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Abstract

Power is the primary design objective of large-scale integrated circuits (ICs), espe-
cially for complex modern processors (i.e., CPUs). Accurate CPU power evaluation
requires designers to go through the whole time-consuming IC implementation pro-
cess, easily taking months. At the early design stage (e.g., architecture-level), classi-
cal power models are notoriously inaccurate. Recently, ML-based architecture-level
power models have been proposed to boost accuracy, but the data availability is
a severe challenge. Currently, there is no open-source dataset for this important
ML application. A typical dataset generation process involves correct CPU de-
sign implementation and repetitive execution of power simulation flows, requiring
significant design expertise, engineering effort, and execution time. Even private in-
house datasets often fail to reflect realistic CPU design scenarios. In this work, we
propose ArchPower, the first open-source dataset for architecture-level processor
power modeling. We go through complex and realistic design flows to collect the
CPU architectural information as features and the ground-truth simulated power
as labels. Our dataset includes 200 CPU data samples, collected from 25 different
CPU configurations when executing 8 different workloads. There are more than
100 architectural features in each data sample, including both hardware and event
parameters. The label of each sample provides fine-grained power information,
including the total design power and the power for each of the 11 components.
Each power value is further decomposed into four fine-grained power groups: com-
binational logic power, sequential logic power, memory power, and clock power.
ArchPower is available at https://github.com/hkust-zhiyao/ArchPower.

1 Introduction

The rapid advancements of AI rely on the support of very large-scale integrated (VLSI) circuits.
Power is the primary design objective of integrated circuits (ICs), especially for complex modern
processors (i.e., CPUs), which play a central role in various computing systems. Accurate yet efficient
power estimation techniques are the premise of and key challenge of power optimization. However,
as Fig. 1(a) shows, accurate CPU power evaluation requires designers to go through the whole
time-consuming IC implementation process, easily taking months. As the complexity of CPU designs
keeps increasing, the standard power estimation flow becomes increasingly costly.

To facilitate power estimation at early stages, designers will evaluate power consumption at the
architecture level, before designing the RTL (e.g., in Verilog or VHDL) and going through the
downstream implementation flow (i.e., circuit synthesis and layout). Fig. 1(b) illustrates the workflow
of the architecture-level power modeling, using classical tools such as McPAT [14] and Wattch [10].
Such a fast power estimation approach takes only tens of seconds, which is about 100× faster than the
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Figure 1: Comparison between (a) standard power evaluation flow and (b) architecture-level power
evaluation flow. The architecture-level power modeling flow is significantly efficient compared with
the standard power evaluation flow. ArchPower provides labeled data for ML-based architecture-level
power modeling.

Work Commercial Tech Lib Clock Gating SRAM Implementation Diverse Architectures
McPAT-Calib [20]
ASPDAC’23 [22]

PANDA [24] ✓ ✓
FirePower [23] ✓ ✓ ✓
AutoPower [25] ✓ ✓ ✓

ArchPower (This Work) ✓ ✓ ✓ ✓

Table 1: Comparison between datasets in existing works and our proposed ArchPower dataset.

standard VLSI power estimation flow. However, these classical analytical architecture-level power
models are notoriously inaccuracy, as indicated in multiple existing studies [17, 20, 13, 16, 12].

In recent years, machine learning (ML)-based architecture-level power model [20, 24] has been
explored for better power evaluation accuracy. The ML-based architecture-level power model takes
both hardware parameters and event parameters as features to predict the CPU power consumption as
its output. Hardware parameters are parameters to determine CPU configurations, such as FetchWidth
and DecodeWidth. Event parameters are event statistics when a CPU executes a workload, collected
from existing architecture-level performance simulators, such as the number of branch mispredictions
and DCache misses. Based on a few training data collected on the target CPU architecture, ML-based
power models can mitigate the modeling error or bias incurred from analytical models that are built
for outdated processors.

However, despite emerging works in ML-based architecture-level power models [20, 22, 24, 23], they
all built their solutions on private datasets. There is no open-source dataset for such an important
application, preventing the AI community from making its contribution. We find that some of
them open-source their model implementation [20, 24, 23], however, none of them open-source
their dataset for training and testing. Other related works, such as architecture-level design space
exploration [7, 8, 19, 21, 6], also do not share their data. It is because the dataset generation for the
ML-based architecture-level power modeling is challenging, requiring significant IC knowledge and
engineering effort for the correct CPU design implementation and power simulation flow.

Besides the unavailability, these in-house datasets also have other limitations, as shown in Table B. 1)
Some datasets [20, 22] do not include SRAM in their implementation. It is because of difficulties
in implementing SRAM in RTL and the lack of SRAM support in some technologies. However,
the SRAM is essential to build many important components of the CPU, such as the cache and the
branch predictor, and consumes over 50% power of the whole CPU. Therefore, the absence of SRAM
leads to an unreliable evaluation. 2) Some other datasets [24, 23] do not adopt the clock-gating
technique for logic synthesis, making the clock power far from the real processors. 3) Most of these
datasets [20, 22, 24] are only collected based on a single CPU architecture, unable to validate whether
the evaluated models can also work for other architectures.

To address the problems above, in this work, we propose ArchPower, the first open-source dataset
for ML-based architecture-level power modeling of modern processor design. Our dataset includes
200 samples collected from 25 CPU configurations and 8 workloads. The architectural feature of
each sample is a vector with 101 elements, including hardware parameters and event parameters.
They can also be extracted as per-component features with our provided indexes. The power label of
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each sample includes the whole CPU ground-truth power and 11 per-component ground-truth powers.
Each ground-truth power has not only the total circuit power but also the fine-grained power values
of four power groups, including combinational logic power, sequential logic power, memory power,
and clock power.

To build the dataset, we invest substantial engineering effort. We set up the frameworks [4, 18] for
the RTL code generation process of two widely adopted CPU architectures, including BOOM [26]
and XiangShan CPUs [18]. We also integrate realistic SRAM macros for each memory block in the
RTL designs. Based on the RTL implementation, we go through the complex VLSI flow and standard
power evaluation flow with commercial EDA tools [3, 15, 2], with clock-gating considered. The
VLSI flow consumes a long runtime and significant computing power.

Our contributions are summarized below.

• We release ArchPower, the first open-source dataset for the ML-based architecture-level
power model. ArchPower includes 200 data samples collected from 25 CPU configurations
and 8 workloads. ArchPower reflects realistic design power since it considers the clock-
gating and integrates realistic SRAM macros for power label collection.

• We also provide a training-testing framework for the ML-based architecture-level power
model. It includes different setups of training and testing data that reflect the realistic CPU
development scenarios, which can evaluate the generalization of ML-based power models.

• We evaluate six different power models, including two analytical models and four ML-
based models, based on ArchPower. The evaluation provides both the total power and
per-component power modeling accuracy.

2 Preliminary

In this section, we first describe the principle of the standard power evaluation flow in Sec. 2.1, briefly
introduce both classical analytical architecture-level power model and ML-based architecture-level
power model in Sec. 2.2, and then introduce the modern CPU architecture in Sec. 2.3.

2.1 Principle of VLSI Power Evaluation Flow

The dynamic power dominates the power consumption, and the leakage power is small compared
with the dynamic power. Therefore, we focus on the dynamic power evaluation. The dynamic power
of the processor is the sum of the dynamic power of all cells. Denoting the dynamic power as P , the
power calculation is shown in Eq.(1),

P =
∑

c∈netlist

αcCcV
2f (1)

where c is the cell in the netlist, αc is the switch activity of cell c, Cc is the capacitance of cell c and
the load capacitance of its wire, V is the voltage of the chip, and f is the frequency of the chip.

The standard power evaluation flow calculates the power by collecting all related values from inputs
and conducting the calculation. The cell c is from the netlist generated by logic synthesis, switch
activity αc is extracted from the signal information generated by RTL simulation, capacitance Cc

is from the liberty file, and the voltage V and frequency f are set at the chip level. Such a standard
power calculation is complex and slow because both generating input files and calculating the final
power are time-consuming.

2.2 Architecture-Level Power Model

To avoid the time-consuming standard power evaluation, the architecture-level processor power model
can provide fast power estimation at the early design stage. The architecture-level power model takes
the hardware parameters H , which determine the CPU configurations, and event parameters E, which
are the event statistics generated by the performance simulators like gem5 [9], as input and outputs
the power consumption P .
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Figure 2: (a) The architecture of the modern high-performance CPU core. Blue blocks are major
components. The yellow block represents the Other Logic. (b) A layout example of one BOOM CPU.

Analytical Architecture-Level Power Model: The analytical architecture-level power model esti-
mates the processor power consumption following two steps, denoted as Eq.(2).

P = Fevent(Fop(H), E) (2)

In the first step, based on the hardware parameter H , the model instantiates each component of
the processor based on empirical models to collect the per-operation energy. This step is denoted
as Fop. In the second step, the model transforms the event parameters E into the count of basic
operations and calculates the power consumption. This step is denoted as Fevent. However, because
of the discrepancy between the real processor and the modeled one, the analytical Fop and Fevent are
usually inaccurate, leading to the low accuracy of analytical power models.

ML-based Architecture-Level Power Model: In recent years, to address the low accuracy of
analytical power models, ML-based architecture-level power models [20, 22, 24, 23] have been
proposed. The ML-based power model adopts a machine learning model Fml to directly learn the
correlation between the input feature and the final power consumption, denoted as Eq.(3).

P = Fml(H,E) (3)

Among the ML-based architecture-level power models, some existing ML-based power models [20,
22] adopt a purely black-box machine learning algorithm, and some others [24, 23] utilize a hybrid
gray-box model, with some analytical information provided.

2.3 Modern CPU Architecture

Fig. 2 shows the basic architecture of modern high-performance CPUs that our dataset targets.
Modern CPUs usually adopt out-of-order execution to improve instruction-level parallelism, which
can significantly boost CPU performance. The CPU has three major blocks, including Frontend,
Execution, and Mem Access, with each block consisting of multiple components. 1) The Frontend
includes 3 components: branch predictor (BP), instruction cache (ICache), and instruction fetch unit
(IFU). 2) The Execution consists of 5 components: renaming unit (RNU), reorder buffer (ROB),
issue unit (ISU), register file (Regfile), and function unit pool (FU Pool). 3) The Mem Access has 2
components: load-store unit (LSU) and data cache (DCache). 4) The logic not covered by the major
components above is referred to as Other Logic. ArchPower provides per-component power labels
for each of the 11 components.

3 Related Work

Despite many existing works exploring architecture-level power modeling, there is no existing
open-source dataset for the architecture-level power model. Some existing works [20, 22, 24, 23]
release their model implementation code, and some of them [20, 22] also provide example data for
demonstration with only one or two samples. However, none of them release their full dataset for
training and testing.

Besides unavailability, these in-house datasets also have other problems. Some works [20, 22]
exclude the SRAM in the processors, while the SRAM is the basic building block of many important
components and dominates the power consumption of modern CPUs. Some other works [24, 23]
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Figure 3: Dataset and data generation process of ArchPower. Our dataset mainly includes the
architectural power modeling features and power labels. The features can further be masked with
component masks to generate per-component features. ArchPower generates architectural power
modeling features through the architectural event collection and generates power labels through
design implementation and ground-truth power collection.

do not adopt the clock-gating technique when performing logic synthesis, which is an essential
optimization for processor designs. Therefore, ignoring the clock-gating technique makes their CPU
implementation and power labels far from the real processors. Therefore, an open-source high-quality
dataset is in great need for the development of ML-based architecture-level power models.

4 Dataset Description

4.1 Dataset Overview

Our ArchPower dataset consists of 25× 8 = 200 data samples collected from 25 CPU configurations
when executing 8 different workloads. Each data sample describes a CPU configuration when
executing a workload, providing both architecture-level features and power labels. Fig. 3 provides
an overview of our ArchPower dataset. The architectural feature of each sample is a vector with
101 elements, including 14 hardware parameters H and 87 event parameters E. The corresponding
ground-truth power label of each sample is collected by going through the design implementation
and simulation flow.

In addition to the feature and power label of the whole design, we provide component masks to
indicate per-component features and include per-component power labels for 11 components. For
both the whole design and per-component, we also provide fine-grained power labels for four power
groups: combinational logic power, sequential logic power, memory power, and clock power. The
power label of each sample has 60 values in total. The raw event statistics files of each sample are
also included for potential use in future research.

4.2 Detailed Dataset Description

Given the hardware parameter H of the target CPU configuration and event parameter E when the
CPU runs the target workload, the ML-based architecture-level power model predicts the power
consumption P , as shown in Eq.(3). Therefore, in ArchPower, a sample represents a CPU configura-
tion running a workload. ArchPower provides features and labels for both the whole CPU and each
component. In this subsection, we describe the feature and label in detail.

4.2.1 Architectural Power Modeling Feature

ArchPower has 200 data samples, and each sample has 101 features, including 14 hardware parameters
and 87 event parameters. Therefore, we provide the architectural power modeling feature as a
200 × 101 matrix in our dataset. 1) The first 14 columns are the 14 hardware parameters that
determine the CPU configuration, including FetchWidth, DecodeWidth, FetchBufferEntry, RobEntry,
IntPhyRegister, FpPhyRegister, LDQ/STQEntry, BranchCount, Mem/FpIssueWidth, IntIssueWidth,
DCache/ICacheWay, DTLBEntry, MSHREntry, and ICacheFetchBytes. 2) The last 87 columns are the
87 event parameters that are event statistics generated by the architecture-level performance simulator
when a CPU configuration executes a workload, such as condIncorrect, icache.overallMisses, and
dcache.ReadReq.access. Table 2 lists hardware parameters and event parameters of each component.
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Component Hardware parameters of each component Event parameters of each component
BP FetchWidth, BranchCount BTBLookups, condPredicted, condIncorrect, commit.branches

IFU FetchWidth, DecodeWidth
fetch.{insts, branches, cycles}, numRefs, numStoreInsts, numInsts,
decode.{runCycles, blockedCycles, decodedInsts}, numBranches,

FetchBufferEntry, ICacheFetchBytes intInstQueueReads, intInstQueueWrites, intInstQueueWakeupAccesses,
fpInstQueueReads, fpInstQueueWrites, fpInstQueueWakeupAccesses

ICache ICacheWay, ICacheFetchBytes overallAccesses, overallMisses, ReadReq.mshrHits,
ReadReq.mshrMisses, tagAccesses

RNU DecodeWidth intLookups, renamedOperands, fpLookups, renamedInsts,
runCycles, blockCycles, committedMaps

ROB DecodeWidth, RobEntry reads, writes

ISU
DecodeWidth, Mem/FpIssueWidth, IssuedMemRead, IssuedMemWrite, IssuedFloatMemRead,

IntIssueWidth IssuedFloatMemWrite, IssuedIntAlu, IssuedIntMult,
IssuedIntDiv, IssuedFloatMult, IssuedFloatDiv

Regfile
DecodeWidth, IntPhyRegister, intRegfileReads, fpRegfileReads, intRegfileWrites,

FpPhyRegister fpRegfileWrites, functionCalls
FU Pool Mem/FpIssueWidth, IntIssueWidth intAluAccesses, fpAluAccesses

LSU LDQ/STQEntry, MemIssueWidth MemRead, InstPrefetch, MemWrite

DCache DCacheWay, DCacheTLBEntry, ReadReq.accesses, WriteReq.accesses, ReadReq.misses, tagAccesses,
DCacheMSHR, MemIssueWidth WriteReq.misses, overallMisses, MshrHits, MshrMisses

CPU Level -

totalIpc, totalCpi, numCycles, idleCycles, numLoadInsts,
numSquashedInsts, committedInsts, commit.{numDist::mean, memRefs},
mmu.dtb.{accesses, misses}, iew.writebackCount, numIssuedDist::mean,

statIssuedInstType_0::total, fuBusy, mmu.itb.{accesses, misses},
conflictingLoads, conflictingStores, insertedLoads, insertedStores,

mem_ctrls.{readReqs, writeReqs, bytesReadSys},
icache.tags.totalRefs, dcache.{overallAccesses::total, tags.totalRefs}

Table 2: Hardware parameters and event parameters of each component. The 14 hardware parameters
and 87 event parameters in the architectural power modeling feature are the union of all components
and the CPU-level parameters. Other Logic adopts all features and is not listed.

Figure 4: The power distributions across 11 components of 6 different CPU configurations (B1, B7,
B15, X1, X5, X10) with different scales.

The 14 hardware parameters and 87 event parameters in the architectural power modeling feature are
the union of all components and the CPU-level parameters.

Our dataset provides a component mask to select the features for each component, as shown in Fig. 3.
The Other Logic adopts all features and is not listed. For each component, the component mask has a
14-bit hardware mask to select from 14 hardware parameters and an 87-bit event mask to select from
87 event parameters. With the component mask, the per-component features can be extracted from
our provided architectural power modeling feature.

4.2.2 Power Label

For the 200 data samples, each sample has (1 + 11)× (1 + 4) = 60 fine-grained power labels, for
both the whole CPU and 11 components. We further decouple the power into four power groups,
including combinational logic power, sequential logic power, memory logic power, and clock power.
Therefore, we provide our power label as a 200× 60 matrix in our dataset. For each sample, the label
includes the whole CPU ground-truth power collected from the standard VLSI power evaluation flow.
Besides the whole CPU ground-truth power, we also provide the labels at the component level, which
include ground-truth power for the 11 components, including BP, IFU, ICache, RNU, ROB, ISU,
Regfile, FU Pool, LSU, DCache, and Other Logic, respectively. Fig. 4 shows the power distribution
across different components for configurations with different scales, where Bi is the ith configuration
of BOOM architecture and Xi is the ith configuration of XiangShan architecture.
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Hardware Parameter B1 B2 B4 B6 B7 B9 B11 B13 B15 X1 X3 X5 X7 X8 X10
FetchWidth 4 4 4 8 8 8 8 8 8 4 4 4 8 8 8

DecodeWidth 1 1 2 2 3 3 4 5 5 2 2 3 4 4 5
FetchBufferEntry 5 8 8 24 18 30 32 30 40 8 24 24 24 32 24

RobEntry 16 32 64 80 81 114 128 125 140 16 48 64 81 96 112
IntPhyRegister 36 53 64 88 88 112 128 108 140 36 68 80 88 110 108
FpPhyRegister 36 48 56 72 88 112 128 108 140 36 68 80 88 110 108

LDQ/STQEntry 4 8 12 20 16 32 32 24 36 16 24 24 24 32 32
BranchCount 6 8 10 14 14 16 20 18 20 7 7 7 7 7 7

Mem/FpIssueWidth 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
IntIssueWidth 1 1 1 2 2 3 4 5 5 2 2 4 4 6 6

DCache/ICacheWay 2 4 4 8 8 8 8 8 8 4 8 4 8 8 8
DTLBEntry 8 8 8 16 16 32 32 32 32 8 16 8 16 16 32
MSHREntry 2 2 2 4 4 4 4 8 8 2 4 2 4 4 4

ICacheFetchBytes 2 2 2 4 4 4 4 4 4 2 2 2 2 2 2

Table 3: Some representative CPU configurations across different scales from our dataset. B1-B15
denote 15 configurations of BOOM, and X1-X10 denote 10 configurations of XiangShan.

4.3 Training-Testing Data Setup

In addition to the dataset, we also provide a ready-for-use training-testing framework for the evaluation
of ML-based architecture-level power models. In our framework, we set up training scenarios based
on the three unique characteristics of processor developments. 1) Training and testing samples are
divided based on configurations, where all data collected from training configurations are training
data, and data from testing configurations are testing data. 2) Because of the significant manpower and
time overhead, the training configurations are usually limited in real scenarios. Therefore, we set up
few-shot scenarios with only three training configurations. 3) In the industry, architects usually also
work on configurations that have different scales from available training configurations. Therefore,
we set up three training scenarios with different training data distributions. Therefore, we set up
three training-testing scenarios named Balance, Small, and Large: 1) Balance. We evenly select the
configurations as available training configurations based on the scale: B1, B8, and B15 for BOOM,
X1, X6, and X10 for XiangShan. 2) Small. We select the smallest configurations as available training
configurations: B1, B2, and B3 for BOOM, X1, X2, and X3 for XiangShan. 3) Large. We select the
largest configurations as available training configurations: B13, B14, and B15 for BOOM, X8, X9,
and X10 for XiangShan.

Besides directly utilizing the training-testing data setup in our provided evaluation framework, users
can also evaluate their own training-testing data setup based on the provided dataset of ArchPower.

5 Dataset Generation Process

5.1 Adopted CPU Configurations and Workloads

We adopt two highly configurable CPU architectures, BOOM [26] and XiangShan [18], to generate
multiple CPUs with different configurations. The Berkeley Out-of-Order Machine (BOOM) [26]
implemented in Chisel [5] is a synthesizable and parameterizable open-source out-of-order core. It
can be configured to cores with different scales, given a variety of hardware parameters H . Xiang-
Shan [18] is a high-performance open-source CPU project. Similar to the BOOM, the XiangShan is
also implemented with Chisel and is highly configurable. In our dataset, we adopt 15 configurations
of the BOOM CPU named B1-B15. We adopt 10 configurations of the XiangShan CPU in our dataset
named X1-X10. The CPU configurations that we adopted are carefully selected to be similar to
real-world commercial CPUs. Different hardware parameters within each configuration also configure
a CPU where components are balanced. Some representative CPU configurations are listed in Table 3
because of the page limitation. All CPU configurations are provided in the appendix.

For the workloads executed on the CPU, we utilize workloads from the riscv-tests [1]. Riscv-tests
is the official test benchmark for the RISC-V processors. We collect 8 widely adopted real-world
workloads from riscv-tests, including dhrystone, median, multiply, qsort, rsort, towers, spmv, and
vvadd. These workloads are across different lengths, from thousands of cycles to several hundred
thousand cycles.
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5.2 Data Collection Flow

Architectural Event Collection: For a CPU configuration when executing a workload, we adopt the
gem5 [9] as our performance simulator to generate the event statistics. We configure the O3CPU in
gem5 with the hardware parameters of the simulated configuration and execute the workload. All
of our generated raw event statistic files are available in our dataset, and our script for automatic
configuration and simulation is also open-sourced in ArchPower.

Design Implementation: To implement a CPU design with a configuration, we perform RTL code
generation with Chipyard [4] v1.8.1 and OpenXiangShan [18] for BOOM and XiangShan, respec-
tively. To get the netlist, we perform logic synthesis with Synopsis Design Compiler® [2], during
which is clock-gating technique is turned on. The technology library utilized in our implementation
is 40nm standard cell library. We also implement the SRAM in the processor using the Memory
Compiler of the 40nm technology library.

Ground-Truth Power Collection: For a configuration executing a workload, we perform the standard
power evaluation flow to collect the ground-truth power. We perform RTL simulation with Synopsys
VCS® [3]. We perform post-synthesis power simulation with PrimePower [15] and collect the power
data as the label.

Advanced Technology Library: Besides the primary 40nm technology library on which our
experiment is performed in this paper, we also provide an additional dataset collected with a 28nm
technology library. This additional dataset has the same organization as our primary 40nm dataset,
and can be adopted for benchmarking with the same benchmark framework. In the future, if we get
access to any high-quality FinFET technology library in the future, we will update our dataset and
provide the data with the FinFET technology library.

6 Experiments

6.1 Benchmarked Models

There are many ML-based architecture-level power modeling works [20, 22, 24, 23]. We benchmark
two representative existing ML-based architecture-level power models, McPAT-Calib [20] and
PANDA [24], based on ArchPower. We also derive two ML-based power models, McPAT-Calib-
Component and McPAT-Calib-CompGroup, based on McPAT-Calib, utilizing fine-grained component-
level and power-group-level power labels. We also evaluate the classical analytical power models for
comparison, including McPAT [14] and our enhanced version, McPAT-Plus.

We describe our 6 evaluated power models below. (a) McPAT [14]: A widely adopted analytical power
model. Its input includes the hardware parameter and the raw event statistics. Therefore, it can also
be evaluated based on our dataset. (b) McPAT-Plus: An enhanced version of McPAT. It fits a scaling
factor on training data, and then scales the output of McPAT when testing. (c) McPAT-Calib [20]:
It utilizes an ML model, XGBoost [11], to learn the correlation between the input feature and the
final total power label. (d) McPAT-Calib-Component: An enhanced version of McPAT-Calib. It
builds one ML model for each component based on per-component power labels. The per-component
power predictions are summed up for total power. (e) McPAT-Calib-CompGroup: It is derived from
the McPAT-Calib-Component, building one ML model for each group of each component based on
per-power-group power labels. When predicting the total power, it predicts per-component power
respectively and sums them up. (f) PANDA [24]: It adopts resource functions to capture the major
correlation between hardware parameters and the power of each component, and multiplies it by the
ML model for the final power prediction. We adopt the mean absolute percentage error (MAPE) and
the correlation coefficient R between label and prediction to evaluate the power modeling accuracy
of the ML-based architecture-level power model.

6.2 Power Prediction Accuracy

6.2.1 Total Power Prediction

Table 4 shows the accuracy comparison for total power prediction between our selected six models
under different training scenarios. It shows that even the enhanced version of McPAT, McPAT-Plus,
can not achieve a high accuracy, with MAPE over 15% and correlation coefficient R lower than
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Scenario
McPAT McPAT-Plus McPAT-Calib

BOOM XiangShan BOOM XiangShan BOOM XiangShan
MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R

Balance >100 0.83 >100 0.85 18.1 0.83 29.6 0.85 8.2 0.98 33.2 0.73
Small >100 0.74 >100 0.77 31.0 0.74 21.6 0.77 34.3 0.76 41.5 0.48
Large >100 0.83 >100 0.78 28.2 0.83 28.3 0.78 50.6 0.23 90.0 0.14

Average >100 0.80 >100 0.80 25.8 0.80 26.5 0.80 31.0 0.66 54.9 0.45

Scenario
McPAT-Calib-Component McPAT-Calib-CompGroup PANDA
BOOM XiangShan BOOM XiangShan BOOM XiangShan

MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R
Balance 6.2 0.98 14.0 0.97 6.2 0.98 15.0 0.97 6.8 0.97 19.4 0.9
Small 34.9 0.75 35.4 0.72 35.3 0.75 36.0 0.72 29.2 0.93 23.9 0.86
Large 48.9 0.4 81.4 0.31 49.2 0.4 80.5 0.35 10.4 0.98 26.3 0.82

Average 30.0 0.71 43.6 0.67 30.2 0.71 43.8 0.68 15.5 0.96 23.2 0.86

Table 4: Comparison between different architecture-level power models for total power prediction
under different training scenarios. All MAPE values are reported as percentages. The best accuracies
for each scenario are highlighted in bold.

Component
McPAT McPAT-Plus McPAT-Calib

BOOM XiangShan BOOM XiangShan BOOM XiangShan
MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R

BP 67.5 0.37 55.4 0.78 96.6 0.37 90.0 0.78 - - - -
ICache 39.5 0.50 83.7 0.48 91.1 0.50 96.3 0.48 - - - -

IFU >100 0.35 >100 0.78 41.2 0.35 66.6 0.78 - - - -
RNU >100 0.90 >100 0.86 >100 0.90 >100 0.86 - - - -
ROB >100 0.65 >100 0.94 44.1 0.65 67.0 0.94 - - - -
ISU >100 0.87 81.5 0.91 32.2 0.87 59.2 0.91 - - - -

Regfile >100 0.73 49.6 0.81 43.3 0.73 70.9 0.81 - - - -
FU Pool >100 0.51 67.9 0.53 45.0 0.51 92.8 0.53 - - - -

LSU >100 0.17 >100 0.84 >100 0.17 >100 0.84 - - - -
DCache >100 0.71 >100 0.90 46.8 0.71 57.1 0.90 - - - -

Other Logic >100 0.70 >100 <0 >100 0.70 >100 <0 - - - -

Component
McPAT-Calib-Component McPAT-Calib-CompGroup PANDA
BOOM XiangShan BOOM XiangShan BOOM XiangShan

MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R
BP 1.1 1.00 12.4 0.90 1.2 1.00 12.6 0.90 1.6 0.99 24.5 0.78

ICache 18.7 0.97 36.2 0.92 18.2 0.97 36.3 0.92 2.2 1.00 52.8 0.77
IFU 14.2 0.42 16.9 0.86 13.1 0.48 16.6 0.87 36.3 <0 15.5 0.90
RNU 45.0 0.68 15.0 0.92 56.8 0.64 15.3 0.94 43.1 0.79 14.7 0.86
ROB 34.3 0.63 19.4 0.90 34.1 0.62 17.6 0.90 52.0 0.56 19.7 0.93
ISU 24.6 0.91 38.1 0.81 24.9 0.91 51.2 0.78 21.9 0.84 43.8 0.93

Regfile 22.0 0.84 60.6 0.72 22.2 0.88 60.2 0.72 37.5 0.68 83.3 0.94
FU Pool 10.5 0.94 7.3 0.97 10.0 0.94 7.2 0.97 10.5 0.94 7.3 0.97

LSU >100 <0 13.0 0.86 >100 <0 12.7 0.88 97.8 0.17 11.0 0.88
DCache 23.7 0.87 23.0 0.92 21.6 0.89 22.1 0.92 16.9 0.96 16.1 0.95

Other Logic 28.6 0.44 >100 0.32 28.1 0.44 >100 0.87 44.1 0.34 >100 0.54

Table 5: Comparison between different architecture-level power models for per-component power
prediction under the Balance training scenario. All MAPE values are reported as percentages. McPAT-
Calib is excluded because it does not provide per-component power information. The best accuracies
for each scenario are highlighted in bold.

0.85 on all evaluations. In comparison, the ML-based architecture-level power model, McPAT-Calib,
can achieve a high accuracy in the Balance training scenarios on BOOM. The enhanced versions of
McPAT-Calib, including McPAT-Calib-Component and McPAT-Calib-CompGroup, and the advanced
model PANDA can further improve the accuracy. However, in the training scenarios Small and
Large, where the testing data falls out of the training data distribution, the accuracy of the existing
ML-based architecture-level power model drops dramatically. It shows that our dataset can provide
a comprehensive evaluation for ML-based architecture-level power models, supporting different
training scenarios that can evaluate the generalization ability of models. A comprehensive evaluation
demonstrates that the generalization of ML models still needs to be improved in future research.

6.2.2 Per-Component Power Prediction

Table 5 shows the per-component prediction accuracy of different power models. McPAT-Calib
can not provide valid values because it directly predicts the final total power and does not provide
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Model BOOM XiangShan
MAPE R MAPE R

McPAT 771 0.83 427 0.86
McPAT-Plus 18.3 0.83 22.5 0.84
McPAT-Calib 5.6 0.96 10.0 0.95

McPAT-Calib-Comp 6.2 0.95 11.5 0.94
McPAT-Calib-CompGroup 6.1 0.96 11.3 0.94

PANDA 7.2 0.95 11.6 0.92

Table 6: Comparison between different architecture-level power models for cross-workload prediction.
All MAPE values are reported as percentages. The best accuracies are highlighted in bold.

per-component power information. It demonstrates that, besides the total power prediction, the ML-
based architecture-level power model can also achieve higher accuracy compared with the traditional
models for most of the components from BOOM and XiangShan.

However, it also demonstrates that ML-based architecture-level power models may also have a
negative effect on some components. For example, for the RNU of BOOM CPU, the correlation
coefficient R of McPAT-Calib-CompGroup drops to 0.64 compared with analytical models that can
achieve 0.90. It shows that our dataset can enable fine-grained evaluation for ML-based architecture-
level power models and provide detailed information about the model accuracy, which shows the
limitation of the existing ML-based architecture-level power models, driving potential research to
improve these cases.

6.2.3 Cross-Workload Power Prediction

Table 6 provides our experimental results that split the training and testing scenarios based on
workloads, where we adopt 8-fold cross-validation for training-testing splitting, i.e., 7 workloads for
training and 1 workload for testing. The experimental results show that the ML-based power models
can also demonstrate advantages over the traditional analytical model in the cross-workload scenario.
It indicates that ML-based power models have great potential.

7 Conclusion

In this paper, we present ArchPower, the first open-source dataset for ML-based architecture-level
power models. ArchPower includes 200 data samples collected from 25 CPU configurations and
8 workloads. We consider the clock-gating and integrate realistic SRAM macros for power label
collection. ArchPower allows anyone to easily replicate and further improve existing architecture-
level power models. We expect ArchPower to reduce the hardware barrier and enable more brilliant
AI solutions in hardware design and optimizations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide the first dataset for ML-based architecture-level power modeling.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work focuses on the introduction of our provided dataset.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information needed to reproduce the main experimental results can be found
in https://github.com/hkust-zhiyao/ArchPower.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code can be found in https://github.com/hkust-zhiyao/ArchPower.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We evaluate models under different training scenarios explicitly and report the
results for each training scenario. Besides, the reported result is the average across multiple
runnings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The application targeted in our research is purely technical and therefore has
no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix A.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See https://github.com/hkust-zhiyao/ArchPower.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More on Dataset and Evaluation Setting

A.1 Adopted CPU Configurations

In our dataset, we adopt 25 CPU configurations in total, including 15 configurations of BOOM CPU
and 10 configurations of XiangShan CPU. Table 7 and 8 list all 25 CPU configurations adopted in
our dataset.

Hardware Parameter B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8

DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40

RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140
IntPhyRegister 36 53 68 64 80 88 88 110 112 108 128 136 108 128 140
FpPhyRegister 36 48 56 56 64 72 88 96 112 108 128 136 108 128 140

LDQ/STQEntry 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36
BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20

Mem/FpIssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5

DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8
DTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32
MSHREntry 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8

ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

Table 7: The BOOM configurations adopted in our dataset, named B1-B15. The scales of these
configurations are from small to large.

Hardware Parameter X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
FetchWidth 4 4 4 4 4 8 8 8 8 8

DecodeWidth 2 2 2 3 3 3 4 4 4 5
FetchBufferEntry 8 16 24 16 24 24 24 32 32 24

RobEntry 16 32 48 64 64 80 81 96 114 112
IntPhyRegister 36 53 68 64 80 88 88 110 112 108
FpPhyRegister 36 53 68 64 80 88 88 110 112 108

LDQ/STQEntry 16 20 24 20 24 28 24 32 40 32
BranchCount 7 7 7 7 7 7 7 7 7 7

Mem/FpIssueWidth 2 2 2 2 2 2 2 2 2 2
IntIssueWidth 2 2 2 2 4 4 4 6 6 6

DCache/ICacheWay 4 4 8 4 4 8 8 8 8 8
DTLBEntry 8 8 16 8 8 16 16 16 32 32
MSHREntry 2 2 4 2 2 4 4 4 4 4

ICacheFetchBytes 2 2 2 2 2 2 2 2 2 2

Table 8: The XiangShan configurations adopted in our dataset, named X1-X10. The scales of these
configurations are from small to large.

A.2 Evaluation Metrics

We adopt the mean absolute percentage error (MAPE) and the correlation coefficient R, between label
Yi and prediction Ŷi to evaluate the power modeling accuracy of the ML-based architecture-level
power model, as shown in Eq.(4).

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣× 100%, R =

∑n
i=1(Ŷi − ¯̂

Y )(Yi − Ȳ )√∑n
i=1(Ŷi − ¯̂

Y )2
∑n

i=1(Yi − Ȳ )2
(4)

A.3 Compute Resources

We perform our experiments on a server with Intel® Xeon® Gold 6438Y+ processor. The model
evaluation is fast and efficient, taking less than one minute for each model. The memory requirement
is within 10MB. Reproducing all of our results takes less than ten minutes.
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A.4 Licenses

Chipyard framework and BOOM CPU are under BSD-3-Clause. OpenXiangShan framework and
XiangShan CPU are under Mulan PSL v2. Riscv-tests is under BSD-3-Clause.

B Limitations and Future Work

While ArchPower provides the first dataset for the ML-based architecture-level power models, there
are still some limitations that can be improved in future work: 1) Due to the difficulty of RTL code
collection for the CPU, the diversity of architectures and the number of configurations are limited
in size. Now there are only two CPU architectures with 25 configurations in our dataset. 2) The
real-world single-thread workloads provided in riscv-tests are limited. Therefore, now we only
include 8 workloads in our dataset for each CPU configuration.

For future work, we will have follow-up updates to ArchPower to address the two limitations above:
1) We will continue to collect new CPU architectures and provide more configurations to improve the
scale of our dataset. 2) We will collect or write more real-world workloads to improve the workload
diversity in our dataset.

C Result Visualization

This section visualizes the prediction of different models on BOOM and XiangShan under different
training scenarios. Each point represents a sample, and points in the same color are from the same
configuration. The visualization gives a clearer comparison between different models.
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Fig. 5 and 6 visualize the prediction of different models on BOOM and XiangShan under the Balance
training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 5: Predictions with different models on BOOM CPU under Balance training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 6: Predictions with different models on XiangShan CPU under Balance training scenario.
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Fig. 7 and 8 visualize the prediction of different models on BOOM and XiangShan under the Small
training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 7: Predictions with different models on BOOM CPU under Small training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 8: Predictions with different models on XiangShan CPU under Small training scenario.

22



Fig. 9 and 10 visualize the prediction of different models on BOOM and XiangShan under the Large
training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 9: Predictions with different models on BOOM CPU under Large training scenario.

(a) McPAT (b) McPAT-Plus (c) McPAT-Calib

(d) McPAT-Calib-Component (e) McPAT-Calib-CompGroup (f) PANDA

Figure 10: Predictions with different models on XiangShan CPU under Large training scenario.
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