GRPO- 473

LEAD component through a step-by-step ablation 474

on the 7B model. Table 1 summarizes results on 475

AIME24 and AIME25. 476

Length Reward Brings Conciseness to Reason- 477

ing We first incorporate the length-dependent ac- 478

curacy reward into GRPO. Compared to Deepseek- 479

7B, length reward slightly improves Pass@1 on 480

both AIME24 (0.431 → 0.438) and AIME25 481

(0.292 → 0.308), with an additional improvement 482

of Cons32 by 14.1% on AIME25. Notably, these 483

improvements are accompanied by a substantial 484

reduction of 1,715 tokens (24.5%) and 1,903 to- 485

kens (26.8%) in the average response length on the 486

two datasets, respectively. Figure 3 further demon- 487

strates that length reward largely enhances perfor- 488

mance in low-budget settings over the base model, 489

matching its peak performance with only 5/8 of 490

the token budget on the more difficult AIME25. 491

These results demonstrate that length reward, by 492

penalizing correct but overly verbose solutions, can 493

effectively reduce unnecessary text without com- 494
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Ablation Setting AIME24 AIME25

Cons@32 Pass@1 Lenavg Cons@32 Pass@1 Lenavg

Deepseek-7B 0.767 0.431 6,990 0.467 0.292 7,113

GRPO + len. reward 0.767 0.438 5,275 0.533 0.308 5,210
+ adv. reweighting 0.767 0.458 5,323 0.567 0.325 5,437
+ explicit penalty 0.800 0.470 6,104 0.567 0.345 6,308

Table 1: Ablation results on AIME24 and AIME25. We report Cons@32 (the fraction of problems for which at
least one correct solution is found among 32 samples), Pass@1, and the average token length (Lenavg). The best
value in each column is in boldface, the second best is underlined.
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(a) AIME24
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(b) AIME25

Figure 3: Performance against inference budget for training done with different ablations of LEAD. GRPO with
length reward (GRPO+L) largely enhances the performance at low budget settings compared to before training
(DeepseekR1-7B).

promising overall performance.495

Advantage Reweighting Encourages Model496

to Solve more Difficult Problems Further in-497

corporating difficulty-aware advantage reweight-498

ing (GRPO+LAD) refines performance. On499

AIME24, Pass@1 increases from the GRPO+L500

stage (0.438 → 0.458), while Cons@32 remains501

0.767. For AIME25, both Pass@1 (0.308 →502

0.325) and Cons@32 (0.533 → 0.567) see im-503

provements. As Figure 3 shows, GRPO+LAD504

demonstrates gains over GRPO+L in almost all505

budget regimes on AIME25 and for budgets ex-506

ceeding 5k tokens on AIME24. These results in-507

dicate that advantage reweighting, by prioritizing508

challenging problems, strengthens reasoning ro-509

bustness and mitigates over-reliance on simpler510

examples, thus validating its role in driving more511

reliable generalization.512

Explicit Penalty for Incorrect Answers Regular- 513

izes Thinking Finally, introducing an explicit 514

penalty for incorrect solutions (GRPO+LEAD) 515

yields the highest Pass@1 scores. On AIME24, 516

Pass@1 improves from the GRPO+LAD stage 517

(0.458 → 0.470) and Cons@32 climbs (0.767 → 518

0.800). On AIME25, Pass@1 also increases 519

(0.325 → 0.345), as detailed in Table 1. Notably, 520

these gains involve a modest increase in average 521

solution length on AIME24 (from approximately 522

5,300 to 6,104 tokens). Figure 3 illustrates this 523

trade-off, showing a performance sacrifice in low- 524

budget regimes, though GRPO+LEAD still outper- 525

forms GRPO+LAD with budgets higher than 5k 526

tokens on AIME25. These results suggest that 527

the explicit penalty serves as a regularizer for the 528

model to be more conservative about its reasoning. 529

Such regularization boosts performance while re- 530

quiring a slightly longer thinking process, which 531

nevertheless remains shorter than the Deepseek-7B 532

7



Model Name AIME24 AIME25

Cons@32 Pass@1 Lenavg Cons@32 Pass@1 Lenavg

DeepSeek-14B 0.800 0.614 9,182 0.633 0.429 10,046
Light-R1-14B-DS 0.833 0.641 9,571 0.767 0.505 10,194
LEAD-stage1 0.833 0.629 8,790 0.767 0.523 9,371
LEAD-stage2 0.867 0.650 8,267 0.767 0.539 8,668

Table 2: Comparison of model performance on AIME24 and AIME25, showing Cons@32, Pass@1, and average
token length (Lenavg). The best value in each column is in boldface, the second best is underlined.

baseline.533

Overall, these ablation results confirm that534

all three enhancements—length-dependent accu-535

racy, difficulty-aware advantage reweighting, and536

explicit penalties—collectively reduce verbosity,537

strengthen mathematical skills on harder questions,538

and elevate precision in final predictions.539

5.3 Comparison with Baselines540

We next evaluate GRPO-LEAD at the 14B scale541

and compare it against two strong baselines un-542

der a 14k-token generation budget: DeepSeek-14B543

and the state-of-the-art Light-R1-14B-DS. Table 2544

presents results on AIME24 and AIME25, includ-545

ing both our intermediate model (LEAD-stage1)546

and our final model (LEAD-stage2).547

AIME24 Performance LEAD-stage1 achieves548

a Cons@32 of 0.833, matching Light-R1-14B-DS549

and exceeding DeepSeek-14B by 4.1%. Its Pass@1550

outperforms DeepSeek-14B by 2.4% and closely551

approaches Light-R1-14B-DS. Crucially, LEAD-552

stage1 produces more concise responses than both553

baselines, with more than 800 tokens less on av-554

erage. Building on these gains, LEAD-stage2555

pushes performance further, delivering the high-556

est Cons@32 (4% above Light-R1-14B-DS) and557

the best Pass@1, while reducing average solution558

length to 8,267 tokens.559

AIME25 Performance LEAD-stage1 yields a560

Cons@32 of 0.767, matching Light-R1-14B-DS561

and exceeding DeepSeek-14B by 21.2%. Its562

Pass@1 (0.523) outperforms DeepSeek-14B by563

21.9% and Light-R1-14B-DS by 3.6%. Crucially,564

LEAD-stage1 produces more concise responses565

than both baselines, with its solutions averaging566

9,371 tokens. Building on these gains, LEAD-567

stage2 pushes performance further, delivering the568

highest Cons@32 (matching Light-R1-14B-DS at569

0.767) and the best Pass@1 (0.539), while reducing570

average solution length to 8,668 tokens.571

Overall, both LEAD-stage1 and LEAD-stage2 572

deliver substantial improvements over DeepSeek- 573

14B and Light-R1-14B-DS, simultaneously boost- 574

ing correctness and conciseness under a con- 575

strained (14k-token) budget. Remarkably, train- 576

ing LEAD-stage1 for just 100 steps—requiring 577

only about 24 hours on eight H20 GPUs—already 578

matches Light-R1-14B-DS on Cons@32 and out- 579

performs it on AIME25 Pass@1 while produc- 580

ing shorter solutions, underscoring the practical 581

efficiency of GRPO-LEAD for large-scale math 582

problem-solving. 583

6 Conclusion 584

We introduced GRPO-LEAD, a reinforcement 585

learning framework designed for mathematical rea- 586

soning tasks. By extending Group Relative Policy 587

Optimization with three major components—(1) a 588

length-dependent accuracy reward to discourage 589

overly verbose solutions, (2) an explicit negative 590

penalty that clarifies the boundary between cor- 591

rect and incorrect answers, and (3) a difficulty- 592

aware advantage reweighting scheme to prioritize 593

tougher problems—GRPO-LEAD addresses key 594

challenges in structured problem-solving. 595

Empirical evaluations on two AIME benchmarks 596

show that GRPO-LEAD not only speeds up con- 597

vergence but also strengthens the model’s reason- 598

ing capability while keeping solution paths con- 599

cise. Our 14B-scale experiments further confirm 600

that GRPO-LEAD achieves state-of-the-art per- 601

formance by balancing output brevity with high 602

problem-solving accuracy. Although open ques- 603

tions remain—particularly in managing partial cor- 604

rectness and extending these techniques to broader 605

domains—our findings suggest that reward shaping 606

and difficulty modeling are pivotal in developing 607

more robust and aligned language models for com- 608

plex mathematical reasoning. 609
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7 Limitations610

Although our techniques for encouraging con-611

cise solutions and difficulty-balanced learning may612

transfer to other domains, the gains reported here613

are specific to mathematical reasoning tasks. Fur-614

ther studies are needed to evaluate the effectiveness615

of GRPO-LEAD on broader question-answering616

or logical reasoning domains, where correctness617

signals and domain structures can differ substan-618

tially.619

Additionally, we only have access to a limited620

amount of compute, which prevents us from con-621

ducting more comprehensive experiments. For in-622

stance, we currently cannot provide the validation623

curve for the 7B model in the ablation study that624

adds an explicit penalty. This is due to an error in625

the validation code after upgrading to the newest626

VERL version, and we currently don’t have the627

compute to reproduce it. The comparison with628

original GRPO model is also lacked except the629

curve shown in figure 2 since the checkpoint is on630

the server on the rented server, which was auto-631

matically released at the point we write the paper.632

We also couldn’t formally perform a hyperparame-633

ter search to showcase the rationale behind choos-634

ing the hyperparameters for our designed modifica-635

tions.636
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