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ABSTRACT

Meta reasoning behaviors work as a skeleton to guide large language model
(LLM) reasoning, thus help to improve reasoning performance. However, prior
researches implement meta reasoning skeleton with manually designed structure,
limiting ability to adapt to query-specific requirement and capture intricate logi-
cal dependency among reasoning steps. To deal with the challenges, we represent
meta reasoning skeleton with directed acyclic graph (DAG) to unify skeletons pro-
posed in prior works and model intricate logical dependency. Then we propose
AutoMR, a framework that searches for query-aware meta reasoning skeleton au-
tomatically inspired by automated machine learning (AutoML). Specifically, we
construct search space based on DAG representation of skeleton and then formu-
late the search problem. We design a dynamic skeleton sampling algorithm by ex-
panding meta reasoning skeleton along with reasoning context at inference time.
This algorithm can derive any meta reasoning skeleton in search space efficiently
and adapt skeleton to evolving base reasoning context, thus enable efficient query-
aware skeleton search. We conduct experiments on extensive benchmark datasets.
Experimental results show that AutoMR achieves better reasoning performance
than previous works broadly.

1 INTRODUCTION

Large language model (LLM) demonstrate superior performance on complex tasks such as math
Q&A when equipped with step-by-step reasoning ability (Wei et al., 2022; OpenAI, 2024;
DeepSeek-AI, 2025). Researches on cognition divide reasoning into two levels: base reasoning
(reasoning for problem directly) and meta reasoning (higher-level reasoning about how to rea-
son) (Flavell, 1979). Meta reasoning, considered a unique ability of human cognition (Ackerman
& Thompson, 2017), entails awareness of one’s reasoning process and the deliberate selection of
reasoning strategies. For instance, when encountering difficulty with math problem, humans shift
solution by thinking “This approach is not working; I should try another method...” or they may
verify their reasoning steps by reflecting “Some steps may have errors. Let me check a previous
step...” These behaviors do not directly solve the problem itself but instead organized as skeleton to
guide the reasoning process.

Inspired by such human behaviors, previous studies proposed to incorporate meta reasoning into
LLM to guide their reasoning process and thereby enhance performance on complex reasoning
tasks (Gao et al., 2024; Qi et al., 2025; Sui et al., 2025; Liu et al., 2025). Recent approaches typically
predefine a set of meta reasoning strategies for intermediate reasoning steps and employ manually
designed structures (e.g. sequential, parallel and tree) to organize the strategies into meta reasoning
skeleton. For example, rStar (Qi et al., 2025) and Meta-Reasoner (Sui et al., 2025) both define step-
wise strategies such as decomposing question into sub-questions. rStar leverages Monte Carlo Tree
Search (MCTS) (Coulom, 2006) to select and organize strategies, whereas Meta-Reasoner arranges
them in a sequential way and selects at each step via multi-armed bandit (Gittins, 1979). An intuitive
illustration of these manually designed skeleton is provided in Figure 2.

The aforementioned methods based on manually designed meta reasoning skeleton improved LLM
reasoning performance. However, evidence from cognition science suggests that meta reasoning
skeletons should vary for different queries, due to reasoner ability, query difficulty, discipline char-
acteristic, etc. (Scott & Berman, 2013; Erickson & Heit, 2015; Rouault et al., 2018). For example in
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Figure 1, knowledge-intensive problems (Q3 about biology) rely more heavily on knowledge-recall
strategy while shallower thinking depth than thinking-intensive problem (Q1 and Q2 about math).

Figure 1: Human behaviors in meta reasoning for three questions
about math (Q1 and Q2) and biology multi-choice (Q3).

More difficult problems (Q1)
may demand more parallel rea-
soning branches with solution
exploration strategy than easier
one (Q2). Besides, the logical
dependency of reasoning steps
can be too intricate (Besta et al.,
2024) to capture by sequen-
tial, parallel, or tree-structured
skeletons in prior works. The
skeleton of Q1 involves parallel
branches (steps 1–3 forming one
branch while steps 4–6 another)
and multiple dependency (step 6
simultaneously depends on step
5 as well as step 3 from early
branches). Skeleton of Q3 sum-
marizes two steps (step 2 and 3)
to make it answer confident. The query-specific requirement and the intricate logical dependency
among reasoning steps make it challenging for existing methods with limited manually designed
meta reasoning skeletons (Figure 2) to work well across all queries.

Automated machine learning (AutoML) seeks to generate machine learning configurations for given
task in a data-driven manner (Shen et al., 2024), thereby reducing the need for manual design and
tuning for neural architectures (Elsken et al., 2019) and hyperparameter (Feurer & Hutter, 2019).
Inspired by success of AutoML, we propose AutoMR, a framework that automatically searches for
query-aware meta reasoning skeletons to guide LLM to reason for correct answer, where we repre-
sent meta reasoning skeleton as single-source edge-heterogeneous directed acyclic graph (DAG) to
cover skeleton in prior works and capture intricate logical dependencies. Specifically, we first de-
sign an extensive DAG-based skeleton search space. Then we formulate the meta reasoning skeleton
search problem, which poses two technical difficulties specific to query-aware skeleton search. The
first is to derive any skeleton for given query from the extensive search space efficiently. The other
is to adapt derived skeleton to evolving base reasoning context, considering inherent step-by-step
property of reasoning process. To tackle the difficulties, we design a skeleton sampling algorithm
that expands meta reasoning skeleton node by node dynamically based on base reasoning context at
inference time. We prove that this algorithm introduces minimal additional computation overhead
compared with naive LLM reasoning process. Compared with prior meta reasoning method, our
search for meta reasoning skeleton improves reasoning performance. Moreover, we show that our
search and inference algorithm is efficient theoretically and empirically.

We summarize our contributions as follows:

• We propose AutoMR to search for query-aware meta reasoning skeleton, where we represent meta
reasoning skeleton as DAG to capture intricate logical dependency among reasoning steps.

• We design an extensive skeleton search space based on DAG. Additionally, we introduce an dy-
namic skeleton sampling algorithm that can derive any skeleton in search space efficiently and
adapt skeleton to evolving base reasoning context at inference time.

• We conduct experiments on benchmark datasets across different disciplines and difficulties. Ex-
perimental results show that AutoMR demonstrates better reasoning performance than previous
meta reasoning methods, with high search and inference efficiency.

2 RELATED WORKS

Meta Reasoning in LLM. Meta reasoning is an ability of human cognition involving determin-
ing reasoning strategy about how to reason (Flavell, 1979; Ackerman & Thompson, 2017). Previ-
ous works explored to introduce meta reasoning into LLM to guide it reasoning (Liu et al., 2025;
Alazraki & Rei, 2025; Yan et al., 2025; Xiang et al., 2025; De Sabbata et al., 2024; Wan et al.,
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2025; Didolkar et al., 2024). Meta Reasoning Prompt (MRP) (Gao et al., 2024) includes classic
strategies like CoT (Wei et al., 2022), Self-Refine (Madaan et al., 2023), etc. It first prompts LLM to
choose one strategy for given query and then reason guided by that strategy. Strategies in MRP are
holistic, meaning that MRP uses only one strategy for the whole reasoning process without adjust-
ing when reasoning progressing. In contrast, recent methods usually use step-wise meta reasoning
strategies (Yang et al., 2025a;b) and choose strategy for each step during reasoning. For example,
rStar (Qi et al., 2025) define step-wise reasoning strategies such as proposing a sub-question, and
then use MCTS to build tree-structured meta reasoning skeleton. Meta-Reasoner (Sui et al., 2025)
also uses step-wise reasoning strategies but organizes them with sequential skeleton and uses multi-
armed bandit to select strategy for each step. This kind of methods incorporate more fine-grained
meta reasoning guidance and allow adjusting strategies during reasoning, thus performing better
empirically than MRP.

Automated Machine Learning (AutoML). AutoML aims to search for high-performing machine
learning (ML) configuration for given task automatically, reducing demand for human manual de-
sign (He et al., 2021) to adapt to task-specific requirement. Typical AutoML atomizes ML configura-
tions to construct search space and develop search algorithm to find effective candidates (Shen et al.,
2024). Previous works implemented this idea for multiple ML configurations such as neural archi-
tecture search (NAS) (White et al., 2023; Liu et al., 2019; Pham et al., 2018) and hyperparameter
search (Yang & Shami, 2020; Shen et al., 2023), and have achieved success. For example, architec-
tures found by NAS surpass human-designed ones on various tasks, such as computer vision (Real
et al., 2019) and natural language processing (So et al., 2019). Recent works explored integrating
AutoML with LLMs, like automating LLM agent workflow building (Zhuge et al., 2024; Zhang
et al., 2025a; Saad-Falcon et al., 2025). However, applying AutoML method to search for meta rea-
soning skeleton is non-trivial due to factors specific to LLM reasoning task, including query-specific
requirement, intricate logical dependency, and evolving reasoning context.

3 PROPOSED METHOD

We introduce AutoMR that automatically searches for query-aware meta-reasoning skeletons to
guide LLM reasoning. Section 3.1 presents a unified perspective on meta-reasoning skeleton in
existing meta-reasoning methods based on DAG to capture intricate logical dependency. With this
unified view, we construct our skeleton search space. Section 3.2 formulates the meta-reasoning
skeleton search problem and details our overall search strategy. Finally, Section 3.3 discusses com-
parison with techniques in AutoML and analyzes our advantage specific to LLM reasoning tasks.

3.1 SEARCH SPACE

Given a query q, let S denote the set of meta reasoning strategies for intermediate reasoning steps.
The objective of a meta-reasoning method is to organize strategies from S into meta reasoning
skeleton to direct LLM on performing reasoning to answer q.

Prior works use manually designed meta reasoning skeleton structure (e.g. sequential, parallel, tree-
structured in Figure 2). To unify these designs and capture intricate logical dependencies (Figure 1),
we represent meta reasoning skeleton as a single-source, edge-heterogeneous directed acyclic graph
(DAG). Formally, a meta reasoning skeleton can be represented as a DAG α = (V, E , τ,S). Node
ni = (i, ci) ∈ V representing a reasoning step, i being the topological index and ci textual content
of the step. Edge (i, j) ∈ E indicating reasoning progression from ni to nj . τ : E → S maps edge
to its strategy, under which LLM generates the reasoning text. There exists a unique source node n0

with c0 = q, making α single-source. With above representation, we have Proposition 1 to cover
the skeletons in prior works. See Appendix B.1 for proof.

Proposition 1. Sequential, parallel, and tree structured skeletons can all be represented as single-
source, edge-heterogeneous DAGs.

Based on this unified view, we construct search space to contain all skeletons represented by single-
source edge-heterogeneous DAG as shown in Figure 2, as long as the sum of tokens for all node
content except source node (i.e. number of tokens generate by LLM) dose not reach token budget
B, where B is a hyperparameter.
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Figure 2: Overview of the AutoMR. Top: Illustration of search space, an example skeleton sampling
process and resulting sampled skeleton. Node 0 is the single source node representing query. Steps
(1)(2)(3) show how nodes 1, 2, and 3 are successively added to partial skeleton. For clarity, we
display only 4 nodes and 2 types of meta reasoning strategies (red and blue edges), and the zero
option (gray edges); In practice, the number of nodes can be arbitrary if token budget is satisfied and
we actually implement richer strategies. Bottom: Search space subsumes sequential, parallel, and
tree-structured skeletons.

We summarize the meta reasoning behaviors in previous works about LLM reason-
ing (Gandhi et al., 2025; Chen et al., 2025), which gives meta reasoning strategy set S =
{Next,Reflect,Explore,Decompose,Summarize,Recall,Answer}. All of these meta reasoning
strategies are implemented by designed prompt. Functions and prompt of these strategies are sum-
marized in Table 2 in Appendix A.1. Following previous works (Liu et al., 2019), we also introduce
a special zero edge type to indicate an edge in fact dose not exists.

Given meta reasoning strategy set S and token budget B, search space A is defined as follows,

A =
{
α = (V, E , τ,S) | α is single-source DAG, τ : E → S,

∑
ni∈V\{n0}

|ci| ≤ B
}
, (1)

where V \ {n0} is node set without n0 and |ci| denote number of tokens in content ci. As illustrated
in Figure 2 (bottom), this search space includes all single-source DAGs, thus subsuming skeletons
considered in prior meta-reasoning methods, such as sequential, parallel, and tree-structured forms.

3.2 SEARCH STRATEGY

Next, we now provide the formal definition of meta-reasoning skeleton search problem. Considering
that the meta-reasoning skeleton should depend on the specific query (e.g., query difficulties and
discipline characteristics), the problem is formulated as follows.
Definition 1 (Meta-Reasoning Skeleton Search Problem). Let S denote meta reasoning strategy set
and A the skeleton search space defined on S. (q, a) is query–answer pair from dataset D. Given
policy P that derives a meta reasoning skeleton αq ∈ A for query q, the search objective is

argmaxP E(q,a)∼D,αq∼P (·|q)[r(a,LLM(q;αq))]. (2)

Here LLM(q;αq) denotes LLM reasoning on query q under guidance of αq , and r measures reason-
ing performance against the ground-truth answer a.

When implementing a policy P for deriving a query-aware skeleton, this search problem poses
two technical challenges specific to LLM reasoning. First, the search space is extensive, so the
derivation procedure must efficiently explore it to recover arbitrary skeletons in it. Second, Because
reasoning process unfolds step by step (Wei et al., 2022; Nye et al., 2021), the derivation process
should adapt meta reasoning strategy at each step in skeleton to evolving base reasoning context,
rather than fixing the skeleton a priori before reasoning for given query.
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To address above difficulties, Section 3.2.1 introduces a skeleton-sampling algorithm that expand
skeleton node by node dynamically, along with base reasoning context at inference time. We prove
that the algorithm can cover any skeleton in search space within minimal additional computation
compared with naive LLM reasoning process; Section 3.2.2 presents the overall search algorithm.

3.2.1 DYNAMIC SKELETON SAMPLING AT INFERENCE TIME

We introduce an efficient algorithm that sample skeleton dynamically to implement policy P (· | q).
Considering step-by-step nature of reasoning, step-wise meta reasoning strategy should adapt to
current base reasoning context. This makes it necessary to interleave meta reasoning with base
reasoning. To realize this, we sample skeleton starting from the single source node as a partial
skeleton, and then expand it node by node in topological order, dynamically align with step-by-step
base reasoning at inference time .

Algorithm 1 Dynamic Skeleton Sampling at in-
ference time
Require: Query q, token budget B
Ensure: Meta reasoning architecture αq

1: Initialize αq as empty DAG, i← 0
2: while B is not reached do
3: for j from i-1 to 0 do
4: Sample s(j,i) ∼ pθ(s(j,i)|cj , s(>j,i), c:i−1)

with MLP
5: end for
6: if all sampled strategies are zero then
7: Generate final answer and return
8: end if
9: Generate content ci for ni, i← i+ 1

10: end while
11: Generate final answer

Specifically, we set content c0 of n0 as q, form-
ing a partial architecture. Expansion then pro-
ceeds in topological order. For each target node
ni, we determine the existence and types of in-
coming edges before (optionally) generating its
content. Concretely, when visiting ni we first
activate it (no content yet) and perform follow-
ing three steps.

Step1: Determine incoming edges for meta
reasoning. Traverse existing nodes nj (0 ≤ j ≤
i−1) in reverse order (from ni−1 to n0) and sam-
ple a strategy s(j,i) ∈ S ∪{zero} for each poten-
tial edge (j, i). Each sampling is conditioned on
the predecessor content cj , the already chosen
strategies s(>j,i) for ni, and the current base rea-
soning context c:i−1 (the contents of n0, . . . , ni−1), which is computed as p(s(j,i)|cj , s(>j,i), c:i−1).

Step2: Check completion. If all sampled strategies are zero (no edge enters ni), we deem the
skeleton complete without adding ni and prompt the LLM to produce the final answer from the
current context c:i−1.

Step3: Generate base reasoning content. If at least one incoming edge exists, we prompt the
LLM under the guidance of the sampled strategies s(<i,i) (excluding zero) and the contents of ni’s
predecessors to produce the next base reasoning step; the generated text is assigned to ci, and ni

(with its incoming edges) is added as a node with content.

Then we repeat this expansion for ni+1 until Step 2 triggers or token budget is reached.

We implement p(·) with a multi-layer perception (MLP) parameterized with θ. The MLP takes
representations of cj , s(>j,i), and c:i−1 as input and outputs logits followed by softmax to obtain
distribution over S ∪ {zero}. These representations are cached byproducts of the ongoing LLM
inference (i.e. pooled hidden states), thus requiring no additional LLM calls. If the sampled skeleton
αq contains |V| nodes, its policy (also parameterized with θ now) log-probability factorizes as

logPθ(αq|q) =
∑|V|−1

i=1

∑i−1

j=0
log pθ(s(j,i)|cj , s(>j,i), c:i−1). (3)

The sampling process is shown in Figure 2 and formalized in Algorithm 1. According to Algo-
rithm 1, meta reasoning strategy sampling is conditioned on current base reasoning context at each
step, thereby yielding a query-aware architecture since reasoning context traces back to c0 = q.
Implementation details are in Appendix A.2. For Algorithm 1, we have Proposition 2.
Proposition 2. Algorithm 1 can derive any α ∈ A, within O(|V|2) additional MLP calls (line4)
compared with naive LLM reasoning process.

The time complexity of naive LLM reasoning process is proportional to B2. But |V| ≪ B because
one step usually contains many tokens, and MLP uses much less computation than LLM, so AutoMR
introduces minimal additional computation relative to naive LLM reasoning. We provide proof of
Proposition 2 and detailed efficiency analysis in Appendix B.2.
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3.2.2 OVERALL SEARCH ALGORITHM

With Pθ(αq|q) defined in (3), we follow REINFORCE (Williams, 1992; Zoph & Le, 2017), a pol-
icy gradient algorithm implementing unbiased empirical approximation of objective, to optimize θ.
Specifically, we sample batches with N query-answer pairs (qi, ai) from training set each time and
optimize θ with these batches iteratively. For each (qi, ai) in batch, we sample M skeletons αj

qi from
Pθ(·|qi) and evaluate their performance with r(·) respectively. The update to θ in each iteration by
estimated policy gradient with a batch is as follows, where η is learning rate:

θ ← θ +
η

MN

∑N

i=1

∑M

j=1
[r(ai,LLM(qi, α

j
qi))∇θ logPθ(α

j
qi |qi)]. (4)

The overall search algorithm and implementation is provided in Appendix A.3. We do not tune LLM
parameters directly, thus enabling efficient search. For inference, we follow Algorithm 1 for each
query to sample meta reasoning skeleton, generate base reasoning and output final answer.

3.3 TECHNICAL COMPARISON WITH AUTOML

Different from prior meta reasoning methods that rely on manually designed skeleton (Qi et al.,
2025; Sui et al., 2025), AutoMR draws inspiration from AutoML to search for query-aware meta
reasoning skeleton from DAG-based search space, thereby addressing query-specific requirements.
Technically, AutoMR is related to topics in AutoML such as neural architecture search. Recent stud-
ies have extended AutoML ideas to LLM-related tasks, such as automating agent workflow build-
ing (Zhuge et al., 2024; Zhang et al., 2025a). However, the unique properties of LLM reasoning tasks
make AutoMR particularly suited for meta reasoning skeleton search. First, reasoning queries often
exhibit highly specific demands, making a single meta reasoning skeleton insufficient. Second, the
reasoning process typically involves intricate logical dependencies. Third, reasoning unfolds step
by step, with the base reasoning context dynamically evolving as each new step is generated. These
characteristic fundamentally differs from those of neural architecture or agent workflow, which is
usually fixed for all queries or static during inference. For example, Prior approaches (Zoph et al.,
2018; Zhuge et al., 2024) generally output a single architecture or agent workflow for all queries.
While instance-aware methods (Cheng et al., 2020; Zhang et al., 2025a) produce input-specific ar-
chitecture or workflow that remain static during inference. Such differences in task properties makes
the search techniques in these methods perform well in their target scenarios but cannot be applied
to meta reasoning skeleton search directly. We compare these search techniques empirically by
ablation study in Section 4.3.

4 EXPERIMENTS

4.1 SETUP

Baselines. We implement the following types of baselines: (1) Classic methods, including Direct-
I/O and CoT (Wei et al., 2022). (2) Meta reasoning methods, including MRP (Gao et al., 2024),
rStar (Qi et al., 2025) and Meta-Reasoner (Sui et al., 2025). We also include MaAS (Zhang et al.,
2025a), a method using NAS technique to automate multi-agent workflow building.

AutoMR and all the baselines are implemented based on two LLMs including LLaMA3.2-3B-Inst
(hereinafter referred to as ”LLaMA”) (Meta-AI, 2024) and Qwen2.5-3B-Inst (hereinafter referred to
as ”Qwen”) (Qwen-Team, 2025) to avoid impact on experimental results caused by unique properties
of specific LLM (Gandhi et al., 2025). We set the same token budget to 1024 for all methods to en-
sure fair comparison. More implementation details of the baselines are introduced in Appendix C.1.

Datasets and Metric. We evaluate AutoMR and baselines on two domains, i.e. math Q&A
and general multiple-choice. For math Q&A, we choose GSM8K (Cobbe et al., 2021), MATH-
500 (Hendrycks et al., 2021), AMC (including AMC 2022 and AMC 2023) and Olympiad (only
open-ended text-only math subset to avoid influence from multi-modal and multilingual input in-
formation) (He et al., 2024) to evaluate. We use training split of MATH dataset to train AutoMR
and baselines that need training. For general multiple-choice, we choose MMLU-Pro (Wang et al.,
2024) and split it into four subsets as Science, Humanities, Social and Other referring to Zhang
et al. (2025b), to evaluate. We collect training split of MMLU-Pro to train. Details of these datasets
are summarized in Appendix C.2. We use Accuracy as metric to evaluate these methods .
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Table 1: The overall performance on math Q&A an general multi-choice. Letters after method
names means the used skeleton structure. S: Sequential; T: Tree; G: DAG; “-” means not applicable.

Method MATH-500 GSM8K AMC Olympiad

LLaMA Qwen LLaMA Qwen LLaMA Qwen LLaMA Qwen

Direct-I/O (-) 12.6 16.8 11.1 15.8 12.0 8.4 3.7 5.5
CoT (S) 36.8 61.6 71.1 85.3 21.2 34.9 11.9 26.2

MRP (-) 40.8 63.8 74.6 88.2 25.3 33.7 11.6 26.6
Meta-Reasoner(S) 44.4 65.4 76.8 87.0 26.5 36.1 13.1 27.4

rStar (T) 46.6 67.0 78.9 88.7 15.7 32.5 15.1 25.4

MaAS (S) 46.2 63.6 76.4 86.4 24.1 33.7 12.6 27.7

AutoMR (G) 50.2 69.6 81.9 91.5 30.1 38.6 17.4 30.4

Method Science Humanities Social Other

LLaMA Qwen LLaMA Qwen LLaMA Qwen LLaMA Qwen

Direct-I/O (-) 16.3 32.7 11.5 25.1 15.8 39.0 14.5 29.1
CoT (S) 31.5 41.6 22.4 28.3 37.3 51.5 31.3 39.8

MRP (-) 36.4 42.8 24.2 30.1 40.6 53.5 32.8 41.6
Meta-Reasoner (S) 44.3 45.4 30.6 31.9 47.2 55.0 36.4 42.2

rStar (T) 42.6 43.6 30.0 30.8 46.8 55.4 34.8 36.0

MaAS (S) 44.6 45.5 29.7 31.0 46.2 56.0 35.6 41.7

AutoTTS (G) 48.9 49.4 33.2 33.7 51.0 57.4 38.8 45.6

4.2 PERFORMANCE COMPARISON

We report the overall performance of AutoMR and baselines on math Q&A datasets and general
multiple-choice datasets (Table 1). Across both domains and model backbones, AutoMR consis-
tently achieves the best results, highlighting its broad effectiveness. Our findings can be summa-
rized as follows: (1). Effectiveness of meta reasoning methods. Meta reasoning approaches (MRP,
Meta-Reasoner, rStar, and AutoMR) consistently outperform the standard CoT baseline. Notably,
Meta-Reasoner—despite adopting the same sequential organization as CoT—achieves a substantial
improvement, underscoring the benefits of incorporating meta reasoning behaviors. (2). Impor-
tance of fine-grained meta reasoning strategies. Among meta reasoning methods, those that leverage
strategies for guiding intermediate reasoning steps (Meta-Reasoner, rStar, and AutoMR) outperform
MRP, which relies on holistic strategy. This result highlights the advantage of fine-grained meta-
level guidance during reasoning. (3). Advantage of DAG-based search space. Compared with
Meta-Reasoner and rStar, which rely on manually designed sequential and tree-structured skele-
ton respectively, AutoMR achieves superior performance. (4). AutoMR surpasses automatic agent
workflow MaAS, demonstrating that AutoMR is more proper for LLM reasoning tasks.

4.3 ABLATION STUDY

Influence of token budget scaling. Previous works shows that LLM reasoning performance im-
proves whentoken budget increases (OpenAI, 2024; Snell et al., 2025). We evaluate the perfor-
mance when scaling token budget B. We compare AutoMR with baselines able to scale token
budget. Specifically, for CoT we implement sequential scaling technique Budget Forcing (Muen-
nighoff et al., 2025) and parallel technique Majority Voting (Wang et al., 2023). We also choose
Meta-Reasoner and rStar as baselines. We do not include MaAS as baselines to evaluate be-
cause it do not provide scaling technique in original paper. The scaling technique implementation
details of these methods are in Appendix C.1. We evaluate on MATH-500 and Science based on
Qwen. According to results in Figure 3, we observe that when token budget increases, each method
improves performance on the whole. Specifically, the scaling efficiency on knowledge-intensive
Science subet is much slower than that on thinking-intensive MATH-500, according with recent
research (Zhao et al., 2025). Forcing sequential scaling (i.e. Budget Forcing and Meta-Reasoner)
scale slowly. Majority Voting based on parallel skeleton and rStar based on tree-structured skeleton
scale more efficiently than sequential ones. AutoMR achieve the highest scaling efficiency, because
search space based on DAG in AutoMR allows more extensive skeleton exploration.
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Figure 3: The scaling curve of AutoMR and baselines.
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Figure 4: The training and inference cost and performance of AutoMR and baselines.

Effectiveness of search strategy. We evaluate the effectiveness of search strategy in Section 3.2
against Random Search (RS) (Bergstra & Bengio, 2012), a common AutoML baseline (Li & Tal-
walkar, 2020). We also assess effectiveness of dynamic skeleton sampling algorithm by com-
paring it with two variants. Query-Invariant (QI), sampling single meta reasoning skeleton
shared by all queries of a task, as in prior NAS methods (Liu et al., 2019; Pham et al., 2018).
Complete in Advance (CA), sampling query-specific skeletons before reasoning starts but not
based on reasoning context (Cheng et al., 2020; Zhang et al., 2025a). Implementation details of
these sampling methods are in Appendix C.1. We compare them on MATH-500 and Science.

Figure 5: Ablation study on search strategy.

Method
MATH-500 Science

LLaMA Qwen LLaMA Qwen

RS 36.2 59.4 38.5 43.3
QI 37.2 60.2 37.3 43.9
CA 50.0 66.2 45.7 47.1

AutoMR 50.2 69.6 48.9 49.4

According to results in Table 5, AutoMR
achieves the best performance compared with
three variants, showing the effectiveness of pro-
posed search strategy. In terms of skeleton sam-
pling algorithm, AutoMR and CA both surpass
QI, showing the importance of query-specific
meta reasoning skeleton. Moreover, AutoMR
performs better than CA, demonstrating the ef-
fectiveness dynamic skeleton sampling algo-
rithm based on evolving reasoning context compared with the complete skeleton in advance.

Training and inference efficiency. To support theoretical analysis in Section 3.2.2 that AutoMR
incurs minimal additional computation, we evaluate both training and inference costs of AutoMR
and baselines requiring training, including Meta-Reasoner and MaAS, based on both Qwen and
LLaMA on MATH-500 dataset. We also implement GRPO (Shao et al., 2024), a reinforcement
learning method to to enhance LLM reasoning, based on LoRA (Hu et al., 2022) as a baseline in
our experiment setting. Results in Figure 4 show training cost (x-axis), performance on MATH-500
(y-axis), and inference cost (circle area). In terms of training, AutoMR and other two baselines re-
quire far less time than GRPO, which fine-tunes LLM parameters directly. However, only AutoMR
achieves comparable performance with Qwen and even surpasses it with LLaMA. In terms of in-
ference, AutoMR is slightly slower than naive reasoning process based on GRPO-trained LLM and
slightly faster than MaAS, while being substantially more efficient than Meta-Reasoner, which relies
on additional LLM calls to summarize reasoning progress. Instead, AutoMR employs a lightweight
MLP to process representations produced during reasoning, avoiding extra LLM calls.
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Next Reflect Explore Decompose Summarize Recall Answer

Q1: Find the largest value of $x$ that satisfies the equation 
$|5x-1|=x+3$.

Conditions: x+3 must be >= 0 because 
absolute value is nonnegative. So x >= -3

Case 1: 5x-1 >= 0; 
Case 2: 5x-1 < 0

Case 1: 5x-1 >= 0, so x >= 1/5. 
Then equation becomes: 5x-1 

= x+3 -> 4x = 4 -> x = 1.

Case 2: 5x-1 < 0, so x < 1/5. Then 
equation becomes: -(5x-1) = x+3 -> -

5x+1 = x+3 -> -6x = 2 -> x = -1/3. 

Then the two solutions: x = 1 
and x = -1/3. The largest is 1.

Answer is \boxed{11}.

Check: x = -1/3 is < 1/5, so valid.

Q2: Let $p(x)$ be a polynomial of degree 5 such that\n\\[p(n) = 
\\frac{n}{n^2 - 1}\\]for $n = 2,$ 3, 4, $\\dots,$ 7. Find $p(8).

Consider q(x) = p(x) - (x/(x^2-1))

But x/(x^2-1) is not a 
polynomial, thus q(x) is 

not polynomial. This 
formulation is not feasible. Consider f(x) = (x^2 - 1) p(x) –

x. f(x) is degree 7 and f(x) 
can be written as f(x) = c (x-

2)(x-3)…(x-6)(x-7).

Consider x=1, f(1)=-1…we 
get: 720 c (1-r) = -1. 

(Equation 1) 

Considering f(1) = -1 and f(-1) = 1. We can get 
two equations by plugging in x=1 and x=-1.

Consider x=-1, f(-
1)=1…we get: -20160 c 
(1+r) = 1. (Equation 2)

From Equation 1 & 2, we have…
So c = -29/40320 and r = -27/29

Substitute c and r into f(x) and p(x), 
we have f(x) = …, p(x) = …Meet the
given conditions for x from 2 to 7

So p(8) = … = 3/56 

Answer is \boxed{\frac{3}{56}}.

Wait, f(x) with degree 7 has 7 roots but there are only 6 from 2 
to 7. So f(x) should be written as f(x) = c (x-2)(x-3)(x-6)(x-7)(x-r)

Q3: Which of the following statements about the immune 
system is NOT correct?
A. Adaptive immunity is a slower than innate immunity.
B. Dendritic cells are antigen presenting cells.
C. Innate immunity activates a humoral response. 
D. Innate immunity, also known as the adaptive immunity…

This question involves two lines of immune system: non-specific 
innate immunity and specific  adaptive immunity with memory.

I need to analyze four options A, B, C and D respectively.

For Option A, innate 
immunity responds 
within hours, while 

adaptive immunity...

Option B is about Dendritic 
cells. Dendritic cell are 
professional antigen-

presenting… So B is correct.

Option C involves humoral 
response. Humoral 

response typically refers 
to … Maybe B is wrong but I 

am not sure. Option D is clearly 
wrong because …

I am not sure about C but I am 
sure D is definitely wrong.

Answer is \boxed{D}

Figure 6: Searched skeletons for queries from MATH-500 Level1, Level5 and Science respectively.

4.4 CASE STUDY

We visualize searched meta reasoning skeletons of three queries respectively in Figure 6. Q1 and Q2
come from MATH-500 while Q3 is from Science. According to three skeletons and their correspond-
ing queries, we observe that AutoMR can search out query-aware skeleton, which is appropriate for
given query considering query properties such as difficulty and discipline characteristics.

Skeleton Cases of Queries from Different Tasks. Q1 and Q2 correspond to math Q&A tasks,
which are typically regarded as thinking-intensive, while Q3, drawn from the Science subset, con-
cerns the history of biology and is considered knowledge-intensive. For two math queries, skeletons
sampled by AutoMR exhibit deeper reasoning steps and employ more diverse meta reasoning strate-
gies (e.g., Exploration and Reflection) than that sampled for Q3. By contrast, skeleton for Q3 em-
phasizes Recall strategy. This distinction aligns with the characteristics of thinking-intensive math
versus knowledge-intensive history of biology.

Skeleton Cases of Queries with Different Difficulties. Both Q1 and Q2 are drawn from the MATH-
500 dataset, Q2 belongs to the more challenging “Level-5” subset whereas Q1 comes from simpler
“Level-1” subset. Correspondingly, skeleton for Q1 is more complex than that of Q2. In Figure 6, the
skeleton for Q1 contains two reasoning branches, where the LLM explores two potential solutions,
with the first attempt failing. It also incorporates Recall strategy to leverage intermediate result from
earlier steps. However, skeleton for simpler Q2 explores only single solution path, successfully
solving the problem by that path and without recalling very early steps.

5 CONCLUSION

We propose AutoMR, a framework that searches for query-aware meta-reasoning skeleton to guide
LLM reasoning. By formulating meta-reasoning as a search problem over DAG-based search space,
AutoMR covers skeletons in prior works and can capture intricate logical dependencies among rea-
soning steps. AutoMR designs a dynamic skeleton sampling algorithm that can derive any skeleton
in search space within minimal additional computation overhead, and make skeleton adaptable to
evolving base reasoning context, thus enabling efficient search. Experiments on math Q&A and gen-
eral multiple-choice benchmark datasets demonstrate consistent improvements over existing meta
reasoning methods.
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REPRODUCIBILITY STATEMENT

We have made great efforts to to ensure reproducibility of our results. We give the implementation
details of AutoMR and baselines in Appendix A and Appendix C.1. We open the source code
of AutoMR with an anonymous repository as https://anonymous.4open.science/r/
Code-AutoMR-ED4C.
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A IMPLEMENTATION DETAILS

A.1 META REASONING STRATEGY IMPLEMENTATION

The functions of meta reasoning strategies is summarized in Table 2. We design maybe more than
one prompts for each strategy and sample one randomly when sampling strategy for an edge. Some
prompts are used only for certain tasks and we indicate them in parentheses after the prompt. The
prompts of all meta level strategies are as follows.

Table 2: Meta reasoning strategies.
Strategy Function

Next Reason to next step.
Reflect Reflect previous reasoning steps
Explore Inspire divergent thinking

Decompose Decompose current query and propose sub-question.
Summarize Summarize previous reasoning steps.

Recall Recall related knowledge or previous steps about problem.
Answer Give answer and end current reasoning path.

Prompt for Next

• Next,
• Then,
• Now, let me move on to the next step.

Prompt for Reflect

• Let me consider what part of the reasoning feels least certain, and how can it be examined.
• Wait, let me think if there anything missing in the current reasoning.
• Let me think does the current line of thought have any error.

Prompt for Explore

• Let me consider which direction of thinking I should explore.
• Let me think what potential strategy has not yet been considered that could be the next

solution path.
• Let me think what possible solution could be tried next.

Prompt for Decompose

• This question is a bit complex, let me think how to decompose it into sub-questions that I
can solve.

• The question feels too broad, let me think what smaller version could I tackle first.
• Let me think if I can express the problem in terms of simpler components or modules.
• Let me consider the options one by one. (General multi-choice)
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Prompt for Summarize

• Let me summarize what have I established so far.
• Let me summarize the current state of reasoning process, what’s known, unknown, and

assumed?
• Let me consider if I can captures the essence of the reasoning so far with single sentence.

Prompt for Recall

• Let me think if I have encountered similar problems or if learned knowledge and previous
intermediate step can be used here.

• Let me think what prior reasoning steps are directly relevant here or this question connect
to earlier results. (Math Q&A).

• Let me recall which theorems, rules, or principles from earlier knowledge is related to this
question. (General multi-choice).

Prompt for Answer

Let me give the answer according to current reasoning context.

A.2 META REASONING STRATEGY SAMPLING

We implement an MLP model to sample strategy for edge (j, i) from nj to ni by taking represen-
tations of potential predecessor node content cj , already sampled strategy s>j,i and current base
reasoning context composed of all node content in partial skeleton c:i−1.

Specifically, we maintain a learnable embedding layer to map each strategy s ∈ S∪{zero} to a dense
embedding. For each node content c, we save the mean of “last hidden state” of the c as semantic
representation of the node content. “Last hidden state” is byproduct of LLM inference process for
token distribution when generating each token, requiring no extra LLM invocation.

Finally, we build input for MLP according to Concat([e(cj),Mean(e(s>j,i)),Mean(e(c:i−1))]),
where Concat(·) means concatenate vectors and Mean(·) means calculate the mean of vectors. We
use Softmax(·) to process output of MLP and give the distribution of s(j,i) ∈ S ∪ {zero}.

A.3 OVERALL SEARCH ALGORITHM

We show the overall search algorithm in Algorithm 2. We set implement N as 8, M as 16 and
learning rate η to 5 × 10−4 during search for both tasks. We refer to previous works (Zhuge et al.,
2024; Zhang et al., 2025a; Xie et al., 2025; Hu et al., 2025; Cheng et al., 2020), implement techniques
such as gradient clipping, to improve the stability and convergence rate of search algorithm. See our
code for implementation details. We implement a rule-based r by exactly matching final answer
â = LLM(q, αq) given by LLM with ground-truth a from dataset. Specifically,

r(a,LLM(q, αq)) =

{
1, if LLM(q, αq) = a,

−1, if LLM(q, αq) ̸= a.
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Algorithm 2 Overall Search Algorithm
Require: Dataset D, learning rate η
Ensure: Trained θ
1: Initialize θ randomly
2: while not convergence do
3: Sample a batch {q1, q2, ..., qN} from D
4: Sample {α1

qi , α
2
qi , ..., α

M
qi } for each qi with Algorithm 1

5: θ ← θ + η
MN

N∑
i=1

M∑
j=1

[r(ai,LLM(qi, α
j
qi))∇θ logPθ(α

j
qi |qi)]

6: end while
7: return θ

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 1

Proof. We prove each case by construction.

Sequential. A sequential structure is defined as an ordered set of noes V = {v1, . . . , vk} with edges

E = {(i, i+ 1) | 1 ≤ i ≤ k − 1},

and τ((i, i + 1) ∈ S for each i. Clearly, v1 is the unique source (deg−(v1) = 0 and deg−(v) = 1
for all v ̸= v1), and G is acyclic since edges only connect vi → vi+1. Hence (V, E ,S, τ) is a
single-source edge-heterogeneous DAG.

Tree. A tree is a rooted directed graph G = (V, E ,S, τ) such that:

∃! r ∈ V with deg−(r) = 0, ∀v ∈ V \ {r}, deg−(v) = 1.

By definition, a rooted tree has no directed cycles and admits a unique source r. Since τ : E → S
can assign arbitrary heterogeneous edge types, (V, E ,S, τ) is a single-source edge-heterogeneous
DAG.

Parallel. A parallel structure is defined by a common entry node s and a family of disjoint branches

B = {B1, . . . , Bm}, Bi = (Vi, Ei,S, τ |Ei),

where s ∈ V and for each i we have (s, u) ∈ E with u ∈ Vi the root of branch Bi. Thus the overall
structure is

V = {s} ∪
m⋃
i=1

Vi, E =

m⋃
i=1

(
{(s, ui)} ∪ Ei

)
.

This is precisely a rooted tree with root s and subtrees Bi attached as children. Therefore, a parallel
structure is a special case of a tree, and hence also a single-source edge-heterogeneous DAG.

Since sequential, tree, and parallel (as a special case of tree) all admit representations (V, E ,S, τ)
that satisfy (i) unique source, (ii) acyclicity, and (iii) heterogeneous edge labels, they are all con-
tained in the class of single-source edge-heterogeneous DAGs.

B.2 PROOF OF PROPOSITION 2

We first prove that Algorithm 1 can cover any skeleton α ∈ A and then analyze the time complexity.

Proof. Since α is acyclic, by a standard result there exists a topological ordering of its vertices. That
is, there exists a permutation π = (n1, n2, . . . , n|V|) of V such that for every edge (u→ w) ∈ E we
have u appears earlier than w in π.

Use this topological order π as the insertion order in the append-only construction: add nodes in
order n1, n2, . . . , n|V|. When adding nt, consider all previously added nodes {n1, . . . , nt−1}. Be-
cause π is a topological order, every edge in E that is incident to nt from earlier nodes is of the form
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ni → nt with i < t; there are no edges from nt back to any already-added node. Therefore, by
choosing exactly those forward edges {(ni → vt) ∈ E | i < t} at step t, we add precisely the edges
of α that end at nt.

Applying this procedure for t = 1, . . . , n adds all and only the edges of α. Hence the append-only
construction, with insertion order equal to any topological order of α and with edge choices equal
to the edges of α, reproduces α exactly.

Besides invoking the LLM to generate textual reasoning content, Algorithm 1 requires at most
O(|V|2) sampling process for reasoning steps count |V| with two layers of “for” loop, where each
sampling process corresponds to a single MLP call.

Let B denote token budget of the generated reasoning content. Since Algorithm 1 introduces no
additional LLM calls as analyzed in Section 3.2, the time complexity of LLM invocation remains
O(B2).
In practice, the reasoning step count |V| is roughly proportional to B, but typically |V| ≪ B, as each
reasoning step consists of many tokens.

Furthermore, the computational cost of MLP inference is negligible compared with the layered
blocks of the LLM. Therefore, AutoMR introduces only minimal additional computational overhead
relative to naive LLM reasoning.

C EXPERIMENT DETAILS

C.1 BASELINE IMPLEMENTATION

The system prompt and answer extraction code for math Q&A problem is referred to a open-source
repository openr 1. The system prompt and answer extraction code for general multiple-choice
problem is referred to the original MMLU-Pro repository 2.

For all baselines, we implement with Qwen and LLaMA as base model rather than the LLM used in
their original paper for fair comparison.

• MRP. MRP dose not have open-source code, but provides prompt in original paper. We follow
the paper to implement MRP.

• Meta-Reasoner. Meta-Reasoner dose not have open-source code, but provides prompt, pseudo
code and detailed description in original paper. We follow the paper to implement Meta-Reasoner.

• rStar. We implement rStar with it open-source code 3.

• MaAS. We implement MaAS with it open-source code 4.

• RS. Referring to previous works (Bergstra & Bengio, 2012; Liu et al., 2019), we sample 48 archi-
tectures from search space randomly. Then we validate these architectures on training set to select
the one with highest accuracy. With the selected architecture, we report its accuracy on test set.

• QI. Referring to previous works (Liu et al., 2019; Zhuge et al., 2024), we do not use an MLP which
takes reasoning context as input and output meta strategy distribution, but model the strategy
distribution of each edge in search space without condition. We optimize the distribution with the
same estimation of policy gradient with REINFORCE as in Equation 4. For all queries in test set,
we sample only one skeleton to process all of them.

• CA. Referring to previous works (Cheng et al., 2020; Zhang et al., 2025a), we use an MLP which
takes semantic embedding of queries and meta reasoning strategies existing in skeleton as input
to sample strategy for edges, rather than based on base reasoning context. For each query in test
set, we sample a complete skeleton before inference and then reason for the query guided by the
complete skeleton.

1https://github.com/openreasoner/openr
2https://github.com/TIGER-AI-Lab/MMLU-Pro
3https://github.com/zhentingqi/rStar
4https://github.com/bingreeky/MaAS
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C.2 DATASETS DETAILS

For training set, we use MATH 5 training split composed of 5053 query-answer pairs and MMLU-
Pro 6 training split composed of 70 query-answer pairs. For testing set, we use GSM8K 7, MATH-
500 8, AMC 9, Olympiad 10 and four subset (Science, Humanities, Social and Other) of MMLU-Pro.
We summarize the statistics of dataset in Tabel 3.

Table 3: Dataset Statistics.

Domain # Train Dataset # Test Description

Math Q&A 5053

GSM8K 1319 Grade school math.
MATH-500 500 High school math.

AMC 83 High school competition math.
Olympiad 674 Olympiad-level math competition.

General Multi-Choice 70

Science 5345 Physic, chemistry, biology, etc.
Humanities 1981 Philosophy, history and law.

Social 2431 psychology, business and economics.
Other 924 Other topics

D USE OF LLMS

We use LLMs only to polish writing grammatically. We review and revise all content generated by
LLMs to ensure accuracy.

5https://github.com/hendrycks/math
6https://github.com/TIGER-AI-Lab/MMLU-Pro
7https://github.com/openai/grade-school-math
8https://huggingface.co/datasets/HuggingFaceH4/MATH-500
9https://huggingface.co/datasets/AI-MO/aimo-validation-amc

10https://github.com/OpenBMB/OlympiadBench
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