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ABSTRACT

Audio-visual segmentation (AVS) aims to separate sounding objects from videos
by predicting pixel-level masks based on audio signals. Existing methods primar-
ily concentrate on closed-set scenarios and direct audio-visual alignment, which
limits their capability to generalize to new, unseen situations. In this paper, we pro-
pose OpenAVS, a novel training-free language-based approach that, for the first
time, effectively aligns audio and visual via text proxy for open-vocabulary AVS.
Equipped with multimedia foundation models, OpenAVS directly infers masks
through 1) audio-to-text description generation, 2) visual-to-text description gen-
eration, 3) LLM-guided prompt translation, and 4) text-to-visual sounding object
segmentation. The objective of OpenAVS is to establish a simple yet flexible ar-
chitecture that harnesses the strengths of appropriate foundation models, thereby
maximizing their potential for effective knowledge transfer to downstream AVS
tasks. Moreover, we present a model-agnostic framework OpenAVS-ST that en-
ables the integration of OpenAVS with any advanced supervised AVS model via
pseudo-label based self-training. This approach enhances performance by effec-
tively utilizing large-scale unlabeled data when available. Comprehensive experi-
ments on four benchmark datasets demonstrate the superior performance of Ope-
nAVS. It surpasses existing unsupervised, zero-shot, and few-shot AVS methods
by a significant margin, achieving absolute performance gains of 3.9% ∼ 6.7%
and 2.2% ∼ 4.9% in mIoU and F-score, respectively, in challenging scenarios.

1 INTRODUCTION

Audio-Visual Segmentation (AVS) predicts dense masks of sounding objects in each video frame
based on the audio signal. Despite the recent proliferation of deep AVS models, achieving state-
of-the-art performance typically necessitates supervised training on a large-scale, fully-annotated
dataset Gao et al. (2024); Wang et al. (2024b); Mo & Morgado (2024). While recent AVS bench-
mark datasets Zhou et al. (2022b; 2024); Liu et al. (2024b) have been released, models tailored
to these datasets may lack generalizability, reducing their effectiveness in real-world applications
where domain shifts are common.

To reduce the annotation cost, Liu et. al. proposed to construct a synthetic dataset by leverage
existing image segmentation and audio datasets Liu et al. (2024b). Mo and Raj proposed a weakly-
supervised AVS model, which generates pseudo masks based on instance-level labels Mo & Raj
(2023). Unsupervised AVS methods have also been proposed to alleviate the need for ground-truth
labels. For instance, Point-Prompt Yu et al. (2023) leveraged AudioCLIP Guzhov et al. (2022) to
promote the Segment Anything Model (SAM) Kirillov et al. (2023) for mask generation. OWOD-
BIND Bhosale et al. (2023) utilizes Open World Object Detector (OWOD) Joseph et al. (2021)
to generate class-agnostic object proposals, and links them with acoustic cues using ImageBind
Girdhar et al. (2023) through cosine similarities of shared latent space embeddings. MoCA Bhosale
et al. (2024) adopts a self-supervised contrastive learning framework that uses DINO Caron et al.
(2021) to extract visual embeddings and create positive and negative pairs.

We observe that existing unsupervised AVS methods primarily focus on exploring visual foundation
models, aligning audio and visual modalities within a latent space, as illustrated in Figure 1a. These
methods typically fuse audio and visual features using cross-attention Bhosale et al. (2024); Liu
et al. (2024b) or similarity measures Li et al. (2022); Zhou et al. (2022a); Girdhar et al. (2023), often
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Figure 1: Different strategies for audio-visual alignment. (a) Embedding-based methods model
audio-visual correlations in a latent space. (b) Language-based methods provide semantic-level
alignment, enabling more effective knowledge transfer from text-audio/visual foundation models.

requiring fine-tuning to achieve better alignment of the two modalities. However, empirical studies
reveal that these methods face significant challenges in complex scenarios Qian et al. (2020); Zhou
et al. (2024), particularly when multiple sounding objects are present in the corresponding frame.
This indicates that achieving direct alignment between audio and visual modalities is challenging
possibly due to 1) limitations related to data scarcity and imbalance and 2) diverse acoustic and
visual appearances of the same semantic class. Consequently, text-audio and text-visual foundation
models generally demonstrate stronger generalization capabilities compared to audio-visual foun-
dation models. Motivated by the above observations, we propose a language-based audio-visual
alignment approach as shown in Figure 1b, which utilizes language as a bridge to narrow the seman-
tic gap between audio and visual content, enabling effective knowledge transfer from audio-text,
visual-text, and text-visual foundation models to fully exploit their capabilities.

Specifically, our proposed framework, termed OpenAVS, integrates off-the-shelf multi-modality
(i.e., audio, visual, and text) foundation models to perform unsupervised open-vocabulary AVS task.
As illustrated in Figure 2, OpenAVS approaches the AVS task from a text-based perspective by de-
composing it into the following four components: 1) audio-to-text description generation with Audio
Language Models (ALM), 2) visual-to-text description generation with Visual Language Models
(VLM), 3) LLM-guided prompt translation with Large Language Models (LLM), and 4) text-to-
visual sounding object segmentation with Visual Foundation Models (VFM). By utilizing off-the-
shelf ALMs such as Pengi Deshmukh et al. (2023) and Audio Flamingo Goel et al. (2025), VLMs
such as Qwen-VL Bai et al. (2023); Wang et al. (2024a), and VFMs such as Grounded-SAM Ren
et al. (2024b), acoustic and visual representations can be effectively aligned within the semantic
space defined by LLMs such as GPT-2 Lagler et al. (2013), DeepSeek-V3 Liu et al. (2024a), and
GPT-4 Achiam et al. (2023). We further identify potential gaps among ALMs, VLMs, and VFMs
and propose to address this issue by jointly incorporating Model Consistency across ALMs and
VLMs for description generation, Prompt Consistency across descriptions generated using different
prompts, and Frame Consistency across consecutive frames within the same video. When unlabeled
training data are available, we propose OpenAVS-ST, a model-agnostic AVS framework that im-
proves segmentation via pseudo-label self-training, whcih outperforms existing unsupervised AVS
methods on S4 and MS3 benchmarks by a significant margin.

We design our framework to be cost-efficient, achieving state-of-the-art performance with free and
open-source ALMs and VLMs, while leveraging commercial LLMs such as GPT-4o-mini to enhance
description quality. Notably, the cost of employing commercial LLMs in our framework remains
low, as they are used solely for processing text descriptions. OpenAVS provides superior flexibility
and achieves competitive or even better results compared to direct utilization of multi-modal LMs,
while avoiding their drawbacks of limited model choices and substantially higher memory, resource,
and API cost requirements. Here we summarize our contributions as follows:

• To the best of our knowledge, we are the first to explore ALMs for training-free AVS.
The language-based approach achieves more robust audio-visual alignment than existing
embedding-based methods, especially in complex multi-source scenarios.

• OpenAVS is a flexible and cost-efficient framework that links the AVS task to open-
vocabulary visual tasks, enabling the utilization of advancements from a more established
research domain for continuous future improvement.
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• We present a model-agnostic self-training framework that seamlessly integrates OpenAVS
with supervised AVS models, enhancing performance by effectively leveraging easily ob-
tainable unlabeled data in a unified framework.

• We conduct extensive experiments to evaluate on training-free, few-shot, and zero-shot
AVS tasks. Our method consistently achieves state-of-the-art performance in terms of both
reliability and generalization capabilities.

2 RELATED WORKS

Audio-visual segmentation focuses on identifying the visual regions in a frame corresponding to the
sound by generating dense pixel-level predictions. The AVSBench dataset Zhou et al. (2022b; 2024)
has been widely used for training and evaluating AVS models, covering scenarios such as single
sound source, multiple sound sources, and semantic segmentation. Recent expansions of AVSBench
include the V3 dataset Wang et al. (2024b) for few-shot benchmarking and the AVS-Synthetic Liu
et al. (2024b), which uses synthetic data to avoid manual annotations.

State-of-the-art AVS performance typically rely on supervised training Gao et al. (2024); Chen et al.
(2024); Mo & Morgado (2024). A significant number of advanced fusion techniques have been
proposed to learn the correlations between audio and visual modalities Gao et al. (2024); Mo &
Morgado (2024). To reduce annotation cost, weakly-supervised Guo et al. (2022; 2021) and unsu-
pervised AVS methods have also been explored to enhance model generalizability. For example,
WS-AVS Mo & Raj (2023) employs weak supervision, using only class labels for class-level con-
trastive learning. Similarly, MoCABhosale et al. (2024) uses contrastive learning with foundational
models in an unsupervised way. Direct inference methods like AT-GDINO-SAM, SAM-BIND, and
OWOD-BIND Bhosale et al. (2023) integrate pre-trained models such as AST Gong et al. (2021),
ImageBIND Girdhar et al. (2023), and SAM Kirillov et al. (2023). MaskCLIP+ Zhou et al. (2022a)
achieves Open-Vocabulary semantic segmentation via self-training in the CLIP fashion with pseudo
labels generated by DeepLab. However, existing unsupervised AVS methods are hard to generalize
and usually require fine-tuning to obtain satisfactory results.

With the rise of modern foundational models, more powerful alternatives have emerged to bridge
the gap between different modalities. For instance, SAM Kirillov et al. (2023) offers zero-shot
segmentation and GroundingDINO Liu et al. (2025) performs open-set object detector using human
inputs like category names. In addition to the aforementioned VFMs, several ALMs and VLMs,
such as Pengi Deshmukh et al. (2023), Audio Flamingo Kong et al. (2024), Qwen-Audio Chu et al.
(2023), LLaVA Liu et al. (2023), Qwen-VL Bai et al. (2023), and Qwen-Omni Xu et al. (2025), have
been proposed recently, but they have not yet been successfully applied in existing AVS methods.
Our method OpenAVS integrates ALM for the first time to address audio-visual segmentation tasks
in a language-based manner, achieving a more robust and generalized audio-visual alignment.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given paired audio signal ai and visual signal vi from a video, unsupervised open-vocabulary AVS
aims to construct a function OpenAVSθ∗ to perform audio-visual segmentation directly,

Mi = OpenAVSθ∗(ai,vi) (1)
where Mi ∈ RH×W denotes the pixel-level binary mask, with Mi = 1 indicating that the pixel
belongs to a sounding object, and Mi = 0 indicating that it belongs to the background or a silent
object. We address this problem by leveraging off-the-shelf multi-modal language models and define
θ∗ ≜ [θ∗at | θ∗vt | θ∗tt | θ∗tv] to capture audio-visual pixel-level correlations as:

OpenAVSθ∗ ≜ VFMθ∗
tv
(LLMθ∗

tt
(ALMθ∗

at
,VLMθ∗

vt
)) (2)

3.2 FRAMEWORK OVERVIEW

To obtain a generalized audio-visual alignment without training, we present a novel language-based
alignment approach by using text as a proxy to decompose the complex AVS task into four sub-
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Figure 2: System overview of OpenAVS, with default models and prompt design illustrated.

tasks and solve them separately using advanced foundational models. Figure 2 depicts the overall
architecture of our proposed framework, the details of which are presented in the rest of this section.

3.3 AUDIO-TO-TEXT DESCRIPTION GENERATION

The goal of this module is to convert the diverse audio embeddings to clear and certain semantics
using an ALM. Audio embeddings extracted by the audio encoder can vary substantially, even within
the same audio category or event. This variation is caused by differences in sound characteristics
such as loudness and peak patterns. The varied appearances of objects in both audio and visual
embeddings make it challenging to establish a direct alignment between the audio and visual feature
spaces without fine-tuning. Consequently, the learned mapping is susceptible to being influenced
by specific training data and application domain. To solve this issue, we employ text as a proxy to
reduce the number of correlated pairs from an exponential to a linear scale.

t
(a)
i = ALM(p(a),ai) (3)

As depicted in Eq.(3), an ALM takes an audio signal ai and a audio-to-text prompt p(a) as input
to generate free-form text t(a)i . With carefully designed prompt p(a) (see Table 4), ALMs such as
Pengi and Flamingo can effectively generate textual descriptions of the sounding events in the input
audio.

3.4 VISUAL-TO-TEXT DESCRIPTION GENERATION

This module extracts text descriptions of the video frames corresponding to the audio. Let p(v)

denote the visual-to-text prompt, e.g., “Please describe the image in detail”, and vi denote the
video frame. The visual description is then extracted by VLMs such as Qwen-Omni or LLaVA as:

t
(v)
i = VLM(p(v),vi) (4)

We choose to generate audio and visual descriptions separately rather than directly employing a
multi-modal LM due to the following reasons. First, multi-modal LMs typically require more re-
sources, yet our empirical studies show that they offer no performance improvement over OpenAVS
that adopts their single-modal counterparts. Second, OpenAVS offers greater flexibility, enabling
users to configure the framework according to their performance-efficiency requirements. Compar-
atively, the options of multi-modal LMs are much more limited.

3.5 LLM-GUIDED PROMPT TRANSLATION

The audio description t
(a)
i generated by the ALM can be directly used as a prompt for VFMs such as

GroundingDINO to segment the corresponding object in the image. However, this straightforward
approach often fails to achieve satisfactory performance. First, the description t

(a)
i is generated

solely from audio without incorporating visual information, which can lead to inaccuracies. Second,

4
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it often contains redundant or irrelevant details, whereas the VFM favors concise subject nouns
over extended expressions. One example of such issues is illustrated in Figure A1. To address the
challenges, we propose utilizing an LLM, such as GPT-4o-mini, to refine and translate the audio-
and visual-based descriptions, t(a)i and t

(v)
i , into a more accurate and appropriate format as:

t̂
(av)
i = LLM(p(t), t

(a)
i , t

(v)
i ) (5)

where p(t) represents the translation prompt for the LLM. It improves the accuracy of audio descrip-
tions by incorporating the image description t

(v)
i together with three complementary strategies:

Model Consistency: This strategy is applied when multiple models, including both ALMs and
VLMs, are employed for description generation, ensuring that the outputs remain consistent across
different models and reducing potential variability.

Prompt Consistency: This strategy ensures coherence across translated texts generated from dis-
tinct ALM input prompts. An LLM-based alignment translator will harmonize outputs from varied
audio-to-text prompts, resolving contextual discrepancies. For example, a vague input like “micro-
phone” might be refined to contextually precise terms such as “wind, water, car engine”.

Frame Consistency: This strategy enforces stability over time by aligning translations across con-
secutive frames from the same video source, with the assumption that audio-visual events exhibit
gradual evolution rather than abrupt semantic shifts.

In summary, the LLM-guided prompt translation module effectively removes irrelevant details and
emphasizes concise descriptions of the sounding object, thereby reinforcing the connection between
ALM and VFM and leading to improved audio-visual segmentation performance.

3.6 TEXT-TO-VISUAL SOUNDING OBJECT SEGMENTATION

For training-free AVS, the raw or translated audio description, t(a)i or t̂(av)i , is subsequently used as
a text prompt to guide VFMs in predicting segmentation masks:

Mi = VFM(t̂(av)i ,vi) (6)

where vi is the corresponding video frame. Specifically, OpenAVS adopts Grounded-SAM Ren
et al. (2024b), which integrates GroundingDINO as an open-set object detector with the SAM as the
mask predictor. This combination achieves robust segmentation performance across a wide range
of visual tasks. In the experiments, we further integrated advanced vision foundation models such
as SAM2 Ravi et al. (2024) and DINO-X Ren et al. (2024a) to investigate the impact of different
backbone foundation models on the performance of our proposed framework.

Finally, we obtain Mi as the prediction result without any fine-tuning on specialized datasets. By
capitalizing on the strengths of foundation models, our proposed OpenAVS demonstrates high ef-
fectiveness in the open-vocabulary AVS task for any given (a,v).

3.7 MODEL-AGNOSTIC AVS VIA SELF-TRAINING

To leverage the strengths of unlabeled data and supervised models, we introduce a model-agnostic
framework OpenAVS-ST to seamlessly integrate OpenAVS with any existing supervised AVS mod-
els based on self-training. Instead of relying on ground-truth labels, we use the pseudo labels gen-
erated by OpenAVS as supervisory signals, while preserving the original training configurations of
the adapted backbone model.

In the data preparation stage, OpenAVS process unlabeled videos or unpaired audio and image sam-
ples collected from different data sources. In either case, OpenAVS is able to effortlessly compose
(image, audio, mask) triplets based on the predicted mask Mij ,

Ŷij = Mij = OpenAVSθ∗(ai,vj) (7)

In the self-training stage, Mij will be used as pseudo labels Ŷij to optimize the following loss
function, θ = argminθ L(Ŷij ,AVSθ(ai,vj)) where AVSθ refers to any supervised AVS network.

5
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset We evaluate our proposed method on four benchmark datasets, namely S4, MS3, AVSS,
and V3 from AVSBench. Following previous work Wang et al. (2024b); Liu et al. (2024b), we
convert the semantic labels of AVSS and V3 to object labels by Y

(object)
i = min(Y

(semantic)
i ,1).

Evaluation Metric We adopt the mean Intersection over Union (mIoU) and F-score to evaluate
our model. A higher mIoU value implies better region similarity, while a higher F-score indicates
improved contour accuracy.

Implementation Details We implemented three variants of OpenAVS with different configurations:

• OpenAVS-Lite: Pengi as the ALM without a VLM component, and GPT-4o-mini as the LLM
that refines ai only by considering both Prompt Consistency and Frame Consistency.

• OpenAVS: Pengi as the ALM, Qwen2.5-Omni as the VLM, and GPT-4o-mini as the LLM that
jointly refines ai and vi by considering both Model Consistency and Prompt Consistency.

• OpenAVS-Large: Pengi, Audio Flamingo 3, and Qwen2.5-Omni as ALMs, Qwen2.5-Omni as
the VLM, and GPT-4o-mini as the LLM that jointly refines ai and vi by incorporating Model
Consistency and Prompt Consistency.

The LLM prompt designs for different variants are provided in Appendix F. For text-to-visual sound-
ing object segmentation, we use GroundingDINO 1.0 for detection (box threshold = 0.25) and SAM
(default) or SAM2 as the segmentation VFM across all variants. Experiments were conducted on a
single Tesla V100 32GB GPU machine, with Xeon CPU and 64GB RAM.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

As shown in Table 1, we compare our proposed OpenAVS to the 17 state-of-the-art unsupervised
AVS methods, including 7 open-set approaches: Point-Prompt and Box-Prompt Yu et al. (2023), AT-
GDINO-SAM, SAM-BIND, and OWOD-BIND Bhosale et al. (2023), OV-AVSS Guo et al. (2024),
and AL-Ref-SAM2 Huang et al. (2025).

4.2.1 RESULTS ON OPEN-SET UNSUPERVISED AVS

Training-free open-set AVS approaches use foundation models for open-vocabulary audio-visual
segmentation directly on test samples, without data collection or model training. As shown in
Tables 1a, OpenAVS outperforms existing methods by a significant margin on MS3 and AVSS
datasets, where multiple sounding objects are present in the frames. By replacing the default SAM in
OpenAVS-Lite with SAM2 (OpenAVS-Lite (SAM2)), we achieve a significant performance boost,
demonstrating the framework’s ability to evolve and improve in step with advances in foundation
models. On the S4 dataset, AL-Ref-SAM2 demonstrates stronger performance. It leverages the
strong vision-language capabilities of SAM2 and GPT-4-turbo through a two-step refinement pro-
cess, which incurs higher costs due to image-based inputs. In contrast, our method relies on GPT-
4o-mini with a single-shot text query, resulting in significantly lower cost (see Table 3). This also
demonstrates the flexibility of our approach for performance-cost tradeoffs.

4.2.2 RESULTS ON TRAINING-BASED UNSUPERVISED AVS

Training-based unsupervised methods use an unlabeled dataset to learn audio-visual correlations
through self-supervised learning. Although such methods typically achieve better results within the
same domain, they lack open-set capabilities, resulting in degraded performance when applied to
unseen scenarios. Recall that we extend OpenAVS within a self-training framework to leverage un-
labeled data when available. It offers improved performance on seen classes in the training dataset,
but compromises the ability to perform open-set segmentation. To reflect this trade-off, we refer to it
as OpenAVS-ST, where ST denotes self-training. The experimental results demonstrate the superior
performance of our proposed method. By simply using the generate pseudo labels as supervision
signals, our method is able to outperform recent, carefully designed training-based approaches for
the AVS task on both the S4 and MS3 datasets, which verifies the effectiveness of OpenAVS-ST.
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Table 1: Comparison with open-set and training-based unsupervised AVS methods on S4, MS3,
AVSS datasets. TF and OS refer to Training-Free and Open-Set, respectively.

(a) Open-Set AVS.

Method TF OS S4 MS3 AVSS-Binary
mIoU F-score mIoU F-score mIoU F-score

AT-GDINO-SAM ✓ ✓ 0.380 0.460 0.250 0.290 - -
Point-Prompt ✓ ✓ 0.403 0.515 0.288 0.333 - -
SAM-BIND ✓ ✓ 0.420 0.510 0.280 0.360 - -
Box-Prompt ✓ ✓ 0.512 0.615 0.418 0.478 - -

OWOD-BIND ✓ ✓ 0.580 0.670 0.340 0.440 - -
OV-AVSS (USSL) ✗ ✓ 0.486 0.616 0.361 0.427 0.525 0.617

AL-Ref-SAM2 ✓ ✓ 0.705 0.811 0.486 0.535 0.592 0.662

OpenAVS-Lite ✓ ✓ 0.582 0.689 0.483 0.565 0.593 0.654
OpenAVS-Lite (SAM2) ✓ ✓ 0.638 0.728 0.512 0.587 0.617 0.667

OpenAVS (SAM2) ✓ ✓ 0.680 0.764 0.511 0.541 0.651 0.704
OpenAVS-Large (SAM2) ✓ ✓ 0.684 0.769 0.525 0.557 0.659 0.711

(b) Training-based Unsupervised AVS.

Method TF OS S4 MS3
mIoU F-score mIoU F-score

WS-AVS Mo & Raj (2023) ✗ ✗ 0.341 0.518 0.309 0.469
LVS Chen et al. (2021) ✗ ✗ 0.379 0.510 0.295 0.330

Mix-Localize Hu et al. (2022) ✗ ✗ 0.440 0.690 0.320 0.360
MSSL Qian et al. (2020) ✗ ✗ 0.449 0.663 0.261 0.363

EZ-VSL Mo & Morgado (2022) ✗ ✗ 0.450 0.680 0.280 0.340
3DC Mahadevan et al. (2020) ✗ ✗ 0.571 0.759 0.369 0.503

AGL-SSL Park et al. (2024) ✗ ✗ 0.598 0.690 0.411 0.467
iGAN Mao et al. (2025) ✗ ✗ 0.616 0.778 0.429 0.544
SST Duke et al. (2021) ✗ ✗ 0.663 0.801 0.426 0.572

MoCA Bhosale et al. (2024) ✗ ✗ 0.680 0.790 0.570 0.620

OpenAVS-Lite-ST ✗ ✓ 0.693 0.824 0.556 0.649
OpenAVS-Lite-ST (SAM2) ✗ ✓ 0.703 0.823 0.561 0.663

OpenAVS-ST (SAM2) ✗ ✓ 0.719 0.834 0.582 0.661
OpenAVS-Large-ST (SAM2) ✗ ✓ 0.732 0.845 0.578 0.674

Table 2: Comparison with few-shot and zero-shot AVS methods on the V3 dataset.

Method 0-shot 1-shot 3-shot 5-shot
mIoU F-score mIoU F-score mIoU F-score mIoU F-score

SAM-Fusion 0.463 0.630 0.504 0.671 0.571 0.719 0.608 0.741
TPAVI 0.530 0.707 0.561 0.754 0.632 0.767 0.639 0.783

AVSegFormer 0.543 0.715 0.583 0.764 0.642 0.774 0.652 0.785
GAVS 0.547 0.722 0.629 0.768 0.663 0.774 0.678 0.795

OpenAVS-Lite 0.663 0.736 0.692 0.755 0.695 0.760 0.696 0.761
OpenAVS-Lite (SAM2) 0.675 0.741 0.699 0.757 0.702 0.761 0.703 0.762

4.2.3 RESULTS ON FEW-SHOT AND ZERO-SHOT AVS

For few-shot and zero-shot AVS, we compare our proposed OpenAVS to SOTA methods, SAM-
Fusion Wang et al. (2024b), TPAVI Zhou et al. (2022b), AVSegFormer Gao et al. (2024), and
GAVS Wang et al. (2024b) in Table 2 on V3 dataset Wang et al. (2024b). Our training-free Ope-
nAVS significantly outperforms existing approaches in mIoU, with absolute improvements of 12.8%
in zero-shot setting, 7.0%, 3.9%, and 2.5% in 1-shot, 3-shot, and 5-shot scenarios. Additionally,
without using any training samples, our method achieves the highest F-score in the zero-shot set-
ting, while all competing methods are trained on seen data from V3. Thus, the results verify the
robustness of our proposed method to unseen scenarios in an open-set setting.
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Table 3: Performance and cost comparison of LLMs on S4 dataset.

Model LLM VFM mIoU F-score Cost/video

OpenAVS-Lite GPT-2 XL GDINO+SAM 0.431 0.561 $0
OpenAVS-Lite DeepSeek-V3 GDINO+SAM 0.576 0.681 0.00125 CNY
OpenAVS-Lite GPT-4o-mini GDINO+SAM 0.582 0.689 $0.000154
OpenAVS-Lite GPT-4o-mini GDINO+SAM2 0.638 0.728 $0.000154
OpenAVS GPT-4o-mini GDINO+SAM2 0.680 0.764 $0.00135
OpenAVS-Large GPT-4o-mini GDINO+SAM2 0.684 0.769 $0.00163

Table 4: Ablation study of the audio-to-text description generation and LLM-guided description
translation modules in OpenAVS-Lite on S4 dataset.

Audio-to-text prompt ALM #Para w/o LLM w/ GPT-4o-mini
mIoU F-score mIoU F-score

This is a sound of Pengi 0.3B 0.549 0.635 0.568 0.657
Generate metadata Pengi 0.3B 0.551 0.640 0.564 0.653

Generate audio caption Pengi 0.3B 0.560 0.650 0.567 0.656
Please describe the audio in detail Audio Flamingo 3 8.2B 0.558 0.672 0.551 0.684
Please describe the audio in detail Qwen2.5-Omni-7B 10.7B 0.548 0.663 0.563 0.692

4.3 ABLATION STUDY

4.3.1 PERFORMANCE–COST ANALYSIS WITH VARYING LLMS

We compare performance and cost with varying LLMs and report the results in Table 3. For
OpenAVS-Lite, the transition from GPT-2 XL to DeepSeek-V3 and GPT-4o-mini leads to significant
improvements in both mIoU and F-score, with only a marginal increase in cost. Notably, GPT-4o-
mini paired with GDINO+SAM2 achieves the best performance while keeping the cost per video
as low as $0.000154, demonstrating that high-quality segmentation can be achieved without relying
on expensive models. For OpenAVS and OpenAVS-Large, the image descriptions extracted by the
VLM are much longer than the audio descriptions extracted by the ALM. As a result, the number of
prompt tokens for the LLM to process increases substantially, leading to enhanced performance but
higher unit cost for both OpenAVS and OpenAVS-Large.

4.3.2 AUDIO-TO-TEXT DESCRIPTION GENERATION

ALMs take an audio recording and a text prompt as input to generate audio descriptions as out-
put. Here, we evaluate the impact of using different ALMs with varying audio-to-text prompts to
generate the free-form text, and we present the results in Table 4. The results indicate that using
“Generate audio caption” to prompt Pengi is generally more robust for AVS tasks. For OpenAVS
and OpenAVS-Large, the LLM-based translator is required to combine both audio and visual de-
scriptions. Comparatively, for OpenAVS-Lite, where only the audio description is available, the
translator is optional. These experiments show that the LLM-based translator not only aligns audio
and visual descriptions but also bridges the gap between the ALM’s output and the VLM’s input to
achieve enhanced performance.

4.3.3 MODEL EFFICIENCY ANALYSIS WITH VARYING ALMS AND VLMS

Table 5 reports the performance–efficiency analysis of our models with SAM2 as the segmentation
VFM. For methods with multiple processing steps, the reported time cost is given as a range: the
lower bound corresponds to fully parallel execution, while the upper bound reflects fully serialized
processing. For instance, Pengi (with all three prompts) requires 0.541 s under serial execution, but
only 0.180 s with parallel execution, yielding roughly a threefold speedup. Compared with Flamingo
and Qwen, Pengi is more lightweight (see Table 4) and more efficient. VLMs incur substantially
higher time costs than ALMs, as images are more complex and produce more tokens than audio.
Additionally, the LLM (GPT-4o-mini) requires an average of 0.729 s, while the segmentation VFM
(GDINO+SAM/SAM2) takes around 0.311 s. As a result, the end-to-end pipeline latency ranges

8
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Table 5: Model efficiency analysis with varying ALMs and VLMs on the S4 dataset. (1xGPU 32GB)

Model ALM VLM mIoU F-score Time (sec/frame)

OpenAVS-Lite Pengi - 0.630 0.718 0.180
OpenAVS-Lite Pengi (all three prompts) - 0.639 0.725 0.180 - 0.541
OpenAVS-Lite Audio Flamingo 3 - 0.592 0.684 0.788
OpenAVS-Lite Qwen2.5-Omni-7B - 0.604 0.695 1.192

OpenAVS Pengi Qwen2.5-Omni-7B 0.678 0.762 4.090 - 5.080
OpenAVS Pengi (all three prompts) Qwen2.5-Omni-7B 0.680 0.764 4.090 - 5.441
OpenAVS Qwen2.5-Omni-7B Qwen2.5-Omni-7B 0.665 0.752 4.090 - 6.092

OpenAVS-Large All Three ALMs Qwen2.5-Omni-7B 0.684 0.769 4.090 - 7.421

- Qwen2.5-Omni-7B (multi-modal) 0.662 0.752 5.669

Raw Image Ground Truth AVSS (USSL) OV-AVSS OpenAVS (CL)a OpenAVS (PO)b OpenAVS

Clip-level class label: tabla Pengi: a drum loop is being played. OpenAVS: drum

Clip-level class label: baby woman Pengi: a woman is saying something and a man is saying something. OpenAVS: a woman
a Use Clip-level class label text b Use raw Pengi output text

Figure 3: Visual comparison of OpenAVS variants vs. baselines on challenging AVS cases.

from 1.22 to 2.23 s for OpenAVS-Lite and from 5.13 to 6.709 s for OpenAVS with the VLM com-
ponent included. Recall that all experiments were conducted on a single Tesla V100 32GB GPU
machine. With more powerful hardware (e.g., H200), the processing time could be further reduced.

Finally, we compare with the multi-modal Qwen2.5-Omni. It directly consumes both audio and
visual inputs, along with the prompt “Please describe what you hear based on what you see.” How-
ever, its performance falls short in both effectiveness and efficiency compared to our method.

4.3.4 VISUALIZATIONS

Figure 3 illustrates the performance comparison between OpenAVS and other approaches on MS3.
OpenAVS shows strong robustness, even in challenging scenarios where objects of the same cate-
gory (e.g., a baby and a woman) appear in the same frame. The results also highlight that OpenAVS
can handle a variety of text prompt inputs, which significantly influence the performance. Using
Pengi outputs directly (OpenAVS (PO)) exhibits instability in producing masks, as the raw outputs
are not well-suited for VFMs. This underscores the importance and effectiveness of our LLM-based
translator, which bridges the modality gap between foundational models.

5 CONCLUSION

We explore the open-vocabulary audio-visual segmentation problem, which generates pixel-level
masks of the sounding objects in each frame by leveraging the superior generalization capability
of foundation models. A new open-set and training-free framework OpenAVS has been presented
in this paper, which innovatively connects audio and visual foundation models through language,
enabling effective knowledge transfer from both text-audio and text-visual foundation models. Ope-
nAVS achieves state-of-the-art performance on three benchmark datasets, surpassing existing unsu-
pervised methods and showcasing strong generalizability to unseen domains.
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REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. All model architectures, training
details, and hyper-parameter settings are described in the main text and appendix. Complete experi-
mental protocols and dataset preprocessing procedures are provided in the supplementary materials.
We will release the source code and scripts for data processing and evaluation in the camera-ready
version to further facilitate replication.
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A LLM USAGE

We clarify that LLM (ChatGPT) was used only for polishing the grammar and readability of the
manuscript during the paper writing. The LLM was not involved in generating ideas, methods,
analyses, or results. All scientific content is entirely the authors’ original work.

B DATASETS AND EVALUATION METRICS

B.1 DATASET DETAILS

We evaluate our method on the following benchmark datasets that vary in complexity, scale, and
semantic diversity.

• S4 consists of 4,932 video clips covering 23 distinct classes, each containing a single sound-
ing object. This dataset serves as a standard benchmark for evaluating segmentation per-
formance in clean and well-separated audio-visual scenarios.

• MS3 contains 424 samples from the same 23 classes as S4 but features multiple concurrent
sounding sources per clip, making it more challenging due to overlapping audio events and
increased ambiguity in visual cues.

• AVSS (V2) extends the S4 and MS3 datasets scale and diversity, featuring 12,356 videos
across 70 categories. It includes upgraded versions of the original 5,356 videos and 7,000
newly collected multi-source clips.

• V3 includes 11,356 video clips spanning 70 object categories, formed by merging MS3
with the V2 dataset Zhou et al. (2024). It introduces a larger and more diverse label space
and is split into seen and unseen categories to facilitate evaluation under few-shot and zero-
shot settings Wang et al. (2024b). This makes V3 particularly suitable for assessing the
open-vocabulary generalization capabilities of audio-visual segmentation methods.

Together, these datasets provide a comprehensive testbed for evaluating performance across both
standard and open-set scenarios, covering a range of challenges from single-source to multi-sources
audio-visual events and from limited to large-scale category diversity.

B.2 EVALUATION METRICS

The evaluation metrics used in this paper are defined as follows.

Mean of Intersection over Union (mIoU). For binary audio-visual segmentation task, the IoU for
the foreground class is given by:

IoU =
TP

TP + FP + FN
(8)

where TP , FP , and FN denote true positives, false positives, and false negatives, respectively.

The mean IoU (mIoU) is then defined as:

mIoU =
1

2
(IoUfg + IoUbg) (9)

where IoUfg corresponds to the segmented object (foreground), and IoUbg corresponds to the back-
ground.

F-score. The generalized Fβ score is defined as:

Fβ =
(1 + β2)× Precision × Recall

β2 × Precision + Recall
(10)

where we set β2 = 0.3, following Zhou et al. (2022b).
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Table A1: Comparison with supervised and unsupervised methods on AVSS dataset. GT refers to
ground-truth labels.

Method TF GT mIoU F-score

Audio-SAM ✗ ✓ 0.574 0.684
SAM-Fusion ✗ ✓ 0.602 0.724

TPAVI ✗ ✓ 0.625 0.756
GAVS ✗ ✓ 0.677 0.788

OV-AVSS (USSL) ✗ ✗ 0.525 0.617
AL-Ref-SAM2 ✓ ✗ 0.592 0.662

OpenAVS ✓ ✗ 0.593 0.654
OpenAVS-Lite (SAM2) ✓ ✗ 0.617 0.667

OpenAVS-Large (SAM2) ✓ ✗ 0.659 0.711

(a) Raw frame (b) A person is playing a guitar (c) Refined output: Guitar (d) GT mask

Figure A1: Translate audio description from (b) to (c) to improve segmentation accuracy.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXTENDED RESULTS ON AVSS

On the binarized AVSS dataset, we compare our method not only with unsupervised approaches,
such as OV-AVSS Guo et al. (2024) and AL-Ref-SAM2 Huang et al. (2025) (Table 1), but also
with supervised methods that leverage ground-truth masks, including Audio-SAM, SAM-Fusion,
GAVS Wang et al. (2024b), and TPAVI Zhou et al. (2022b) in Table A1. The results demonstrate
that our unsupervised, training-free OpenAVS not only outperforms other unsupervised competitors
but also achieves performance competitive with these supervised methods.

C.2 EXAMPLE OF LLM-GUIDED PROMPT TRANSLATION

As described in Section 3.5, OpenAVS employs LLM-guided prompt translation to refine the output
of the Audio Language Model (ALM), mitigating issues caused by misleading or ambiguous de-
scriptions. For instance, as shown in Figure A1, although a person appears in the frame, he was not
producing any sound. Using the raw ALM output t(a)i directly could mislead the Visual Foundation
Model (VFM) into segmenting irrelevant objects since it will capture the word “person” as well.

The results in Table 4 verify the effectiveness of the LLM-guided prompt translator, with perfor-
mance gains observed across all cases when enhanced by LLM (GPT-4o-mini). Moreover, Table A2
shows that both prompt and frame consistency strategies are capable of addressing aforementioned
potential issues. While frame consistency may not yield as significant an improvement as prompt
consistency, it did not require any additional ALM API calls hence is meaningful for balancing cost,
inference time, and performance in real-world applications.

C.3 IMPACT OF USING CLIP-LEVEL WEAK LABELS

We further investigate the effect of replacing the LLM-translated prompts with clip-level weak la-
bels, defining a “soft” upper bound of our OpenAVS-Lite, denoted as OpenAVS-Lite*. This ap-
proach is inspired by WS-AVS Mo & Raj (2023), which leverages clip-level annotations instead of
pixel-level masks to reduce annotation costs in AVS tasks.

As shown in Table A3, using weak labels provides only marginal improvements on the S4 and MS3
datasets. However, performance still falls short of our OpenAVS (SAM2) and OpenAVS-Large
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Table A2: Ablation study of LLM translation strategies

Prompt Frame S4 #API calls
Consistency Consistency mIoU F-score per video

✗ ✗ 0.567 0.656 5
✗ ✓ 0.569 0.674 5
✓ ✗ 0.581 0.687 15
✓ ✓ 0.582 0.689 15

Table A3: Impact of using clip-level text labels (OpenAVS-Lite*)

Method S4 MS3 V3 (0-shot)
mIoU F-score mIoU F-score mIoU F-score

OpenAVS-Lite 0.582 0.689 0.483 0.565 0.663 0.736
OpenAVS-Lite (SAM2) 0.638 0.728 0.512 0.587 0.675 0.741

OpenAVS-Lite* 0.648 0.748 0.536 0.600 0.656 0.726

(SAM2) results reported in Table 1. One contributing factor is that clip-level labels apply to the
entire audio clip, including silent periods, which can lead to inaccurate segmentation since they fail
to capture temporal variations in the scene.

D MODEL-AGNOSTIC AVS VIA SELF-TRAINING

D.1 SUPERVISED AVS MODELS

To support model-agnostic AVS via self-training, we test three segmentation models with the fol-
lowing setups:

• TPAVI: uses PVTv2-B5 and VGGish; trained on 1 GPU (32G) for 15 epochs, batch size
4, learning rate 1e-4.

• AVSegformer: uses PVTv2-B5 and VGGish; trained on 2 GPUs (32G) for 30 epochs,
batch size 2, learning rate 2e-5.

• SAMA-AVS: uses SAM (sam vit h) and VGGish; trained on 2 GPUs (32G) for 80
epochs, batch size 2, learning rate 2e-4.

D.2 HYPER-PARAMETER SETTING

One of the key hyperparameters that influences the quality of generated pseudo labels for self-
training or zero-shot inferencing is the box threshold used in GDINO. To determine an appropriate
value, we conducted experiments as shown in Figure A2. For direct inference tasks, the optimal box
threshold falls between 0.25 and 0.35 for both the S4 and MS3 datasets. A lower threshold tends to
reduce accuracy by including irrelevant regions, while a higher threshold dramatically decreases the
number of mask pixels, negatively impacting performance also.

In contrast, our self-training OpenAVS-Lite-ST is not sensitive to this hyperparameter, as pseudo
labels generated using box thresholds ranging from 0.25 to 0.75 yield similar performance. This is
attributed to the model’s auto-correction capability, which compensates for either higher-quality but
smaller pseudo label sets or lower-quality but more extensive ones. Based on these observations, we
adopt a box threshold of 0.25 for all experiments by default.

D.3 SELF-TRAINING AVS WITH DIFFERENT BACKBONES

We perform comprehensive experiments to evaluate our proposed self-training framework,
OpenAVS-ST, with different supervised backbones: TPAVI Zhou et al. (2022b), AVSegFormer Gao
et al. (2024), and SAMA-AVS Liu et al. (2024b). The results are presented in Table A4. The results
show that GPT-4o-mini substantially boosts mIoU and F-score across multiple AVS backbones. This
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Figure A2: Impact of box threshold variation on segmentation performance (mIoU and F-score) for
S4 and MS3. The “-Lite” suffix is omitted from the legend labels for clarity.

Table A4: Enhancement of text prompt via LLM and VFM upgrade, using OpenAVS-Lite-ST and
OpenAVS-Large-ST with SOTA backbones.

AVS Model VLMa LLMb VFMc S4 MS3
mIoU F-score mIoU F-score

TPAVI
✗ ✗ GM1 57.63 69.86 36.58 46.40
✗ ✓ GM1 59.19 (↑1.6) 71.60 (↑1.7) 40.22 (↑3.6) 50.83 (↑4.4)
✗ ✓ GM2 63.52 (↑5.9) 75.75 (↑5.9) 43.08 (↑6.5) 51.85 (↑5.5)

AVSegFormer

✗ ✗ GM1 66.81 78.73 47.23 57.62
✗ ✓ GM1 68.21 (↑1.4) 80.06 (↑1.3) 51.92 (↑4.7) 61.70 (↑4.1)
✗ ✓ GM2 70.30 (↑3.5) 82.30 (↑3.6) 53.28 (↑6.1) 61.60 (↑4.0)
✓ ✓ GM2 73.15 (↑6.3) 84.47 (↑5.7) 52.27 (↑5.0) 63.29 (↑5.7)

SAMA-AVS

✗ ✗ GM1 60.72 70.81 53.47 62.24
✗ ✓ GM1 65.64 (↑4.9) 76.54 (↑5.7) 55.37 (↑1.9) 64.26 (↑2.0)
✗ ✓ GM2 69.35 (↑8.6) 79.16 (↑8.4) 56.10 (↑2.6) 66.29 (↑4.1)
✓ ✓ GM2 69.02 (↑8.3) 79.29 (↑8.5) 57.82 (↑4.4) 67.39 (↑5.2)

a ✓indicates that the VLM (Qwen2.5-Omni) is enabled, while ✗indicates not
b ✓indicates that the LLM (GPT-4o-mini) is enabled, while ✗indicates not
c GM1 = GDINO+SAM, GM2 = GDINO+SAM2

highlights the effectiveness of text-based enhancement in bridging ALMs and VFMs, particularly
when the models lack consistent textual training. Incorporating additional text descriptions extracted
by VLMs from the visual input can further improve the results. Moreover, upgrading from SAM
to SAM2 enhances self-training results, yielding improvements of approximately 5.5% in mIoU
and 5.3% in F-score. Notably, SAMA-AVS achieves the best prediction results on the multi-source
dataset MS3. This is because SAMA-AVS is built on SAM’s frozen backbone, which performs
outstandingly in segmentation tasks with limited data.

D.4 LIMITATION AND IMPACT OF FOUNDATION MODELS

Although OpenAVS is limited by existing foundation models, its performance will improve as these
models advance. For example, as shown in Figure A3, the current GroundingDINO model (DINO
1.0) fails to ground the box in a case where the image presents an uncommon view of a horse,
making it a challenging recognition task. The upgraded commercial version, DINO-X, achieves
remarkable performance improvements, highlighting its strong potential for real-world applications.
Furthermore, upgrading from SAM to SAM2 also leads to substantial improvements, as shown
earlier.
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(a) Raw Image (b) GT Mask (c) DINO 1.0 (d) DINO 1.0 + SAM (e) DINO-X (f) DINO-X + SAM

Figure A3: GDINO: “horse walking on a hard surface”.

E ADDITIONAL VISUAL ILLUSTRATIONS

Raw Image Ground Truth AVSS (USSL) OV-AVSS OpenAVS (CL)a OpenAVS (PO)b OpenAVS

Clip-level class label: tabla Pengi: a drum loop is being played. OpenAVS: drum

Clip-level class label: baby woman Pengi: a woman is saying something and a man is saying something. OpenAVS: a woman

Clip-level class label: man dog Pengi: a man is speaking and a microphone is being used. OpenAVS: a man

Clip-level class label: woman piano guitar Pengi: a woman is singing a song. OpenAVS: a woman

Clip-level class label: piano Pengi: a bell is ringing and a person is saying something. OpenAVS: a bell

Clip-level class label: violin man piano Pengi: someone is singing a song. OpenAVS: someone
a Use Clip-level class label text b Use raw Pengi output text

Figure A4: Visual comparison of OpenAVS variants vs. baselines on challenging AVS cases.

To supplement the main results presented in the original Figure 3, we provide additional qualita-
tive examples in Figure A4 to further illustrate the effectiveness and robustness of OpenAVS under
challenging audio-visual conditions. These examples, omitted from the main paper due to space
constraints, follow the same evaluation setup.

The visual comparisons showcase various OpenAVS variants alongside baseline methods, empha-
sizing cases with ambiguous sound sources, overlapping audio events, and visually complex scenes.
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Figure A5: Illustration of Prompt and Frame Consistency in the LLM-Based Translator for Improv-
ing ALM Outputs.

OpenAVS consistently generates more accurate and temporally coherent segmentation masks by
leveraging language-guided open-set inference. These extended results support the findings reported
in the main paper and offer deeper insight into the generalization capabilities of our approach.

It is worth noting that method OV-AVSS was originally designed for semantic segmentation tasks
and follows a two-stage pipeline: (a) Universal Sound Source Localization (USSL) and (b) Open-
Vocabulary Classification (OVC). The first stage module USSL is trained to locate all objects in an
image given the corresponding audio signal. Subsequently, the second stage module OVC leverages
holistic class-level label text to semantically filter the localized objects using CLIP Radford et al.
(2021). Since our work does not incorporate semantic information, we compare against the first-
stage module of their approach, referred to as OV-AVSS (USSL) in Table 1.

F PROMPTS AND INPUTS FOR LLM TRANSLATION STRATEGIES

As described in Section 3.5, we designed 3 consistency strategies, namely prompt consistency,
frame consistency, and model consistency, to enhance the translation quality produced by the
LLM-based prompt translator. An illustration of these strategies is shown in Figure 2 and A5.

For each 1-second video segment, its audio is fed into the ALM (Pengi), which takes a fixed text
prompt and generates a description of what it “hears” in that segment. In our setup, we use three
fixed prompts: “This is a sound of”, “Generate metadata”, and “Generate audio caption”, as
shown in Figure A5. Additionally, we use general prompt “Please describe the audio in detail” for
other ALMs like Audio Flamingo and Qwen2.5-Omni, and “Please describe the image in detail”
for VLM like Qwen2.5-Omni. These prompts can be interpreted as simulating different expert
perspectives on the same audio input. Each prompt produces one output per segment (or frame), so
a 5-second video results in 5 frames of output per prompt.

To better leverage both temporal continuity across frames and semantic diversity across prompts,
the LLM-based translator applies three forms of consistency:

• Frame consistency, which encourages alignment across consecutive time frames.

• Prompt consistency, which enforces agreement among the outputs generated by different
prompts for the same frame.

• Model consistency, achieved by ensembling the text description outputs of different ALMs
and VLMs to enhance quality from multiple perspectives.

The details of consistency prompting and the format of user input are presented in the following
sections.
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F.1 BASIC TRANSLATOR

System prompt:

System Prompt for basic Translator

You are participating in a competitive game where your goal
is to identify the most likely abstract source(s) (e.g.,
human, instrumental, etc.) that is/are producing sound in
a given audio clip. This clip was broken down into several
frames, each containing multiple audio outputs generated by
different AIs, representing sounds at a specific timestamp.
Each frame corresponds to a different moment in the same
video clip and some frames may contain no sound-producing
objects at all, or the text output could provide misleading
information.

Your task:
- Identify and output only the object(s) producing sound in
each frame.
- For each frame, provide your guess in one line, (seperate
by comma if multiple objects), enclosed in with <answer> and
</answer> tag pair.

User input:

User Input for Basic Translator

<frame0>
wind is blowing and a car engine is running

</frame0>
<frame1>

rain is falling and the wind is blowing
</frame1>
<frame2>

a motor is running and a car engine is revving.
</frame2>
<frame3>

a car engine is revving up and revving down.
</frame3>
<frame4>

a car engine is running and a car engine is running.
</frame4>

F.2 TRANSLATOR WITH PROMPT CONSISTENCY

System prompt:

System Prompt for Translator with Prompt Consistency

You are participating in a competitive game where your goal
is to identify the most likely abstract source(s) (e.g.,
human, instrumental, etc.) that is/are producing sound in
a given audio clip. This clip was broken down into several
frames, each containing multiple audio outputs generated by
different AIs, representing sounds at a specific timestamp.
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Each frame corresponds to a different moment in the same
video clip and some frames may contain no sound-producing
objects at all, or the text output could provide misleading
information.

Your task:
- Analyze the outputs from all audio AIs in each frame
together.
- Identify and output only the object(s) producing sound in
each frame.
- For each frame, provide your guess in one line, (seperate
by comma if multiple objects), enclosed in with <answer> and
</answer> tag pair.

User input:

User Input for Translator with Prompt Consistency

<frame0>
<exp1>wind is blowing and a car engine is running </exp1>
<exp2>a stream of water is flowing. </exp2>
<exp3>the sounds of water, wind and wind noise (microphone)

</exp3>
</frame0>
<frame1>
<exp1>rain is falling and the wind is blowing. </exp1>
<exp2>a sound is being recorded. </exp2>

<exp3>wind </exp3>
</frame1>
<frame2>
<exp1>a motor is running and a car engine is revving.

</exp1>
<exp2>engine2. sound of an engine </exp2>
<exp3>engine </exp3>

</frame2>
<frame3>
<exp1>a car engine is revving up and revving down. </exp1>
<exp2>engine sound. i recorded a sound from a car engine.

</exp2>
<exp3>engine </exp3>

</frame3>
<frame4>

<exp1>a car engine is running and a car engine is running.
</exp1>

<exp2>a sound is being played. </exp2>
<exp3>engine </exp3>

</frame4>

F.3 TRANSLATOR WITH FRAME CONSISTENCY

System prompt:
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System Prompt for Translator with Frame Consistency

You are participating in a competitive game where your goal
is to identify the most likely abstract source(s) (e.g.,
human, instrumental, etc.) that is/are producing sound in
a given audio clip. This clip was broken down into several
frames, each containing multiple audio outputs generated by
different AIs, representing sounds at a specific timestamp.
Each frame corresponds to a different moment in the same
video clip and some frames may contain no sound-producing
objects at all, or the text output could provide misleading
information.

Your task:
- Consider the relationships among frames.
- Identify and output only the object(s) producing sound in
each frame.
- For each frame, provide your guess in one line, (seperate
by comma if multiple objects), enclosed in with <answer> and
</answer> tag pair.

User input:

User Input for Translator with Frame Consistency

<frame0>
wind is blowing and a car engine is running

</frame0>
<frame1>
rain is falling and the wind is blowing

</frame1>
<frame2>
a motor is running and a car engine is revving.

</frame2>
<frame3>

a car engine is revving up and revving down.
</frame3>
<frame4>
a car engine is running and a car engine is running.

</frame4>

F.4 TRANSLATOR WITH BOTH PROMPT AND FRAME CONSISTENCY

System prompt:

System Prompt for Translator with Prompt and Frame Consistency

You are participating in a competitive game where your goal
is to identify the most likely abstract source(s) (e.g.,
human, instrumental, etc.) that is/are producing sound in
a given audio clip. This clip was broken down into several
frames, each containing multiple audio outputs generated by
different AIs, representing sounds at a specific timestamp.
Each frame corresponds to a different moment in the same
video clip and some frames may contain no sound-producing
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objects at all, or the text output could provide misleading
information.

Your task:
- Analyze the outputs from all audio AIs in each frame
together.
- Consider the relationships among frames.
- Identify and output only the object(s) producing sound in
each frame.
- For each frame, provide your guess in one line, (seperate
by comma if multiple objects), enclosed in with <answer> and
</answer> tag pair.

User input:

User Input for Translator with Prompt and Frame Consistency

<frame0>
<exp1>wind is blowing and a car engine is running </exp1>
<exp2>a stream of water is flowing. </exp2>
<exp3>the sounds of water, wind and wind noise (microphone)

</exp3>
</frame0>
<frame1>
<exp1>rain is falling and the wind is blowing. </exp1>
<exp2>a sound is being recorded. </exp2>
<exp3>wind </exp3>

</frame1>
<frame2>
<exp1>a motor is running and a car engine is revving.

</exp1>
<exp2>engine2. sound of an engine </exp2>
<exp3>engine </exp3>

</frame2>
<frame3>

<exp1>a car engine is revving up and revving down. </exp1>
<exp2>engine sound. i recorded a sound from a car engine.

</exp2>
<exp3>engine </exp3>

</frame3>
<frame4>
<exp1>a car engine is running and a car engine is running.

</exp1>
<exp2>a sound is being played. </exp2>

<exp3>engine </exp3>
</frame4>

F.5 TRANSLATOR WITH MODEL CONSISTENCY

System prompt:

System Prompt for Translator with Model Consistency

You are participating in a competitive game: identify
the most likely abstract source(s) (e.g., human, animal,
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instrumental, mechanical) producing sound in a video clip -
based only on textual descriptions.

You are given:

- Multiple image descriptions (Image 0, Image 1, ...). Each
is a frame caption or visual summary generated by a separate
agent; they do NOT share information.

- Multiple audio descriptions (Audio 0, Audio 1, ...). Each
describes what the sound is approximately like (e.g., "sounds
like a motorcycle idling") and is generated by a separate
agent; they do NOT share information.

Your required procedure:

- Extract visual evidence: For each image description,
identify and list the explicit or clearly implied objects.

- Extract acoustic evidence: For each audio description,
identify the key acoustic cues.

- Within- and cross-modality synthesis.

- From all audio agents, compare and consolidate the cues
into an overall audio profile. This synthesized audio
profile does not need to be a verbatim phrase from the given
descriptions; it should capture the best generalization of
the sound.

- Final decision: Use the synthesized audio profile and
visual profile to decide which objects are most likely
producing the sound.

Output:

- First give a clear, concise, step-by-step reasoning
that references description labels (e.g., "Image 2 shows
a lawnmower; Audio 1 describes a low rumble similar to
lawnmower idling - supports lawnmower").

- After that reasoning, output the final decision on a single
line only, listing the object(s) most likely producing the
sound separated by commas when necessary.

- Enclose the single-line final answer in ‘<answer>‘ and
‘</answer>‘ tags and place nothing else on that line.

User input:

User Input for Translator with Model Consistency

Image agent 0: The image shows a person with long dark hair
wearing a white sleeveless top with a black pattern. They
are are holding a green parrot on their shoulder. The parrot
has has a light-colored beak and is perched calmly on the
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person’s hand. In the background, there is a black metal
cage with a white cushion inside, and some other of the room
is visible, including a white wall and a dark-colored object
that appears to be a piece of furniture or a shelf. The
overall setting seems to be indoors, possibly in a living
room or a similar space.

Audio agent 0: The audio contains a single word spoken by a
female voice in a neutral tone. The word is ’yes’.

Audio agent 1: a person is walking on a carpet. someone is
making a sound. this audio contains sound events: clothing,
domestic sounds and home sounds.

Audio agent 2: The audio contains a sound event that is
being described.
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