
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEARCHING META REASONING SKELETON TO GUIDE
LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta reasoning behaviors work as a skeleton to guide large language model
(LLM) reasoning, thus help to improve reasoning performance. However, prior
researches implement meta reasoning skeleton with manually designed structure,
limiting ability to adapt to query-specific requirement and capture intricate logi-
cal dependency among reasoning steps. To deal with the challenges, we represent
meta reasoning skeleton with directed acyclic graph (DAG) to unify skeletons pro-
posed in prior works and model intricate logical dependency. Then we propose
AutoMR, a framework that searches for query-aware meta reasoning skeleton au-
tomatically inspired by automated machine learning (AutoML). Specifically, we
construct search space based on DAG representation of skeleton and then formu-
late the search problem. We design a dynamic skeleton sampling algorithm by ex-
panding meta reasoning skeleton along with reasoning context at inference time.
This algorithm can derive any meta reasoning skeleton in search space efficiently
and adapt skeleton to evolving base reasoning context, thus enable efficient query-
aware skeleton search. We conduct experiments on extensive benchmark datasets.
Experimental results show that AutoMR achieves better reasoning performance
than previous works broadly.

1 INTRODUCTION

Large language model (LLM) demonstrate superior performance on complex tasks such as math
Q&A when equipped with step-by-step reasoning ability (Wei et al., 2022; OpenAI, 2024;
DeepSeek-AI, 2025). Researches on cognition divide reasoning into two levels: base reasoning
(reasoning for problem directly) and meta reasoning (higher-level reasoning about how to rea-
son) (Flavell, 1979). Meta reasoning, considered a unique ability of human cognition (Ackerman
& Thompson, 2017), entails awareness of one’s reasoning process and the deliberate selection of
reasoning strategies. For instance, when encountering difficulty with math problem, humans shift
solution by thinking “This approach is not working; I should try another method...” or they may
verify their reasoning steps by reflecting “Some steps may have errors. Let me check a previous
step...” These behaviors do not directly solve the problem itself but instead organized as skeleton to
guide the reasoning process.

Inspired by such human behaviors, previous studies proposed to incorporate meta reasoning into
LLM to guide their reasoning process and thereby enhance performance on complex reasoning
tasks (Gao et al., 2024; Qi et al., 2025; Sui et al., 2025; Liu et al., 2025). Recent approaches typically
predefine a set of meta reasoning strategies for intermediate reasoning steps and employ manually
designed structures (e.g. sequential, parallel and tree) to organize the strategies into meta reasoning
skeleton. For example, rStar (Qi et al., 2025) and Meta-Reasoner (Sui et al., 2025) both define step-
wise strategies such as decomposing question into sub-questions. rStar leverages Monte Carlo Tree
Search (MCTS) (Coulom, 2006) to select and organize strategies, whereas Meta-Reasoner arranges
them in a sequential way and selects at each step via multi-armed bandit (Gittins, 1979). An intuitive
illustration of these manually designed skeleton is provided in Figure 2.

The aforementioned methods based on manually designed meta reasoning skeleton improved LLM
reasoning performance. However, evidence from cognition science suggests that meta reasoning
skeletons should vary for different queries, due to reasoner ability, query difficulty, discipline char-
acteristic, etc. (Scott & Berman, 2013; Erickson & Heit, 2015; Rouault et al., 2018). For example in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1, knowledge-intensive problems (Q3 about biology) rely more heavily on knowledge-recall
strategy while shallower thinking depth than thinking-intensive problem (Q1 and Q2 about math).

Figure 1: Human behaviors in meta reasoning for three questions
about math (Q1 and Q2) and biology multi-choice (Q3).

More difficult problems (Q1)
may demand more parallel rea-
soning branches with solution
exploration strategy than easier
one (Q2). Besides, the logical
dependency of reasoning steps
can be too intricate (Besta et al.,
2024) to capture by sequen-
tial, parallel, or tree-structured
skeletons in prior works. The
skeleton of Q1 involves parallel
branches (steps 1–3 forming one
branch while steps 4–6 another)
and multiple dependency (step 6
simultaneously depends on step
5 as well as step 3 from early
branches). Skeleton of Q3 sum-
marizes two steps (step 2 and 3)
to make it answer confident. The query-specific requirement and the intricate logical dependency
among reasoning steps make it challenging for existing methods with limited manually designed
meta reasoning skeletons (Figure 2) to work well across all queries.

Automated machine learning (AutoML) seeks to generate machine learning configurations for given
task in a data-driven manner (Shen et al., 2024), thereby reducing the need for manual design and
tuning for neural architectures (Elsken et al., 2019) and hyperparameter (Feurer & Hutter, 2019).
Inspired by success of AutoML, we propose AutoMR, a framework that automatically searches for
query-aware meta reasoning skeletons to guide LLM to reason for correct answer, where we repre-
sent meta reasoning skeleton as single-source edge-heterogeneous directed acyclic graph (DAG) to
cover skeleton in prior works and capture intricate logical dependencies. Specifically, we first de-
sign an extensive DAG-based skeleton search space. Then we formulate the meta reasoning skeleton
search problem, which poses two technical difficulties specific to query-aware skeleton search. The
first is to derive any skeleton for given query from the extensive search space efficiently. The other
is to adapt derived skeleton to evolving base reasoning context, considering inherent step-by-step
property of reasoning process. To tackle the difficulties, we design a skeleton sampling algorithm
that expands meta reasoning skeleton node by node dynamically based on base reasoning context at
inference time. We prove that this algorithm introduces minimal additional computation overhead
compared with naive LLM reasoning process. Compared with prior meta reasoning method, our
search for meta reasoning skeleton improves reasoning performance. Moreover, we show that our
search and inference algorithm is efficient theoretically and empirically.

We summarize our contributions as follows:

• We propose AutoMR to search for query-aware meta reasoning skeleton, where we represent meta
reasoning skeleton as DAG to capture intricate logical dependency among reasoning steps.

• We design an extensive skeleton search space based on DAG. Additionally, we introduce an dy-
namic skeleton sampling algorithm that can derive any skeleton in search space efficiently and
adapt skeleton to evolving base reasoning context at inference time.

• We conduct experiments on benchmark datasets across different disciplines and difficulties. Ex-
perimental results show that AutoMR demonstrates better reasoning performance than previous
meta reasoning methods, with high search and inference efficiency.

2 RELATED WORKS

Meta Reasoning in LLM. Meta reasoning is an ability of human cognition involving determin-
ing reasoning strategy about how to reason (Flavell, 1979; Ackerman & Thompson, 2017). Previ-
ous works explored to introduce meta reasoning into LLM to guide it reasoning (Liu et al., 2025;
Alazraki & Rei, 2025; Yan et al., 2025; Xiang et al., 2025; De Sabbata et al., 2024; Wan et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2025; Didolkar et al., 2024). Meta Reasoning Prompt (MRP) (Gao et al., 2024) includes classic
strategies like CoT (Wei et al., 2022), Self-Refine (Madaan et al., 2023), etc. It first prompts LLM to
choose one strategy for given query and then reason guided by that strategy. Strategies in MRP are
holistic, meaning that MRP uses only one strategy for the whole reasoning process without adjust-
ing when reasoning progressing. In contrast, recent methods usually use step-wise meta reasoning
strategies (Yang et al., 2025a;b) and choose strategy for each step during reasoning. For example,
rStar (Qi et al., 2025) define step-wise reasoning strategies such as proposing a sub-question, and
then use MCTS to build tree-structured meta reasoning skeleton. Meta-Reasoner (Sui et al., 2025)
also uses step-wise reasoning strategies but organizes them with sequential skeleton and uses multi-
armed bandit to select strategy for each step. This kind of methods incorporate more fine-grained
meta reasoning guidance and allow adjusting strategies during reasoning, thus performing better
empirically than MRP.

Automated Machine Learning (AutoML). AutoML aims to search for high-performing machine
learning (ML) configuration for given task automatically, reducing demand for human manual de-
sign (He et al., 2021) to adapt to task-specific requirement. Typical AutoML atomizes ML configura-
tions to construct search space and develop search algorithm to find effective candidates (Shen et al.,
2024). Previous works implemented this idea for multiple ML configurations such as neural archi-
tecture search (NAS) (White et al., 2023; Liu et al., 2019; Pham et al., 2018) and hyperparameter
search (Yang & Shami, 2020; Shen et al., 2023), and have achieved success. For example, architec-
tures found by NAS surpass human-designed ones on various tasks, such as computer vision (Real
et al., 2019) and natural language processing (So et al., 2019). Recent works explored integrating
AutoML with LLMs, like automating LLM agent workflow building (Zhuge et al., 2024; Zhang
et al., 2025a; Saad-Falcon et al., 2025). However, applying AutoML method to search for meta rea-
soning skeleton is non-trivial due to factors specific to LLM reasoning task, including query-specific
requirement, intricate logical dependency, and evolving reasoning context.

3 PROPOSED METHOD

We introduce AutoMR that automatically searches for query-aware meta-reasoning skeletons to
guide LLM reasoning. Section 3.1 presents a unified perspective on meta-reasoning skeleton in
existing meta-reasoning methods based on DAG to capture intricate logical dependency. With this
unified view, we construct our skeleton search space. Section 3.2 formulates the meta-reasoning
skeleton search problem and details our overall search strategy. Finally, Section 3.3 discusses com-
parison with techniques in AutoML and analyzes our advantage specific to LLM reasoning tasks.

3.1 SEARCH SPACE

Given a query q, let S denote the set of meta reasoning strategies for intermediate reasoning steps.
The objective of a meta-reasoning method is to organize strategies from S into meta reasoning
skeleton to direct LLM on performing reasoning to answer q.

Prior works use manually designed meta reasoning skeleton structure (e.g. sequential, parallel, tree-
structured in Figure 2). To unify these designs and capture intricate logical dependencies (Figure 1),
we represent meta reasoning skeleton as a single-source, edge-heterogeneous directed acyclic graph
(DAG). Formally, a meta reasoning skeleton can be represented as a DAG α = (V, E , τ,S). Node
ni = (i, ci) ∈ V representing a reasoning step, i being the topological index and ci textual content
of the step. Edge (i, j) ∈ E indicating reasoning progression from ni to nj . τ : E → S maps edge
to its strategy, under which LLM generates the reasoning text. There exists a unique source node n0

with c0 = q, making α single-source. With above representation, we have Proposition 1 to cover
the skeletons in prior works. See Appendix B.1 for proof.

Proposition 1. Sequential, parallel, and tree structured skeletons can all be represented as single-
source, edge-heterogeneous DAGs.

Based on this unified view, we construct search space to contain all skeletons represented by single-
source edge-heterogeneous DAG as shown in Figure 2, as long as the sum of tokens for all node
content except source node (i.e. number of tokens generate by LLM) dose not reach token budget
B, where B is a hyperparameter.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Search Space

(1) (2) (3) (4)

0

3

1
2

(0)

11 Node with Content Activated Node
but without Content

1 Node not Activated Determined Edge
(Color means type)

Undetermined Edge
(Gary means)

0
2

3
1

0

3
1

2

0
31

2

Dynamic Skeleton Sampling

Sequential Parallel Tree

Sampled Skeleton

0

3

1
2

0

3

1
2

0

3

1
2

0

3

1
2

Figure 2: Overview of the AutoMR. Top: Illustration of search space, an example skeleton sampling
process and resulting sampled skeleton. Node 0 is the single source node representing query. Steps
(1)(2)(3) show how nodes 1, 2, and 3 are successively added to partial skeleton. For clarity, we
display only 4 nodes and 2 types of meta reasoning strategies (red and blue edges), and the zero
option (gray edges); In practice, the number of nodes can be arbitrary if token budget is satisfied and
we actually implement richer strategies. Bottom: Search space subsumes sequential, parallel, and
tree-structured skeletons.

We summarize the meta reasoning behaviors in previous works about LLM reason-
ing (Gandhi et al., 2025; Chen et al., 2025), which gives meta reasoning strategy set S =
{Next,Reflect,Explore,Decompose,Summarize,Recall,Answer}. All of these meta reasoning
strategies are implemented by designed prompt. Functions and prompt of these strategies are sum-
marized in Table 2 in Appendix A.1. Following previous works (Liu et al., 2019), we also introduce
a special zero edge type to indicate an edge in fact dose not exists.

Given meta reasoning strategy set S and token budget B, search space A is defined as follows,

A =
{
α = (V, E , τ,S) | α is single-source DAG, τ : E → S,

∑
ni∈V\{n0}

|ci| ≤ B
}
, (1)

where V \ {n0} is node set without n0 and |ci| denote number of tokens in content ci. As illustrated
in Figure 2 (bottom), this search space includes all single-source DAGs, thus subsuming skeletons
considered in prior meta-reasoning methods, such as sequential, parallel, and tree-structured forms.

3.2 SEARCH STRATEGY

Next, we now provide the formal definition of meta-reasoning skeleton search problem. Considering
that the meta-reasoning skeleton should depend on the specific query (e.g., query difficulties and
discipline characteristics), the problem is formulated as follows.
Definition 1 (Meta-Reasoning Skeleton Search Problem). Let S denote meta reasoning strategy set
and A the skeleton search space defined on S. (q, a) is query–answer pair from dataset D. Given
policy P that derives a meta reasoning skeleton αq ∈ A for query q, the search objective is

argmaxP E(q,a)∼D,αq∼P (·|q)[r(a,LLM(q;αq))]. (2)

Here LLM(q;αq) denotes LLM reasoning on query q under guidance of αq , and r measures reason-
ing performance against the ground-truth answer a.

When implementing a policy P for deriving a query-aware skeleton, this search problem poses
two technical challenges specific to LLM reasoning. First, the search space is extensive, so the
derivation procedure must efficiently explore it to recover arbitrary skeletons in it. Second, Because
reasoning process unfolds step by step (Wei et al., 2022; Nye et al., 2021), the derivation process
should adapt meta reasoning strategy at each step in skeleton to evolving base reasoning context,
rather than fixing the skeleton a priori before reasoning for given query.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address above difficulties, Section 3.2.1 introduces a skeleton-sampling algorithm that expand
skeleton node by node dynamically, along with base reasoning context at inference time. We prove
that the algorithm can cover any skeleton in search space within minimal additional computation
compared with naive LLM reasoning process; Section 3.2.2 presents the overall search algorithm.

3.2.1 DYNAMIC SKELETON SAMPLING AT INFERENCE TIME

We introduce an efficient algorithm that sample skeleton dynamically to implement policy P (· | q).
Considering step-by-step nature of reasoning, step-wise meta reasoning strategy should adapt to
current base reasoning context. This makes it necessary to interleave meta reasoning with base
reasoning. To realize this, we sample skeleton starting from the single source node as a partial
skeleton, and then expand it node by node in topological order, dynamically align with step-by-step
base reasoning at inference time .

Algorithm 1 Dynamic Skeleton Sampling at in-
ference time
Require: Query q, token budget B
Ensure: Meta reasoning architecture αq

1: Initialize αq as empty DAG, i← 0
2: while B is not reached do
3: for j from i-1 to 0 do
4: Sample s(j,i) ∼ pθ(s(j,i)|cj , s(>j,i), c:i−1)

with MLP
5: end for
6: if all sampled strategies are zero then
7: Generate final answer and return
8: end if
9: Generate content ci for ni, i← i+ 1

10: end while
11: Generate final answer

Specifically, we set content c0 of n0 as q, form-
ing a partial architecture. Expansion then pro-
ceeds in topological order. For each target node
ni, we determine the existence and types of in-
coming edges before (optionally) generating its
content. Concretely, when visiting ni we first
activate it (no content yet) and perform follow-
ing three steps.

Step1: Determine incoming edges for meta
reasoning. Traverse existing nodes nj (0 ≤ j ≤
i−1) in reverse order (from ni−1 to n0) and sam-
ple a strategy s(j,i) ∈ S ∪{zero} for each poten-
tial edge (j, i). Each sampling is conditioned on
the predecessor content cj , the already chosen
strategies s(>j,i) for ni, and the current base rea-
soning context c:i−1 (the contents of n0, . . . , ni−1), which is computed as p(s(j,i)|cj , s(>j,i), c:i−1).

Step2: Check completion. If all sampled strategies are zero (no edge enters ni), we deem the
skeleton complete without adding ni and prompt the LLM to produce the final answer from the
current context c:i−1.

Step3: Generate base reasoning content. If at least one incoming edge exists, we prompt the
LLM under the guidance of the sampled strategies s(<i,i) (excluding zero) and the contents of ni’s
predecessors to produce the next base reasoning step; the generated text is assigned to ci, and ni

(with its incoming edges) is added as a node with content.

Then we repeat this expansion for ni+1 until Step 2 triggers or token budget is reached.

We implement p(·) with a multi-layer perception (MLP) parameterized with θ. The MLP takes
representations of cj , s(>j,i), and c:i−1 as input and outputs logits followed by softmax to obtain
distribution over S ∪ {zero}. These representations are cached byproducts of the ongoing LLM
inference (i.e. pooled hidden states), thus requiring no additional LLM calls. If the sampled skeleton
αq contains |V| nodes, its policy (also parameterized with θ now) log-probability factorizes as

logPθ(αq|q) =
∑|V|−1

i=1

∑i−1

j=0
log pθ(s(j,i)|cj , s(>j,i), c:i−1). (3)

The sampling process is shown in Figure 2 and formalized in Algorithm 1. According to Algo-
rithm 1, meta reasoning strategy sampling is conditioned on current base reasoning context at each
step, thereby yielding a query-aware architecture since reasoning context traces back to c0 = q.
Implementation details are in Appendix A.2. For Algorithm 1, we have Proposition 2.
Proposition 2. Algorithm 1 can derive any α ∈ A, within O(|V|2) additional MLP calls (line4)
compared with naive LLM reasoning process.

The time complexity of naive LLM reasoning process is proportional to B2. But |V| ≪ B because
one step usually contains many tokens, and MLP uses much less computation than LLM, so AutoMR
introduces minimal additional computation relative to naive LLM reasoning. We provide proof of
Proposition 2 and detailed efficiency analysis in Appendix B.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.2 OVERALL SEARCH ALGORITHM

With Pθ(αq|q) defined in (3), we follow REINFORCE (Williams, 1992; Zoph & Le, 2017), a pol-
icy gradient algorithm implementing unbiased empirical approximation of objective, to optimize θ.
Specifically, we sample batches with N query-answer pairs (qi, ai) from training set each time and
optimize θ with these batches iteratively. For each (qi, ai) in batch, we sample M skeletons αj

qi from
Pθ(·|qi) and evaluate their performance with r(·) respectively. The update to θ in each iteration by
estimated policy gradient with a batch is as follows, where η is learning rate:

θ ← θ +
η

MN

∑N

i=1

∑M

j=1
[r(ai,LLM(qi, α

j
qi))∇θ logPθ(α

j
qi |qi)]. (4)

The overall search algorithm and implementation is provided in Appendix A.3. We do not tune LLM
parameters directly, thus enabling efficient search. For inference, we follow Algorithm 1 for each
query to sample meta reasoning skeleton, generate base reasoning and output final answer.

3.3 TECHNICAL COMPARISON WITH AUTOML

Different from prior meta reasoning methods that rely on manually designed skeleton (Qi et al.,
2025; Sui et al., 2025), AutoMR draws inspiration from AutoML to search for query-aware meta
reasoning skeleton from DAG-based search space, thereby addressing query-specific requirements.
Technically, AutoMR is related to topics in AutoML such as neural architecture search. Recent stud-
ies have extended AutoML ideas to LLM-related tasks, such as automating agent workflow build-
ing (Zhuge et al., 2024; Zhang et al., 2025a). However, the unique properties of LLM reasoning tasks
make AutoMR particularly suited for meta reasoning skeleton search. First, reasoning queries often
exhibit highly specific demands, making a single meta reasoning skeleton insufficient. Second, the
reasoning process typically involves intricate logical dependencies. Third, reasoning unfolds step
by step, with the base reasoning context dynamically evolving as each new step is generated. These
characteristic fundamentally differs from those of neural architecture or agent workflow, which is
usually fixed for all queries or static during inference. For example, Prior approaches (Zoph et al.,
2018; Zhuge et al., 2024) generally output a single architecture or agent workflow for all queries.
While instance-aware methods (Cheng et al., 2020; Zhang et al., 2025a) produce input-specific ar-
chitecture or workflow that remain static during inference. Such differences in task properties makes
the search techniques in these methods perform well in their target scenarios but cannot be applied
to meta reasoning skeleton search directly. We compare these search techniques empirically by
ablation study in Section 4.3.

4 EXPERIMENTS

4.1 SETUP

Baselines. We implement the following types of baselines: (1) Classic methods, including Direct-
I/O and CoT (Wei et al., 2022). (2) Meta reasoning methods, including MRP (Gao et al., 2024),
rStar (Qi et al., 2025) and Meta-Reasoner (Sui et al., 2025). We also include MaAS (Zhang et al.,
2025a), a method using NAS technique to automate multi-agent workflow building.

AutoMR and all the baselines are implemented based on two LLMs including LLaMA3.2-3B-Inst
(hereinafter referred to as ”LLaMA”) (Meta-AI, 2024) and Qwen2.5-3B-Inst (hereinafter referred to
as ”Qwen”) (Qwen-Team, 2025) to avoid impact on experimental results caused by unique properties
of specific LLM (Gandhi et al., 2025). We set the same token budget to 1024 for all methods to en-
sure fair comparison. More implementation details of the baselines are introduced in Appendix C.1.

Datasets and Metric. We evaluate AutoMR and baselines on two domains, i.e. math Q&A
and general multiple-choice. For math Q&A, we choose GSM8K (Cobbe et al., 2021), MATH-
500 (Hendrycks et al., 2021), AMC (including AMC 2022 and AMC 2023) and Olympiad (only
open-ended text-only math subset to avoid influence from multi-modal and multilingual input in-
formation) (He et al., 2024) to evaluate. We use training split of MATH dataset to train AutoMR
and baselines that need training. For general multiple-choice, we choose MMLU-Pro (Wang et al.,
2024) and split it into four subsets as Science, Humanities, Social and Other referring to Zhang
et al. (2025b), to evaluate. We collect training split of MMLU-Pro to train. Details of these datasets
are summarized in Appendix C.2. We use Accuracy as metric to evaluate these methods .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The overall performance on math Q&A an general multi-choice. Letters after method
names means the used skeleton structure. S: Sequential; T: Tree; G: DAG; “-” means not applicable.

Method MATH-500 GSM8K AMC Olympiad

LLaMA Qwen LLaMA Qwen LLaMA Qwen LLaMA Qwen

Direct-I/O (-) 12.6 16.8 11.1 15.8 12.0 8.4 3.7 5.5
CoT (S) 36.8 61.6 71.1 85.3 21.2 34.9 11.9 26.2

MRP (-) 40.8 63.8 74.6 88.2 25.3 33.7 11.6 26.6
Meta-Reasoner(S) 44.4 65.4 76.8 87.0 26.5 36.1 13.1 27.4

rStar (T) 46.6 67.0 78.9 88.7 15.7 32.5 15.1 25.4

MaAS (S) 46.2 63.6 76.4 86.4 24.1 33.7 12.6 27.7

AutoMR (G) 50.2 69.6 81.9 91.5 30.1 38.6 17.4 30.4

Method Science Humanities Social Other

LLaMA Qwen LLaMA Qwen LLaMA Qwen LLaMA Qwen

Direct-I/O (-) 16.3 32.7 11.5 25.1 15.8 39.0 14.5 29.1
CoT (S) 31.5 41.6 22.4 28.3 37.3 51.5 31.3 39.8

MRP (-) 36.4 42.8 24.2 30.1 40.6 53.5 32.8 41.6
Meta-Reasoner (S) 44.3 45.4 30.6 31.9 47.2 55.0 36.4 42.2

rStar (T) 42.6 43.6 30.0 30.8 46.8 55.4 34.8 36.0

MaAS (S) 44.6 45.5 29.7 31.0 46.2 56.0 35.6 41.7

AutoTTS (G) 48.9 49.4 33.2 33.7 51.0 57.4 38.8 45.6

4.2 PERFORMANCE COMPARISON

We report the overall performance of AutoMR and baselines on math Q&A datasets and general
multiple-choice datasets (Table 1). Across both domains and model backbones, AutoMR consis-
tently achieves the best results, highlighting its broad effectiveness. Our findings can be summa-
rized as follows: (1). Effectiveness of meta reasoning methods. Meta reasoning approaches (MRP,
Meta-Reasoner, rStar, and AutoMR) consistently outperform the standard CoT baseline. Notably,
Meta-Reasoner—despite adopting the same sequential organization as CoT—achieves a substantial
improvement, underscoring the benefits of incorporating meta reasoning behaviors. (2). Impor-
tance of fine-grained meta reasoning strategies. Among meta reasoning methods, those that leverage
strategies for guiding intermediate reasoning steps (Meta-Reasoner, rStar, and AutoMR) outperform
MRP, which relies on holistic strategy. This result highlights the advantage of fine-grained meta-
level guidance during reasoning. (3). Advantage of DAG-based search space. Compared with
Meta-Reasoner and rStar, which rely on manually designed sequential and tree-structured skele-
ton respectively, AutoMR achieves superior performance. (4). AutoMR surpasses automatic agent
workflow MaAS, demonstrating that AutoMR is more proper for LLM reasoning tasks.

4.3 ABLATION STUDY

Influence of token budget scaling. Previous works shows that LLM reasoning performance im-
proves whentoken budget increases (OpenAI, 2024; Snell et al., 2025). We evaluate the perfor-
mance when scaling token budget B. We compare AutoMR with baselines able to scale token
budget. Specifically, for CoT we implement sequential scaling technique Budget Forcing (Muen-
nighoff et al., 2025) and parallel technique Majority Voting (Wang et al., 2023). We also choose
Meta-Reasoner and rStar as baselines. We do not include MaAS as baselines to evaluate be-
cause it do not provide scaling technique in original paper. The scaling technique implementation
details of these methods are in Appendix C.1. We evaluate on MATH-500 and Science based on
Qwen. According to results in Figure 3, we observe that when token budget increases, each method
improves performance on the whole. Specifically, the scaling efficiency on knowledge-intensive
Science subet is much slower than that on thinking-intensive MATH-500, according with recent
research (Zhao et al., 2025). Forcing sequential scaling (i.e. Budget Forcing and Meta-Reasoner)
scale slowly. Majority Voting based on parallel skeleton and rStar based on tree-structured skeleton
scale more efficiently than sequential ones. AutoMR achieve the highest scaling efficiency, because
search space based on DAG in AutoMR allows more extensive skeleton exploration.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

22 23 24 25 26

Num of Used Tokens

55

60

65

70
Ac

cu
ra

cy
 (%

)

(a) MATH 500

22 23 24 25 26

Num of Used Tokens

40

42

44

46

48

50

Ac
cu

ra
cy

 (%
)

(b) Science
CoT (Budget Forcing) CoT (Majority Voting) Meta Reasoner rStar AutoMR

Figure 3: The scaling curve of AutoMR and baselines.

29 210 211 212 213

Training Cost (min)

64

66

68

70

Ac
cu

ra
cy

 (%
)

AutoMR
GRPO

Meta-Reasoner

MaAS

(a) Qwen

29 210 211 212 213

Training Cost (min)

44

46

48

50

Ac
cu

ra
cy

 (%
) AutoMR

GRPO

Meta-Reasoner

MaAS

(2) LLaMA

Figure 4: The training and inference cost and performance of AutoMR and baselines.

Effectiveness of search strategy. We evaluate the effectiveness of search strategy in Section 3.2
against Random Search (RS) (Bergstra & Bengio, 2012), a common AutoML baseline (Li & Tal-
walkar, 2020). We also assess effectiveness of dynamic skeleton sampling algorithm by com-
paring it with two variants. Query-Invariant (QI), sampling single meta reasoning skeleton
shared by all queries of a task, as in prior NAS methods (Liu et al., 2019; Pham et al., 2018).
Complete in Advance (CA), sampling query-specific skeletons before reasoning starts but not
based on reasoning context (Cheng et al., 2020; Zhang et al., 2025a). Implementation details of
these sampling methods are in Appendix C.1. We compare them on MATH-500 and Science.

Figure 5: Ablation study on search strategy.

Method
MATH-500 Science

LLaMA Qwen LLaMA Qwen

RS 36.2 59.4 38.5 43.3
QI 37.2 60.2 37.3 43.9
CA 50.0 66.2 45.7 47.1

AutoMR 50.2 69.6 48.9 49.4

According to results in Table 5, AutoMR
achieves the best performance compared with
three variants, showing the effectiveness of pro-
posed search strategy. In terms of skeleton sam-
pling algorithm, AutoMR and CA both surpass
QI, showing the importance of query-specific
meta reasoning skeleton. Moreover, AutoMR
performs better than CA, demonstrating the ef-
fectiveness dynamic skeleton sampling algo-
rithm based on evolving reasoning context compared with the complete skeleton in advance.

Training and inference efficiency. To support theoretical analysis in Section 3.2.2 that AutoMR
incurs minimal additional computation, we evaluate both training and inference costs of AutoMR
and baselines requiring training, including Meta-Reasoner and MaAS, based on both Qwen and
LLaMA on MATH-500 dataset. We also implement GRPO (Shao et al., 2024), a reinforcement
learning method to to enhance LLM reasoning, based on LoRA (Hu et al., 2022) as a baseline in
our experiment setting. Results in Figure 4 show training cost (x-axis), performance on MATH-500
(y-axis), and inference cost (circle area). In terms of training, AutoMR and other two baselines re-
quire far less time than GRPO, which fine-tunes LLM parameters directly. However, only AutoMR
achieves comparable performance with Qwen and even surpasses it with LLaMA. In terms of in-
ference, AutoMR is slightly slower than naive reasoning process based on GRPO-trained LLM and
slightly faster than MaAS, while being substantially more efficient than Meta-Reasoner, which relies
on additional LLM calls to summarize reasoning progress. Instead, AutoMR employs a lightweight
MLP to process representations produced during reasoning, avoiding extra LLM calls.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Next Reflect Explore Decompose Summarize Recall Answer

Q1: Find the largest value of x that satisfies the equation
$|5x-1|=x+3$.

Conditions: x+3 must be >= 0 because
absolute value is nonnegative. So x >= -3

Case 1: 5x-1 >= 0;
Case 2: 5x-1 < 0

Case 1: 5x-1 >= 0, so x >= 1/5.
Then equation becomes: 5x-1

= x+3 -> 4x = 4 -> x = 1.

Case 2: 5x-1 < 0, so x < 1/5. Then
equation becomes: -(5x-1) = x+3 -> -

5x+1 = x+3 -> -6x = 2 -> x = -1/3.

Then the two solutions: x = 1
and x = -1/3. The largest is 1.

Answer is \boxed{11}.

Check: x = -1/3 is < 1/5, so valid.

Q2: Let $p(x)$ be a polynomial of degree 5 such that\n\\[p(n) =
\\frac{n}{n^2 - 1}\\]for $n = 2,$ 3, 4, $\\dots,$ 7. Find $p(8).

Consider q(x) = p(x) - (x/(x^2-1))

But x/(x^2-1) is not a
polynomial, thus q(x) is

not polynomial. This
formulation is not feasible. Consider f(x) = (x^2 - 1) p(x) –

x. f(x) is degree 7 and f(x)
can be written as f(x) = c (x-

2)(x-3)…(x-6)(x-7).

Consider x=1, f(1)=-1…we
get: 720 c (1-r) = -1.

(Equation 1)

Considering f(1) = -1 and f(-1) = 1. We can get
two equations by plugging in x=1 and x=-1.

Consider x=-1, f(-
1)=1…we get: -20160 c
(1+r) = 1. (Equation 2)

From Equation 1 & 2, we have…
So c = -29/40320 and r = -27/29

Substitute c and r into f(x) and p(x),
we have f(x) = …, p(x) = …Meet the
given conditions for x from 2 to 7

So p(8) = … = 3/56

Answer is \boxed{\frac{3}{56}}.

Wait, f(x) with degree 7 has 7 roots but there are only 6 from 2
to 7. So f(x) should be written as f(x) = c (x-2)(x-3)(x-6)(x-7)(x-r)

Q3: Which of the following statements about the immune
system is NOT correct?
A. Adaptive immunity is a slower than innate immunity.
B. Dendritic cells are antigen presenting cells.
C. Innate immunity activates a humoral response.
D. Innate immunity, also known as the adaptive immunity…

This question involves two lines of immune system: non-specific
innate immunity and specific adaptive immunity with memory.

I need to analyze four options A, B, C and D respectively.

For Option A, innate
immunity responds
within hours, while

adaptive immunity...

Option B is about Dendritic
cells. Dendritic cell are
professional antigen-

presenting… So B is correct.

Option C involves humoral
response. Humoral

response typically refers
to … Maybe B is wrong but I

am not sure. Option D is clearly
wrong because …

I am not sure about C but I am
sure D is definitely wrong.

Answer is \boxed{D}

Figure 6: Searched skeletons for queries from MATH-500 Level1, Level5 and Science respectively.

4.4 CASE STUDY

We visualize searched meta reasoning skeletons of three queries respectively in Figure 6. Q1 and Q2
come from MATH-500 while Q3 is from Science. According to three skeletons and their correspond-
ing queries, we observe that AutoMR can search out query-aware skeleton, which is appropriate for
given query considering query properties such as difficulty and discipline characteristics.

Skeleton Cases of Queries from Different Tasks. Q1 and Q2 correspond to math Q&A tasks,
which are typically regarded as thinking-intensive, while Q3, drawn from the Science subset, con-
cerns the history of biology and is considered knowledge-intensive. For two math queries, skeletons
sampled by AutoMR exhibit deeper reasoning steps and employ more diverse meta reasoning strate-
gies (e.g., Exploration and Reflection) than that sampled for Q3. By contrast, skeleton for Q3 em-
phasizes Recall strategy. This distinction aligns with the characteristics of thinking-intensive math
versus knowledge-intensive history of biology.

Skeleton Cases of Queries with Different Difficulties. Both Q1 and Q2 are drawn from the MATH-
500 dataset, Q2 belongs to the more challenging “Level-5” subset whereas Q1 comes from simpler
“Level-1” subset. Correspondingly, skeleton for Q1 is more complex than that of Q2. In Figure 6, the
skeleton for Q1 contains two reasoning branches, where the LLM explores two potential solutions,
with the first attempt failing. It also incorporates Recall strategy to leverage intermediate result from
earlier steps. However, skeleton for simpler Q2 explores only single solution path, successfully
solving the problem by that path and without recalling very early steps.

5 CONCLUSION

We propose AutoMR, a framework that searches for query-aware meta-reasoning skeleton to guide
LLM reasoning. By formulating meta-reasoning as a search problem over DAG-based search space,
AutoMR covers skeletons in prior works and can capture intricate logical dependencies among rea-
soning steps. AutoMR designs a dynamic skeleton sampling algorithm that can derive any skeleton
in search space within minimal additional computation overhead, and make skeleton adaptable to
evolving base reasoning context, thus enabling efficient search. Experiments on math Q&A and gen-
eral multiple-choice benchmark datasets demonstrate consistent improvements over existing meta
reasoning methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made great efforts to to ensure reproducibility of our results. We give the implementation
details of AutoMR and baselines in Appendix A and Appendix C.1. We open the source code
of AutoMR with an anonymous repository as https://anonymous.4open.science/r/
Code-AutoMR-ED4C.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Rakefet Ackerman and Valerie A Thompson. Meta-reasoning: Monitoring and control of thinking
and reasoning. Trends in Cognitive Sciences, 21(8):607–617, 2017.

Lisa Alazraki and Marek Rei. Meta-reasoning improves tool use in large language models. In
Findings of the Association for Computational Linguistics: NAACL, pp. 7885–7897, 2025.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, pp. 281–305, 2012.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In AAAI Conferecne on Artifi-
cial Intelligence, volume 38, pp. 17682–17690, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. 2025.

An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun. Instanas: Instance-
aware neural architecture search. In AAAI Conferecne on Artificial Intelligence, volume 34, pp.
3577–3584, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
Conference on Computers and Games, pp. 72–83. Springer, 2006.

C Nicolò De Sabbata, Theodore R Sumers, and Thomas L Griffiths. Rational metareasoning for
large language models. arXiv preprint arXiv:2410.05563, 2024.

DeepSeek-AI. DeepSeek-R1 incentivizes reasoning in llms through reinforcement learning. Nature,
645(8081):633–638, 2025.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Jimenez Rezende, Yoshua Bengio, Michael C Mozer, and Sanjeev Arora. Metacognitive
capabilities of llms: An exploration in mathematical problem solving. In Advances in Neural
Information Processing Systems, pp. 19783–19812, 2024.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Shanna Erickson and Evan Heit. Metacognition and confidence: Comparing math to other academic
subjects. Frontiers in Psychology, 6:742, 2015.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated Machine Learning:
Methods, Systems, Challenges, pp. 3–33. Springer International Publishing Cham, 2019.

John H Flavell. Metacognition and cognitive monitoring: A new area of cognitive–developmental
inquiry. American Psychologist, 34(10):906, 1979.

Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective STars. In
Second Conference on Language Modeling, 2025.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, and Furu Wei. Meta
reasoning for large language models. 2024.

John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 41(2):148–164, 1979.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Annual Meeting of the Association for Computational Linguistics, pp. 3828–3850”,
2024.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models. 2025.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, pp. 367–377, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Qin Liu, Wenxuan Zhou, Nan Xu, James Y. Huang, Fei Wang, Sheng Zhang, Hoifung Poon, and
Muhao Chen. MetaScale: Test-time scaling with evolving meta-thoughts. 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Advances in Neural Information Processing Systems,
2023.

Meta-AI. The llama 3 herd of models. 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. 2025.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
2021.

OpenAI. Learning to reason with LLMs, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pp. 4095–
4104. PMLR, 2018.

Zhenting Qi, Mingyuan MA, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual rea-
soning makes smaller LLMs stronger problem-solver. In International Conference on Learning
Representations, 2025.

Qwen-Team. Qwen2.5 technical report. 2025.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI Conferecne on Artificial Intelligence, pp. 4780–4789, 2019.

Marion Rouault, Andrew McWilliams, Micah G Allen, and Stephen M Fleming. Human metacog-
nition across domains: insights from individual differences and neuroimaging. Personality Neu-
roscience, 1:e17, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov,
Etash Kumar Guha, E. Kelly Buchanan, Mayee F Chen, Neel Guha, Christopher Re, and Azalia
Mirhoseini. An architecture search framework for inference-time techniques. In International
Conference on Machine Learning, 2025.

Brianna M Scott and Ashleigh F Berman. Examining the domain-specificity of metacognition using
academic domains and task-specific individual differences. Australian Journal of Educational &
Developmental Psychology, 13:28–43, 2013.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of math-
ematical reasoning in open language models. 2024.

Zhenqian Shen, Hansi Yang, Yong Li, James Kwok, and Quanming Yao. Efficient hyper-parameter
optimization with cubic regularization. In Advances in Neural Information Processing Systems,
pp. 58692–58703, 2023.

Zhenqian Shen, Yongqi Zhang, Lanning Wei, Huan Zhao, and Quanming Yao. Automated machine
learning: From principles to practices. 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In International Confer-
ence on Learning Representations, 2025.

David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on
Machine Learning, pp. 5877–5886, 2019.

Yuan Sui, Yufei He, Tri Cao, Simeng Han, Yulin Chen, and Bryan Hooi. Meta-reasoner: Dynamic
guidance for optimized inference-time reasoning in large language models. 2025.

Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun
Wang, Weinan Zhang, Shuyue Hu, et al. Rema: Learning to meta-think for llms with multi-agent
reinforcement learning. arXiv preprint arXiv:2503.09501, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-
task language understanding benchmark. In Advances in Neural Information Processing Systems:
Datasets and Benchmarks Track, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, 2022.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Franken, Nick
Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning how to think with meta
chain-of-thought. 2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hanqi Yan, Linhai Zhang, Jiazheng Li, Zhenyi Shen, and Yulan He. Position: LLMs need a bayesian
meta-reasoning framework for more robust and generalizable reasoning. In International Confer-
ence on Machine Learning, 2025.

Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning algorithms:
Theory and practice. Neurocomputing, 415:295–316, 2020.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang. Reasonflux: Hierarchical llm reasoning via
scaling thought templates. arXiv preprint arXiv:2502.06772, 2025a.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and Shuicheng
Yan. Supercorrect: Advancing small llm reasoning with thought template distillation and self-
correction. In International Conference on Learning Representations, 2025b.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, LEI BAI, and Xiang Wang. Multi-agent ar-
chitecture search via agentic supernet. In International Conference on Machine Learning, 2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

James Xu Zhao, Bryan Hooi, and See-Kiong Ng. Test-time scaling in reasoning models is not
effective for knowledge-intensive tasks yet. arXiv preprint arXiv:2509.06861, 2025.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In International Conference
on Machine Learning, 2024.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8697–8710, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 META REASONING STRATEGY IMPLEMENTATION

The functions of meta reasoning strategies is summarized in Table 2. We design maybe more than
one prompts for each strategy and sample one randomly when sampling strategy for an edge. Some
prompts are used only for certain tasks and we indicate them in parentheses after the prompt. The
prompts of all meta level strategies are as follows.

Table 2: Meta reasoning strategies.
Strategy Function

Next Reason to next step.
Reflect Reflect previous reasoning steps
Explore Inspire divergent thinking

Decompose Decompose current query and propose sub-question.
Summarize Summarize previous reasoning steps.

Recall Recall related knowledge or previous steps about problem.
Answer Give answer and end current reasoning path.

Prompt for Next

• Next,
• Then,
• Now, let me move on to the next step.

Prompt for Reflect

• Let me consider what part of the reasoning feels least certain, and how can it be examined.
• Wait, let me think if there anything missing in the current reasoning.
• Let me think does the current line of thought have any error.

Prompt for Explore

• Let me consider which direction of thinking I should explore.
• Let me think what potential strategy has not yet been considered that could be the next

solution path.
• Let me think what possible solution could be tried next.

Prompt for Decompose

• This question is a bit complex, let me think how to decompose it into sub-questions that I
can solve.

• The question feels too broad, let me think what smaller version could I tackle first.
• Let me think if I can express the problem in terms of simpler components or modules.
• Let me consider the options one by one. (General multi-choice)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for Summarize

• Let me summarize what have I established so far.
• Let me summarize the current state of reasoning process, what’s known, unknown, and

assumed?
• Let me consider if I can captures the essence of the reasoning so far with single sentence.

Prompt for Recall

• Let me think if I have encountered similar problems or if learned knowledge and previous
intermediate step can be used here.

• Let me think what prior reasoning steps are directly relevant here or this question connect
to earlier results. (Math Q&A).

• Let me recall which theorems, rules, or principles from earlier knowledge is related to this
question. (General multi-choice).

Prompt for Answer

Let me give the answer according to current reasoning context.

A.2 META REASONING STRATEGY SAMPLING

We implement an MLP model to sample strategy for edge (j, i) from nj to ni by taking represen-
tations of potential predecessor node content cj , already sampled strategy s>j,i and current base
reasoning context composed of all node content in partial skeleton c:i−1.

Specifically, we maintain a learnable embedding layer to map each strategy s ∈ S∪{zero} to a dense
embedding. For each node content c, we save the mean of “last hidden state” of the c as semantic
representation of the node content. “Last hidden state” is byproduct of LLM inference process for
token distribution when generating each token, requiring no extra LLM invocation.

Finally, we build input for MLP according to Concat([e(cj),Mean(e(s>j,i)),Mean(e(c:i−1))]),
where Concat(·) means concatenate vectors and Mean(·) means calculate the mean of vectors. We
use Softmax(·) to process output of MLP and give the distribution of s(j,i) ∈ S ∪ {zero}.

A.3 OVERALL SEARCH ALGORITHM

We show the overall search algorithm in Algorithm 2. We set implement N as 8, M as 16 and
learning rate η to 5 × 10−4 during search for both tasks. We refer to previous works (Zhuge et al.,
2024; Zhang et al., 2025a; Xie et al., 2025; Hu et al., 2025; Cheng et al., 2020), implement techniques
such as gradient clipping, to improve the stability and convergence rate of search algorithm. See our
code for implementation details. We implement a rule-based r by exactly matching final answer
â = LLM(q, αq) given by LLM with ground-truth a from dataset. Specifically,

r(a,LLM(q, αq)) =

{
1, if LLM(q, αq) = a,

−1, if LLM(q, αq) ̸= a.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Overall Search Algorithm
Require: Dataset D, learning rate η
Ensure: Trained θ
1: Initialize θ randomly
2: while not convergence do
3: Sample a batch {q1, q2, ..., qN} from D
4: Sample {α1

qi , α
2
qi , ..., α

M
qi } for each qi with Algorithm 1

5: θ ← θ + η
MN

N∑
i=1

M∑
j=1

[r(ai,LLM(qi, α
j
qi))∇θ logPθ(α

j
qi |qi)]

6: end while
7: return θ

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 1

Proof. We prove each case by construction.

Sequential. A sequential structure is defined as an ordered set of noes V = {v1, . . . , vk} with edges

E = {(i, i+ 1) | 1 ≤ i ≤ k − 1},

and τ((i, i + 1) ∈ S for each i. Clearly, v1 is the unique source (deg−(v1) = 0 and deg−(v) = 1
for all v ̸= v1), and G is acyclic since edges only connect vi → vi+1. Hence (V, E ,S, τ) is a
single-source edge-heterogeneous DAG.

Tree. A tree is a rooted directed graph G = (V, E ,S, τ) such that:

∃! r ∈ V with deg−(r) = 0, ∀v ∈ V \ {r}, deg−(v) = 1.

By definition, a rooted tree has no directed cycles and admits a unique source r. Since τ : E → S
can assign arbitrary heterogeneous edge types, (V, E ,S, τ) is a single-source edge-heterogeneous
DAG.

Parallel. A parallel structure is defined by a common entry node s and a family of disjoint branches

B = {B1, . . . , Bm}, Bi = (Vi, Ei,S, τ |Ei),

where s ∈ V and for each i we have (s, u) ∈ E with u ∈ Vi the root of branch Bi. Thus the overall
structure is

V = {s} ∪
m⋃
i=1

Vi, E =

m⋃
i=1

(
{(s, ui)} ∪ Ei

)
.

This is precisely a rooted tree with root s and subtrees Bi attached as children. Therefore, a parallel
structure is a special case of a tree, and hence also a single-source edge-heterogeneous DAG.

Since sequential, tree, and parallel (as a special case of tree) all admit representations (V, E ,S, τ)
that satisfy (i) unique source, (ii) acyclicity, and (iii) heterogeneous edge labels, they are all con-
tained in the class of single-source edge-heterogeneous DAGs.

B.2 PROOF OF PROPOSITION 2

We first prove that Algorithm 1 can cover any skeleton α ∈ A and then analyze the time complexity.

Proof. Since α is acyclic, by a standard result there exists a topological ordering of its vertices. That
is, there exists a permutation π = (n1, n2, . . . , n|V|) of V such that for every edge (u→ w) ∈ E we
have u appears earlier than w in π.

Use this topological order π as the insertion order in the append-only construction: add nodes in
order n1, n2, . . . , n|V|. When adding nt, consider all previously added nodes {n1, . . . , nt−1}. Be-
cause π is a topological order, every edge in E that is incident to nt from earlier nodes is of the form

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

ni → nt with i < t; there are no edges from nt back to any already-added node. Therefore, by
choosing exactly those forward edges {(ni → vt) ∈ E | i < t} at step t, we add precisely the edges
of α that end at nt.

Applying this procedure for t = 1, . . . , n adds all and only the edges of α. Hence the append-only
construction, with insertion order equal to any topological order of α and with edge choices equal
to the edges of α, reproduces α exactly.

Besides invoking the LLM to generate textual reasoning content, Algorithm 1 requires at most
O(|V|2) sampling process for reasoning steps count |V| with two layers of “for” loop, where each
sampling process corresponds to a single MLP call.

Let B denote token budget of the generated reasoning content. Since Algorithm 1 introduces no
additional LLM calls as analyzed in Section 3.2, the time complexity of LLM invocation remains
O(B2).
In practice, the reasoning step count |V| is roughly proportional to B, but typically |V| ≪ B, as each
reasoning step consists of many tokens.

Furthermore, the computational cost of MLP inference is negligible compared with the layered
blocks of the LLM. Therefore, AutoMR introduces only minimal additional computational overhead
relative to naive LLM reasoning.

C EXPERIMENT DETAILS

C.1 BASELINE IMPLEMENTATION

The system prompt and answer extraction code for math Q&A problem is referred to a open-source
repository openr 1. The system prompt and answer extraction code for general multiple-choice
problem is referred to the original MMLU-Pro repository 2.

For all baselines, we implement with Qwen and LLaMA as base model rather than the LLM used in
their original paper for fair comparison.

• MRP. MRP dose not have open-source code, but provides prompt in original paper. We follow
the paper to implement MRP.

• Meta-Reasoner. Meta-Reasoner dose not have open-source code, but provides prompt, pseudo
code and detailed description in original paper. We follow the paper to implement Meta-Reasoner.

• rStar. We implement rStar with it open-source code 3.

• MaAS. We implement MaAS with it open-source code 4.

• RS. Referring to previous works (Bergstra & Bengio, 2012; Liu et al., 2019), we sample 48 archi-
tectures from search space randomly. Then we validate these architectures on training set to select
the one with highest accuracy. With the selected architecture, we report its accuracy on test set.

• QI. Referring to previous works (Liu et al., 2019; Zhuge et al., 2024), we do not use an MLP which
takes reasoning context as input and output meta strategy distribution, but model the strategy
distribution of each edge in search space without condition. We optimize the distribution with the
same estimation of policy gradient with REINFORCE as in Equation 4. For all queries in test set,
we sample only one skeleton to process all of them.

• CA. Referring to previous works (Cheng et al., 2020; Zhang et al., 2025a), we use an MLP which
takes semantic embedding of queries and meta reasoning strategies existing in skeleton as input
to sample strategy for edges, rather than based on base reasoning context. For each query in test
set, we sample a complete skeleton before inference and then reason for the query guided by the
complete skeleton.

1https://github.com/openreasoner/openr
2https://github.com/TIGER-AI-Lab/MMLU-Pro
3https://github.com/zhentingqi/rStar
4https://github.com/bingreeky/MaAS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 DATASETS DETAILS

For training set, we use MATH 5 training split composed of 5053 query-answer pairs and MMLU-
Pro 6 training split composed of 70 query-answer pairs. For testing set, we use GSM8K 7, MATH-
500 8, AMC 9, Olympiad 10 and four subset (Science, Humanities, Social and Other) of MMLU-Pro.
We summarize the statistics of dataset in Tabel 3.

Table 3: Dataset Statistics.

Domain # Train Dataset # Test Description

Math Q&A 5053

GSM8K 1319 Grade school math.
MATH-500 500 High school math.

AMC 83 High school competition math.
Olympiad 674 Olympiad-level math competition.

General Multi-Choice 70

Science 5345 Physic, chemistry, biology, etc.
Humanities 1981 Philosophy, history and law.

Social 2431 psychology, business and economics.
Other 924 Other topics

D USE OF LLMS

We use LLMs only to polish writing grammatically. We review and revise all content generated by
LLMs to ensure accuracy.

5https://github.com/hendrycks/math
6https://github.com/TIGER-AI-Lab/MMLU-Pro
7https://github.com/openai/grade-school-math
8https://huggingface.co/datasets/HuggingFaceH4/MATH-500
9https://huggingface.co/datasets/AI-MO/aimo-validation-amc

10https://github.com/OpenBMB/OlympiadBench

19

