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ABSTRACT
Unsupervised domain adaptation (UDA) has been a crucial way for
cross-domain semantic segmentation of remote sensing images and
reached apparent advents. However, most existing efforts focus on
single source single target domain adaptation, which don’t explic-
itly consider the serious domain shift between multiple source and
target domains in real applications, especially inter-domain shift
between various target domains and intra-domain shift within each
target domain. In this paper, to address simultaneous inter-domain
shift and intra-domain shift for multiple target domains, we propose
a novel unsupervised, multistage, multisource and multitarget do-
main adaptation network (MultiDAN), which involves multisource
and multitarget domain adaptation (MSMTDA), entropy-based clus-
tering (EC) and multistage domain adaptation (MDA). Specifically,
MSMTDA learns feature-level multiple adversarial strategies to
alleviate complex domain shift between multiple target and source
domains. Then, EC clusters the various target domains into multiple
subdomains based on entropy of target predictions of MSMTDA.
Besides, we propose a new pseudo label update strategy (PLUS) to
dynamically produce more accurate pseudo labels for MDA. Finally,
MDA aligns the clean subdomains, including pseudo labels gener-
ated by PLUS, with other noisy subdomains in the output space
via the proposed multistage adaptation algorithm (MAA). The ex-
tensive experiments on the benchmark remote sensing datasets
highlight the superiority of our MultiDAN against recent state-of-
the-art UDA methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Multisource and Multitarget domain Adaptation (MSMTDA), Se-
mantic Segmentation, Remote Sensing Images

1 INTRODUCTION
Recently, as the continuous increasing of remotely sensed images,
semantic segmentation [5, 6] has shown impressive progress in
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remote sensing image interpretation applications, for example, cli-
mate change assessment, urban management, land cover monitor-
ing, etc. Though these semantic segmentation models can achieve
satisfactory performances [9] in a fully-supervised manner, they
suffer from ubiquitous domain shift problems [28, 39, 41] in practi-
cal uses. That is to say, when the classifiers trained on training data
(source domain) are directly employed to segment remote sensing
images (target domain) drawn from different data distribution, their
model performance will apparently drop.

To address the aforesaid issues, unsupervised domain adaptation
(UDA) has been widely adopt to replace manual annotating for un-
labeled images, and shown remarkable advances for cross-domain
semantic segmentation in remote sensing community [14, 28, 41].
In summary, the majority of UDAmethods focus on aligning source
domain and target domain in the feature space [27, 45], output space
[35, 36] and image space [2, 4]. On this basis, some self-supervised
[22, 33] and stage-wise [3, 26, 43] adaptation methods are proposed
to to further eliminate the serious UDA problems. Although the
existing UDA approaches have shown significant progress for se-
mantic segmentation of remote sensing images, most methods focus
on single source single target domain adaptation (SDA) settings
[3, 28, 41]. Such SDA settings limit the performance of existing
UDA methods in real-world applications. Since in remote sensing
community, each remote sensing image can be viewed as a single
domain [34] due to various imaging modes. Thus the training data
and test data usually involves multiple source domains and multiple
target domains.

To fully exploit the multiple domain knowledge, some multi-
source single target domain adaptation (MSDA) methods [19, 29,
44, 49] explore the abundant information from multiple source do-
mains to adapt the classifier on a single target domain. Moreover, a
few single source multitarget domain adaptation (MTDA) methods
[24, 32, 50, 51] transfer the classifier trained on a single source
domain to multiple target domains and exploit complementary
knowledge among various target domains. Furthermore, some mul-
tisource and multitarget domain adaptation (MSMTDA) methods
[34, 37] learn sufficient and complementary information from mul-
tisource and multitarget domains simultaneously, which can better
eliminate the serious domain shift between multiple source and
target domains against the MSDA and MTDA methods. However,
in the MSMTDA scenarios, besides the domain shift across multi-
source and multitarget domains, there still exists severe multiple
domain shift problem. As depicted in Figure 1, multiple domain
shift problem involves inter-domain shift across various target
domains along with simultaneous intra-domain shift within each
target domain, which hasn’t been well addressed by the existing
MSMTDA methods. Specifically, the inter-domain shift between
different target domains is caused by differences in imaging pro-
cess. The intra-domain shift within each single domain usually

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Sample of multiple domain shift problem involv-
ing simultaneous inter-domain shift between various target
domains and intra-domain shift within each target domain
in the MSMTDA problem. For each target domain, the top
row depicts sampled target images acquired from the same
domain, with diverse roof colors and building styles. The
bottom row demonstrates the corresponding predictions of
Deeplabv3+ adapted from the same source domains.

results from intra-class variation, illumination, diverse scene dis-
tributions and other factors. From Figure 1, we can see that the
adapted target classifier can output many accurate and low-entropy
predictions on both target domains after MSMTDA. However, there
still exist some high-entropy and terrible predicted results for both
target domains. This indicates the simultaneous inter-domain shift
and intra-domain shift will significantly cripple the segmentation
performance of MSMTDA models.

In this paper, we propose a novel unsupervised, multistage, mul-
tisource and multitarget domain adaptation network named Mul-
tiDAN, which includes multisource and multitarget domain adap-
tation (MSMTDA), entropy-based clustering (EC) and multistage
domain adaptation (MDA). Concretely, the MSMTDAmodule firstly
learns feature-level multiple adversarial strategies to mitigate the
source-target domain shift between multiple target and source do-
mains as well as target-target domain shift across various target
domains, with adaptive weighting strategy (AWS) to reduce the
manual efforts of hyperparameter tuning. Second, built upon the

confidence level of target predictions generated by MSMTDA mod-
ule, EC clusters the various target domains into more fine-sorted
subdomains for MDA module to solve the multiple domain shift
problem. Then, to generate more confident pseudo labels for MDA
module, we propose a novel pseudo label update strategy (PLUS),
which dynamically update pseudo labels with high-confident and
low-entropy predictions during every self-training stage. At last,
to reduce the inter-domain shift between subdomains, MDA mod-
ule adopts output-level multiple adversarial strategies and AWS to
align the clean subdomains, including pseudo labels produced by
PLUS, with other noisy subdomains by the proposed multistage
adaptation algorithm (MAA).

In conclusion, our main contributions are as follows:

1) We reveal a crucial discovery that existing multisource and
multitarget domain adaptation methods neglect the multiple
domain shift problem involving simultaneous intra-domain
shift and inter-domain shift within multiple target domains.
Thus we propose a novel multistage, multisource and multi-
target unsupervised domain adaptation network called Mul-
tiDAN for remotely sensed semantic segmentation.

2) We propose a novel multistage adaptation algorithm (MAA)
to the multiple domain shift for MSMTDA, while the exit-
ing self-supervised learning methods handle the multiple
target domains as a whole and neglect the simultaneous
inter-domain shift and intra-domain shift.

3) We propose a new pseudo label update strategy (PLUS) to
dynamically update high-confidence or low-entropy pseudo
labels for unlabeled target domains, while the exiting pseudo
label strategies don’t dynamically adopt the more confident
pseudo labels during each training iteration.

2 RELATEDWORK
2.1 Single Source Single Target Domain

Adaptation
The aim of single source single target domain adaptation (SDA) is
to adapt a transferable classifier to align the domain shift between
one unlabeled target domain and one annotated source domain.
Recently, SDA has been widely utilized for cross-domain seman-
tic segmentation of natural images [1, 20, 27, 35, 36, 45] and re-
mote sensing images [3, 4, 14, 28, 41]. For instance, Benjdira et al.
[2] firstly trained a CycleGAN [52] to align the target and source
domains in the image space. Then they applied the transformed
target-like images to train the target segmentation model. On this
basis, Li et al. [22, 33] further adopted high-confident predicted
results of target classifier as pseudo labels, so as to optimize the
target classifier according to self-supervised learning. Besides, some
stage-wise UDA methods [3, 26, 43] proposed to further deal with
the intra-domain shift within target domain, after mitigating the
inter-domain shift between target domain and source domain. Al-
though such recent SDA approaches have significantly bridged
the domain gap between single source domain and single target
domain, these methods don’t explicitly consider multiple target
and source domains, which would be more complex and difficult to
solve in real applications.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MultiDAN: Unsupervised, Multistage, Multisource and Multitarget Domain Adaptation for Semantic Segmentation of RSI ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Multisource Domain Adaptation and
Multitarget Domain Adaptation

Multisource domain adaptation (MSDA) focuses on alleviating the
distributional discrepancy between multiple source domains and
single target domain [8, 12, 19, 29, 40, 46, 47], while Multitarget do-
main adaptation (MTDA) aims to alleviate the domain shift between
single source domain and multiple target domains [10, 13, 42, 51].
For MSDA problems, Lu et al. [11, 23] utilized multiple incomplete
source domains to form the categories of target domain. Zhao et al.
[46, 47] transformed multisource images to target-like domains and
eliminate the pixel-level distribution gap between multisource im-
ages. For MTDA issues, Gholami et al. [10] proposed an information
theoretic model and explored the common intrinsic space for the
single source and multitarget data. Isobe et al. [13] extended [25] to
semantic segmentation task and added a pixel-wise regularization
to enhance the cross-domain segmentation performance. However,
the MSDA methods [16, 21, 30, 48, 49] don’t explicitly take into
account complex distribution discrepancy across various target do-
mains while the MTDA methods [25, 31, 32] can’t fully exploiting
the advantageous knowledge from multiple source domains. The
significant misalignment across simultaneous multitarget and mul-
tisource will apparently weaken the model performance of MSDA
and MTDA methods. Thus, the MSDA and MTDA methods still
lead to sub-optimal solutions when multisource and multitarget
domains are available.

2.3 Multisource and Multitarget Domain
Adaptation

Multisource and multitarget domain adaptation (MSMTDA) is pro-
posed to eliminate the domain shift between multiple target do-
mains and multiple source domains. However, only very few studies
address the MSMTDA problem [34, 37, 38], as it is much more diffi-
cult and complex than SDA, MSDA and MTDA problems. Tasar et
al. [34] adopted image translation models to conduct image-level
alignment between multiple target domains and multiple source
domains of satellite images. Then they trained the segmentation
model on the diversified target-like images, which were randomly
transferred from source images to one of the target domains, to
make the segmentation model more robust to various target do-
mains. Wang et al. [37] proposed to utilize numerous adversarial
strategies to align each pair of source and target domains as well
as each pair of target domains, so as to learn the common features
of multiple target and source domains. Wu et al. [38] conducted hi-
erarchical structure-level, domain-level and class-level alignments
between multiple source and target domains. Although the before-
mentionedMSMTDAmodels can better handle the complex domain
shift issues betweenmultisource andmultitarget data, they don’t ex-
plicitly consider the intra-domain shift within every target domain
alone with the inter-domain shift between various target domains,
which has been validated to deteriorate the model performances. As
a result, there are still some terrible predicted results for multitarget
images after MSMTDA.

3 METHOD
We formalize the problem of MSMTDA for semantic segmenta-
tion, where M labeled source domains {D1

S ,D
2
S , ...,D

M
S } and N

unlabeled target domains {D1
T ,D

2
T , ...,D

N
T } are available. Specif-

ically, each source domain Di
S (i ∈ {1, 2, ...,M }) includes source

images x is ∈ RH×W ×3 with C-category pixel-level annotations
yis ∈ (1,C )H×W ×C , while every target domainDp

T (p ∈ {1, 2, ...,N })
involves target images xpt ∈ RH×W ×3 with no annotations.

As shown in Figure 2, the proposed MultiDAN consists of three
parts. The first part is MSMTDA module adopting feature-level
multiple adversarial strategies to reduce domain shift across multi-
ple source and target domains. Secondly, EC computes the mean
entropy of target predictions generated by MSMTDA module, and
then uses the entropy to cluster the diversified target images ob-
tained from various target domains into multiple subdomains for
MDA module. Thirdly, MDA module applies output-level multi-
ple adversarial strategies to align the clean subdomains, included
pseudo labels generated by our PLUS, with other noisy subdomains
via the proposed MAA.

3.1 Multisource and Multitarget Domain
Adaptation

The MSMTDA module follows the main spirit of multiple adver-
sarial frameworks [27, 37], which cope with the multisource and
multitarget domain shift problem in an effective and simple way.
Besides, an adaptive weighting strategy (AWS) [17] is applied to
enhance the performance of segmentation model without extra
manual efforts of hyperparameter tuning.

3.1.1 Multiple Adversarial Domain Adaptation. TheMSMTDAmod-
ule trains the source-target segmentation model FST to learn the
common features across multiple source and multiple target do-
mains. Because there is no annotations for the multiple target do-
mains, the source-target segmentation model FST is optimized on
the multiple source domains in a fully-supervised manner. To be
specific, for every source domain Di

S (i ∈ {1, 2, ...,M }) included
images x is along with labels yis , we train the source-target classi-
fier FST through minimizing the popular cross entropy loss with
class-balanced factors [7]:

L
si
seд (FST ) = −

∑
c

αc (y
i
s )
c log(FST (x is )c ) (1)

where αc is a class-balanced factor for every class c ∈ C . αc denotes
the inverse class frequency of effective number of class c [7]. And
αc can be computed as: αc = 1−β

1−βnc , where nc represents the pixel
number of class c . β is constant and set to 0.999. Moreover, αc is
normalized as αc = αc∑C

c=1 αc
to make ∑Cc=1 αc = 1, which enforces

all the αc (c ∈ C) within a close scope.
In order to alleviate the source-target domain shift between

multiple target and source domains, we adopt feature-level multiple
adversarial strategies [27, 37] to learn the shared intrinsic feature
space of multiple source and target domains. Specifically, to fully
consider the context dependencies across multiple target domains
and multiple source domains, we firstly pair every source domain
with every target domain and obtain M × N pairs ( {D1

S ,D
1
T },...,

{DM
S ,D

N
T }). For each pair of source-target domains, we align source

domain with target domain in the feature space through adversarial
learning [45]. We apply the source-target discriminator Dsi tp to
differentiate the features U i

s of x is from features U p
t of xpt . At the
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Figure 2: Overall training procedure of the proposed MultiDAN. The proposed MultiDAN includes multisource and multitar-
get domain adaptation (MSMTDA), entropy-based clustering (EC), and multistage domain adaptation (MDA). First, MSMTDA
module trains the source-target segmentor FST to reduce the domain shift between the multisource and multitarget domains
based on feature-level multiple adversarial (MA) strategies. Second, EC clusters all the target domains into multiple subdo-
mains based on ranking the mean entropy of target predictions of FST generated by MSMTDA. Third, given the multiple
subdomains, MDA module aligns the clean subdomains, which involves pseudo labels produced by the proposed Pseudo La-
bel Update Strategy (PLUS), with noisy subdomains via the proposed Multistage Adaptation Algorithm (MAA). Moreover, for
both MSMTDA and MDA modules, adaptive weighting strategy (AWS) is adopted to automatically learn the weights between
various loss functions of optimization objectives λmst and λmt . At test phase, the trained target segmentor FT can be directly
applied to classify the target images without extra operations.

same time, the source-target classifier FST is learned to extract
domain-invariant features and confuse Dsi tp . Such source-target
adversarial learning loss Lsi tpadv for optimizing FST and Dsi tp on
source-target pair {Di

S ,D
p
T } (i ∈ {1, 2, ...,M } and p ∈ {1, 2, ...,N })

can be formulated as
L
si tp
adv (FST ,Dsi tp ) = −(log(1 − Dsi tp (U

i
s )) + log(Dsi tp (U

p
t ))) (2)

whereU i
s andU p

t are the features of x is and x
p
t .

Second, we pair every target domain with another target do-
main in a similar way and acquire N×(N−1)

2 pairs ({D1
T ,D

2
T },...,

{DN−1
T ,DN

T }). For each pair of target-target domains, we align the
two different target domains in the feature space through adversar-
ial learning [45]. The target-target discriminatorDtp tq is adopted to
distinguish the featuresU p

t of xpt from featuresU q
t of xqt , while the

classifier FST is trained to fool Dsi tp . Such target-target adversarial
learning loss Ltp tqadv for optimizing FST and Dtp tq on target-target
pair {Dp

T ,D
q
T } (p,q ∈ {1, 2, ...,N } and p , q) can be expressed as

L
tp tq
adv (FST ,Dtp tq ) = −(log(1−Dtp tq (U

p
t ))+ log(Dtp tq (U

q
t ))) (3)

whereU p
t andU q

t are the features of xpt and xqt .
It is notable that there should have been M × N source-target

discriminators and N×(N−1)
2 target-target discriminators, but we

utilize two multitask discriminators {Dsi tp ,Dtp tq } (see Figure 3) in-
stead, where discriminatorDsi tp is used for different pairs of source
domains and target domains, Dtp tq is applied for different pairs of
target domains. In detail, the multitask discriminator includes four

shared convolutional layers and one specific convolutional layers
for different source-target pairs (or target-target pairs) as depicted
in Figure 3. In this way, when the number of source and target do-
mains increases, we only need to add specific convolutional layers,
instead of adding discriminators.

3.1.2 Adaptive Weighting Strategy. To reduce time consumption
and manual efforts for tuning hyperparameters as well as obtaining
the optimal weights between every loss function, we adopt an
adaptive weighting method [17] in our final optimization objective.
It could adaptively learn the weights between the segmentation
loss Lsiseд , source-target adversarial learning loss Lsi tpadv and target-
target adversarial learning lossLtp tдadv . The final adaptively weighted
optimization objective of MSMTDA module can be expressed as

Lmst =

M∑
i=1

1
2θ2si
L
si
seд + log(1 + θ2si )

+

M∑
i=1

N∑
p=1

1
2θ2mip

L
si tp
adv + log(1 + θ

2
mip

)

+

N∑
p=1

N∑
q=1,p,q

1
2θ2tpq

L
tp tq
adv + log(1 + θ

2
tpq )

(4)

Where i ∈ {1, 2, ...,M } and p,q ∈ {1, 2, ...,N } (p , q). Parameters
θ = {θsi ,θmip ,θtpq } are learnable and adaptive during the training
process.
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Figure 3: Structure of multitask discriminators. Conv, p, s
and ks stand for convolution layer, padding, stride and ker-
nel size respectively. MSE, IN and LReLU represent Mean
Squared Error, Instance Normalization and Leaky Rectified
Linear Unit respectively. The number above the blue rectan-
gles indicates the channel number in each activation.

3.2 Entropy-based Clustering
To solve the inter-domain shift between various target domains and
intra-domain shift within each target domain, we utilize entropy-
based clustering (EC) to cluster the diversified multitarget domains
into multiple subdomains in accordance with the confidence level
of predictions generated by MSMTDA module. In this way, we can
tackle the multiple inter-domain shift and intra-domain shift prob-
lems of multitarget domains as multiple inter-domain shift problem
between different subdomains. Because of no target annotations,
we utilize mean entropy of softmax probability Pt (Pt = FST (xt ))
to assess the confidence level of target predictions [36]. The entropy
It can be computed as

I
(h,w )
t = −

∑
c

P
(h,w,c )
t log P (h,w,c )

t (5)

where h ∈ H and w ∈ W . H ×W denote the image size of target
predictions.

Then, we rank and split all target images xt via calculating the
mean entropy grade R (xt ) of corresponding target predictions Pt .
The mean entropy grade R (xt ) can be defined as

R (xt ) =
1

HW

∑
h,w

I
(h,w )
t (6)

On this basis, we propose to separate and rank N target domains
into multiple (K ×N ) subdomains {D1,D2, ...,DNK } and proposed
a novel MAA to alleviate the complex multiple domain shift prob-
lem. Note that K is a hyperparameter that controls the subdomain
number for each target domain and stage number for MAA.

3.3 Multistage Domain Adaptation
To further reduce the domain shift between multiple subdomains,
we propose a novel multistage domain adaptation (MDA) module.
In general, we align the output space of clean subdomains, including
pseudo labels produced by our PLUS, with that of noisy subdomains
via the proposed MAA. And MDA module is also trained with AWS.

3.3.1 Pseudo Label Update Strategy. Because of lack of target an-
notations, it isn’t practicable to directly adapt the target classifier
on the multiple target subdomains. Some UDA methods [3, 26, 43]
proposed to utilize the target predictions of the classifier as pseudo
labels for self-supervised learning. However, there may still be some
incorrect pixels in the clean predictions during the self-training

procedure, even if these clean predictions are relatively low-entropy
and clean on the whole. To obtain the optimal pseudo labels dur-
ing the iterative training process, we propose a novel pseudo label
update strategy (PLUS) to produce more accurate pseudo labels as
much as possible. Concretely, for each self-training stage, we apply
the newly optimized target classifier FT to output predictions Pt
and compute entropy It for xt . Besides, we employ two-dimensional
(H ×W ) matrix P and I, which have the same size as the predic-
tions Pt and entropy It , to store the maximum probability value and
minimum entropy value of every pixel within target image xt . Then
for each pixel x (h,w )

t of xt , we update pseudo labels by assigning
the class label, which has a larger probability value P (h,w,c )

t than
the corresponding value µ (h,w ) ∈ P or has a smaller entropy value
I
(h,w )
t than the corresponding value υ (h,w ) ∈ I. At the same times,
we update matrix P and I with the larger probability value or the
smaller entropy value for each pixel. We formulate the proposed
PLUS as follows:

ŷ
(h,w )
t =




c, if P (h,w,c )
t > µ (h,w ) or I (h,w )

t < υ (h,w )

and argmax
c̃

P
(h,w, c̃ )
t = c

0, otherwise

(7)

where µ (h,w ) ∈ P and υ (h,w ) ∈ I are the probability threshold and
entropy threshold for pixel x (h,w )

t of xt respectively.
The update strategy for matrix P and I can be expressed in the

following equation:

µ̃ (h,w ) = MAX{P (h,w,c )
t ,µ (h,w ) }. (8)

υ̃ (h,w ) = MIN{I (h,w )
t ,υ (h,w ) }. (9)

where µ (h,w ) ∈ P and υ (h,w ) ∈ I are the existing values in matrix
P and I. µ̃ (h,w ) and υ̃ (h,w ) are the new values to be updated in
matrix P and I. The initial value of µ (h,w ) and υ (h,w ) are set to µ0
and υ0. MAX and MIN are functions which pick up the maximum
value and minimum value between different values respectively.

3.3.2 Multistage Adaptation Algorithm. To address the severe do-
main shift between multiple subdomains, we propose a novel mul-
tistage adaptation algorithm (MAA), which utilizes multiple clean
subdomains along with pseudo labels generated by PLUS to adapt
other multiple noisy subdomains in a multistage manner as de-
scribed in Algorithm 1.

Specifically, in every self-training stage, we applied the proposed
PLUS to generate and update pseudo labels for subdomains {D1, ...,
DNk }. Second, we cluster and update subdomains {D1, ..., DNk }
into N clean subdomains {D1

clean , ..., D
N
clean } according to mean

entropy grade R (xt ). Then, we treatN clean subdomains along with
pseudo labels as the labeled multisource domains, and deal with N
noisy subdomains {DNk+1, ..., DN (k+1) } as unlabeled multitarget
domains. Similar to MSMTDAmodule, we utilize a target segmenta-
tion module FT and two multitask discriminators {Dc jnp ,Dnpnq } to
narrow the clean-noisy domain shift between multiple clean (mul-
tisource) subdomains and multiple noisy (multitarget) subdomains.

Firstly, we train the target segmentation model FT to extract
the shared features across multiple clean subdomains and multiple
noisy subdomains. Because of lack of annotations for the multiple
noisy subdomains, the target segmentation model FT will be trained
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Algorithm 1:Multistage Adaptation Algorithm
Input:

The target subdomains {D1, D2, ..., DNK }

The clean subdomains Dclean = ∅

The initial network FST , Dc jnp , Dnpnq
Output:

The trained network F
(K−1)
T , D (K−1)

c jnp , D (K−1)
npnq

1 F
(0)
T ← FST ,D (0)

c jnp ← Dc jnp , D (0)
npnq ← Dnpnq

2 for k = 1 to K − 1 do
3 input images {x1 ∈ D1, ...,xNk ∈ DNk } into F

(k−1)
T and

update their pseudo labels {ŷ1, ..., ŷNk } with Equations (7),
(8) and (9)

4 update {(x1, ŷ1) ∈ D1, ..., (xNk , ŷNk ) ∈ DNk } into
Dclean

5 cluster all (xclean , ŷclean ) ∈ Dclean into N clean
subdomains {D1

clean , ...,D
N
clean } based on R (xt ) in

Equation (6)
6 utilize N clean subdomains {D1

clean , ...,D
N
clean } and N

noisy subdomains
{xNk+1 ∈ DNk+1, ...,xN (k+1) ∈ DN (k+1) } to train
F
(k )
T ← F

(k−1)
T , D (k )

c jnp ← D
(k−1)
c jnp , D (k )

npnq ← D
(k−1)
npnq with

Equations (10), (11), (12), (13)
7 end
8 return F

(K−1)
T , D (K−1)

c jnp , D (K−1)
npnq

on the multiple clean subdomains with pseudo labels in a self-
supervised manner. For every clean subdomain Dj (j ∈ {1, ...,N })
included images x jclean along with pseudo labels ŷ jclean , we adapt
the target classifier FT via minimizing the class-balanced cross
entropy loss [7]:

L
c j
seд (FT ) = −

∑
c

αc (ŷ
j
clean )

c log(FT (x jclean )
c ) (10)

where αc is a class-balanced factor as described earlier.
Secondly, to eliminate the inter-domain shift between multiple

clean subdomains (source) and multiple noisy subdomains (target),
we utilize output-level multiple adversarial strategies [27, 37] to
learn the common intrinsic space of multiple subdomains. In detail,
we firstly pair every clean subdomain with every noisy subdomain
and acquire N × N pairs. For each pair of clean-noisy subdomains,
we align clean subdomain with noisy subdomain in the output
space by adversarial learning [36]. The clean-noisy adversarial
learning loss Lc jnpadv for optimizing classifier FT and clean-noisy
discriminator Dc jnp can be expressed as

L
c jnp
adv (FT ,Dc jnp ) = −(log(1 −Dc jnp (I

j
c )) + log(Dc jnp (I

p
n ))) (11)

where I jc and I
p
n are the entropy of clean subdomain j ∈ {1, ...,N }

and noisy subdomain p ∈ {Nk + 1, ...,N (k + 1)}. And entropy map
I can be calculated bu Equation (5).

Thirdly, we pair every noisy subdomain (target) with another
noisy subdomain (target) in a similar way and obtain N×(N−1)

2
pairs. For each pair of noisy-noisy subdomains, we align the differ-
ent subdomains in the output space via adversarial learning [36].

The noisy-noisy adversarial learning loss Lnpnqadv for optimizing
classifier FT and noisy-noisy discriminator Dnpnq (p , q) can be
written as

L
npnq
adv (FT ,Dnpnq ) = −(log(1 − Dnpnq (I

p
n )) + log(Dnpnq (I

q
n )))

(12)
where Ipn and I

q
n are the entropy of noisy subdomain p and q re-

spectively (p,q ∈ {Nk + 1, ...,N (k + 1)}).
Similar to the adaptively weighted MSMTDA module, we use

adaptive weighting method [17] in our final optimization objective
of MDA module, which can adaptively learn the weights between
the target segmentation loss Lc jseд , clean-noisy adversarial learning
loss Lc jnpadv and noisy-noisy adversarial learning loss Lnpnдadv . The
final adaptively weighted optimization objective of the proposed
MDA module can be summarized as

Lmt =

N∑
j=1

1
2σ 2

c j
L
c j
seд + log(1 + σ 2

c j )

+

N∑
j=1

N∑
p=1

1
2σ 2

mjp

L
c jnp
adv + log(1 + σ

2
mjp

)

+

N∑
p=1

N∑
q=1,p,q

1
2σ 2

npq
L
npnq
adv + log(1 + σ

2
npq )

(13)

Where j ∈ {1, ...,N } and p,q ∈ {Nk + 1, ...,N (k + 1)} (p , q).
Parameters σ = {σc j ,σmjp ,σnpq } are learnable and adaptive during
the training process.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. We validate the proposed MultiDAN for MSMTDA
problem on the public aerial image segmentation (AIS) datasets
[15] collected form Tokyo, Berlin, Paris, Chicago, Potsdam and
Zurich cities. Potsdam, Chicago, Paris and Zurich datasets include
24, 457, 625 and 364 annotated aerial images with near 3000 ×
3000 resolution, respectively. Berlin and Tokyo datasets involve 200
and 1 annotated aerial images with about 2500 × 2500 resolution,
respectively. For the semantic annotations, blue, white and red
colors correspond to road, background and building respectively.

4.1.2 Implementation Details. We apply Deeplabv3+ [6] as seman-
tic segmentation model F . The multitask discriminators D utilize
five convolutional layers as illustrated in Figure 3. During the train-
ing phase, MSMTDA and MDA modules of the proposed MultiDAN
can be separately trained in sequence. Firstly, the MSMTDAmodule
is trained for 100 epochs with loss function Lmst in Equation (4).
The initial values of adaptive weighting parameter {θsi ,θmip ,θtpq }
are uniformly set to 1, 0.05 and 0.02 respectively. In this stage, the
segmentation model FST , discriminators {Dsi tp ,Dtp tq } and param-
eter θ are trained jointly via Adam optimizer [18] with β1 = 0.9
and β2 = 0.999. The batch size and learning rate are set to 12 and
10−4. Secondly, the trained segmentation model FST is utilized to
segment the multiple target domains. We calculate the entropy
grade R (xt ) (Equation (6)) of all the target predicted maps, and
sort the target predictions with correspond images according to
R (xt ). Then the sorted target images are separated into multiple
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Table 1: Comparisons Between the Proposed MultiDAN and the Recent SOTA UDA Methods on the Adaptation From Multi-
source Zurich and Chicago Datasets to Multitarget Paris and Berlin Datasets.

Method
Paris Berlin

Background Building Road Avg Background Building Road Avg
F1 IoU F1 IoU F1 IoU mF1 mIoU F1 IoU F1 IoU F1 IoU mF1 mIoU

Deeplabv3+ 48.4 32.6 51.2 42.7 32.4 18.8 44.0 31.4 52.7 36.3 49.8 41.6 25.9 13.5 42.8 30.5
IterDANet 70.2 56.8 71.4 57.6 38.1 22.7 59.9 45.7 70.8 57.4 73.6 58.9 33.1 19.6 59.2 45.3

CPSL 70.7 57.2 71.8 57.4 38.9 23.2 60.5 45.9 70.5 57.1 72.4 58.0 31.8 18.2 58.2 44.4
DRT 71.2 57.8 72.7 58.6 43.6 28.3 62.5 48.2 72.2 58.8 72.9 59.7 41.3 26.7 62.1 48.4

MADAN+ 71.7 58.2 71.9 57.3 41.2 26.4 61.6 47.3 72.7 59.2 73.8 60.3 43.6 28.8 63.4 49.4
CGCT 71.8 58.0 72.8 58.8 44.2 28.9 62.9 48.6 73.2 59.4 73.5 60.1 42.0 27.3 62.9 48.9
TSAN 72.2 58.3 72.4 58.1 42.5 27.1 62.4 47.8 72.4 58.9 72.6 59.2 40.4 25.7 61.8 47.9

DAugNet 72.6 58.8 73.2 59.9 45.8 30.2 63.9 49.6 74.8 60.4 74.2 61.3 46.4 30.5 65.1 50.7
MSTDA 74.3 59.7 74.8 60.2 46.3 30.6 65.1 50.2 75.1 60.8 75.7 62.2 47.8 31.6 66.2 51.5
MultiDAN 75.1 60.3 76.9 61.5 48.8 32.8 66.9 51.5 76.4 61.3 77.6 63.7 51.3 34.5 68.4 53.2

Table 2: Comparisons Between the Proposed MultiDAN and the Recent UDA Methods on the Adaptation From Multisource
Paris, Berlin and Tokyo Datasets to Multitarget Zurich, Chicago and Potsdam Datasets.

Method
Potsdam Zurich Chicago

Building Road Avg Building Road Avg Building Road Avg
F1 IoU F1 IoU mF1 mIoU F1 IoU F1 IoU mF1 mIoU F1 IoU F1 IoU mF1 mIoU

Deeplabv3+ 51.8 44.2 28.7 16.2 45.7 33.5 46.7 39.8 27.8 15.8 42.6 30.9 51.1 42.4 28.6 16.7 42.7 31.6
IterDANet 76.4 61.5 32.2 20.7 60.3 46.9 67.6 54.2 33.4 21.2 56.9 43.9 67.2 53.9 38.5 25.1 58.5 45.2

CPSL 79.2 63.2 32.8 21.2 61.3 47.5 71.7 58.3 34.3 22.5 58.7 45.9 67.7 54.5 38.4 24.7 58.4 45.1
DRT 78.7 62.6 42.4 27.1 64.6 49.5 74.1 60.8 41.2 26.1 62.7 48.8 68.3 55.3 42.8 27.9 60.2 46.6

MADAN+ 77.4 62.1 43.9 28.5 64.9 50.0 73.5 59.9 41.5 26.4 62.4 48.3 68.5 55.6 43.5 28.6 60.0 46.5
CGCT 76.3 61.2 41.7 26.8 64.0 49.3 71.8 59.2 40.6 25.9 61.3 47.5 70.6 57.7 44.3 29.2 61.2 47.6
TSAN 76.7 61.8 41.3 26.2 63.9 49.2 71.2 58.7 41.1 26.2 61.5 48.0 70.8 58.1 43.8 28.5 61.3 47.7

DAugNet 75.8 60.5 44.6 29.4 64.3 49.5 73.3 59.4 46.5 30.6 64.8 50.2 69.4 56.3 45.3 29.8 61.4 47.6
MSTDA 78.6 62.8 45.9 30.1 66.4 51.0 76.4 62.1 46.1 30.3 65.8 51.2 70.6 57.8 45.7 30.5 62.2 48.7
MultiDAN 80.3 64.6 48.6 32.5 68.4 52.8 78.5 64.8 50.7 33.6 68.9 54.1 73.8 60.6 47.2 32.4 64.5 50.7

subdomains evenly by setting K = 4. Thirdly, the MDA module are
leaned with Algorithm 1. Specifically, the initial values of proba-
bility threshold in Equation (8) and entropy threshold in Equation
(9) are determined by pixel ratio ρu = 75% and ρv = 65%. The
initial values of adaptive weighting parameter {σsi ,σmip ,σtpq } are
uniformly set to 1, 0.05 and 0.02 respectively. In every self-training
stage, the segmentation model FT , discriminators {Dc jnp ,Dnpnq }
and adaptive weighting strategy σ are jointly trained for 100 epochs
through Adam optimizer [18] with β1 = 0.9 and β2 = 0.999. The
batch size and learning rate are set to 12 and 10−4. All experiments
are conducted on two NVIDIA Tesla P40 GPUs.

4.2 Results and Discussions
We compare our MultiDAN with recently published state-of-the-
art (SOTA) UDA models involving SDA methods [3, 20], MSDA
methods [21, 46], MTDA methods [31, 51]and MSMTDA methods
[34, 37]. When training the SDA, MSDA and MTDAmethods on the
multisource and multitarget domains, we follow the related works

[12, 13, 30–32, 46, 51] and integrate all source domains or target
domains into one source domain or one target domain respectively.

Tables 1 and 2 show the segmentation results of the proposed
MultiDAN and the SOTA UDA methods. The baseline Deeplabv3+
performs the worst on multisource and multitarget AIS datasets.
All the UDA models lead to apparent performance improvements.
We can find that MSDA methods and MTDA methods are gen-
erally better than the SDA models. At the same time, MSMTDA
approaches surpass the MSDAmethods and MTDAmethods. These
results show the effectiveness and superiority of MSMTDA meth-
ods, which address the severe domain shift between multiple source
and target domains while the MSDA and MTDA methods ignore
the useful knowledge across multitarget data or multisource data.
Among all the MSMTDA models, the proposed MultiDAN yields
the highest mIoU and mF1. This highlights our MultiDAN has more
advantages in MSMTDA tasks compared with the SOTA UDA ap-
proaches. Figures 4 and 5 draw the visual segmentation results of
the UDA models of Tables 1 and 2 respectively.
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Figure 4: Visual comparisons between the proposed Multi-
DAN and the recent SOTA UDA methods on the adaptation
from multisource Zurich and Chicago datasets to multitar-
get Paris and Berlin datasets.

Figure 5: Visual comparisons between the proposed Multi-
DAN and the recent SOTA UDA methods on the adaptation
from multisource Paris, Berlin and Tokyo datasets to multi-
target Zurich, Chicago and Potsdam datasets.

4.3 Ablation Study
4.3.1 Components Analysis. We apply Tokyo, Berlin and Paris
datasets as source domain, while Potsdam, Zurich and Chicago
datasets as target domain, and conduct components analysis of
AWS, MAA, PLUS. MSTDA denotes the baseline MSMTDA module
without AWS. As shown in Table 3, every component and combina-
tion of components can bring performance improvements over the
baselinemethod, which verifies the effectiveness of each component
of our MultiDAN in MSMTDA tasks.

Table 3: Component Analysis of the Proposed MultiDAN.

Method Components Potsdam Zurich Chicago
Model-I MSTDA 48.3 47.9 46.4
Model-II MSTDA+AWS 48.9 48.6 47.1
Model-III MSTDA+MAA 50.8 51.7 49.2
Model-IV MSTDA+MAA+AWS 51.5 52.6 49.6
Model-V MSTDA+MAA+AWS+PLUS 52.8 54.1 50.7

4.3.2 Influence of Stage Number K . We probe the effect of stage
number K by training MultiDAN with various stage number K ,
and report the results in Table 4. From Table 4, we can see the
segmentation performances of MultiDAN firstly improve and then

turn slightly worse with the continuous increasing of stage number
K (from 5 to 8).

Table 4: Influence of Stage Number (Subdomain Number) K .

K 1 2 3 4 5 6 7 8
Paris 46.9 48.7 50.3 51.5 51.3 51.2 50.9 50.8
Berlin 48.3 50.6 52.5 53.2 52.8 52.6 52.3 51.9

4.3.3 Comparing Different Pseudo Label Strategy. We compare the
proposed PLUS and the popular pseudo label strategy adopted
in recent SOTA UDA frameworks. Table 5 gives the quantitative
performance of directly utilizing target predictions without pseudo
label strategy (No), softmax probability threshold (ST) [22], entropy
threshold (ET) [33], combination of softmax probability threshold
and entropy threshold (EST) [3] and our PLUS (Ours). As shown in
Table 5, all the pseudo label approaches surpass directly utilizing
target predictions without pseudo label strategy (No), proving the
necessity of pseudo label strategies. Among all the pseudo label
strategies, our PLUS achieves the best segmentation performance,
which highlights the competitiveness of our PLUS.

Table 5: Segmentation Performances (mIoU) of the Proposed
MultiDANWith Various Pseudo Label Strategies.

Method No ST ET EST Ours
Potsdam 51.5 52.2 52.3 52.6 52.8
Zurich 52.6 53.2 53.6 53.7 54.1
Chicago 49.6 50.3 50.2 50.6 50.7

4.3.4 Supplementary Materials. In supplementary materials, we
show the visual feature distributions of our MultiDAN and com-
paring methods, and visual segmentation predictions and entropy
the proposed MultiDAN with various stage numbers (subdomain
number) K . Then, we discuss the methods of determining the ini-
tial values of probability threshold µ in Equation (8) and entropy
threshold υ in Equation (9), and probe the effect of initial values of µ
and υ. Besides, we validate the effectiveness of adaptive weighting
strategy (AWS) and study the effect of different source and target
domains.

5 CONCLUSION
This paper proposes a multistage, multisource and multitarget UDA
network called MultiDAN to further solve serious multiple domain
shift problem in practical applications of remote sensing images,
consisting of simultaneous inter-domain shift between various tar-
get domains and intra-domain shift within each target domain.
Extensive experiments on the open-source benchmark remote sens-
ing data sets demonstrates the competitiveness and superiority of
the proposed MultiDAN over the existing SOTA UDA models.
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