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Abstract

Founded in Atkinson-Shiffrin Memory
Model’s three-stage theory, the cognitive
process of answering a question with stored
knowledge can be seen as a reasoning process
that goes from the external sensory memory
via short-term knowledge-aware reasoning
towards internal knowledge storage. While in
the machine, this process can be interpreted
as a pipeline from encoding the question's
information, through decoding the reasoning
query of triples, towards the knowledgebase.
How to encode and decode the varying
semantic information of question into accurate
triple query, and how to adjust the query
generation with an evolving knowledgebase,
are two inevitable problems in this cogni-
tive process. Our model KARL provides
a solution by designing the three memory
spaces as, an encoder to handle the language
modeling, a decoder for query generation, and
a self-calibration with reinforcement learning
of the knowledge representation vector space.
We evaluate the model’s reasoning ability in
knowledge-based question answering against
the Question Answering over Linked Data
(QALD) benchmark, and achieve signifi-
cant improvements in answers accuracy as
compared to other neural models.

1 Introduction

The Atkinson and Shiffrin Model(Atkinson and
Shiffrin, 1968) of memory states gives proof for
modeling the reasoning process as a three-stage
and multi-store pipeline that consists of the sensory
memory, the short-term memory, and the long-term
memory. Theoretically, the sensory memory is
for extracting and holding the external informa-
tion, while the short-term memory represents the
knowledge-aware mental activities of reasoning,
and the long-term memory is the storage of memo-
rized knowledge. In our modeling, we compare the

machine reasoning as a knowledge-based question
answering (KBQA)(Yahya et al., 2012; Cui et al.,
2019) a three-stage problem where a machine per-
ceives a natural language question and interprets it
into a query of entity-relation triples then querying
towards the answer entity in the knowledgebase.
And herein lies three problems: first, given the flex-
ibility of language, how to perceive the varying se-
mantic information from a question is inevitable for
a machine; second, it is about the appropriate repre-
sentation for the query of triples(Arias et al., 2011);
third, a strategy for the model's learning to adjust
with the modification of knowledgebase should be
self-evolutionary(Lehmann et al., 2015). However,
to the best of our knowledge, the recent researches
of machine knowledge-aware reasoning(Ding et al.,
2019; Das et al., 2017; Soru et al., 2018) always
show less focus either on the varying of seman-
tics (e.g. the polysemy and the synonymy), or on
the studies about the self-calibration to an evolv-
ing knowledge, which calls for more attention to
the comprehensive modeling that can multilaterally
combine all into a complete cognitive process.

Figure 1: Machine Memory Model and Human Mem-
ory Model

The semantic meanings in natural language
are abstract and varying, while the entities and
relations in a knowledge graph (e.g. DBpedia,
Wikidata)(Lehmann et al., 2015; Vrandecic and
Krotzsch, 2014) are extracted and refined in a
format of concrete nodes with connecting edges.



Figure 2: The model mainly has three components: Sensory Memory, the encoder part incorporated with pre-
trained language model; Short-term Memory, the decoder part for query tensor generation; Long-term Memory,
the interaction of the query tensor generation and the reward function in the reinforcement learning of knowledge-
graph vector space.

The same question can be asked using different
sentences with different vocabularies, and that the
same vocabulary has biased meanings in different
sentences. What’s more, the knowledge graph
is dynamic, for instance, the entity node for a
famous star named X used to have an relation
edge named spouse with another entity Y, but
after they get divorced and married again to
others, the edge spouse of X would have been
reconnected to another entity may be named Z.
Although in these cases the answer’s explicit
node content changed, the natural language
sentences, no matter ”Who is the spouse of X
?”, ”Who is the husband of X ?” or ”Which one
is married to X?”, the logic structure like triple
〈entity(X), relation(spouse), entity(?variable)〉
is unchanged during reasoning, with its semantic
similarity remains in vector space, which also
keeps stable the SPARQL query(Arias et al.,
2011; Pérez et al., 2006) for answering this
question in the knowledge graph i.e.SELECT
?var WHERE{dbr:X dbo:spouse ?var.}. This
opens the opportunity to build the reward function
with reinforcement learning algorithms of vector
space to self-calibrate the query generation. In our
model, we base a sequence-to-sequence structure
integrated with the pre-trained language model
BERT on the reinforcement learning of knowledge
embedding vector space, to imitate a three-
component cognitive process for knowledge-aware
reasoning.

The Sensory Memory is the first component, to
begin with the modeling. Due to the variety of
semantic biases in contexts, the phenomenon of
polysemy and synonymy is frequent in asking the
questions, especially when the questions are only
short sentences. To disambiguate these semantic
biases, the support of a pre-trained language model
that has learned a vast content of language mate-
rials is necessary for universal language represen-
tation. Here we leverage the pre-trained BERT in
our modeling. We incorporate the BERT into the
attention-based encoder part in the sequence-to-
sequence structure for the question encoding.

In the second component, the Short-term Mem-
ory, the major architecture is a decoder also based
on attention mechanism. The role for this compo-
nent is to decode the question encoding from the
first component into a SPARQL query(Arias et al.,
2011; El-Roby and Ammar, 2018) to fetch the en-
tity from a knowledge graph, such as DBpedia.

Finally, in the third component, after vectoriz-
ing the generated SPARQL queries in the second
component with global vectors for word represen-
tation(GloVe)(Pennington et al., 2014), we tune
the model’s training loss function to build the re-
inforcement learning algorithm that optimizes the
semantic distance between the targeted entity of
the generated query and the plausible answer entity
of the golden query.



Figure 3: The visualization of the major workflow: 1) the sequence-to-sequence structure encodes the question
and decode into a query tensor; 2)in the generated query tensor, each element is an integer index for the entity or
relation embedding; 3)then, the embedded query tensor from step 2 is parsed into triples, and all the embeddings
in the triples of the query are reduced into a vector representing what the query is asking.

2 Background and Related Works

We briefly introduce the background of reasoning
models for knowledge-based question answering
and review current techniques.

2.1 Memory Models

In cognitive science, the researches of memory
models(Atkinson and Shiffrin, 1968; Baddeley,
2018) theorize the conscious awareness process
of human perceiving and retrieving memories as
a continuation of multiple stages. The Atkinson-
Shiffrin model advocates that human memories
consist of three separate components, namely, the
sensory register, where the perceived information
enters memory, the short-term holding memory
also called working memory or short-term mem-
ory, where is considered as an interface that han-
dles both the inputs from the sensory register and
the retrieval of stored long-term memory, and the
long-term store, where the learned knowledge is
stored for a long period. Expanding Atkinson and
Shiffrin’s work, the Baddeley’s Model of Working
Memory(Baddeley, 2018) presents more detailed
modeling of short-term memory, where the work-
ing memory during human’s simultaneous ponder-
ing and reasoning on the perceived information is
considered as an independent processing unit of

instant memories instead of just a sub-component
of short-term memory. These two studies provide a
supportive theorem to our model KARL to compute
the interaction between the short-term extracted in-
formation from natural language texts and the long-
term information stored in the knowledge graph. In
computer science, computational models inspired
by Memory Model theories proved the feasibility
of implementation in the domain of dialog ques-
tion answering generation(Chen et al., 2019) and
questionanswering(Wang and Nyberg, 2015). But,
unlike the prior design(Chen et al., 2019) which
incorporated the long-term memories into both the
encoder’s and the decoder’s structures, our model
takes the knowledge graph in the component for
Long-term Memory, as the role of long-term mem-
ory and considers the generated query vector in
Component II as the representation of short-term
memory.

2.2 Knowledge-Based Question Answering

For the recently published knowledge-based ques-
tion answering models(Cui et al., 2019; Ding et al.,
2019; Das et al., 2017; Huang et al., 2019) which
also attempt to answer a question with explainable
reasoning, they store their knowledge in three styles
of methods. The models of the first style(Cui et al.,



2019) is to store knowledge in the traditional type
of knowledge graph, such as Wikidata and DBpe-
dia, which are already prepared and fixed exter-
nal knowledge bases. On the contrary, the second
type(Ding et al., 2019) tried to build the graph from
texts as the model training goes on, whose knowl-
edge base, in short, can be generated by the in-
stant segmentation or extraction when building the
model. The third type, it shows an ambition to go
beyond the restricted structure of nodes connected
with edges, instead they transform the graph into
homogeneous or heterogeneous embedding spaces.
But for this type of method(Huang et al., 2019), on
one hand it alleviates the limitations brought by a
fixed graph structure on the other hand it requires
more time and resource to train a set of embed-
ding(Yang et al., 2014) from a knowledge graph at
the cost of losing much explicit information in the
concrete nodes and edges. What’s more, once the
knowledge graph gets re-edited, i.e. several nodes
modified or a few edges redirected even deleted
which causes an impact over the whole graph, then
the embedding needs to be trained again.

The strategies used by current knowledge-based
question answering models can be typically classi-
fied into two branches. The first is to search for a
path and arrive at the answer’s node in the knowl-
edge graph. The path-searching, it can be done by
pattern matching of the text (i.e. matching some
phrases or vocabulary) in a graph that’s constructed
with the segmented parts from texts, or it can be
helped by algorithms of reinforcement learning in
wandering the path towards the right answer node
with a simplified reward function that if it is right
path then return a positive reward value else return
a negative value to update its learning state.

3 Architecture

The model architecture can be seen as three compo-
nents to bridge the gaps among the three states. The
cognitive process is perpetuated with the three-state
pipeline.

3.1 Sensory Memory
The Sensory Memory component of our model is
a question encoder incorporated with a pre-trained
language model.

3.1.1 Language Modeling
The pretrained language model(Dai et al., 2019;
Radford, 2018; Devlin et al., 2018) helps the model
in better extracting the semantic information from

a rather short question sentence that lacks of abun-
dant contextual background information. The pre-
trained language model works in two layers, in the
architecture’s sequence-to-sequence encoder, and
in decoder (Sutskever et al., 2014). This design is
grounded in the previous efforts from neuroscience
and psychological experiments(Cao and Perfetti,
2016; Kuhl, 2010; May L, 2011) on the observa-
tion and analyses of how human brain neural struc-
ture differently responses to reading familiar and
unlearned languages(Cao and Perfetti, 2016; Kuhl,
2010) and how the psychological activities develop
during these readings(May L, 2011). These re-
searches assert that a pre-acquired language sys-
tem(May L, 2011) for a learned language is nec-
essary for the process of perceiving external infor-
mation into internal sensory memory. Without the
pre-acquisition of the language, it is not only im-
possible to interpret the language into our memory
system but also tended to cause the psychological
anxiety for unlearned language with a vibration
effect in the neural aspect. Thus, in our compu-
tational cognitive modeling of memory states for
reasoning in knowledge-based question answering,
it is reasonable and essential to introduce the pre-
trained language model to serve the role as the
pre-acquired language system works in interpret-
ing the information from natural language question
sentences.

In regards to the length limited and the lack of
context of a question sentence, the semantic bias
can be a problem in the process of comprehen-
sively and multilaterally interpreting the sentence
into sensory memory. For example, the question
”where is the bank of paris” can be both the river
beach of Paris city and a financial institution of
Paris. Without the pre-trained language model, the
encoding for such sentences will be unilateral and
limited in information.

First, in the encoder, the BERT(Devlin et al.,
2018) outputs the embedded sentence tensor as
the input of the Encoder-attention layer. Through
this process, the sentence gets weighted by the
trained parameters in the pre-trained model which
is proven to be efficient in universal language repre-
sentation(Edunov et al., 2019). Our model incorpo-
rates the BERT into encoder-decoder gets inspira-
tion from the BERT-fused-NMT(Zhu et al., 2020).
Then, in the decoder, there’s also an attention layer
that accepts the sentence embedding from BERT.
This strongly helps in better maintaining the se-



mantic information of question sentence all along
through the encoder to the decoder.

3.1.2 Encoder
We construct the encoder with an attention
layer and a feed-forward layer. The attention
layer(Vaswani et al., 2017) consists of two attention
mechanisms to compute the output from the pre-
trained language model and the tokens index tensor
from the embeddings of the segmentation of sen-
tence. We use the general design of attention layer
from the paper(Vaswani et al., 2017), denoting the
Key, V alue, andQuery in the original algorithm
as K ,V , andQ, then the attention layer is defined
as

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

headi = Attn(QWQ
i ,KW

K
i , V W

V
i ) (2)

Then we build the multi-head attention function as
follows, the concat is the function to concatenate
the tensors,

MultH(Q,K, V ) = concat(head1, ..., headi)W
O

(3)
which’s used in the Encoder-attention, Self-
attention of encoder, the Encoder-decoder Atten-
tion, Decoder-attention of decoder depicted in the
Figure22. The structure of feed-forward layers
in our model is position-wise feed-forward net-
work(Vaswani et al., 2017; Ott et al., 2019) that
each time adds up the two outputs from the previ-
ous two attention mechanisms through layer nor-
malization(Vaswani et al., 2017). This structure is
also used in both the encoder and the decoder.

3.2 Short-term Memory
The Short-term Memory is the decoder part for the
query tensor generation, where reflects the explain-
able logic reasoning of the triples in the question
sentence.

3.2.1 Decoder
The decoder component consists of three layers.
The first is an attention layer, following with the
second attention layer, and the last is a feedforward
layer. The second layer is stacked with two parallel
attention mechanism that respectively accepts the
output tensor from the last layer of the encoder and
the output from the pre-trained language model,
and the outputs of these two attention mechanisms

will be added and normalized at the end of the sec-
ond layer as the input for the third layer. At last,
as the output of the third layer, a query tensor is
generated, which represent a SPARQL query sen-
tence that can fetch back a correspondent entity in
the knowledge graph. The generated query tensor
is a one-dimension integer tensor, in which each
integer element is a numeric index of one token
in SPARQL language. To better understand how
the SPARQL query works in interpreting the basic
logical structure of the entities and relations in a
question sentence, Figure 4 is two examples that
visualized the comparison and relation of the natu-
ral language question with its tokenized SPARQL
representation and the matching answer entity in
the knowledge graph.

3.2.2 Generation of Query Tensor
This Figure 4 displays the two types of queries
in SPARQL language. In a query, the core is
the clause starting with WHERE surrounded by
two braces. The first type starting with SELECT
is to query a certain entity node. And, the sec-
ond type starting with ASK, different from the
first type, is to assert whether the RDF relations
described in the WHERE exist, if it exists re-
turn True else False. In the WHERE clause,
there are single or multiple triples in the form of
〈head entity, relation, tail entity〉 , e.g.in the
examle for Type.1 〈var, dbo : restingP lace, dbr :
Great Pyramid of Giza〉, and the triples are
separated by a dot . In these triple, those tokens
starts with string var are the representative symbols
of those undetermined entities. So, these generated
query tensors can be mapped to a list of SPARQL
tokens and join into a string of query which’s able
to fetch back certain entities nodes through the
server endpoint of a knowledge. Even though the
graph construction of a knowledge base is periodi-
cally modified, the verbal form of query for th cer-
tain answer can remain stable. In some rare cases,
although the name of certain entity or relation will
get renamed, e.g. the Obama, dateOfBirth, var
might turn to Obama, birthday, var, the seman-
tic similarity based on vector cosine distance be-
tween the adding-up of embeddings of Obama and
dateOfBirth the embedding of Obama and birth-
day. As a result, according to the algorithm of
TransE(Bordes et al., 2013), in the embedding
vector space of knowledge representation, the en-
tity head plus the relation equals to the entity tail,
and the entity tail minus the relation equals to the



entity head .

3.2.3 Reasoning with the Query Tensor

SPARQL Query SPARQL query can be consid-
ered as a path that can wind through the entity
nodes and relation edges and finally arrive at the
answer node. The interesting part of SPARQL is,
its nodes and edges are determined by their verbal
form of names, i.e. the composition of the vocab-
ularies used in the names of the entity or relation.
In short, as an analogy that maybe not very de-
scriptive, our sequence-to-sequence model is an
laser-gun sharpshooter who picks up the natural
language questions as the bullets and shot different
bullets as laser vectors in different directions into
the vector space, as the vector space develops our
model learns to adjust the shooting and improves
its hit rate at the target entities.

Reasoning The generated query tensor, after
embedding, will be parsed into a graph of triples
for non-monotonic reasoning(Hunter, 2018).
That’s to say, preasuming that in each triple we
have head+relation=tail in the knowledge-graph
vector space following closed-world assumption,
if a triple is defaulted (i.e., the triple contains the
uncertain variable entity), the defaulted variable en-
tity can be represented by: vector(entityhead) =
vector(entitytail) − vector(relation), if
entityhead is var; vector(entitytail) =
vector(entityhead) + vector(relation),if
entitytail is variable. Similar to TransE(Bordes
et al., 2013), we use GloVe(Pennington et al.,
2014) to embed the tokens in triple to calculate
the representation vector for the query in vector
space. For instance, the token for the entity of
City of Westminster in SPARQL language is
dbr:City of Westminster, then the embedding for
this entity is the add-up of the GloVe embedding
of the city and the Westminster after removing the
stop-word the. The algorithm for calculating the
query representation vector is a loop: if the triple
contains only one variable, the variable can be
easily calculated by the other two certain elements
in triple; else if the triple contains more than one
variable, we search other triples that contain one of
these variables. If the searched triple also contains
variables in addition to the previous one, we trace
the new variable back to search other triples. This
will be considered as build the triples of the query
into a graph with a tree structure in Figure 4.

3.3 Long-term Memory

In Long-term Memory, there are two major parts:
the knowledge graph, and the reward function. The
reward function is the core of the reinforcement
learning of vector space, where the SPARQL query
towards the knowledgebase is turned into a vector
and this vector’s distance is the objective to be
optimized.

3.3.1 Knowledge Graph As Vector Space

The long-term knowledge storage structure of the
Sensory Memory component in our model KARL
is the knowledge graph of DBpedia. A knowledge
graph can be represented in an embedding vector
space, where the entities and relations are mapped
as vectors in the vector space. This is highly ef-
ficient for more direct computation of the triples,
in the form of calculable embedding tensors. In
the embedding representation of the knowledge
graph, which is elaborated in the methodology of
TransE(Bordes et al., 2013) and DistMult(Yang
et al., 2014), the problem of pointing the query to-
ward the answer entity can be achieved with the
arithmetic operations of the embedding tensors.
Thus, we transform the embedding vector space
of a knowledge graph into a vectorized environ-
ment for reinforcement learning.

3.3.2 Reward Function And Reinforcement
Learning

Since the query can be embedded into a vector that
arrows at a certain point in the space, the metric
for how to measure the loss between the generated
query tensor and the correct query tensor is defined
as a function that calculates the similarity based
on cosine distance. The objective function is to
maximize the similarity by minimizing their cosine
distance.

To design our reward function, we first set a
label-smoothed cross-entropy function to get the
loss of distribution of the generated query as the
basis value of the reward. Then, on this basis, we
calculate the cosine similarity between the gener-
ated query and its standard correct query to get a
value as an additional weight for the basis cross-
entropy loss value. Finally, the model multiplies
the basis cross-entropy loss with the weight of co-
sine similarity. After the training of each epoch,
by comparing the current loss of the latest epoch
with the best loss among the previous epochs, the
model automatically selects the training state with



Figure 4: For vivid case studies, here is the figure displaying three columns:1)Reasoning Type-I, is the logic
structure for the first type of query which aims to select an entity that conforms with all the premises(i.e. all
the triples in the query); 2)Reasoning Type-II, is the logic structure for the first type of query which aims to ask
whether all the containing triples conform to the logic relations in the query, the answer of which is true or false
in closed-world assumption of a knowledge graph; 3)it is the method in section3.2.3 for calculating the variables
from the given entities and relations.

the best performance to update for optimization in
the training.

States: Defining the whole embedding vec-
tor space as the state space S with all its valid
triples T = {(ehead, r, etail)|ehead ∈ E, etail ∈
E, r ∈ R}, T ∈ S where R and E denote all en-
tities and relations in S. the model KARL is the
agent that’s expected to transform the natural lan-
guage question through a sequence-to-sequence
structure into the query tensor that represents the
basic logic triples in the form of SPARQL query
language, in order to point the query as accurately
as possible to the answer entity. Thus, a state is
represented by the generated query tensors q ∈ Q
, Q = {t(ehead, r, etail)|ehead ∈ E, etail ∈ E, r ∈
R, t ∈ T} .

Observations: The agent KARL observes the
natural language questions, interpreting them to
query tensors that are as close as possible to the
expected target entity in the graph.

Actions: The actions are the query tensor gen-
eration3.2.2. The generated query tensor from in-
terpreting its natural language question is required
to contain all the triples with the potential entities

and relation in the question to form a sequence of
SPARQL queries to reach the answer entity.

Transition: The model’s training evolution for
the environment is driven by the semantic simi-
larity distance(Wieting et al., 2019) towards the
target. The transition is achieved by updating the
loss of the generation distribution of the query ten-
sor, utilizing minimizing the label-smoothed cross-
entropy(Müller et al., 2019) loss compared with
the distribution of the optimal query. The label-
smoothing turns the label yk into yLSk , with denot-
ing pt as the probability of correct generation, to
get yLSk = yk(1 − α) + α, yk ∈ {0, 1}, then the
label-smoothed cross-entropy is defined as

H(y, p) =
K∑
k=1

−yklog(pk) = −log(pt) (4)

Reward: The rewards in the vector space of the
knowledge graph are continuous, and this reward
is considered as a weighted value based on the
label-smoothed cross-entropy loss. Denote by R,
vectorgen, and vectorgold respectively the reward,
the generated query’s embedding vector, and the



correspondent golden-standard query’s embedding
vector, with settingR ∈ [1, 2], the reward is defined
as

R = 2.0− sim(vectorgen, vectorgold) (5)

where the sim is the similarity function from the
equation() mentoned above.

4 Experiment

4.1 Main Experiment

The encoder-decoder structure in our model is im-
plemented with the help of the package Fairseq(Ott
et al., 2019).

4.1.1 Dataset
The datasets for the experiments contain the source
data which are natural language questions and
the target data which the corresponding SPARQL
queries that provide the basic entity-relation to-
kens(Ricardo Usbeck and Ngomo, 2018; Soru et al.,
2018) and syntactic structure(El-Roby and Ammar,
2018) for the model to learn. Our training data is
from the DBNQA(Marx, 2018), and we evaluate
the model’s reasoning performance in knowledge-
based question answering with the tasks in QALD
datasets.

Training Data The DBNQA is the dataset for
training our model. To the best of our knowledge, it
is the largest natural language to SPARQL dataset
with different samples of SPARQL queries from
different development versions of the DBpedia. As
a result, the queries in DBNQA contains not triples
from multiple previous modifications. Thus, it is
one sufficient resource dataset to learning about the
changes in the verbal forms and the triple relations.

Preprocessing To enlarge the vocabulary vol-
ume for interpretation and generation also handling
the out-of-vocabulary phenomenon, the BPE(byte
pair encoding)(Sennrich et al., 2015) method from
neural machine translation is introduced into the
preprocessing works of both the source and target
data. We use BPE to get te subtokens of all the
vocabulary, and these subtokens are made into a vo-
cabulary dictionary with unique integer indexes for
each subtokens. During the sequence-to-sequence
structure that turns natural language questions into
query tensors, the vocabulary dictionary helps in
handling those vocabularies that are unprecedented
in the training dataset, which on one hand fortifies
the model’s flexibility and capacity in dealing with

the modification of entities and relation in knowl-
edge graph, on the other hand also improves its
ability in interpreting the flexible composition of
words in the natural language questions.

4.1.2 Evaluation

The QALD is an annual challenge for knowledge-
based question answering which provides updated
datasets that match each year’s modification in the
knowledgebase of DBpedia. QALD provides the
task where multilingual question answering over
DBpedia is available in eleven different languages
(e.g., English, Spanish, German, Italian, French,
Dutch, Romanian or Farsi). For our evaluation,
we currently choose the datasets for knowledge-
based question-answering in English. Each data
item contains a SPARQL query with its questions
written in multiple languages4. In our experi-
ments, we denote the given two official datasets,
the qald-9-train-multilingual.json and the qald-9-
test-multilingual.json, as Set-I and Set-II.

4.1.3 Results

For fair experiments, the evaluations were all run
on the online server of GERBIL1 which is the of-
ficial open platform to provide QALD bench. To
the best of our knowledge, the NSpM(Soru et al.,
2018) is the precedent state-of-the-art in neural
models which depends on translating natural lan-
guage questions into SPARQL queries with neu-
ral machine translation methods, we compare our
model’s performance with NSpM’s, the results
were calculated and recorded by GERBIL.

Up to QALD9, the non-neural models have been
dominating the leaderboard, and the previous neu-
ral models are not yet comparable with the non-
neural ones. In Table1, we show significant im-
provement compared to the neural model NSpM,.
In Set-I, as the highest score in leaderboard2, our
model is 52.78 percent higher than the precedent
neural model in F-1 score1; in Set-II, like the one
neural model that can be comparable with the rule-
based models, our model is 27.18 percent higher
than the precedent neural model in F-1 score1. It
is of our contribution to largely improve the neural
model’s performance in knowledge-based question
answering benchmarks.



Model Dataset C2KB P2KB RE2KB Macro-F1 on QALD

NSpM Set-I 0.049 0.049 0.049 0.0049
- Set-II 0.1733 0.18 0.18 0.0132

Our Model Set-I 0.4338 0.4338 0.4338 0.5327
- Set-II 0.2111 0.2133 0.2133 0.285

Table 1: Evaluation Results:In the header, in addition to the first column that indicates different neural models, there are four
metrics(et al., 2018): 1)C2KB(Concept to Knowledge Base.), aims to identify all relevant resources(i.e. the entities in a triple)
for the input question, which calculates the F-1 score of the resources generated by the model; 2)P2KB(Properties to Knowledge
Base), measure how well the model can identify the relevant predicates(i.e. the relation in a triple) in the question, and returns
the F-1 score; 3)RE2KB(Relation to Knowledge Base), calculates the F-1 score based on the correctness of the generated triples
from the question; 4)Macro-F1 on QALD, measures the models’ answering accuracy based on the precision and recall on the
over-all dataset.

System F1-train F1-test

Elon(dictionary-based) 0.1327 0.1001
gAnswer(graph-matching-based) 0.5307 0.4296
QASystem(rule-based) 0.3321 0.1995
TeBaQA(templates-based) 0.2678 0.2216
wdaqua-core1(rule-based) 0.4065 0.2887

our model(neural-network-based) 0.5327 0.285

Table 2: Contribution:we make the neural model com-
petable against the other non-neural methodologies.This
table shows the comparison between the latest models with
leading performances and our model. The previous models
were trained on the train-set and evaluated on both the train-
set and test-set. However, to see our model’s performance on
adjusting with modified versions of the knowledge graph, we
trained our model KARL on the DBNQA dataset that contains
no-longer valid queries. And, the DBNQA dataset was earlier
before the publication of QALD-9 dataset. Thus, the QALD-9
datasets are suitable for evaluating the knowledge-based ques-
tion answering ability in spite of the modifications varying
with time.

Encoder structure Accu

encoder with BERT 0.4722
encoder with XLNet 0.4763
encoder without any pretrained model 0.0297

Table 3: Encoder Ablation Study The accuracy different
in question classification by question encoding from variant
decoders.

4.2 Experiments on Ablation Study

4.2.1 Question Encoding
To investigate the differences in question encoding
brought by incorporating different pre-trained lan-
guage models, we use customized K-means(Pelleg
and Moore, 1999) with setting cosine-based simi-
larity as the metric for the distance between ques-
tion embeddings. In QALD, each answer for the
question is classified into different categories in the
knowledge graph, and this is the label for classi-

1http://gerbil-qa.aksw.org/gerbil/
config

fication. Here, denote by x, µ the encoded tensor
and the cluster centroid respectively, we define the
similarity function as

sim(xi, xj) =
cos(xi, xj) + 1

2
(6)

The clustering algorithm updates by calcu-
lating S

(t)
i =

{
xp : sim(xp, µ

(t)
i ) ≤

sim(xp, µ
(t)
j ) ∀j, 1 ≤ j ≤ k

}
with the µ(t+1)

i =
1

|S(t)
i |

∑
xj∈S

(t)
i

xj

to optimize the objective function

J =
N∑

n=1

K∑
k=1

rnksim(xn − µk)

. Denote by Accu, C the probability of predicted
category for the cluster and the prediction accuracy
by the similarity-based clustering respectively,

Accu =

K∑
k=1

p(xk|C)

We use Set-I as the training set and Set-II as the
testing set. Their results are shown in Table 33:

According to Table2, it shows that: first, the
encoders with pre-trained language model performs
better than the one without the pre-trained model;
second, the one with XLNet achieves higher but
subtle score than the one with BERT.

4.2.2 Decoder
The Table 4 compares structures using differ-
ent decoders. The structure with decoder of
bideirectional-RNN(Sutskever et al., 2014) and
the structure with decoder of vanilla Trans-
former(Vaswani et al., 2017) do not achieve sig-
nificant improvement compared to 1 performance
on F-1 score. And their improvements are not com-
petable with the non-neural models in Figure 2.

http://gerbil-qa.aksw.org/gerbil/config
http://gerbil-qa.aksw.org/gerbil/config


Decoder as Variant C2KB P2KB RE2KB Macro-F1 on QALD

Decoder of Bi-RNN with Attention(Sutskever et al., 2014) 0.18 0.1867 0.1867 0.0262
Decoder of vanilla Transformer(Vaswani et al., 2017) 0.18 0.1867 0.1867 0.0391

Table 4: Decoder Ablation Study evaluated on Set-II We remove the component of reinforcement reward function, only
keeping the major encoder-decoder structure. We leave the encoder part unchanged as proposed in our model, and choose the
two types of decoders that are frequently used, i.e., the “Decoder of Bi-RNN with Attention ” and the “Decoder of vanilla
Transformer”. With the control variates method, the two experimental models both have the same encoder incorporated with
BERT-base-uncased and are trained on DBNQA. The two are evaluated on Test-set.

4.2.3 Vector Space
The generated query tensor is parsed into a vec-
tor pointing towards the answer in the knowledge-
graph vector space. We experiment to evaluate the
answer prediction ability by ranking the cosine-
based similarity between the query vector and all
the vectors of answer entities in the Set-I and Set-
II. The MRR(Mean Reciprocal Rank), Hits@10
and Hits@100 are to measure the accuracy that the
vector can infer to the correct answer.

Dataset MRR Hits@10 Hits@100

Set-I 0.0065 0.0288 0.2877
Set-II 0.0163 0.0808 0.7576

Table 5: Ablation Study on the Query Vectors’ Answer
Prediction: the generated query will be parsed and embeded
into a query vector, we use this same method to generate the
query vectors based on the given SPARQL query set in Set-I
and Set-II and evaluate the accuracy that the vector infers
towards the answer.

5 Discussion and Conclusion

In the model KARL, we propose computational
cognitive modeling of the memory model for rea-
soning on knowledge-based question answering.
The research of how the external information is
transformed then connected towards the stored in-
formation via an explainable logic process is still
of much empty space to be explored. Besides, by
challenging the previous leaderboard dominated
by rule-based and matching-based systems, our
methodology KARL demonstrates the feasibility
of neural reasoning modeling in knowledge-based
question answering, showing significant improve-
ments in benchmarks.

Why does the model build vectors for entities
with the GloVe instead of the knowledge embed-
dings? As we have discussed in the previous sec-
tion2.1, we focus on the reasoning modeling that
can maintain stable in spite of the periodical modi-
fications of the knowledge base, which in human

cognition is the belief revision(Chi, 2008; van Ben-
them, 2007), i.e., the re-edition of stored knowl-
edge. And, the modification of a knowledge graph
will inevitably cause biases upon its previous em-
beddings. We would hope to find a method that
can be of a certain level of independence to the
knowledgebase. The SPARQL query can be con-
sidered as a path to arrive at the expected answer
entity. However, if a query is only represented by a
list of tokens, the query easily gets expired when it
loses its semantic meanings during the knowledge
modification and tokens change. Thus, we evalu-
ated how well this vectoring method can achieve in
the experiment5 of ranking evaluations on answers
prediction.

In fact, is the SPARQL query a restriction of
the development of knowledge-based reasoning
and question-answering? Surely yes, not only
the query but also the knowledge graph itself is
a barrier, as one’s self is just its own biggest en-
emy. The query, entity(node) and relation(edge)
in a knowledge graph are categorized into the on-
tologies, however, the relations and ontologies for
the same item can be varying according to different
contexts. Thus, a computable probabilistic graph
model for knowledge storing will be better in han-
dling the likelihood of choosing the right path when
standing at one entity and facing multiple existing
relation edges, for instance, if an entity both has
the relation edges husband and wife, in complex
context, which relation is more pertinent for the
context who is her spouse.

For the future works: As the two questions
discussed above, we will continue to: (1) Auto-
simultaneous vectorization of the knowledge base,
which gets rid of the training the embeddings again
when the knowledge graph modifies. (2) Work on
more profound knowledge-graph reasoning. We
are currently staying in an initial stage for explor-
ing the logic of knowledge, and the computational
non-monotonic reasoning modeling is worth more
attention.
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