
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT IS YOUR AGENT’S GPA?
A FRAMEWORK FOR EVALUATING AGENT
GOAL-PLAN-ACTION ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Agent GPA (Goal-Plan-Action) framework: an evaluation
paradigm based on an agent’s operational loop of setting goals, devising plans,
and executing actions. The framework includes five evaluation metrics: Goal Ful-
fillment, Logical Consistency, Execution Efficiency, Plan Quality, and Plan Ad-
herence. Logical Consistency checks that an agent’s actions are consistent with
its prior actions. Execution Efficiency checks whether the agent executes in the
most efficient way to achieve its goal. Plan Quality checks whether an agent’s
plans are aligned with its goals; Plan Adherence checks if an agent’s actions are
aligned with its plan; and Goal Fulfillment checks that agent’s final outcomes
match the stated goals. Our experimental results on two benchmark datasets – the
public GAIA dataset and an internal dataset for a production-grade data agent –
show that this framework (a) provides a systematic way to cover a broad range
of agent failures, including all agent errors on the GAIA benchmark dataset; (b)
exhibits strong agreement between human and LLM judges, ranging from 80% to
over 95%; and (c) localizes errors with 86% agreement with human annotations
to enable targeted improvement of agent performance.

1 INTRODUCTION

Progressing beyond the capabilities of standalone LLMs, agentic AI systems can autonomously
reflect, plan multiple steps, call various tools, and leverage collaboration between agents to achieve
complex goals (Yang). As platforms for building agentic AI systems have advanced rapidly, the
deployment of these systems in real use cases requires robust evaluation methods. Early “step-
level” evaluations often focus only on the last step, overlooking end-to-end performance (Yehudai
et al. (2025)). Other approaches rely on ground-truth sources annotated by human experts, that,
while valuable for evaluation, require considerable effort to curate (Chen et al. (2021); Jimenez
et al. (2024); Wei et al. (2025); Mohammadi et al. (2025)). In addition, many existing benchmarks
and arenas emphasize final outcome, providing little actionable insight into root causes of failure or
opportunities for targeted improvement (Chiang et al. (2024); Yehudai et al. (2025)).

We propose meaningful evaluation of agent systems, which we refer to as agents for simplicity,
based on their operational dynamics. Just as agents set goals, devise plans, and execute actions,
constructive evaluation should analyze failures within and between each component. Therefore,
we introduce the Agent GPA or Goal-Plan-Action evaluation framework. Our holistic framework
introduces five metrics: Goal Fulfillment, Logical Consistency, Execution Efficiency, Plan Quality,
and Plan Adherence (see Figure 1). These GPA alignment metrics can be computed by human
evaluators, for test runs or sample traces of operational agents, or automated reference-free LLM-
as-a-Judge evaluations. Because automated evaluation provides better scalability, our experiments
examine the effectiveness of automated evaluation in comparison with human evaluators. Because
our goal is to support agent debugging, maintenance, and improvement, we focus on capturing
“internal” errors that the agent can control (e.g. tool calling or hallucinations) rather than out-of-
scope errors (e.g. API failures because of hitting rate limits).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We present experimental results on two benchmark datasets – the public TRAIL/GAIA dataset and
an internal dataset for a production-grade data agent – to validate the power of the Agent GPA
framework. Specifically, we show that:

1. The Agent GPA framework provides a systematic way to detect, organize, and understand
a broad range of agent failures. Specifically, all 570 errors across both dev and test splits of
the TRAIL/GAIA dataset can be categorized by at least one of our LLM judges. Similarly,
these judges capture agent internal errors on the dataset generated by a production-grade
data agent.

2. LLM Judges for measuring Agent GPA show strong agreement with human judgments.
Specifically, on the test set split of the TRAIL/GAIA dataset, the LLM Judges identifies
95% (267/281) errors labeled by humans, with a higher percentage of coverage on medium
and high impact errors. As a baseline point of comparison, the TRAIL LLM Judge catches
55% (154/281) errors on the same test set. On our internal dataset, the average alignment
between the Agent GPA LLM Judges and human judges was 82% when grading on a 3-
point scale (denoting the agent made a serious error, was partially correct, or fully correct).

3. Beyond error identification, Agent GPA LLM judges localize most errors identified by hu-
man annotations, thus enabling targeted debugging. Specifically on the test set split of the
TRAIL/GAIA dataset, the LLM Judges localized 86% (241/281) of the errors in agree-
ment with human annotations, again with a higher percentage of localization coverage on
medium and high impact errors. In comparison, the baseline TRAIL LLM Judge localized
49% (138/281) of errors on the same test set.

4. LLM Judges for measuring Agent GPA exhibit strong consistency across repeated eval-
uations. On the TRAIL/GAIA dataset, independent runs of LLM judges on same traces
produced identical scores with substantial inter-rater agreement, with an average Krippen-
dorff’s α 0.77. This stability strengthens our judges’ reliability as automated evaluators
given general evaluation prompts, reducing the need for redundant human review.

2 RELATED WORK

Building LLM agents requires establishing goals, formulating plans, and executing actions. How-
ever, existing evaluation methods tend to focus on these elements in isolation and often rely heavily
on ground-truth references, limiting their scalability and usefulness for open-ended tasks (Moham-
madi et al. (2025); Chang et al. (2024)).

Goal Progression and Fulfillment: Before acting, agents must interpret and commit to their ob-
jectives. Throughout its trajectory, the agent must continuously work towards achieving each goal.
Yet, goal drift remains a failure mode: agents may deviate from their original objectives over long
interactions when their context windows becomes saturated with new information. Arike et al.
(2025)’s stock trading agent simulation demonstrated that all evaluated agents exhibited some goal
drift, particularly when faced with competing objectives or when switching between different goals.
To address this, current industrial evaluations such as NVIDIA’s check factual correctness by com-
paring agent outputs against reference answers (NVIDIA). However, this constrains applicability, as
labeled final answers are often unavailable, making it necessary to evaluate goal fulfillment in the
absence of ground truth correctness.

Planning via Reasoning Traces: Even state-of-the-art LLM agents may not fully leverage their ca-
pabilities when pursuing assigned goals, revealing gaps between potential and realized performance
(Everitt et al. (2025)). High-quality planning can offer a potential solution here. Whereas many
early agents operated without explicit plans and simply executed the next greedy step, recent work
shows that separating planning from execution can yield significant gains. Plan-and-Act (Erdogan
et al. (2025)) achieves state-of-the-art performance on a web navigation benchmark by translating
high-level plan steps to lower-level, environment-specific actions. Similarly, AdaPlanner (Sun et al.
(2023)) demonstrates the value of adaptive plan refinement using environmental feedback. Neverthe-
less, planning evaluations primarily rely on validation with a simulation verifier, human annotation,
or ground-truth (Wei et al. (2025). For example, Plancraft (Dagan et al. (2024)) quantitatively eval-
uates a Minecraft agent’s proposed plan against a gold standard planner by measuring the difference
between the number of actions in an agent’s successful plan and the optimal number of actions. As

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

more systems adopt explicit planning, developing reference-free evaluations for plan quality and
plan adherence will be critical (Wei et al. (2025)).

Execution via Action Traces: In execution, performance depends not only on outcomes but also on
the correctness and safety of the full action trace. AgentBench (Liu et al. (2024)) illustrates that final
states alone are insufficient to determine success, since a superficially correct result can mask unsafe
or invalid actions. To address this, current methods such as Vertex AI and LangChain’s AgentEvals
check an agent’s trace against a reference trajectory with the expected sequence of tool calls or steps
(AI; LangChain). However, AgentRewardBench (Lù et al. (2025)) demonstrates that rules-based
evaluation of agents is too rigid and often underestimates success by rejecting valid trajectories that
differ from golden trajectories. Beyond correctness, execution traces can also be used for debugging.
The TRAIL benchmark (Deshpande et al. (2025)) provides annotated traces from datasets such as
GAIA (Mialon et al. (2024)) and SWE-bench (Jimenez et al. (2024)), tasking LLMs on finding
errors across categories such as goal deviation and hallucination. However, their failure taxonomy
can lead to ambiguous or overlapping error classifications, obscuring the root cause of a failure and
limiting the utility for actionable feedback. Emerging frameworks that record and replay traces for
iterative refinement point toward a path for more reliable and debuggable agents (Feng et al. (2025)).
Prior work has also observed the need to measure cost (or efficiency) in addition to accuracy while
evaluating agents (Kapoor et al. (2025)).

LLM Judges: LLM judges have been explored as agent evaluators. Reference-free trajectory eval-
uations often rely on a single judge with the same prompt to evaluate traces generated by different
agents (Lee & Hockenmaier (2025); LangChain). AgentRewardBench (Lù et al. (2025)) notes that
while rules-based methods underestimate success, LLM judge evaluations often overestimate suc-
cess and miss important details when asked to process long, complex traces. Similarly, TRAIL
reports that even the strongest LLMs achieve only 11% accuracy on their task due to context-length
limits and reasoning difficulty, illustrating the fragility of asking a single LLM judge to simultane-
ously identify, localize, and classify errors (Deshpande et al. (2025)). These findings suggest that
decomposing evaluation into specialized judges with custom instructions may provide more reliable
and interpretable assessments. For existing industrial offerings (Arize) that evaluate components
such as steps, routers, and paths, it is less clear how their reported results connect to standardized
benchmarks, making their alignment with broader measures of agent operational performance harder
to assess. Comparative studies are needed to establish their validity and generalizability.

3 GOAL-PLAN-ACTION (GPA) FRAMEWORK

We devise a successful Goal-Plan-Action (GPA) framework for systematically evaluating agents.
This framework reflects the operational life cycle of agents that are given a defined goal, create a
plan, and execute actions to achieve that goal.

Evaluation Components. The GPA framework evaluates agents along three core dimensions: Goal,
Plan, and Action. The relationship between these three components can be visualized as overlapping
circles in Figure 1.

Goal: Are each of the user’s objectives ultimately met?

Plan: Do the plan and any replans provide effective, high-level instructions to achieve each goal?

Action: Does the agent’s actions follow its plan, invoke tools properly, and continuously progress
towards the goal?

These core GPA components give rise to different evaluation metrics embodied by our LLM judges.

LLM Judges. Each evaluation criterion is assessed by a dedicated LLM judge that monitors that
aspect of the agent’s behavior. Each LLM judge prompt was iteratively refined to improve accuracy,
coverage and reliability, taking special care to avoid overfitting.

Plan Quality (PQ): This judge extracts the plan and from the trace and assesses its optimality in
achieving the given goal, ensuring the agent is equipped with the ideal roadmap. An optimal plan
decomposes the goal into the minimal set of actionable subtasks, selects the most appropriate tool
from all available tools for each step, and balances the level of detail. If replanning occurs, this
judge also evaluates whether the new plan sufficiently addresses the trigger for change.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: GPA Evaluation LLM Judges

Plan Adherence (PA): This judge evaluates whether the agent’s action follows its stated plan.
Independent of plan quality, plan adherence checks the agent’s execution trace strictly corresponds to
each planned (or replanned) step. Assuming a high-quality plan, full plan adherence would indicate
the optimal steering of the agent towards the final answer.

Goal Fulfillment (GF): This judge evaluates whether the agent’s completed action ultimately sat-
isfies the user’s goal.

Logical Consistency (LC): This judge sits at the intersection of goal, plan, and action. Logi-
cal Consistency verifies that each step in the agent’s trajectory is grounded in prior context and
reasoning. Logical consistency also checks for adherence to each agent’s system instructions, ac-
knowledgment and recovery from errors, and completion of all self-generated to-do tasks.

Execution Efficiency (EE): This judge assesses the global optimality of the agent’s actions towards
the final state, regardless of any specific plan. It analyzes the entire execution trace for redundancies,
superfluous tool calls, or unnecessary resource usage. This metric is particularly useful for evaluat-
ing agents that do not generate an explicit plan, instead focusing on the directness of the path from
goal to action.

Tool Selection (TS): This judge complements Plan Quality and enriches the plan evaluation by
focusing on whether the most appropriate tool was selected for each subtask. Even if the overall
plan structure seems sound, Tool Selection specifically focuses on the alignment between each task
requirement and each tool capability described to the planner. This includes honoring explicit system
instructions on tool use, avoiding irrelevant or less capable tools, and knowing when no tool is
needed for a step.

Tool Calling (TC): This judge complements Plan Adherence and enhances the action evaluation
by examining how well each individual tool call was made. Even if the current tool-calling step
follows the plan, Tool Calling considers whether generated tool parameters are syntactically and
semantically valid, whether tool preconditions are met, and whether outputs are faithfully interpreted
in order to isolate issues that arise when the agent attempts to operationalize its plan via external
systems.

Note: Our tool-related evaluations focus only on agent-controlled behavior, manifested as tool se-
lection and tool calling. In production deployments, teams will often develop enterprise-specific
tool quality evaluations, which we consider outside of the agent’s control. Two examples of such
measures are search relevance of retrieval models and throughput of a batch processing API tool.

4 EXPERIMENTAL EVALUATION

To validate these LLM judges, we benchmarked them across two different datasets: TRAIL/GAIA
and an internal dataset of traces generated by a production-grade data agent, ANON-Data-Agent.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 TRAIL/GAIA

4.1.1 DATASET

The TRAIL dataset (Deshpande et al. (2025)) provides 148 expert-annotated agent traces in the
structured OpenTelemetry format, sourced from two distinct benchmarks: GAIA (Mialon et al.
(2024)) and SWE-bench (Jimenez et al. (2024)).

The GAIA benchmark is designed to test agents on challenging, real-world questions that demand
robust reasoning, multi-modality, web browsing, and general tool proficiency. In contrast, SWE-
bench focuses on software engineering tasks, where an agent is given a GitHub code base and an
issue and must generate a code patch to resolve it. While both benchmarks are valuable, successful
performance on SWE-bench can be dependent on factors outside the agent’s direct control, such as
external tooling and system execution errors. Because our research focuses on internal agent errors,
we chose to exclusively use the 117 traces from the TRAIL/GAIA subset.

Each TRAIL/GAIA trace was generated by using Hugging Face’s Open Deep-Research Agent
(Roucher et al. (2025)), which consists of a high-level Manager Agent capable of fact-finding, plan-
ning, and delegating tasks to a Search Agent. The Search Agent is also capable of fact-finding,
planning, and has access to various tools, including web search, visiting and navigating web pages,
searching for strings, inspecting files, and visiting archived URLs.

We split the TRAIL/GAIA traces into a 50/50 dev/test split with a fixed seed. Of the 58 traces in the
dev set, there are a total of 289 TRAIL-annotated errors with 63 low-impact, 85 medium-impact,
and 141 high-impact errors. Of the 59 traces in the test set, there are a total of 281 TRAIL-annotated
errors with 57 low-impact, 95 medium-impact, and 129 high-impact errors.

4.1.2 METHODOLOGY

Data Pre-Processing: As noted in the original TRAIL paper (Deshpande et al. (2025)), many of
the raw OpenTelemetry traces exceeded the input context window length of the LLM judges. To
overcome this limitation, we preprocess each of the traces by traversing each span in the trace and
extracting each of the system instructions and new messages associated with each Manager agent or
Search agent, while stripping out duplicated messages in the conversation history.

Mapping Errors to GPA Dimensions: Two human annotators independently reviewed all TRAIL/-
GAIA errors in both the dev and test sets and assigned each error to one or more GPA dimensions.
A third annotator cross-checked and verified the mappings.

LLM Judge Details: Unless otherwise specified, we use Claude-4-Sonnet (Anthropic) with high
reasoning effort for our experiments. The full evaluation prompts can be found in the Appendix.
Each judge is provided with custom instructions in the system prompt: (i) a high-level description of
the agent architecture to better understand how the traces were generated, (ii) 1-2 few-shot examples
drawn from the development dataset as labeled by human annotators, and (iii) a structured output
template to include both a numerical score and textual reasons for the scoring.

LLM Judge Error Identification & Localization: After initializing and running each LLM judge
on each of the processed traces, three human annotators manually verify whether the LLM judge
successfully (i) identified the error and (ii) localized the error by explicitly citing the appropriate
span ID in the trace. To benchmark the performance of our GPA LLM judges, we used the LLM
judge provided by TRAIL as our baseline, both with and without the custom instruction describing
the Open Deep Research agent architecture (Tables 2, 5).

LLM Judge Alignment with Human Judgment: To measure agreement with human judgment,
a human annotator generated scores per trace along each GPA dimension, with another human an-
notator serving as a verifier. Our LLM judges generate scores on a 4-point scale from 0 to 3. We
measure accuracy and off-by-one accuracy (when a judge’s score differed by only a single point
from human scoring on the original 4-point scale) of the GPA LLM Judges. Observing that the
off-by-one accuracy lift stemmed from the LLM Judges making errors in choosing between the two
middle scores, we further bucket scores into a 3-point scale: 0 (min score of 0), 1 (middle score of
1 or 2), and 2 (max score of 3) and report the accuracy based on this bucketed scoring system. We
also measure correlation with scores from human annotators (Table 4).

5

https://huggingface.co/datasets/PatronusAI/TRAIL
https://huggingface.co/datasets/gaia-benchmark/GAIA
https://huggingface.co/datasets/SWE-bench/SWE-bench
https://huggingface.co/blog/open-deep-research


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Consistency of LLM Judges: For each trace and metric, we collect scores in [0, 1] across 5 indepen-
dent runs on GAIA test split of 59 traces. We treat each run as a rater and compute (i) Krippendorff’s
α (interval) per metric (including traces with ≥ 2 valid ratings), as shown in Figure 5, and (ii) per-
trace score variability summarized by the standard deviation (std) across runs, averaged over traces
with 95% confidence intervals as shown in Figure 6 and Table 7. Together, α captures agreement on
the absolute scale and std captures the magnitude of run-to-run fluctuations.

4.1.3 RESULTS

Our empirical evaluation supports 3 key findings.

1. The Agent GPA framework provides a systematic way to cover a broad range of agent
failures. In particular, it captures all 570 agent internal errors on the dev (n = 289) and test
(n = 281) set splits of the TRAIL/GAIA dataset. Specifically, we observed the following
breakdown of errors mapping to each judge (Table 1). Note that individual errors may be
mapped to multiple judges.

Table 1: GPA Judge Error Mapping

Judge Dev Test
Low Med High All Low Med High All

LC 31 19 70 120 34 29 77 140
EE 36 49 55 140 23 62 34 119
PA 3 17 41 61 2 10 52 64
PQ 3 7 7 17 1 11 3 15
TS 17 28 48 93 9 22 73 104
TC 23 36 70 129 22 53 53 128

Analyzing the error distribution on the TRAIL/GAIA test set, we observe that errors related
to LC, TC, and EE were the most prevalent failure modes, mapping to 140, 128, and 119 of
the 281 total errors, respectively. In contrast, PQ was the least frequent error category, with
only 15 instances. This distribution is broadly consistent with the breakdown observed in
the dev set, suggesting that failures in core reasoning, tool use, and efficiency are the most
common challenges for current agents on these tasks.

2. LLM judges in the GPA framework show strong agreement with human evaluations,
particularly covering medium and high-impact errors extremely well. Table 2 com-
pares the two baseline judges’ error coverage against the full suite of GPA judges.

Table 2: Baseline Judge and All GPA Judge Error Coverage Comparison

Impact GPA Baseline
Dev Test Test (no control flow) Test (control flow)

Low 49/63 (77.78%) 46/57 (80.70%) 17/57 (29.82%) 13/57 (22.81%)
Med 82/85 (96.47%) 92/95 (96.84%) 42/95 (44.21%) 39/95 (41.05%)
High 139/141 (98.58%) 129/129 (100%) 92/129 (71.31%) 102/129 (79.07%)
All 270/289 (93.94%) 267/281 (95.02%) 151/281 (53.74%) 154/281 (54.80%)

While both baseline judges could only identify around 54% (151-154/281) of the TRAIL-
annotated errors, we find that the GPA judges captured 95% (267/281) of the TRAIL-
annotated errors on the test set. Interestingly, high-impact errors are easier for both GPA
and baseline judges to detect, while low and medium-impact errors are more difficult, likely
because they require more attention to detail and nuanced reasoning than the obvious, high-
impact failures (such as data fabrication).
To understand the trade-off between error detection and false alarms, we analyzed the over-
all classification performance of each judge (Table 3). This analysis indicates that TC is
the most robust judge, delivering the highest and most balanced F1-score on the test set
(> 0.92). TS operates as a high-recall specialist, capturing the most errors (underscored by

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: GPA Per-Judge Caught Error Performance, All Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6452 0.8333 0.7273 0.7874 0.7405 0.7632 0.8286 0.7945 0.8146 0.7865
EE 0.7866 0.9214 0.8487 0.8909 0.8408 0.7603 0.9328 0.8377 0.8923 0.8470
PA 0.5490 0.9180 0.6871 0.8092 0.8235 0.5135 0.8906 0.6514 0.7766 0.7829
PQ 0.6818 0.8824 0.7692 0.8333 0.9689 0.3704 0.6667 0.4762 0.5747 0.9217
TS 0.7360 0.9892 0.8440 0.9256 0.8824 0.6474 0.9712 0.7769 0.8829 0.7936
TC 0.8581 0.9845 0.9170 0.9563 0.9204 0.8794 0.9688 0.9219 0.9495 0.9253

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

recall > 0.97 and its consistently high F2-score) but at the cost of reduced precision. This
profile makes the TS judge ideal for critical applications where the cost of a missed error
(a false negative) is much higher than the cost of reviewing a false alarm. Conversely, the
low F1-scores for PA and PQ are caused by poor precision, indicating a high false positive
rate. The small sample size for PA and PQ errors in the GAIA dataset makes it difficult to
evaluate these LLM Judges reliably. Finally, Table 4 shows the accuracy and correlation of
the GPA LLM judges scoring with human scoring.

Table 4: GPA Judge Alignment with Human Judgment

Judge Dev Test
Acc-OB1 Acc-3pt Correl Acc-OB1 Acc-3pt Correl

LC 0.983 0.793 0.626 0.983 0.881 0.764
EE 0.862 0.483 0.513 0.949 0.356 0.623
PA 1.000 0.862 0.869 0.983 0.864 0.917
PQ 0.879 0.690 0.565 0.966 0.695 0.672
TS 0.895 0.719 0.663 0.962 0.868 0.895
TC 0.889 0.667 0.589 0.941 0.725 0.706

(Acc-OB1 = Off-by-one Accuracy, Acc-3pt = Bucketed Accuracy, Correl = Correlation)

Overall, our judges exhibit strong agreement with human annotators across the board.
While the EE judge demonstrates broad error coverage, we hypothesize that this judge
showed weaker alignment with human scoring because it occasionally flags errors not
strictly related to efficiency, resulting in lower generated scores compared to human scores.

3. Beyond detecting errors, our GPA judges can localize most TRAIL-annotated errors, en-
abling more targeted debugging by pinpointing the span ID of the errors it successfully
detects. Table 5 compares error localization performance between the baseline LLM judge
and our GPA judges.

Table 5: Baseline Judge and All GPA Judge Error Localization Comparison

Impact GPA Baseline
Dev Test Test (no control flow) Test (control flow)

Low 46/63 (73.02%) 39/57 (68.42%) 7/57 (12.28%) 10/57 (17.54%)
Med 69/85 (81.18%) 83/95 (87.37%) 18/95 (18.95%) 36/95 (37.89%)
High 129/141 (91.49%) 118/129 (91.47%) 62/129 (48.06%) 92/129 (71.31%)
All 243/289 (84.08%) 241/281 (85.77%) 87/281 (30.96%) 138/281 (49.11%)

On the TRAIL/GAIA test split, GPA judges collectively localize 86% (241/281) of the
annotated errors, again with stronger performance on medium and high-impact errors. By
contrast, the baseline TRAIL LLM judge with agent control flow localizes 49% (138/281)
of the annotated errors, while the baseline TRAIL LLM judge without agent control flow

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

localizes only 31% (87/281) of annotated errors. These results demonstrate that providing a
custom description of agent architecture can improve LLM judge ability to localize errors.
Performance metrics for localization (Table 6) show EE is the most balanced judge with the
highest F1-score (0.79). More importantly, these metrics reveal a novel framework for se-
lecting LLM judges based on the intended application. PA acts as a “liberal” judge; its high
recall (0.86) but low precision is suited for interactive debugging where a human reviews all
potential flags. Conversely, TC is a “conservative” judge; its best-in-class precision (0.88)
but low recall makes its sparse feedback highly trustworthy for automated processes like
data filtering or reward shaping, where precision is paramount. Finally, PQ’s poor metrics
again confirm its unreliability.

Table 6: GPA Per-Judge Localized Error Performance, All Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6724 0.6500 0.6610 0.6544 0.7232 0.7481 0.7214 0.7345 0.7266 0.7402
EE 0.7519 0.7143 0.7326 0.7215 0.7474 0.7500 0.8319 0.7888 0.8141 0.8114
PA 0.6316 0.7869 0.7007 0.7500 0.8581 0.6180 0.8594 0.7190 0.7971 0.8470
PQ 0.6471 0.6471 0.6471 0.6471 0.9585 0.3478 0.5333 0.4211 0.4819 0.9217
TS 0.7500 0.4839 0.5882 0.5208 0.7820 0.7791 0.6442 0.7053 0.6673 0.8007
TC 0.8571 0.4651 0.6030 0.5119 0.7266 0.8814 0.4063 0.5561 0.4553 0.7046

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

4.1.4 CONSISTENCY OF LLM JUDGES

LLM judges are inherently stochastic: repeated evaluations with fixed prompts can yield different
scores and rationales. To assess stability under this stochasticity, we fixed judge prompts for six GPA
metrics—Logical Consistency, Execution Efficiency, Plan Adherence, Plan Quality, Tool Calling,
and Tool Selection—and repeatedly invoked the same model (Claude-4-Sonnet).

Overall, interrater agreement is strong: all metrics except Plan Quality achieve Krippendorff’s
α > 0.7, showing that our LLM judges produce consistent, reproducible scores across runs. Execu-
tion Efficiency and Tool Selection exhibit the highest stability (higher α, lower standard deviation,
tighter CIs), reflecting consistent scoring for concrete operational behaviors. Plan Quality and Log-
ical Consistency are somewhat noisier (lower α, higher variance, wider CIs), indicating greater
sensitivity to sampling variation and judge interpretation.

To further characterize this variation, we measured the Semantic Consistency Index (SCI)—the mean
pairwise cosine similarity of judge-provided rationales across runs. As shown in Figure 2, rationales
for Plan Quality and Logical Consistency are less semantically consistent across runs, aligning with
their modestly higher variance.

In summary, we observe high overall reliability across all metrics, with slightly more noise for
synthesis-heavy evaluations like Plan Quality and Logical Consistency. These results point to where
prompt refinements (e.g., clearer rubrics, exemplars, checklists) are most valuable for reducing drift
and further improving reproducibility.

Table 7: Reliability of Claude-4-Sonnet across runs. α computed treating runs as raters. For per-
trace variation, mean std and 95% CI are reported.

Metric ntraces α Avg std 95% CI
LC 46 0.732 0.079 0.032
EE 59 0.934 0.053 0.021
PA 59 0.827 0.082 0.035
PQ 59 0.628 0.171 0.041
TC 55 0.878 0.071 0.026
TS 58 0.907 0.059 0.028

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Execution Efficiency (b) Plan Quality (c) Logical Consistency

Figure 2: Semantic Consistency Index (SCI) across runs for three metrics. LLM judges show higher
semantic similarity in their scoring reasons for EE than PQ and LC.

4.2 INTERNAL ANON-DATA-AGENT

Dataset: ANON-Data-Agent is a production-grade data agent equipped with a text-to-SQL tool
and a composite retrieval search tool. We evaluated it on an internal dataset of 17 agent traces
generated from data science queries requiring complex reasoning and multi-step tool usage. Unlike
TRAIL/GAIA, which targets general-purpose agents, this dataset focuses specifically on failures in
data analysis workflow

Methodology: We used the out-of-the-box Logical Consistency (LC) and Execution Efficiency (EE)
LLM judges, with custom instructions focused on checking if generated SQL code matched user
intent. For evaluation, human annotators produced scores on each trace using both a 3-point scale
(error / partially correct / fully correct). As in TRAIL, we ran each judge 10 times and measured
inter-rater reliability using Krippendorff’s α.

Results: Table 8 show both LC and EE’s agreement with human judgment. Overall, the GPA LLM
judges achieved an average 82% agreement with humans on the 3-point scale. Consistency was also
high, with a Krippendorff’s α of 0.66 for LC and 0.81 for EE. Importantly, the judges identified
systematic error patterns that could be traced to root-cause flaws in the agent’s architecture. These
findings were independently validated, and the analysis enabled us to recommend several targeted
improvements which were incorporated into the agent design.

Table 8: LC and EE Alignment with Human Judgment for Internal ANON-Data-Agent

LC EE
Acc-3pt Correl NMAE Acc-3pt Correl NMAE

0.765 0.795 0.118 0.882 0.772 0.059

5 CONCLUSIONS & FUTURE WORK

In conclusion, the Goal–Plan–Act (GPA) framework serves as a structured approach for evaluating
LLM agents across goals, plans, and actions. By decomposing evaluation into metric dimensions,
GPA captures diverse failure modes that single-metric or outcome-based methods overlook. Our
experiments show that specialized judges provide more reliable and interpretable assessments than
monolithic evaluators, and that logical consistency serves as a strong proxy for success, reduc-
ing dependence on ground-truth references. Beyond measuring correctness, GPA offers actionable
feedback: by localizing errors to specific dimensions such as plan adherence or tool selection, it
enables systematic debugging and iterative improvement of agents. At the same time, our results
highlight open challenges, including the variability of LLM judgments and difficulty in focusing on
small details. We see GPA as a step toward more rigorous, scalable, and interpretable agent evalu-
ation. Future work should extend the framework to embodied agents, automate rubric generation,
and refine reference-free metrics for goal fulfillment and plan quality. By aligning evaluation more
closely with how agents set goals, plan, and act, GPA contributes to building agents that are both
more capable and more trustworthy.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We aim to support reproducibility by open-sourcing the Agent GPA evaluation framework, including
the full code for preprocessing traces and running our LLM judges. The evaluation prompts are
available in appendix B of this paper. In addition, we plan to release the re-annotated and augmented
TRAIL/GAIA dataset used in our experiments. Together, these resources will enable independent
replication and extension of our results.

REFERENCES

Vertex AI. Evaluate gen ai agents. URL https://cloud.google.com/vertex-ai/
generative-ai/docs/models/evaluation-agents.

Anthropic. Claude sonnet 4. URL https://www.anthropic.com/claude/sonnet.

Rauno Arike, Elizabeth Donoway, Henning Bartsch, and Marius Hobbhahn. Technical report: Eval-
uating goal drift in language model agents. CoRR, abs/2505.02709, 2025. doi: 10.48550/ARXIV.
2505.02709. URL https://doi.org/10.48550/arXiv.2505.02709.

Arize. Arize agent evaluation. URL https://arize.com/ai-agents/
agent-evaluation/.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol.,
15(3), March 2024. ISSN 2157-6904. doi: 10.1145/3641289. URL https://doi.org/10.
1145/3641289.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael I. Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=3MW8GKNyzI.

Gautier Dagan, Frank Keller, and Alex Lascarides. Plancraft: an evaluation dataset for planning
with LLM agents. CoRR, abs/2412.21033, 2024. doi: 10.48550/ARXIV.2412.21033. URL
https://doi.org/10.48550/arXiv.2412.21033.

Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, and Rebecca
Qian. TRAIL: trace reasoning and agentic issue localization. CoRR, abs/2505.08638, 2025.
doi: 10.48550/ARXIV.2505.08638. URL https://doi.org/10.48550/arXiv.2505.
08638.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. CoRR, abs/2503.09572, 2025. doi: 10.48550/ARXIV.2503.09572. URL
https://doi.org/10.48550/arXiv.2503.09572.

10

https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-agents
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-agents
https://www.anthropic.com/claude/sonnet
https://doi.org/10.48550/arXiv.2505.02709
https://arize.com/ai-agents/agent-evaluation/
https://arize.com/ai-agents/agent-evaluation/
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3MW8GKNyzI
https://doi.org/10.48550/arXiv.2412.21033
https://doi.org/10.48550/arXiv.2505.08638
https://doi.org/10.48550/arXiv.2505.08638
https://doi.org/10.48550/arXiv.2503.09572


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Everitt, Cristina Garbacea, Alexis Bellot, Jonathan Richens, Henry Papadatos, Siméon Cam-
pos, and Rohin Shah. Evaluating the goal-directedness of large language models. CoRR,
abs/2504.11844, 2025. doi: 10.48550/ARXIV.2504.11844. URL https://doi.org/10.
48550/arXiv.2504.11844.

Erhu Feng, Wenbo Zhou, Zibin Liu, Le Chen, Yunpeng Dong, Cheng Zhang, Yisheng Zhao, Dong
Du, Zhi-Hua Zhou, Yubin Xia, and Haibo Chen. Get experience from practice: LLM agents
with record & replay. CoRR, abs/2505.17716, 2025. doi: 10.48550/ARXIV.2505.17716. URL
https://doi.org/10.48550/arXiv.2505.17716.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. AI
agents that matter. Trans. Mach. Learn. Res., 2025, 2025. URL https://openreview.
net/forum?id=Zy4uFzMviZ.

LangChain. Llm-as-judge evaluator with reference trajectory. URL https:
//docs.langchain.com/oss/javascript/langchain/test#
with-reference-trajectory.

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey. CoRR,
abs/2502.12289, 2025. doi: 10.48550/ARXIV.2502.12289. URL https://doi.org/10.
48550/arXiv.2502.12289.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=zAdUB0aCTQ.

Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejandra
Zambrano, Karolina Stanczak, Peter Shaw, Christopher J. Pal, and Siva Reddy. Agentreward-
bench: Evaluating automatic evaluations of web agent trajectories. CoRR, abs/2504.08942, 2025.
doi: 10.48550/ARXIV.2504.08942. URL https://doi.org/10.48550/arXiv.2504.
08942.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=fibxvahvs3.

Mahmoud Mohammadi, Yipeng Li, Jane Lo, and Wendy Yip. Evaluation and Benchmarking of LLM
Agents: A Survey. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.2, KDD ’25, pp. 6129–6139, New York, NY, USA, 2025. Association for
Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3736570. URL https:
//doi.org/10.1145/3711896.3736570.

NVIDIA. Agentic evaluation flow. URL https://docs.nvidia.com/
nemo/microservices/25.9.0/evaluate/flows/agentic.html#
eval-flows-agentic.

Aymeric Roucher, Albert Villanova del Moral, merve, Thomas Wolf, and Clementine Fourrier.
Open-source deepresearch – freeing our search agents, 2025. URL https://huggingface.
co/blog/open-deep-research.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner:
Adaptive planning from feedback with language models. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances

11

https://doi.org/10.48550/arXiv.2504.11844
https://doi.org/10.48550/arXiv.2504.11844
https://doi.org/10.48550/arXiv.2505.17716
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=Zy4uFzMviZ
https://openreview.net/forum?id=Zy4uFzMviZ
https://docs.langchain.com/oss/javascript/langchain/test#with-reference-trajectory
https://docs.langchain.com/oss/javascript/langchain/test#with-reference-trajectory
https://docs.langchain.com/oss/javascript/langchain/test#with-reference-trajectory
https://doi.org/10.48550/arXiv.2502.12289
https://doi.org/10.48550/arXiv.2502.12289
https://openreview.net/forum?id=zAdUB0aCTQ
https://doi.org/10.48550/arXiv.2504.08942
https://doi.org/10.48550/arXiv.2504.08942
https://openreview.net/forum?id=fibxvahvs3
https://doi.org/10.1145/3711896.3736570
https://doi.org/10.1145/3711896.3736570
https://docs.nvidia.com/nemo/microservices/25.9.0/evaluate/flows/agentic.html#eval-flows-agentic
https://docs.nvidia.com/nemo/microservices/25.9.0/evaluate/flows/agentic.html#eval-flows-agentic
https://docs.nvidia.com/nemo/microservices/25.9.0/evaluate/flows/agentic.html#eval-flows-agentic
https://huggingface.co/blog/open-deep-research
https://huggingface.co/blog/open-deep-research


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
b5c8c1c117618267944b2617add0a766-Abstract-Conference.html.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. Plangenllms: A modern
survey of LLM planning capabilities. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27
- August 1, 2025, pp. 19497–19521. Association for Computational Linguistics, 2025. URL
https://aclanthology.org/2025.acl-long.958/.

Angelina Yang. 4 agentic design patterns and 4 key ai trends 2024-2025: Insights from an-
drew ng at the recent snowflake build 2024. URL https://mlnotes.substack.com/
p/4-agentic-design-patterns-and-4-key.

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman Cohan, and
Michal Shmueli-Scheuer. Survey on evaluation of llm-based agents. CoRR, abs/2503.16416,
2025. doi: 10.48550/ARXIV.2503.16416. URL https://doi.org/10.48550/arXiv.
2503.16416.

A APPENDIX

A.1 COVERAGE

Coverage is defined as a judge’s recall on the specific subset of errors it is designed to detect.

To understand the coverage of all errors in TRAIL using all judges, we can look towards the confu-
sion matrices for the train/test set.

Figure 3: All GPA Judge Error Coverage Scores (0-1-2) for Dev Set

Although the GPA judges collectively outperform the baseline, we next evaluate whether each spe-
cialist judge fulfills its intended role. To do so, we measure its coverage, defined as the recall on the
specific subset of errors it was designed to detect (Table 9).

The TC, TS, and EE judges show high, stable coverage (> 91%), demonstrating their effectiveness.
In contrast, other judges exhibit clear faults: LC consistently misses low-impact errors (coverage
< 60%), while PQ’s performance decreases on the test set (88% to 67%), suggesting it may not
generalize well. This may indicate a bias in the judge towards more overt logical consistency errors,
causing it to overlook subtle mistakes. The 0% test coverage for PA and PQ on low-impact errors
is based on a statistically insignificant sample size (n ≤ 2) and thus offers no reliable evidence of

12

http://papers.nips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://aclanthology.org/2025.acl-long.958/
https://mlnotes.substack.com/p/4-agentic-design-patterns-and-4-key
https://mlnotes.substack.com/p/4-agentic-design-patterns-and-4-key
https://doi.org/10.48550/arXiv.2503.16416
https://doi.org/10.48550/arXiv.2503.16416


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 4: All GPA Judge Error Coverage Scores (0-1-2) for Test Set

their performance in this specific sub-category. This suggests the judge may have learned superficial
patterns from the dev set rather than robust principles of plan adherence and quality.

Table 9: GPA Per-Judge Caught Error Coverage (%)

Judge Dev Test
Low Med High All Low Med High All

LC 54.84% 84.21% 95.71% 83.33% 58.82% 79.31% 94.81% 82.86%
EE 97.22% 85.71% 94.55% 92.14% 91.30% 91.94% 97.06% 93.28%
PA 66.67% 82.35% 97.56% 91.80% 0.00% 90.00% 92.31% 89.06%
PQ 66.67% 100.00% 85.71% 88.24% 0.00% 72.73% 66.67% 66.67%
TS 100.00% 100.00% 97.92% 98.92% 100.00% 90.91% 98.63% 97.12%
TC 95.65% 100.00% 98.57% 98.45% 100.00% 94.34% 98.11% 96.88%

Next, we analyze the error localization coverage of each judge. (Table 10) reveals that judges tar-
geting discrete, atomic errors, like PA and EE, excel at localizing over 83% of errors, as specific
incorrect parameters or steps are easier to pinpoint. In contrast, judges for tool-related issues, like
TC (41%) and TS (64%), as well as more abstract reasoning like PQ (53%) struggle. This highlights
a key challenge: while these judges can detect complex plan failures, they often cannot pinpoint the
precise origin, likely because localizing procedural flaws requires a causal trace of the model’s rea-
soning chain, a notoriously difficult task for current transformer architectures (Lee & Hockenmaier
(2025)).

Table 10: GPA Per-Judge Localized Error Coverage (%)

Judge Dev Test
Low Med High All Low Med High All

LC 48.39% 47.37% 77.14% 65.00% 47.06% 79.31% 80.52% 72.14%
EE 83.33% 67.35% 67.27% 71.43% 82.61% 82.26% 85.29% 83.19%
PA 66.67% 70.59% 82.93% 78.69% 0.00% 80.00% 90.38% 85.94%
PQ 0.00% 85.71% 71.43% 64.71% 0.00% 63.64% 33.33% 53.33%
TS 41.18% 39.29% 56.25% 48.39% 66.67% 50.00% 68.49% 64.42%
TC 60.87% 30.56% 50.00% 46.51% 27.27% 39.62% 47.17% 40.63%

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 PER-JUDGE PERFORMANCE METRICS BY IMPACT LEVEL

A.2.1 CAUGHT ERRORS

Disaggregating the performance of the caught error by impact of the error (Tables 11, 12, 13) reveals
that the utility of a judge is not fixed, but is a dynamic function of the severity of the error. This
“contextual specialization” demonstrates that no single judge is universally optimal.

For low-impact errors, performance is polarized. The TC judge is nearly flawless (F1=1.0). The
PA and PQ judges fail, although it is worth noting that their results are based on a statistically
insignificant sample size, n ≤ 2. As error impact increases, a clear trade-off emerges, especially for
high-impact failures where specialization becomes critical:

• Maximum sensitivity (Recall): TS is the best choice when missing an error is unacceptable,
catching 99% of critical failures.

• Maximum reliability (F1-score): TC provides the most balanced and robust performance
overall.

• Maximum confidence (Precision): LC is the most precise, making its feedback the most
trustworthy when a critical error is flagged.

These findings show that a single aggregate score is misleading. Effective evaluation for high-stakes
applications requires a portfolio of specialized judges to be deployed based on the specific error
context and the desired balance between sensitivity and precision.

Table 11: GPA Per-Judge Caught Error Performance, Low Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.5484 0.5484 0.5484 0.5484 0.5556 0.8333 0.5882 0.6897 0.6250 0.6842
EE 1.0000 0.9722 0.9859 0.9777 0.9841 0.7778 0.9130 0.8400 0.8824 0.8596
PA 0.1538 0.6667 0.2500 0.4000 0.8095 0.0000 0.0000 — — 0.8246
PQ 1.0000 0.6667 0.8000 0.7143 0.9841 0.0000 0.0000 — — 0.8947
TS 0.9444 1.0000 0.9714 0.9884 0.9841 0.6429 1.0000 0.7826 0.9000 0.9123
TC 0.8800 0.9565 0.9167 0.9402 0.9365 1.0000 1.0000 1.0000 1.0000 1.0000

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

Table 12: GPA Per-Judge Caught Error Performance, Medium Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6400 0.8421 0.7273 0.7921 0.8588 0.6053 0.7931 0.6866 0.7468 0.7789
EE 0.8750 0.8571 0.8660 0.8607 0.8471 0.9194 0.9194 0.9194 0.9194 0.8947
PA 0.5185 0.8235 0.6364 0.7368 0.8118 0.2308 0.9000 0.3673 0.5696 0.6737
PQ 0.8750 1.0000 0.9333 0.9722 0.9882 0.6154 0.7273 0.6667 0.7018 0.9158
TS 0.8000 1.0000 0.8889 0.9524 0.9176 0.4255 0.9091 0.5797 0.7407 0.6947
TC 0.9000 1.0000 0.9474 0.9783 0.9529 0.9259 0.9434 0.9346 0.9398 0.9263

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

A.2.2 LOCALIZED ERRORS

Our analysis of error localization performance (Tables 14, 15, 16) reveals a dramatic contextual
specialization, where a judge’s utility is not fixed but dynamically shifts with error severity, leading
to surprising performance inversions and role-reversals.

This is most evident with the PA judge, which fails completely on low-impact errors but becomes the
top-performing localizer for high-impact failures (F1=0.85). This suggests critical failures are often
linked to the concrete adherence errors PA is designed to catch. In contrast, the TC judge solidifies
its role as a “conservative but accurate” specialist, consistently delivering perfect precision but with
low recall, making its feedback sparse but highly trustworthy.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 13: GPA Per-Judge Caught Error Performance, High Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6768 0.9571 0.7929 0.8839 0.7518 0.8111 0.9481 0.8743 0.9171 0.8372
EE 0.6420 0.9455 0.7647 0.8638 0.7730 0.5789 0.9706 0.7253 0.8549 0.8062
PA 0.6452 0.9756 0.7767 0.8850 0.8369 0.7500 0.9231 0.8276 0.8824 0.8450
PQ 0.5000 0.8571 0.6316 0.7500 0.9504 0.2222 0.6667 0.3333 0.4762 0.9380
TS 0.6528 0.9792 0.7833 0.8902 0.8156 0.7579 0.9863 0.8571 0.9302 0.8140
TC 0.8313 0.9857 0.9020 0.9504 0.8936 0.8000 0.9811 0.8814 0.9386 0.8915

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

Furthermore, the TS judge undergoes a critical role-reversal. While a high-recall agent for general
error detection, it transforms into the highest-precision localizer for high-impact errors (P=0.85),
making it the most reliable choice for pinpointing the exact source of a critical failure. These findings
demonstrate that effective automated debugging requires a dynamic ensemble of judges, selected
based on the specific context of a failure, as no single judge is reliable across all conditions.

Table 14: GPA Per-Judge Localized Error Performance, Low Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6818 0.4839 0.5660 0.5137 0.6349 0.8000 0.4706 0.5926 0.5128 0.6140
EE 1.0000 0.8333 0.9091 0.8621 0.9048 0.7600 0.8261 0.7917 0.8120 0.8246
PA 0.4000 0.6667 0.5000 0.5882 0.9365 0.0000 0.0000 — — 0.8947
PQ — 0.0000 — — 0.9524 0.0000 0.0000 — — 0.8947
TS 1.0000 0.4118 0.5833 0.4667 0.8413 1.0000 0.6667 0.8000 0.7143 0.9474
TC 0.9333 0.6087 0.7368 0.6542 0.8413 1.0000 0.2727 0.4286 0.3191 0.7193

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

Table 15: GPA Per-Judge Localized Error Performance, Medium Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6429 0.4737 0.5455 0.5000 0.8235 0.6216 0.7931 0.6970 0.7516 0.7895
EE 0.8684 0.6735 0.7586 0.7051 0.7529 0.9107 0.8226 0.8644 0.8388 0.8316
PA 0.5217 0.7059 0.6000 0.6593 0.8118 0.3077 0.8000 0.4444 0.6061 0.7895
PQ 0.8571 0.8571 0.8571 0.8571 0.9765 0.6364 0.6364 0.6364 0.6364 0.9158
TS 0.8462 0.3929 0.5366 0.4400 0.7765 0.5238 0.5000 0.5116 0.5046 0.7789
TC 1.0000 0.3056 0.4681 0.3548 0.7059 1.0000 0.3962 0.5676 0.4506 0.6632

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

Table 16: GPA Per-Judge Localized Error Performance, High Impact Errors

Judge Dev Test
P R F1 F2 Acc P R F1 F2 Acc

LC 0.6750 0.7714 0.7200 0.7500 0.7021 0.7949 0.8052 0.8000 0.8031 0.7597
EE 0.5692 0.6727 0.6167 0.6491 0.6738 0.5686 0.8529 0.6824 0.7754 0.7907
PA 0.7083 0.8293 0.7640 0.8019 0.8511 0.7966 0.9038 0.8468 0.8801 0.8682
PQ 0.5000 0.7143 0.5882 0.6579 0.9504 0.1429 0.3333 0.2000 0.2632 0.9380
TS 0.6750 0.5625 0.6136 0.5819 0.7589 0.8475 0.6849 0.7576 0.7123 0.7519
TC 0.7955 0.5000 0.6140 0.5401 0.6879 0.7813 0.4717 0.5882 0.5123 0.7287

(P = Precision, R = Recall, F1 = F1-score, F2 = F2-score, Acc = Accuracy)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Inter-rater agreement across 5 runs

Figure 6: Average standard deviation per trace

B LLM JUDGE PROMPTS

B.1 CONTROL FLOW OF OPEN DEEP-RESEARCH

Agent Architecture and Trace Structure: The agent architecture consists
of a primary manager Agent (also referred to as CodeAgent) that
delegates tasks to a search_agent (also referred to as
ToolCallingAgent).

Overall Flow:
Every trace consists of several spans (with span_id numbers and parent

span_id numbers). Each trace begins with the manager (CodeAgent). The
process follows a clear, hierarchical structure where the manager

outlines a high-level plan and the search_agent executes the detailed
, tool-based steps for each part of that plan.

Manager Agent Initiation:
The trace starts with the manager. In its initial child spans, you will

observe the following sequence:

A preparatory survey is created based on the user’s query.

A high-level plan is formulated from this survey.

The Manager agent begins executing Step 1 of its plan.

Manager Agent Step 1:
Within the child span for Step 1, the Manager agent decides how to

proceed given the initial fact survey and plan. The Manager agent
will produce a thought, which may call the search_agent to perform
the necessary actions or research.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

search_agent (ToolCallingAgent) Execution Loop:
Once called, the search_agent begins its own execution loop. In its child

spans, you will observe the following sequence:

A preparatory survey to the specific sub-task it received from the
Manager agent.

A plan tailored to the specific sub-task it received from the Manager
agent.

The search_agent executes an initial set of up to four steps. Each step
involves an LLM call to generate a tool-call, followed by the tool’s
execution. After these initial steps, search_agent synthesizes the
information gathered into an updated fact list and refines its plan.
The search_agent may then continue to execute more tool-steps based
on this updated plan.

This loop continues until the search_agent has gathered enough
information to comprehensively answer the manager’s sub-task, at
which point it calls final_answer.

Returning Control to the Manager agent
The final_answer from the search_agent is returned to the Manager agent,

concluding the Manager agent’s Step 1. The Manager agent then
proceeds to Step 2 of its high-level plan, using the result from the
previous step as context. This entire cycle repeats for all
subsequent steps in the Manager Agent’s plan.

Whenever you want to point out anything in the trace, cite the span_id
number of the span that you are referring to.

B.2 LOGICAL CONSISTENCY JUDGE

You are a meticulous and analytical LOGICAL CONSISTENCY evaluator:
provide a score for the logical consistency given an agentic system’s
trace.

You must assign a single numerical score from 0 to 3, where 0 is the
lowest score according to the criteria and 3 is the highest possible
score.

Evaluation criteria:

Score the logical consistency of the trace, including both the plan and
execution.

3: Every action, claim, and transition in the trace is explicitly
justified using information available in the prior context. Each
statement is directly supported by and traceable to previous data,
instructions, or contentno part of the response is fabricated or
inferred from unstated assumptions. If an error from an earlier step
is identified and corrected, the error is explicitly acknowledged
before the correction is made, maintaining logical transparency. Each
system instruction is followed. The reasoning remains coherent and

free of contradictions or logical leaps.

Middle scores: There are occasional lapses in logic, minor unsupported
assertions, or isolated explanatory gaps. Errors may be corrected,
but corrections are occasionally introduced without clear
acknowledgement of prior mistakes, creating minor inconsistencies or
reducing transparency. Some statements may not be fully traceable to
prior context, or some assumptions are made without explicit support

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

from available evidence. Factual consistency may suffer from minor
errors or embellishments, but the overall reasoning remains intact.
Most previously assigned tasks and instructions remain intact.

0: There is frequent or severe breakdown in the logical flow; many
statements are either unsupported by, or cannot be grounded in, the
prior context. Corrections for earlier errors are often made without
any explicit acknowledgement, resulting in contradictions or
confusing transitions. Key actions or facts are invented, fabricated,
or otherwise not observable in the given information. Major

contradictions, invalid assumptions, or arbitrary transitions
undermine the overall reasoning and conclusion. Most previously
assigned tasks are not fulfilled, and internal system instructions
are largely disregarded.

Track each agent’s system instructions and conversation history, ensuring
all subsequent outputs from that agent adhere to its established

guidelines and prior dialogue, even when agents speak interchangeably
. For the manager agent and each unique search_agent that may exist
in the trace, evaluate the logical consistency for the agent’s
actions and responses. For each agent, ensure that each response is
consistent with the system instructions and prior dialogue.

You must structure your entire response:
Manager Agent
System Instructions
[Paste all system instructions associated with the manager agent.]
Logical Consistency issues
[All Logical Consistency issues associated with the manager agent]

search_agent 0 (if exists)
System Instructions
[Paste all system instructions associated with the search_agent.]
Logical Consistency issues
[List all Logical Consistency issues associated with this search_agent]
...
search_agent n (if exists)
System Instructions
[Paste all system instructions associated with the search_agent.]
Logical Consistency issues
[List all Logical Consistency issues associated with this search_agent]

Here are some examples of logical consistency issues:
{
"evidence": "The plan output content ends with the last step of the plan

instead of the <end_plan> tag.",
"description": "The plan generation step did not conclude with the

required ’<end_plan>’ tag as specified in the instructions for plan
generation."

},
{
"evidence": "Thought: I recall that Girls Who Code published a statistic

showing that in the 1980s, women accounted for 37% of computer
scientists (or computer science graduates) and that over a span of
three decades that figure dropped by 13 percentage points (from 37%
down to 24%)",

"description": "The system recalled a statistic about Girls Who Code and
the percentage of women in computer science, but this information was
not verified using the search tool as planned. The system states "

Thought: I recall that Girls Who Code published a statistic showing
that in the 1980s, women accounted for 37% of computer scientists (or
computer science graduates) and that over a span of three decades

that figure dropped by 13 percentage points (from 37% down to 24%).
In other words, it took 30 years for that change to occur. Based on

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

that well-circulated statistic that Girls Who Code highlighted, I
will output 30 years as the final answer.""

}
Cite each issue with all corresponding span id numbers and the reason for

the issue.

Be critical in your evaluation. For each step in the trace with an issue
(e.g., contradictions, unsupported statements, or previous
instructions not followed), identify that step and explain the
problem specifically. Flag any implicit assumptions.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

Score: <The score based on the given criteria>

Please respond using the entire template above.

B.3 EXECUTION EFFICIENCY JUDGE

You are a meticulous and analytical EXECUTION EFFICIENCY evaluator:
provide a score for how efficiently the agent executes its steps.
Your assessment should strictly focus on the sequencing, resource
utilization, and avoidance of redundant or wasteful actions within
the execution itself, regardless of whether the plan was ultimately
successful or fully adhered to.

You must assign a single numerical score from 0 to 3, where 0 is the
lowest score according to the criteria and 3 is the highest possible
score.

Evaluation criteria:

Score the efficiency of the execution.

3: All relevant actions are executed exactly once, in a streamlined
and optimized sequence. There is no unnecessary busywork,
repetition, backtracking, or wasted computation resources. Each
step genuinely contributes to progressing towards the goal without
extraneous operations. Error handling is appropriately lean and
resolves quickly, without requiring multiple attempts due to
easily correctable input errors (e.g. incorrect tool arguments).
Verification steps provide unique feedback, serve as sanity checks
, or use a demonstrably different approach from the initial
approach to ensure correctness, without duplicating prior effort.

Middle scores: Some instances of workflow inefficiency such as
redundant actions, non-ideal ordering of steps that cause rework,
excessive error handling, missed opportunities for consolidation,
or unnecessary resource use. There might be occasional minor input
errors or misconfigurations that lead to a slightly increased
number of attempts but are eventually corrected without major
disruption. The inefficiencies may have noticeable but not
devastating impact on the overall process.

0: Workflow is highly inefficient: dominated by loops, duplicated
efforts, poorly ordered sequence, or significant wasted
computation that break progress. Multiple repeated tool calls

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

required to recover from preventable mistakes in invocation or
argument generation. Verification steps are highly redundant and
do not provide any value. The workflow’s operational flow is
severely hampered by unnecessary or counterproductive actions.

Track each agent’s system instructions and conversation history, ensuring
all subsequent outputs from that agent adhere to its established

guidelines and prior dialogue, even when agents speak interchangeably
.

For the manager agent and each unique search_agent that may exist in the
trace, evaluate the execution efficiency for the agent’s actions and
responses.

You must structure your entire response:
**Manager Agent**
[List each execution efficiency issue associated with the manager agent

with an explanation and citation(s)]

**search_agent 0** (if exists)
[List each execution efficiency issue associated with this search_agent

with an explanation and citation(s)]
...
**search_agent n** (if exists)
[List each execution efficiency issue associated with this search_agent

with an explanation and citation(s)]

Here are some examples of execution efficiency issues:
{

"evidence": "\{"input.value": ’\{"args": [], "
sanitize_inputs_outputs": true, ’openinference.span.kind’: ’
TOOL’, ’pat.app’: ’GAIA-Samples’, ’pat.project.id’: ’
a69d64fc-5115-468e-95ed-0950bd37f06a’, ’pat.project.name’: ’
gaia-annotation-samples’, ’tool.description’: ’Scroll the
viewport DOWN one page-length in the current webpage and
return the new viewport content.’, ’tool.name’: ’page_down’,
’tool.parameters’: ’\{\}’\}",

"description": "Resource Abuse error caused by a tool related
mistake where the tool is repeatedly invoked with an invalid
parameter (\"\": \"\" or \"\": \{\}), despite being defined
with no parameters. This repeated misuse signals abnormal

or excessive use of the tool with incorrect input,
triggering a Resource Abuse error.",

\}
Cite each issue with all corresponding span id numbers and the reason for

the issue.

Evaluation steps to give feedback on key steps in the execution are
allowed. Otherwise, be critical in your evaluation. For each step in
the execution trace with an issue (e.g. redundancies, unnecessary
retries, inefficient sequencing, missed optimization opportunities,
or preventable errors), identify that step and explain the problem
specifically.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

Score: <The score based on the given criteria>

Please respond using the entire template above.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4 PLAN QUALITY JUDGE

You are a meticulous and analytical PLAN QUALITY evaluator. You are
responsible for evaluating the intrinsic quality of the initial
written plan, judging it against the context and tools available at
the moment of its creation. CRITICAL: It is an immediate failure of
your task to reference whether the agent followed the plan or mention
any part of the execution, including agent actions, tool outputs, or
the final answer.

Plan Extraction Procedure:
1. Scan for the sections labeled with a PLAN keyword. The first section

labeled with a PLAN keyword is the initial plan, and any subsequent
section labeled with a PLAN keyword is a replan.

2. If no explicitly labeled PLAN section exists, infer the plan from any
’Thinking’ or planning sections [or to-do checklist].

3. If no plan can be found through the above steps, output: "I cannot
find a plan."

Do NOT infer or fill gaps using execution steps.

Evaluating the Initial Plan:
1. The Available Tools: Does the plan correctly select from the list of

provided tools? Does it ignore a more appropriate or efficient tool
that was available? Does it try to use a tool that doesn’t exist?

2. Tool Definitions: Does the plan propose using a tool correctly,
according to its description and required arguments?

3. Pre-existing Knowledge: Does the plan include redundant steps to find
information that was already present in the initial prompt or
conversation history?

4. An optimal plan isn’t just logical in theory; it’s the most
intelligent strategy given the specific resources the planner had.

When evaluating the initial plan, ignore all execution steps, tool
outputs, and agent actions, even if available and visible in the
trace. Your quality evaluation for this initial plan MUST be based
solely on its intrinsic quality. You are judging the strategy, not
the outcome. Never use agent choices, answers, or deviations from the
plan to deduce flaws, gaps, or weaknesses in the plan itself.

Replanning (if found):
1. Look at the tool outputs, error messages, or observations in the trace

that precede the replan to understand why replanning was necessary.
2. Identify the trigger and explain why the original plan was

insufficient. Is the reason for replanning justified?
3. Judge the new plan. Are they a logical, necessary, and efficient

correction to the specific problem identified in the trigger? You are
not judging the original failure itself, but the quality of the

agent’s reaction to that failure.

List only inherent plan flaws (e.g. step uses nonexistent tool, redundant
action, ignores key context).

You MUST structure your entire response using the following markdown
template:

-----
Initial Plan Identification
[Paste initial plan or state: ’I cannot find a plan.’]

For each replan (if exists):
Replan Identification
[Paste each replan. For each replan, state the written rationale/

explanation.]

Plan Quality Analysis
[Analysis solely on plan/replan text and rationale.]

Verdict on Plan Flaws

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

[List only actual flaws in the plans themselves.]
-----
You must assign a single numerical score from 0 to 3, where 0 is the

lowest score according to the criteria and 3 is the highest possible
score based SOLELY on the intrinsic quality of the plan and replans.
Do NOT score on the execution quality.

Evaluation criteria:

Score the quality of the plan.

3: The plan is well-structured, optimal, and directly addresses the
user’s query by breaking it down into clear, actionable, and
logical steps. Every step is justified, necessary, and includes
sufficient detail to ensure feasibility and efficiency without
being overly verbose. Each step in the plan could be feasibly
executed by the tools provided. If replanning occurs, the revised
plan is presented with an explicit rationale. The replan is a
direct and effective response to the observed triggers (e.g.,
errors, new information) and learns from prior attempts by not
repeating problematic steps.

Middle scores: The plan generally addresses the query and appears
feasible. Minor issues may be present: some steps lack explicit
justification, a few steps may be unnecessary or unclear, or non-
critical actions may be missing. The step order or rationale might
be partially implied rather than fully articulated. Most steps in
the plan could be feasibly executed by the tools provided. If
replanning occurs, the rationale is vague or weakly connected to
the trigger. The replan partially addresses the trigger but may be
inefficient or repeats minor errors from the previous plan.

0: The plan fails to directly address the user’s query or cannot
feasibly accomplish the goal. Critical steps in the plan are
missing, irrelevant, unsupported, or based on fabricated reasoning
. Replanning (if any) is arbitrary, unexplained, or disconnected
from observable evidence in prior context. The overall plan lacks
adequate justification and transparency, with major gaps or
unjustified assertions. Many steps in the plan cannot be feasibly
executed by the tools provided. If replanning occurs, it is
arbitrary, unexplained, or disconnected from any trigger. The
replan fails to address the issue and repeats the same critical
mistakes as the previous attempt.

Look for the keyword ’[PLAN]’ to identify plans for the manager agent and
each unique search_agent that may exist in the trace.

Your task is to evaluate the intrinsic quality of sequence of plans for
each agent.

You must structure your entire response:
Manager Agent
[Plan Quality issues]

search_agent 0 (if exists)
[Plan Quality issues]

search_agent n (if exists)
[Plan Quality issues]

Here are some examples of plan quality issues:
{

"evidence": "1. Identify the specific OpenCV version or release
notes where Mask\u2011RCNN support was added by searching
for the official release note or commit message that
introduced this feature. 2. Retrieve the commit history or

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

changelog details for that version to determine the list of
contributors responsible for adding Mask\ u2011RCNN support.
3. Extract and review the contributor names from the commit
details, focusing on those whose names might originate from
Chinese transliterations. 4. Research a reliable list of

former Chinese heads of government with their names
transliterated into the Latin alphabet. 5. Compare and cross
-match the contributor names with the list of former Chinese
heads of government to identify the one whose Latin name

exactly matches. 6. Verify the match by rechecking the
commit history and the historical data on the head of
government to ensure the correctness of the identified
contributor. 7. Conclude with the final contributor \u2019s
name as the correct answer.",

"description": "The model didn’t define the tools needed in the
plan, which may result in the model not using any tool since
it needs to follow the plan.",

},
{

"evidence": "The plan listed in the output is the same as the
plan generated in span 2, despite the system failing to
execute steps 1 and 2 (via search_agent and
inspect_file_as_text) in the preceding turns.",

"description": "The system generated an updated plan that was
identical to the initial plan created before encountering
tool execution failures, demonstrating a failure to
integrate lessons learned from previous steps into its
updated strategy.",

},

Cite each issue with all corresponding span id numbers and the reason for
the issue.

Be critical in your evaluation. For each step in the plan that is not
necessary, unclear, or unsupported, identify that step and explain
the problem specifically.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

Score: <The score based on the given criteria>

Please respond using the entire template above.

B.5 PLAN ADHERENCE JUDGE

You are a meticulous and analytical PLAN ADHERENCE evaluator: you are
given the entire trace which contains both the plan and the
execution. First, identify the plan and any subsequent replans
within the trace. Then, evaluate how closely the execution follows
the plan or replans.

You must assign a single numerical score from 0 to 3, where 0 is the
lowest score according to the criteria and 3 is the highest possible
score.

Plan Extraction Procedure:
1. Scan for the sections labeled with a PLAN keyword. The first section

labeled with a PLAN keyword is the initial plan, and any subsequent
section labeled with a PLAN keyword is a replan.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2. If no explicitly labeled PLAN section exists, infer the plan from any
’Thinking’ or planning sections [or to-do checklist].

3. If no plan can be found through the above steps, output: "I cannot
find a plan."

Do NOT infer or fill gaps using execution steps.

You MUST structure your entire response using the following markdown
template:

-----
**Plan Identification**
[Paste initial plan or state: ’I cannot find a plan.’]

**Plan Adherence Analysis**
[Analyze how the agent followed the initial plan. Note each deviation

leading up to the first replan (if any).]

For each replan (if exists):
**Replan Identification:**
[Paste the replan.]

**Replan Adherence Analysis:**
[Analyze how the agent followed the new replan. Note each deviation

leading up to the next replan (if any).]
-----

Evaluation criteria:

Score the adherence of the execution to the plan.

3: Each step in the plan was executed and completed correctly and in
entirety. No steps were skipped, reordered, or modified without
explicit reasoning. Any deviations from the plan were explicitly
justified and directly attributable to unforeseen, external
factors. If replanning was necessary, the revised plan was
followed exactly.

Middle scores: Most steps in the plan were faithfully executed and
completed as intended. Minor deviations from the plan or partial
step completions have plausible explanations or can be easily
inferred from context. If replanning was necessary, the revised
plan was generally followed.

0: Multiple planned steps were omitted, performed out of order, or
replaced with unplanned actions. No meaningful attempt was made to
explain, justify, or document plan changes or new actions. The
plan was largely ignored or disregarded in execution, or steps
were not completed as intended. If replanning was necessary, the
revised plan was not followed.

Look for the keyword ’[PLAN]’ to identify plans for the manager agent and
each unique search_agent that may exist in the trace.

Each search_agent operates in a cycle: it first generates a plan,
executes up to 4 tool calls based on that plan, and then re-plans.
Your task is to evaluate whether each of the subsequent 4 tool calls
after each plan actually adheres to that plan.

You must structure your entire response:
**Manager Agent**
[Plan Adherence issues]

**search_agent 0** (if exists)
[Plan Adherence issues]

**search_agent n** (if exists)
[Plan Adherence issues]

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Here are some examples of plan adherence issues:
{

"evidence": "Plan step 1: ’Locate the official 2023 IPCC report
(85 pages version) by using the search_agent tool’. Code in
this span: result = inspect_file_as_text(file_path=’2023
_IPCC_report_85.pdf’, ...)\‘",

"description": "The system attempted to use the
inspect_file_as_text tool with a hardcoded file path (’2023
_IPCC_report_85.pdf’) without first successfully locating
the file using the search_agent as outlined in the first
step of its own plan.",

}
{

"evidence": "The search_agent calls final_answer without having
executed steps like systematically checking all submission
pages, visiting detail pages for all candidates (e.g.\ Yuri
Kuratov mentioned in earlier search results), or
successfully searching within those pages for "certain.",

"description": "The LLM (search_agent) abandoned its most recent
plan (generated in span d65ec360f7319e84), which involved

systematically checking all pages and candidate papers for
\"Yuri\" and \"certain\". It called final_answer without
completing the necessary investigation steps outlined in its
own plan.",

}

Cite each issue with all corresponding span id numbers and the reason for
the issue.

Adherence is judged step-by-step; if a plan mandates tool usage or sub-
tasks, their omission or incomplete execution always counts as a
failure of adherence, regardless of the effect on final output
completeness or quality. Be critical in your evaluation and focus on
identifying any deviations from the plan or any steps that were not
completed as intended. For each identified deviation from the plan,
cite the associated execution steps (or lack thereof) and explain the
problem specifically.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

Score: <The score based on the given criteria>

Please respond using the entire template above.

B.6 TOOL SELECTION JUDGE

You are a meticulous TOOL SELECTION evaluator. Judge whether the agent
chose the right tools for its tasks given the tool descriptions.

You must assign a single numerical score from 0 to 3, where 0 is the
lowest score according to the criteria and 3 is the highest possible
score.

Evaluation criteria:

Score the appropriateness of tool SELECTION decisions relative to
stated goals and available tools.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

3: Consistently selects the most suitable tools for each subtask,
honors mandated tools, avoids tools when internal reasoning
suffices, and reflects awareness of tool capabilities/limits.

Middle scores: Generally appropriate selections with occasional missed
opportunities (better tool existed), unnecessary tool choices for
internal tasks, or weak justification.

0: Frequently selects ill-suited/irrelevant tools, ignores mandated
tools, or bypasses obviously superior tools; relies on non-tools
where a tool is necessary.

Consider: match-to-goal, comparative suitability, instruction
compliance, and awareness of constraints. Do NOT judge call syntax
, output interpretation, efficiency, or adherence.

Track each agent’s system instructions, available tools, and conversation
history. Your task is to evaluate whether the agent SELECTED the

most appropriate tools for its stated tasks/subtasks, given the tool
descriptions and parameters.

Do NOT judge execution efficiency (covered by Execution Efficiency) or
whether the agent actually adhered to the plan (covered by Plan
Adherence). Focus on the *choice* of tools relative to stated goals
and available options.

You must structure your entire response:

Manager Agent
Tool Descriptions
[Paste verbatim every tool available to the manager agent, including:

tool.name, tool.description, tool.parameters/schema and required args
. If a tool named ‘final_answer‘ exists as an invocable tool, list it
. If no tools are defined, write: "No tools found."]

Tool Selection Issues
[List each selection issue with explanation and span citation(s). If the

agent chose to do something internally where a tool was clearly
superior or required by instructions, flag it. If the agent chose an
inferior/irrelevant tool when a better tool existed, flag it.]

search_agent 0 (if exists)
Tool Descriptions
[Paste verbatim the tools for this agent, as above.]

Tool Selection Issues
[List each selection issue with explanation and span citation(s).]

search_agent n (if exists)
Tool Descriptions
[Paste verbatim the tools for this agent, as above.]

Tool Selection Issues
[List each selection issue with explanation and span citation(s).]

Scoring Scope (what to judge here):
- Match-to-goal: For each task/subtask the agent undertakes, did it pick

the best-suited tool from those available?
- Comparative suitability: If multiple tools could work, did it choose

the one with clearer preconditions/postconditions, more direct
support, or stricter guarantees?

- When to avoid tools: Did it avoid calling a tool when the step was
internal and better done without tools?

- Instruction compliance: If system instructions mandate a tool for a
given task, was that tool selected?

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

- Awareness of constraints: Did selection reflect tool definitions (
capabilities, inputs, limitations)?

EXCLUDE from this judge:
- Whether arguments were correct or outputs were interpreted faithfully $

\rightarrow$ Tool Calling.
- Resource waste, retries, sequencing inefficiency $\rightarrow$

Execution Efficiency.
- Whether steps in the plan were followed $\rightarrow$ Plan Adherence.

Cite each issue with all corresponding span id numbers and the reason for
the issue.

Examples of Tool Selection issues:
{

"evidence": "The agent used python_interpreter to perform web
search despite search_agent being defined for browsing.",

"description": "Selected an ill-suited tool when a dedicated search
tool was available.",

"spans": ["0242ca2533f.."]
},
{

"evidence": "System instruction requires using visualizer for
charting, but the agent described plotting internally without
selecting the tool.",

"description": "Failed to select a mandated tool per instructions
.",

"spans": ["1427b326.."]
},
{

"evidence": "Task: ’inspect the PDF text’. Tools available:
inspect_file_as_text (PDF text extraction), final_answer. Agent
selected final_answer directly.",

"description": "Skipped the appropriate extraction tool; selected a
non-suitable tool for the subtask.",

"spans": ["08be1639.."]
}

Important scope boundaries:
- Do NOT penalize call syntax/semantics or output interpretation (Tool

Calling).
- Do NOT penalize workflow efficiency (Execution Efficiency) or plan

deviations (Plan Adherence).
- Focus strictly on selection quality per subtask.

Be critical. For each selection issue, cite the relevant spans and
explain specifically.

You must structure your response exactly as specified in the provided
tool_selection_prompt.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

Score: <The score based on the given criteria>

Please respond using the entire template above.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.7 TOOL CALLING JUDGE

You are a meticulous TOOL CALLING evaluator. Judge how well the agent
formed tool inputs and interpreted outputs, given tool definitions.

You must assign a single numerical score from 0 to 3, where 0 is the
lowest score according to the criteria and 3 is the highest possible
score.

Evaluation criteria:
Score the quality of TOOL CALLS within the agents control.

3: Inputs are syntactically valid and semantically appropriate;
required params and preconditions are satisfied; outputs are
interpreted faithfully and integrated correctly; tool-returned
errors are acknowledged and handled reasonably.

Middle scores: Minor issues with argument completeness, semantic
underspecification, limited reformulation, or shallow/partial
output use; some missed acknowledgements of errors.

0: Invalid/missing arguments, repeated schema violations, semantically
off-target queries without correction; outputs ignored/misread/
fabricated; tool errors unacknowledged.

Consider only what is under the agent’s control. Do NOT judge tool
choice (Tool Selection), workflow efficiency, or external system
reliability (Tool Quality).

Track each agent’s system instructions, available tools, and conversation
history. Your task is to evaluate the QUALITY OF TOOL CALLS made by

the agent that are within the agents control:
- Were inputs (arguments/queries) syntactically valid and semantically

appropriate given the tools description, parameters, preconditions,
and expected postconditions?

- Did the agent correctly interpret and integrate the tool outputs?

Do NOT judge selection (covered by Tool Selection) or overall workflow
efficiency (covered by Execution Efficiency). Focus on *how* the tool
was called and how its outputs were handled.

You must structure your entire response:

Manager Agent
Tool Descriptions
[Paste verbatim every tool available to the manager agent, including:

tool.name, tool.description, tool.parameters/schema and required args
. If \‘final_answer\‘ is an invocable tool, list it. If no tools are
defined, write: "No tools found."]

Tool Calling Issues
[List each tool-calling issue for the manager agent with explanation and

span citation(s). Include incorrect/missing args, invalid schemas,
unmet preconditions, semantically off-target queries, incorrect
output interpretation, and failure to acknowledge tool errors.]

search_agent 0 (if exists)
Tool Descriptions
[Paste verbatim tools for this agent.]

Tool Calling Issues
[List each issue for this agent with explanation and span citation(s).]

search_agent n (if exists)
Tool Descriptions
[Paste verbatim tools for this agent.]

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Tool Calling Issues
[List each issue for this agent with explanation and span citation(s).]

Scope boundaries:
- In-scope: Syntactic validity, argument completeness, semantic

appropriateness of queries, honoring required params, satisfying
preconditions, correct parsing/grounded use of outputs, explicit
handling of tool-returned errors (recognition + appropriate
adaptation).

- Out-of-scope: Choice of tool (Tool Selection), plan compliance (Plan
Adherence), redundant retries/ordering (Execution Efficiency), and
external service quality (Tool Quality)---unless the agent mishandles
/ignores those errors.

Cite each issue with all corresponding span id numbers and the reason for
the issue.

Examples of Tool Calling issues:
{

"evidence": "tool.name: ’page_down’ with parameters {}. Calls show
args: {’’: ’’} repeatedly.",

"description": "Invalid argument key to a parameterless tool;
repeated without correction (syntactic error within agents
control).",

"spans": ["041b7f9c..", "041b7f9c..-retry2"]
},
{

"evidence": "search tool returned ’No results’, yet agent asserts a
specific fact ’from the tool’.",

"description": "Misinterpretation of tool output; fabricated
inference not supported by results.",

"spans": ["0035f455b.."]
},
{

"evidence": "Agent queries search_tool with "salary" while task
requires ’2024 US base pay bands for L5’; no reformulation
after irrelevant results.",

"description": "Semantically underspecified query; failure to
refine inputs given tool definition and goal.",

"spans": ["0242ca2533f.."]
}

Important scope boundaries:
- In-scope: argument/schema correctness, semantic fit of query,

preconditions/postconditions, grounded interpretation of outputs,
explicit handling of tool-returned errors.

- Out-of-scope: tool selection (Tool Selection), workflow efficiency (
Execution Efficiency), external service/tool reliability (Tool
Quality).

Be critical. For each calling issue, cite the relevant spans and explain
specifically.

You must structure your response exactly as specified in the provided
tool_calling_prompt.

{TRACE}

Please evaluate using the following template:

Criteria: <Provide the criteria for this evaluation, restating the
criteria you are using to evaluate>

Supporting Evidence: <Provide your reasons for scoring based on the
listed criteria step by step. Tie it back to the evaluation being
completed.>

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Score: <The score based on the given criteria>

Please respond using the entire template above.

C INTERNAL ANON-DATA-AGENT RESULTS

The full set of results on the internal Anon-Data-Agent benchmark is shown in Table 17. Accuracy is
reported both as a binary 2-point score (error vs. correct) and a 3-point scale, along with correlation
and normalized mean absolute error (NMAE). Performance results are shown across different LLM
models.

Table 17: Comparison of Logical Consistency and Execution Efficiency Across Models

Model LC EE
Acc-3pt Acc-2pt Correl NMAE Acc-3pt Acc-2pt Correl NMAE

Claude-4-Sonnet 0.765 1.000 0.795 0.118 0.882 0.941 0.772 0.059
Claude-3-7-Sonnet 0.294 0.882 0.477 0.382 0.353 0.824 0.574 0.324
gpt-4o 0.471 0.941 0.514 0.265 0.882 0.941 0.772 0.059
gpt-4.1 0.294 0.882 — 0.412 0.824 0.941 0.772 0.088

(Acc-3pt = 3-point scale Accuracy, Acc-2pt = 2-point scale Accuracy, Correl = Correlation, NMAE
= Normalized Mean Absolute Error)

Consistent with our findings on TRAIL/GAIA, LC remains the harder dimension, requiring com-
plex reasoning that only Claude-4-Sonnet achieves reliably (at the time of our submission). By
contrast, because execution efficiency-related errors may require less abstract thinking, multiple
models (Claude-3-7-Sonnet, gpt-4o, and gpt-4.1) can reach similarly high performance.

30


	Introduction
	Related Work
	Goal-Plan-Action (GPA) Framework
	Experimental Evaluation
	TRAIL/GAIA
	Dataset
	Methodology
	Results
	Consistency of LLM Judges

	Internal ANON-Data-Agent

	Conclusions & Future Work
	Reproducibility statement
	Appendix
	Coverage
	Per-Judge Performance Metrics by Impact Level
	Caught Errors
	Localized Errors


	LLM Judge Prompts
	Control Flow of Open Deep-Research
	Logical Consistency Judge
	Execution Efficiency Judge
	Plan Quality Judge
	Plan Adherence Judge
	Tool Selection Judge
	Tool Calling Judge

	Internal Anon-Data-Agent Results

