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Abstract

Complex oxide thin films exhibit unique and useful properties for electronics,
energy, communications, and more. Imaging the atomic-scale structure of these
films is crucial for deducing and ultimately engineering their functional behavior,
but standard x-ray diffraction techniques suffer from the phase retrieval problem,
which is exacerbated for nanometer sized films. Current approaches analyze
crystal truncation rod (CTR) diffraction using constrained iterative algorithms
to output a 3D electron density to obtain the structure. Unfortunately, state-of-
the-art methodologies are typically heavily dependent on initial guesses, require
high data density, and fail for thick films. Here, we propose and demonstrate a
new machine learning-based phase retrieval technique for thin films – Machine
Learning for Material Bragg-rod Analysis (MAMBA). MAMBA is based on a
U-Net architecture that takes in the measured CTR intensity as input, and outputs
the complex scattered electric field, from which the electron density ρ(r⃗) can be
obtained by Fourier inversion. We summarize the promising results from MAMBA
using simulated data, showing its potential for providing high-precision atomic
structures of thin films beyond limitations of standard phase-retrieval techniques.

1 Introduction

When miniaturized to the atomic scale, the properties of materials can look vastly different than they
do in their bulk form. This is especially true in complex transition metal oxides, which are known to
have a strong interplay between their electronic and structural degrees of freedom in the system [1]. a
notable example is the LaAlO3/SrTiO3(LAO/STO) interface, which has been found to be metallic
and even superconducting, despite both materials being wide-gap insulators on their own [2]. These
emergent properties are tied to distortions in the structure and charge makeup at the interface due to
the strain and interfacial coupling at the interface [3]. Engineering the novel properties of complex
oxide thin films could enable a new wave of technologies for energy storage, information processing
and more. Key to this task is the ability to visualize the atomic-scale structure at the interface.

X-ray diffraction provides highly sensitive non-destructive, atomic-scale structural determination in
crystals. While the Bragg peaks of the x-ray diffraction data are bulk sensitive, information about the
interface is encoded in the scattering the peaks along the surface normal, known as crystal truncation
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Figure 1: U-Net pipeline. The rods are flattened into one 1-dimensional array before being passed in.
The U-Net uses Conv1D layers to learn features, the MaxPool1D and UpSample1D to downsample
and upsample respectively. Skip connections are also employed to retain information from earlier in
the network. Between layers the ReLU activation function is used. Two U-Nets are trained to predict
the real and imaginary parts of the field, then an inverse Fourier transform is applied to retrieve the
structure.

rods (CTRs) [4]. CTR scattering is typically orders of magnitude weaker than the Bragg diffraction,
making measurement and analysis challenging. The development of high-brightness sychrotron and
x-ray free electron laser sources has enabled the measurement of such subtle features. However,
analysis of CTR diffraction still suffers from the well known phase retrieval problem in x-ray imaging,
since experimental systems measure only the intensity and not the full scattered electric field.

One of the the state of the art phase retrieval algorithms for CTR analysis is called Coherent Rod
Bragg Analysis (COBRA)[5]. However, COBRA relies on making an accurate starting guess to
converge, and requires densely spaced data to converge. Thus as the film grows in size this becomes
an increasingly nontrivial optimization, and it is observed that COBRA greatly struggles for films
much larger than 10-12 layers.

With the recent development of robust machine learning algorithms and scalability, there have
been many efforts to employ machine learning for various phase retrieval and x-ray related tasks[6–
15]. However these efforts have been towards larger scale imaging of bulk crystals or x-rays from
wavefront sensors, not individual atomic sensitivity of films. Furthermore, many of these models
rely on physical constraints, whereas there is little prior information to deduce reasonable film
perturbations.

In this paper, we use deep learning techniques to perform the phase retrieval process for an arbitrary
epitaxial thin film. If the film is grown in the z-direction, this entails ultimately predicting the z-axis
positions of all atoms (here we assume x-y symmetry). Occasionally, atoms from the interface and the
bulk can swap, a phenomenon called charge mixing – thus the entire problem is to accurately predict
atomic z-positions and charge mixing in a thin film, for a given set of CTR data. Here we demonstrate
that a U-Net is able to accurately predict the missing field for a simulated 12 layer LaAlO3/SrTiO3

interface, where then an inverse Fourier transform retrieves the film structure.

2 Results and Discussion

LAO/STO Simulation The idea is to train a machine learning model on many slightly-varied films
that produce different CTRs, thus teaching it to predict the structure ρ(r) given the corresponding
intensity measurement I(q⃗). Simulations are able to match experimentally measured CTRs with great
accuracy, which gives the motivation for training on simulated data. We choose the LaAlO3/SrTiO3

interface, primarily because of the existing literature[2]. Here we have a bulk of SrTiO3 with 4 layers
of LaAlO3 resting atop. We assume that the atomic z-positions of the top 8 layers of the SrTiO3 can
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vary, and that the entire 4 layers of the LaAlO3 film can vary. Since the film is epitaxial we assume
an x − y symmetry, so only the z-positions are varied. Here the positions of the A-site atoms are
defined by the z-direction lattice parameter c. We vary the cn spacing ±0.1 Å, and the r⃗ positions of
the smaller atoms ±5%.

A phenomenon known as charge mixing can occur, where atoms residing in the same site near the
interface can mix, creating mixed layers of Sr and La. Here we implement it for the 4 layers closest
to the interface. This can be represented by mixing the form factors of the A-site atoms:

fmix,n(q⃗) = pnfSr(q⃗) + (1− pn)fLa(q⃗),

p1 + p2 + p3 + p4 = 2,with pn < 1
(1)

where layer n ranges from 1 to 4, starting with the first mixed layer, and pn represents the percent of
Sr in the nth layer. fmix(q⃗) then represents a pseudo-atom that is part Sr and part La. pn is randomly
varied according to the above constraint, which creates materials that have arbitrary amounts of
charge mixing. Taking into account the variable atomic positions and charge mixing, the following
equation accurately simulates the CTR scattering intensity of our material:

δ(qxa−2πh)δ(qyb−2πk)|FB(q⃗)

−1∑
−Nc

ein3qcc+

NB∑
0

FBn(q⃗)e
in3qccn+

NB+NS∑
NB

FSn(q⃗)e
in3qccn |2 (2)

Where FB,n(q⃗) and FS,n(q⃗) are the n-dependant structure factors for each layer, calculated by
replacing fmix(q⃗) for the A-site atom the charge-mixed layers.

Figure 2: a) displays the predicted versus Ground Truth for
ρ(r⃗). We display the slices at qy = 0 and qy = a

2 relative to
the unit cell, which captures all atoms in the perovskite struc-
ture. Note the similarity in the ground truth and prediction.
b) displays the extracted atomic positions for the predicted
structure, compared to the ground truth structure. The error
bars are the predicted error with respect to the degree of
variation in the training dataset, and represent the average
error in the prediction of that respective metric.

U-Net Architecture and Training
U-Nets with encoder-decoder archi-
tectures have been shown to per-
form well on image-to-image map-
ping tasks, especially when the im-
ages have the same spatial coordi-
nates [16]. Here we deploy a U-Net
that predicts the E-field component
that corresponds to the film scattering,
U(q⃗). Thus if we predict U(q⃗) with
the U-Net, an inverse Fourier trans-
form returns the structure of the film:
F−1(U(q⃗)) = pfilm(r⃗).

Figure 1 displays a diagram of the
pipeline and the exact architecture.
The CTRs are passed in as input, and
for the same grid in reciprocal space,
the corresponding field U(q⃗) is pre-
dicted. We flatten the input data to
1D, since the interesting information
in CTRs is predominantly in the qz
direction. The rods are passed into a
1D U-Net, which has MaxPool1D lay-
ers in the encoder and UpSample1D
layers in the decoder to reach back to the original space. Skip connections, which essentially transport
data from earlier parts of the network untouched, as employed, as is standard practice with the
U-Net. There are a total of five convolutional layers. Rather than using complex valued weights to
predict U(q⃗) directly, we simply use the same architecture to train two U-Nets which predict the pair
(Ureal(q⃗), Uimag(q⃗)). Finally an inverse Fourier transform recovers the structure.

We choose the Mean Absolute Error (MAE) Loss ( 1
n

n∑
i=1

|Ui(q⃗)− Ûi(q⃗)|) to train the model. In this

case, this corresponds to the average error in the predicted versus ground truth field.

Electron Density Predictions We analyze the results of taking the inverse Fourier transform of the
predicted field, returning the electron density of the film. Zero padding and Gaussian windowing
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Figure 3: Quantitative analysis of MAMBA performance. a) and b) display the Predicted versus
ground truth plots for two different atoms, with a sample size of N = 50 test structures. c) displays
the R2 correlation coefficient for all atoms in the structure. a) and b) are pointed out here. d) displays
the average R2 coefficient for each type of atom in the ABO3 structure as the overall film thickness
is varied

were used in order to produce an image of p(r⃗) with the desired resolution. Figure 2a displays
the ground truth and prediction for a randomly selected CTR. Note that the two look quite similar,
demonstrating that MAMBA passes the visual test of being able to output a prediction that corresponds
to a reasonable structure. Figure 2b displays the extracted atomic positions for the structures. We
observe that the model is able to predict the atomic positions quite well, as well as the charge mixing
parameter p.

However, since all the generated structures are a result of small atomic perturbations from their
original positions, all structures are bound to look quite similar. Figure 3 shows a complete quantitative
analysis. The most important metric of analysis is the R2 value of the predicted v. ground truth plot
for each atom, because this explores how sensitive the model is in detecting the small perturbations.
We observe that overall all atoms are predicted quite well, with the exact R2 values displayed in
figure 3c. Note that the predictions for the c spacing are better than those for smaller atoms, likely
because they have a larger impact on the CTR scattering. The predictions for the charge mixing
parameter p are notably better than those of the smaller atoms as well. We also observe a slight
downward trend in performance close to the top of the film.

Figure 4: Performance on films with variable film thickness and rough
top layer. a) shows a schematic of the simulated LAO/STO system.
b) displays the overall model performance by R2 c) shows the rough-
ness predictions. The thickness and roughness are combined into one
parameter describing the occupancy of the final layers.

We also analyze the perfor-
mance if we train models
for various film thicknesses.
We observe near perfect per-
formance for small 4 layer
films, to acceptable perfor-
mance on 16 layer films,
and poorer performance on
24 layer films, especially on
smaller atoms. Note that
even in the 24 layer film the
c spacing and p are still pre-
dicted with reasonable accu-
racy, and still may be of use
on their own. Often in ex-

periments the precise film thickness is unknown, and the top layer can also have a fractional occupancy,
indicating a rough surface. Figure 4 displays the results of varying the overall film thickness from
11 to 13 layers, while also varying the roughness of the top layer with a random value ∈ [0.3, 1].
The roughness is simply represented by multiplying the structure factor of the final layer by the
generated fractional value. We observe that the final layer occupancy parameter is predicted quite
well. However, the performance for the small atoms is significantly worse, as shown in figure 4b. The
c spacing and charge mixing are still predicted with good accuracy. One important note is that the
R2 metric harshly penalizes outliers, which sometimes occurred in the 24 layer film and films with
varied roughness. Thus to get a fairer metric of performance if the extracted atomic value is exceeds
the region of variation by 10%, the default value is used in the calculation instead.
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3 Conclusion

Phase retrieval for epitaxial thin films is necessary if one wants to unearth the exotic properties of
many of the exciting quantum materials being studied. We have trained a U-Net to predict the real
space electron distribution ρ(r⃗), given the CTR scattering I(q⃗). Performed on simulated data for
the LaAlO3/SrTiO3 epitaxial interface, the model proves to perform well. We highlight that we
analyze only simulated data, and while CTRs can be simulated with great accuracy, experimental data
always brings more challenges. The future of this project will be in applying this to other systems
and ultimately predict the structure of a real epitaxial film.
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4 Supplementary Materials

4.1 Preprocessing

The rods passed into the network are the 16 rods corresponding the region from 00 to 33. qz ranges
from 0 to 6 with ∆qz = 0.025, so our region of reciprocal space is qx, qy ∈ [0, 3], qz ∈ [0, 6]. This
makes each rod of dimension 240, for a total of 3840 points being passed into the network as one
flattened array. For the input, due to the many orders of magnitude difference between the Bragg
peaks and the in-between fringes, we take the log of the data, where Xtrain = log(I(q⃗)).

The data is then normalized to mean 0 and standard deviation 1. For the output data, since Ureal

and Uimag can have negative values, we apply a transformation where each point is mapped to its
z-score relative to all other CTRs simulated in the dataset D. So for a certain point in reciprocal space
at (qx, qy, qz), for Ureal, the transformation looks like: yitrain,real = (U i

real − µi)/σi where the
superscripts and subscripts i correspond to an arbitrary (qx, qy, qz) point, and µi and σi are calculated
using the training dataset D. The process is identical for the imaginary component.

4.2 Training

To train the model, we use a batch size of 32, a learning rate α = 0.001, and momentum decay factors
β1 = 0.9, β2 = 0.999. To optimize the loss function, we use the Adam optimizer[17]. 105 CTRs are
generated for training on, for which 10% is used for validation. The model is trained for 30 epochs,
which is when the validation curve begins to plateau, ensuring the model will not over fit. Each of the
two models took ∼ 11 hours to train.

Figure 5: MAE Loss over epochs. The model is trained for 30 epochs, and the best validation error is
taken as the final model.

4.3 Field Predictions

For the same electron density map in figure 2, we also plot the corresponding U(q⃗) prediction for the
00 rod. Note that the predicted field and ground truth field line up quite well, which leads to a good
prediction post inverse Fourier transform. We also observe that the random field does not line up with
the ground truth field, demonstrating the power of the model to accurately predict the field U(q⃗).
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Figure 6: The plots on the left compare the prediction to the ground truth field, U(q⃗). This field
corresponds to the electron density plot in figure 2. For context, on the right we also display the ground
truth field against a randomly sampled different ground truth field from the dataset, to emphasize the
quality of the prediction. The 00 rod prediction is displayed.
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