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Figure 1: Free-trajectory 3DGS under high speed. (Top) The overall paradigm. The colored dots in
the top row represent the event data (red: positive, blue: negative). We leverage continuous event
streams to aid discrete video frames captured along free trajectories in high-speed scenarios, jointly
optimizing camera poses and reconstructing the 3DGS. Our method surpasses current state-of-the-art
methods in terms of both rendered results (middle) and pose estimation (bottom).

Abstract

Scene reconstruction from casually captured videos has wide real-world applica-
tions. Despite recent progress, existing methods relying on traditional cameras
tend to fail in high-speed scenarios due to insufficient observations and inaccurate
pose estimation. Event cameras, inspired by biological vision, record pixel-wise
intensity changes asynchronously with high temporal resolution and low latency,
providing valuable scene and motion information in blind inter-frame intervals.
In this paper, we introduce the event cameras to aid scene construction from a
casually captured video for the first time, and propose Event-Aided Free-Trajectory
3DGS, called EF-3DGS, which seamlessly integrates the advantages of event
cameras into 3DGS through three key components. First, we leverage the Event
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Generation Model (EGM) to fuse events and frames, enabling continuous super-
vision between discrete frames. Second, we extract motion information through
Contrast Maximization (CMax) of warped events, which calibrates camera poses
and provides gradient-domain constraints for 3DGS. Third, to address the absence
of color information in events, we combine photometric bundle adjustment (PBA)
with a Fixed-GS training strategy that separates structure and color optimization,
effectively ensuring color consistency across different views. We evaluate our
method on the public Tanks and Temples benchmark and a newly collected real-
world dataset, RealEv-DAVIS. Our method achieves up to 3dB higher PSNR and
40% lower Absolute Trajectory Error (ATE) compared to state-of-the-art methods
under challenging high-speed scenarios.

1 Introduction

In recent years, Neural Radiance Fields (NeRF) [1, 2, 3] and 3D Gaussian splatting (3DGS) [4, 5]
have made significant progress in novel view synthesis tasks. Given a set of posed images of the
same scene, they optimize an implicit or explicit scene representation using volume rendering. While
subsequent methods [2, 3, 6, 7] excel with posed images, reconstructing scenes from videos with free
camera trajectories remains challenging despite its applications in VR/AR, video stabilization, and
mapping. To tackle this challenging task, several efforts have been made.

Accurate pose estimation is often difficult to obtain in free-trajectory scenarios, which directly
impacts the quality of scene reconstruction. One line of work draws inspiration from Simultaneous
Localization and Mapping (SLAM). They [8, 5, 9] follow its optimization paradigm, progressively
optimizing camera trajectories and alternating between camera pose and scene refinement. Another
line of work [10, 9, 11, 5, 12] explores incorporating additional geometric or motion priors such as
depth estimation [13, 14] or optical flow [15] to establish constraints beyond photometric rendering
loss. While these methods can render photo-realistic images in typical free-trajectory scenarios, both
their rendering quality and pose estimation accuracy degrade significantly in high-speed scenarios (or
equivalently low-frame-rate scenarios) as shown in Fig. 1. Such high-speed scenarios have essential
applications such as autonomous driving and First-Person View (FPV) exploration.

The performance degradation of prior methods can be attributed to two primary factors. First, the
limited number of camera observations leads to an under-constrained scene reconstruction problem.
This can cause the scene representation to converge to a trivial solution [16, 17, 12], where the model
overfits to the training views without capturing the correct underlying geometry structure. Second, the
substantial discrepancies between consecutive frames, resulting in diminished overlapping regions,
violate the implicit assumption of continuous motion between adjacent frames, which is leveraged by
previous methods. Moreover, geometric and motion priors like optical flow and feature matching
become unreliable in such scenarios. These significant violations greatly exacerbate the ill-posedness
of the joint optimization of scene and camera poses.

Event camera is a bio-inspired image sensor that asynchronously records per-pixel brightness changes,
offering advantages such as high temporal resolution, high dynamic range, and no motion blur
[18, 19, 20, 21, 22, 23]. The brightness information recorded in the event stream can effectively
complement the missing scene information between consecutive frames. Moreover, the event data
naturally encodes the motion information of the scene [24, 25, 26], containing rich motion cues.
These properties make event cameras well-suited for scene reconstruction tasks in high-speed and free-
trajectory scenarios. However, seamlessly integrating the aforementioned benefits of event cameras
is nontrivial. First, 3DGS renders absolute pixel brightness, which aligns with image data. Event
cameras, however, record sparse differential brightness changes. Directly integrating the differential
operations into 3DGS may amplify noise and lead to ill-conditioned optimization problems with high
sensitivity to parameter initialization and perturbations. Second, event cameras encode motion through
continuous spatio-temporal trajectories of events. In contrast, frame-based data inherently discretizes
continuous motion, forcing traditional methods to rely on correspondence matching, which fails in
high-speed scenarios with large inter-frame displacements. These fundamental challenges require
carefully designed method that bridges the gap between the event data and 3DGS optimization.

In this work, we propose Event-Aided Free-Trajectory 3DGS, dubbed EF-3DGS, a framework that
integrates event data into the scene optimization process to fully leverage its high temporal resolution
property. Our approach comprises three key components: (1) In the Event Generation Model (EGM),
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we introduce an event-based re-render loss, which extends the 3DGS optimization to the continuous
event stream. This allows us to utilize the brightness cues encoded in the event stream between
adjacent frames, providing rich supervisory signals to alleviate the insufficient sparse view issues.
(2) In the Linear Event Generation Model (LEGM), regarding the pose estimation challenge, we
introduce the CMax [27] framework to exploit the spatio-temporal correlations of events. We obtain
the motion field by leveraging the pseudo-depth from 3DGS rendering and the relative camera motion
between consecutive frames. We then warp the events triggered by the same edge along the motion
trajectories to maximize the sharpness of the image of warped events (IWE), thereby estimating
the motion that best matches the current spatio-temporal event patterns. Furthermore, through the
LEGM [28, 29], we establish a connection between motion and brightness changes. This allows us to
constrain the 3DGS in the gradient domain using the IWE. (3) As most event data primarily records
scene brightness changes, lacking color information, we introduce photometric bundle adjustment
(PBA) and a Fixed-GS strategy to address this. PBA recovers color by optimizing reprojection errors
onto RGB frames, while Fixed-GS enables separate optimization of scene structure and color.

Our main contributions are summarized as follows:

• We introduce event cameras into the task of free-trajectory scene reconstruction for the first
time. Its advantage of high temporal resolution and low latency showcases the potential of
event data for scene reconstruction tasks in challenging scenarios.

• We derive our method from the underlying imaging principles of event cameras and design
the corresponding loss functions that mine the motion and brightness information encoded
in event data and seamlessly integrate them into the 3DGS optimization.

• Experiments on both public benchmarks and real-world datasets demonstrate that our method
significantly outperforms existing state-of-the-art approaches in terms of both rendering
quality and trajectory estimation accuracy.

2 Related Works

Joint Pose and Scene Optimization. The research community has recently focused on developing
methods [12, 8, 30, 31, 10, 32, 5] that can be optimized without requiring precomputed camera
poses. A line of work has focused on improving the stability of the optimization process. GARF
[31] and BARF [32] both find that the high-frequency position encoding is prone to local minima
and try to improve it. For example, GARF [31] proposes using Gaussian activation to replace
the sinusoidal position encoding. Another line of work has investigated incorporating additional
constraints to make the problem more tractable. LocalRF [8] leverages the prior assumption of
continuous motion between adjacent frames and progressively adds and optimizes camera poses.
More recent approaches [10, 8, 5] leverage pre-trained networks, i.e., monocular depth estimation
and optical flow estimation. Exploiting 3DGS’s explicit representation, CF-3DGS [5] directly back-
projects Gaussian points using depth maps. While the aforementioned methods have made notable
progress, they have yet to fully address the challenges posed by high-speed scenarios or rely on a
good pose initialization. Our approach addresses these issues by leveraging motion and brightness
cues from event streams.

Event-Based Novel View Synthesis. Recent works have explored the integration of event cam-
eras [33, 34, 35] into the NeRF or 3DGS framework. Early approaches, such as E-NeRF [36] and
EventNeRF [37], utilize event-based generative models, minimizing the difference between the ren-
dered brightness changes and observed brightness changes. Building upon this, Robust e-NeRF [38]
incorporates a more realistic imaging model into the event-based framework, accounting for factors
like refractory periods and noise. Beyond event-based NeRF, efforts have also been made to integrate
event data into image-based methods. For instance, E2NeRF [39] and EvDeblurNeRF [40] leverage
the Event Double Integral (EDI) [41] model to address the deblurring problem, while DE-NeRF
[42] and EvDNeRF [43] leverage the high temporal resolution property of event cameras to capture
fast-moving elements in dynamic scene. More recently, Event-3DGS [44] and EaDeblur-GS [45]
have extended previous approaches to 3D Gaussian Splatting, achieving superior rendering quality
and real-time performance. A key distinction of our work is that, unlike the prior methods that rely
on accurate precomputed poses, we target free-trajectory scenarios, jointly optimizing for both the
camera poses and the scene representation. Furthermore, while previous works have been limited to
simulated and simple environments, we evaluate our approach in large-scale outdoor scenarios with
complex motions and lighting conditions.
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Figure 2: Method overview. The inputs are video frames and event stream. In the first stage, we
progressively add new event images, leveraging the events and most recent frame to establish the
event-driven optimization. In the second stage, we adopt the Fixed-GS strategy to mitigate the color
distortion of 3DGS. The details of LLEGM and CMax framework are shown in Fig. 3.

3 Preliminary

3DGS [4] parametrizes the 3D scene as a set of 3D gaussians {Gk}Kk=1 that carry the geometric and
appearance information. Each 3D Gaussian is characterized by several learnable properties, including
its center position µ ∈ R3, opacity α ∈ [0, 1], spherical harmonics (SH) features fk ∈ R3×16 for
view-dependent color c ∈ R3, rotation matrix R ∈ R3×3 (stored in quaternion form), scale factor
s ∈ R3. The shape of each Gaussian is defined by the covariance matrix Σ and the center (mean)
point µ, G(x) = exp(− 1

2 (x− µ)
T
Σ−1(x− µ)). During rendering, a tile-based rasterizer is applied

to enable fast sorting and α-blending. The color of each pixel is calculated via blending N ordered
overlapping points:

C(r) =
N∑
i=1

ciαi

i−1∏
j=1

(1− αj), (1)

where ci is calculated from spherical harmonics and view direction, αi is the multiplication of
opacity and the transformed 2D Gaussian and r denotes the image pixel. With the forward rendering
procedure, we can optimize 3DGS by minimizing a weighted combination loss of L1 and LD−SSIM

between observation and rendered pixels: Lcolor = (1− λ)L1(Î , I) + λLD−SSIM (Î , I), where λ
is balancing weight which is set to 0.2 following [4]. By integrating depth di in Equation (1) along
the ray, we can also obtain a expected depth value D̂(r):

D̂(r) =

N∑
i=1

diαi

i−1∏
j=1

(1− αj). (2)

4 Method

The overall framework is shown in Fig. 2. Given a video of a free-trajectory {Ii} captured at
time {ti} and the event stream ε = {ek}, our goal is to reconstruct the 3DGS of the scene and the
corresponding camera trajectory{Ti}. Following the analysis-by-synthesis paradigm of 3DGS, we
extend this approach by incorporating event camera data through two fundamental imaging principles:
the Event Generation Model (EGM) and Linear Event Generation Model (LEGM). To address
the absence of color information in events and ensure cross-view consistency, we further introduce
photometric bundle adjustment (PBA) and a Fixed-GS training strategy.
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Figure 3: The illustration of unified CMax and LEGM optimization. We warp previous event frames
to the sampled timestamp through the optical flow and maximize the sharpness of the image of IPWE.
The byproduct IPWE is utilized to establish additional constraints on 3DGS.

4.1 EGM Driven Optimization

The EGM describes how event cameras asynchronously record pixel-wise brightness changes. When
the logarithmic brightness change at a pixel uk = (xk, yk), exceeds a predefined contrast threshold
C,

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk − δt) = pkC, (3)

where L
.
= log(I) is the logarithm of intensity, pk ∈ {−1,+1} indicates the polarity of brightness

changes, and tk is the triggered timestamp.

As shown in Fig. 2 (1.1), to leverage the high temporal resolution of events, we first divide the time
interval between two adjacent video frames Ii and Ii+1 into N smaller subintervals εi,j = {ek|ti,j ≤
tk ≤ ti,j+1,∆t = ti+1−ti

N , ti,j = ti + j ·∆t}. This allows us to form accumulated event frames at a
higher temporal resolution:

Ei,j =
∑

ek∈εi,j

pk. (4)

We then reconstruct the latent intensity image It at any intermediate time t ∈ {ti,j} by integrating
the accumulated events with the most recent frame:

It = Ii,j =

{
Ii,0 · exp(

∑j−1
n=0 Ei,n · C) if j > 0

Ii,0 if j = 0
. (5)

This latent intensity image provides a supervisory signal for our event-based rendering loss:

LEGM = (1− λ)L1(Ît, It) + λLD−SSIM (Ît, It). (6)

By enforcing consistency between rendered and latent intensity images, this loss effectively utilizes the
brightness information encoded in event streams between adjacent frames, addressing the challenge
of sparse viewpoints in high-speed scenarios.

4.2 Unified CMax and LEGM Optimization

While LEGM leverages the brightness change information recorded by events, it does not explicitly
exploit the motion information encoded in the event stream. To address this, we introduce the
Contrast Maximization (CMax) [27, 46, 47, 48] framework and the LEGM [28, 29, 49]. These
models complement the previous EGM-driven optimization.

Under constant scene illumination, events are triggered by the motion of scene edges, forming
continuous trajectories in (x, y, t) space. As shown in Fig. 2 (1.2), by warping(back-projecting)
events along the correct motion trajectories, we can obtain a sharp image of warped events (IWE).
Therefore, the sharpness of the IWE can serve as an indication of the accuracy of the estimated
motion. This insight motivates us to derive the motion field by leveraging the rendered depth from
3DGS using eq. (2) and the relative camera motion between neighboring timestamps. By optimizing
the sharpness of the IWE, we can obtain the optimal motion field, which in turn helps to improve the
geometric accuracy of the 3DGS and the camera poses.
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As shown in Fig. 3, for efficiency, we adopt a piece-wise warping approach instead of warping
individual events. Specifically, for current timestamp tref = ti,j , we warp the event frames from
previous r sub-intervals:

Ei,j−m→j = warp(Ei,j−m, Fi,j→j−m), (7)

where m ∈ [0, r], Fi,j−m→j is the optical flow derived from the rendered depth D̂ in eq. (2) and
relative pose Ti,j→j−m between two timestamps:

Fi,j→j−m = Π(Ti,j→j−mΠ−1(x, y, D̂))− (x, y), (8)

where Ti,j→j−m = Ti,j−mT−1
i,j , Π projects a 3D point to image coordinates and Π−1 unprojects a

pixel coordinate and depth into a 3D point. Then the image of piece-wise warped events (IPWE) at
timestamp ti,j is computed by averaging the warped event frames:

IPWEi,j =
1

r + 1

j∑
m=j−r

Ei,m→j ≈
1

C
∆L. (9)

Following the Cmax framework, we maximize the variance of the IPWE, which is equivalent to
minimize its opposite:

Lcm = −Var(IPWEi,j). (10)

Furthermore, based on the LEGM [28, 29], the brightness change ∆L at pixel u can be approximated
by the dot product of the image gradient ∇L and the optical flow u̇ (note that L is the logarithm of
an image):

∆L(u) = −∇L · u̇ ≈ L(u)− L(u+ u̇). (11)

It is noteworthy that the IPWE also encodes brightness change information. Combining eq. (9) and
eq. (11), we establish a connection between the IPWE and the brightness changes of the rendered
images:

C · IPWEi,j = L̂(u)− L̂(u+ Fi,j→j+1). (12)

Note that to compute Fi,j→j+1, we estimate Ti,j+1 by leveraging the assumption of locally linear
motion from Ti,j−1 and Ti,j . Based on this relationship, we formulate an additional gradient-based
loss:

Lgrad = ||C · IPWEi,j − (L̂(u)− L̂(u+ Fi,j→j+1))||2, (13)

where L̂ is the logarithm of synthesised image Ît. Finally, the full LEGM loss is defined as:

LLEGM = λcmLcm + λgradLgrad, (14)

where λcm and λgrad are the balancing weight.

4.3 Photometric Bundle Adjustment

The aforementioned event-based constraints, LEGM and LLEGM , leverage the brightness change
and motion information encoded in the event data to constrain 3DGS. However, as event cameras only
record brightness changes and lack color perception, directly applying them to 3DGS optimization
may lead to inconsistent color rendering. To ensure cross-view consistency of the 3DGS rendering,
we introduce the Photometric Bundle Adjustment (PBA) term.

Specifically, as shown in Fig. 2 (1.3), for a randomly sampled timestamp t ∈ {ti,j}, we establish the
following photometric reprojection error:

LPBA =
∑
u∈P

∑
Is∈F

||Is(u′)− Î(u)||2, (15)

where u′ = Π(Ti,j−r→jΠ
−1(x, y, D̂(u))) represent the coordinate on target view projected from

the pixel u of source view Is, P denotes the pixel samples of current frame, and F is the candidates
of target video frames. We select F to be the nearest previous video frame in consideration of
computation costs.
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Methods Pose-Free Input 6 FPS 4 FPS 3 FPS 2 FPS 1 FPS
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

F2-NeRF × F 23.55 0.75 0.34 22.97 0.72 0.36 22.25 0.69 0.40 21.64 0.68 0.44 20.63 0.64 0.51
Nope-NeRF ✓ F 13.86 0.51 0.67 13.81 0.51 0.67 13.79 0.51 0.67 13.50 0.51 0.68 13.72 0.51 0.68

LocalRF ✓ F 23.94 0.73 0.36 23.05 0.71 0.39 22.49 0.69 0.40 21.20 0.66 0.44 19.42 0.63 0.48
CF-3DGS ✓ F 26.05 0.78 0.31 25.03 0.77 0.33 23.73 0.74 0.36 22.08 0.68 0.42 20.53 0.65 0.46

EvDeblurNeRF × E+F 22.43 0.71 0.38 21.23 0.69 0.42 20.09 0.65 0.49 17.52 0.62 0.55 15.19 0.55 0.60
ENeRF × E+F 23.62 0.73 0.37 22.84 0.70 0.38 21.85 0.69 0.41 20.52 0.66 0.46 18.09 0.60 0.52

Event-3DGS(E+F) × E+F 26.32 0.78 0.33 25.37 0.76 0.34 24.59 0.75 0.37 23.44 0.72 0.38 22.41 0.69 0.39
EvCF-3DGS ✓ E+F 26.07 0.78 0.32 25.48 0.77 0.33 24.61 0.75 0.36 22.81 0.70 0.38 21.73 0.67 0.43

EF-3DGS(Ours) ✓ E+F 26.66 0.79 0.30 26.01 0.78 0.30 25.38 0.77 0.31 24.43 0.74 0.34 23.96 0.72 0.36

Table 1: Quantitative evaluations on Tanks and Temples dataset. The best results are highlighted in
bold. Note that, in the “input” column, “F” denotes traditional frame input, while “E+F” denotes
hybrid frame and event input.

By minimizing LPBA across sampled views, we encourage the 3DGS model to produce geometrically
and photometrically consistent renderings across events and video frames, thus effectively resolving
color inconsistencies inherent in event data.

4.4 Fixed-GS Training Strategy

The LPBA term alone is insufficient to fully mitigate color distortion issues. To further address this
challenge, we propose a two-stage Fixed-GS scene optimization strategy that takes advantage of
3DGS’s explicit attribute representation. In the first stage, all the parameters are optimizable and the
optimization is performed across all timestamps:

G∗
θ, T

∗
i,j = argmin

µ,α,r,s,f,Ti,j

Levent, t ∈ {ti,j}, (16)

where µ, α, r, s, f is the position, opacity, rotation, scale factor and spherical harmonics of the
Gaussians, and t is the sampled timestamp during training. This stage results in a scene reconstruction
with accurate structure and brightness, albeit with potential color distortions due to the dominant
colorless event supervision overwhelming the sparse RGB frame color supervision. The second
stage focuses on recovering accurate color information. During this phase, optimization is conducted
exclusively on video frames. We optimize only the spherical harmonic coefficients of the Gaussians
while keeping other parameters fixed:

G∗
θ = argmin

f
Lcolor, t ∈ {ti,0} (17)

The ratio between the first and second stages is empirically set to 4:1. This approach allows us
to effectively address the color distortion problem while preserving the structural and brightness
information obtained from the event data.

4.5 Overall Training Pipeline

Assembling all loss terms, we get the overall loss function:

Levent = LEGM + LLEGM + λPBALPBA, (18)

where λPBA are the weighting factor. Note that since event cameras typically record only the changes
in brightness intensity, the LEGM and LLEGM losses are computed in the grayscale domain, whereas
the LPBA loss is calculated in RGB color space. We incorporate dynamic scene allocation strategies
from LocalRF [8] for handling extended video sequences. Our overall training pipeline builds upon
the progressive optimization scheme of CF-3DGS [5] while introducing novel components to integrate
event stream data for robust free-trajectory scene reconstruction. Please refer to Section A.3 for the
algorithm pipeline and additional implementation details.

5 Experiments

5.1 Dataset

Tanks and Temples. We conduct comprehensive experiments on the Tanks and Temples dataset [50].
Similar to LocalRF [8], we adopt 9 scenes, covering large-scale indoor and outdoor scenes. For each
scene, we sample a video clip with a 50-second duration, typically featuring free camera trajectories
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Methods Input 6 FPS 4 FPS 3 FPS 2 FPS 1 FPS
RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓

Nope-NeRF F 0.1141 0.7563 2.8382 0.1604 1.0542 2.7653 0.2220 1.3694 2.7857 0.3131 1.8965 2.8412 0.6216 3.913 2.6592
LocalRF F 0.0806 0.9282 0.5630 0.0867 0.9683 0.6085 0.0911 0.9800 0.6501 0.0957 1.0428 0.6802 0.1421 1.4725 1.0006

CF-3DGS F 0.0594 0.6981 0.4212 0.0637 0.7128 0.4628 0.0712 0.7531 0.5189 0.0859 0.8074 0.6918 0.1057 0.9768 0.8972
EvCF-3DGS E+F 0.0461 0.5972 0.3419 0.0490 0.6269 0.3766 0.0538 0.6728 0.4261 0.0591 0.7094 0.4860 0.0657 0.7597 0.5534

EF-3DGS(Ours) E+F 0.0391 0.5427 0.2885 0.0407 0.5521 0.3064 0.0426 0.5796 0.3271 0.0449 0.5953 0.3671 0.0487 0.6259 0.3753

Table 2: Pose accuracy on Tanks and Temples. We use COLMAP poses in Tanks and Temples as the
“ground truth”. The unit of RPEr is in degrees, ATE is in the ground truth scale and RPEt is scaled
by 100. Those methods that require precomputed poses are excluded.

CF-3DGS Ground-TruthEvent-3DGS(E+F) EvCF-3DGS EF-3DGS(Ours)

Figure 4: Qualitative comparison for novel view synthesis. The first two rows are from Tanks and
Temples and the last row is from RealEv-DAVIS. Our approach produces more realistic rendering
results with fine-grained details. Better viewed when zoomed in.

and covering a considerable distance. Following LocalRF [8], we apply 4× spatial downsampling to
the videos. To evaluate the robustness under varying camera speeds, we employ varying temporal
downsampling of 6 FPS, 4 FPS, 3 FPS, 2 FPS, and 1 FPS. The reduction in frame rate effectively
creates larger inter-frame displacements, simulating high-speed scenarios. To synthesize realistic
event data, we first upsample the original videos by [51] and then apply the simulator V2E [52].

RealEv-DAVIS. Due to the lack of free-trajectory event camera datasets, we introduce RealEv-
DAVIS. Using a DAVIS346 camera that simultaneously captures frames and events at 346×260
resolution, we record 40-second handheld sequences at 25 FPS. We employ COLMAP for ground-
truth poses. For SLOW scenarios, we retain every second frame, while for FAST scenarios, we keep
only one frame per five frames. Further details are provided in Section A.2.

5.2 Implementation details

We follow the optimization parameters by the configuration outlined in the 3DGS [4]. We optimize
the camera poses in the representation of quaternion rotation. The initial learning rate is set to 10−5

and gradually decays to 10−6 until convergence. The balancing weight λcm, λgrad and λPBA is
empirically set to 0.1, 0.2 and 0.5. For the division of events between adjacent frames, we maintain
a constant interval of 1

6 s for Tanks and Temples and 1
25 s for RealEv-DAVIS, setting the number

of subinterval N accordingly. For example, in Tanks and Temples, N equals 2 for 3FPS and 6 for
1FPS. This ensures adherence to the constant brightness assumption within each sub-interval and
provides adequate events for the following CMax warping. The intervals of neighboring warping
r in CMax are set to 3. The contrast threshold C is set to 0.25 for Tanks and Temples and 0.21
for RealEv-DAVIS. We provide detailed ablation studies on these hyperparameters and additional
implementation details in Section A.4.

5.3 Experimental Setup

Metrics. We evaluate all the methods from two aspects: novel view synthesis and pose estimation.
For the novel view synthesis task, we report the standard metrics PSNR, SSIM [53], and LPIPS [54].
For the pose estimation task, we adopt the Absolute Trajectory Error (ATE) and Relative Pose Error
(RPE) metrics [55, 56], as delineated in [10]. Since these metrics are inherently influenced by frame
rate, we upsample all estimated poses to a consistent temporal resolution before evaluation for fair
comparison across different frame rate settings.
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Figure 5: Pose estimation comparison. We visualise the trajectory (3D plot) and RPEr (color bar) of
each method. We clip and normalize the RPEr by a quarter of the max RPEr across all results of
each scene.

Methods Input
SLOW FAST

NVS Pose NVS Pose
PSNR↑ SSIM↑ RPEt↓ RPEr↓ PSNR↑ SSIM↑ RPEt↓ RPEr↓

LocalRF F 20.83 0.6074 3.60 2.07 17.62 0.5192 5.22 2.96
CF-3DGS F 22.68 0.6287 2.49 1.55 17.59 0.5204 3.68 2.17

EvDeblurNeRF E+F 20.61 0.6064 - - 17.98 0.5269 - -
Event-3DGS (E+F) E+F 23.43 0.6456 - - 20.04 0.5515 - -

EvCF-3DGS E+F 22.89 0.6317 1.78 0.82 19.13 0.5380 2.70 1.28
EF-3DGS(Ours) E+F 23.65 0.6466 1.41 0.69 21.12 0.5620 1.80 0.89

Table 3: Rendering and pose estimation results on RealEv-DAVIS. Complete data and additional
metrics are provided in the supplementary material.

Baselines. For a fair comparison, we focus on two categories of methods: (1) For frame-based
approaches, we selected methods specifically addressing free-trajectory scenarios, such as LocalRF [8]
and F2-NeRF [57]. We also include pose-free methods like Nope-NeRF [10] and CF-3DGS [5]. (2)
For event-frame hybrid methods, we consider approaches that fuse events and frames, including
ENeRF [36], EvDeblurNeRF [40] and Event-3DGS [44]. Since no existing method integrates events
for free-trajectory scenarios, we implement EvCF-3DGS as a competitive baseline that leverages an
event-based frame interpolation network (Time Lens [58]) to temporally upsample frames before
feeding them into CF-3DGS.

5.4 Experimental Results

We select every ten frames as a test image for NVS evaluation following LocalRF [8]. Since the
camera poses are unknown in our setting, we need to estimate the poses of test views. As in
iNeRF [59], we freeze the 3DGS model, initialize the test poses with the poses of the nearest training
frames, and optimize the test poses by minimizing the photometric error between rendered images
and test views.

Results on RealEv-DAVIS. Table 3 validates our approach on the real-world RealEv-DAVIS dataset.
EF-3DGS outperforms top-performing methods and handles real-world scenes effectively. In FAST
scenarios, our method shows nearly 1dB PSNR improvement over the best baselines. This confirms
our advantage in high-speed scenarios where frame-based methods struggle. Fig. 4 and Fig. 5 show
our method preserves fine details and maintains accurate trajectories even during rapid motion,
addressing key limitations of traditional approaches.

LEGM LLEGM LPBA Fixed GS NVS Pose
PSNR↑ SSIM ↑ LPIPS ↓ RPEt ↓ RPEr ↓ ATE ↓
20.53 0.65 0.46 0.1057 0.9768 0.8972

✓ 22.16 0.68 0.42 0.0651 0.7529 0.5779
✓ 21.07 0.67 0.44 0.0830 0.8869 0.7231

✓ 20.96 0.65 0.46 0.0938 0.9875 0.9112
✓ ✓ 22.83 0.68 0.40 0.0523 0.6387 0.3981
✓ ✓ ✓ 23.46 0.70 0.37 0.0523 0.6387 0.3981
✓ ✓ ✓ 23.09 0.70 0.38 0.0487 0.6259 0.3753
✓ ✓ ✓ ✓ 23.96 0.72 0.36 0.0487 0.6259 0.3753

Table 4: Effect of each component in EF-3DGS. The best
results are highlighted in bold.

Figure 6: Robustness of different meth-
ods to pose disturbance.
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Results on Tanks and Temples. Tables 1 and 2 demonstrate two key findings: (1) Our event-aided
approach achieves up to 3dB higher PSNR and nearly 40% lower trajectory error at 1FPS compared
to frame-based methods, indicating the critical value of event data in high-speed scenarios. (2) Our
method maintains 1.55dB PSNR advantage over Event-3DGS at 1FPS, confirming that our integration
framework effectively exploits the nature of event data beyond merely using it. Fig. 4 shows our
method produces sharper edges and finer textures, while Fig. 5 illustrates we achieve more accurate
trajectory estimation.

Performance under Varying Camera Speeds As shown in Table 2 and Table 3, while all methods
degrade as the frame rate decreases, our approach shows remarkable resilience. The performance gap
widens significantly at lower frame rates, with our PSNR advantage over CF-3DGS [5] increasing
from 0.61dB at 6FPS to 3.43dB at 1FPS. Notably, our method also consistently outperforms other
event-based methods (EvCF-3DGS and Event-3DGS). This confirms not only the value of event data
in challenging scenarios but also the superiority of our integration approach.

5.5 Ablation Studies

Effect of Each Component Table 4 presents a comprehensive ablation study of our key components
under the challenging 1FPS setting on Tanks and Temples. LEGM serves as the foundation of our
approach, providing substantial improvements in both rendering quality (+1.63dB PSNR) and pose
accuracy by enabling rich supervision between discrete frames. Building upon this, LLEGM extracts
motion information from events and constrains 3DGS in the gradient domain, significantly improving
pose estimation while modestly enhancing rendering quality. LPBA, though designed to address color
inconsistency issues, not only improves rendering quality but also enhances pose estimation accuracy
by establishing geometric and photometric consistency across views. The Fixed-GS training strategy,
while having no impact on pose optimization, significantly improves rendering quality by effectively
separating structure and color optimization. We provide more intuitive ablation visualizations in
Section A.5.

Robustness to Pose Disturbance To validate the robustness of different methods under inaccurate
pose initialization, a common challenge in practical scenarios, we introduce varying degrees of
perturbations to the initial camera poses estimated by COLMAP. Specifically, following BARF [32],
we parametrize the camera poses p with the se(3) Lie algebra. For each scene, we synthetically
perturb the camera poses with additive noise δp ∼ N (0, nI), where n is the noise level. Then, each
method is initialized with the noised poses, after which the optimization is performed. The results
are illustrated in Fig. 6. Notably, Event-3DGS [44], which lacks the capability to optimize camera
poses, exhibits a drastic performance degradation as the magnitude of pose disturbances increases.
This observation validates the critical importance of joint pose-scene optimization. Furthermore,
Our proposed framework demonstrates superior tolerance across all perturbation levels. Even under
significant noise, our method experiences substantially less degradation in both rendering quality and
trajectory accuracy.

6 Conclusions
In this work, we propose Event-Aided Free-Trajectory 3DGS (EF-3DGS), a novel framework that
seamlessly integrates event camera data into the task of reconstructing 3DGS from casually captured
free-trajectory videos. Our method effectively leverages the high temporal resolution and motion
information encoded in event streams to enhance the 3DGS optimization process, leading to improved
rendering quality and accurate camera pose estimation. By introducing the Event Generation Model
and Linear Event Generation Model, we bridge the gap between differential event data and absolute
brightness rendering in 3DGS. The proposed photometric bundle adjustment and Fixed-GS strategy
further ensure accurate color recovery and scene structure optimization. Extensive experiments
on both public benchmarks and real-world datasets validate the effectiveness of our approach,
demonstrating significant improvements over state-of-the-art methods in both rendering quality
and trajectory estimation accuracy. Future work would explore self-adaptive parameter adjustment
strategies to enhance the method’s versatility and ease of use across various reconstruction tasks.
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A Appendix

A.1 Discussion on Motion Blur

Image blur arises from brightness integration during exposure time and occasionally occurs in low-
light conditions or high-speed motion scenarios. While our method does not explicitly target image
blur, this does not diminish its core contributions. We can draw an analogy to 2D vision tasks: image
deblurring addresses blur-induced degradation, while video frame interpolation tackles discontinuity
from excessive inter-frame motion. These represent distinct challenges in computer vision. Similarly,
in 3D reconstruction, blur-related degradation and the challenges of sparse viewpoints with pose
estimation constitute separate problem domains that often co-occur in high-speed scenarios
but require distinct technical solutions. Our work specifically addresses the latter—fundamental
issues that persist regardless of blur conditions and represent critical bottlenecks in high-speed 3D
reconstruction.

Previous event-based scene reconstruction methods have primarily focused on blur reconstruc-
tion while overlooking the challenges of sparse viewpoints and inaccurate pose estimation.
Our approach targets this gap by leveraging a novel fusion strategy to enhance traditional image-
based 3DGS reconstruction, addressing fundamental limitations that affect reconstruction quality
independent of blur artifacts.

For completeness, we conducted supplementary experiments to evaluate our method’s performance
under motion blur conditions. We extend our method to handle motion blur by incorporating the
Event Double Integration (EDI) model [41], which reconstructs sharp intensity from event data.
Specifically, we reformulate the intensity term Ii,0 in Eq. (5) using the EDI formulation:

Îi,0 =
(2n+ 1) ·Bi∑n

k=−n exp
(
C ·

∑k
z=0 Ei,z

) , (19)

where Bi represents the blurred intensity, Ei,z denotes the accumulated events, C is the contrast
threshold, and n defines the temporal integration window of blur averaging.

Experimental Setup: Experiments were performed on multiple scenes from the Tanks and Tem-
ples [50] with a frame rate of 2FPS. Motion-blurred frames were synthesized adopting the blur
generation protocol from the GoPro-Blur dataset through gamma correction and multi-frame averag-
ing operations. We average every 30 frames to simulate blurring. We selected EvDeblurNeRF [40],
currently the best-performing open-source event-based deblur scene reconstruction method, as our
comparison.

Results: As demonstrated in Tab. 5, our method achieves comparable reconstruction quality to
EvDeblurNeRF while simultaneously performing pose estimation. Visual comparisons in Fig. 7 show
that our method renders sharper novel views under motion blur conditions. Note that EvDeblurNeRF
requires pre-computed COLMAP poses. This limitation significantly restricts practical applicability
in high-speed scenarios where accurate pose estimation is challenging. These results demonstrate that
our method maintains robust performance under blur conditions while addressing the fundamental
pose estimation and sparse-view challenge.

Table 5: Comparison of different methods on pose estimation and rendering quality.
Methods Pose Estimation PSNR↑ SSIM↑ RPEt↓ RPEr↓
EvDeblurNeRF CF-3DGS 21.17 0.69 0.105 0.897
EvDeblurNeRF COLMAP 22.58 0.70 - -
EDI + EF-3DGS (Ours) EDI + EF-3DGS (Ours) 23.18 0.72 0.062 0.642

A.2 Dataset

For the synthetic dataset, following LocalRF [8], we choose nine static scenes from the Tanks and
Temples dataset, which cover both indoor and outdoor environments. To construct a real-world dataset,
we utilized a handheld DAVIS346 event camera to capture a series of extended video sequences,
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GTCOLMAP + Ev-DeblurNeRFBlur Image Events EDI + EF-3DGS (Ours)

Figure 7: Qualitative comparison on motion deblur scene reconstruction. Our EDI + EF-3DGS
method produces sharper results comparable to EvDeblurNeRF

simulating free camera trajectories. Particularly for the scenes named building, we deliberately
introduced significant camera motion during acquisition to emulate realistic camera shake scenarios.
Details about these sequences are illustrated in Table 6, where Mean. rotation represents the mean
relative rotation angle between two adjacent frames and Max. rotation denotes the maximum relative
rotation angle between two frames in a sequence. We select a 50-second segment from each sequence
to highlight scenarios with free-trajectory camera movements.

Table 6: Details of selected sequences on Tanks and Temples [50] and RealEv-DAVIS.
Scenes Seq. Length Mean. rotation (deg) Max. rotation (deg)

Ta
nk

s
an

d
Te

m
pl

es

Auditorium 300 2.91 54.55
Ballroom 300 5.73 179.81
Caterpillar 300 3.18 102.37

Church 300 2.44 37.22
Courtroom 300 8.40 177.96

M60 300 5.29 179.99
Museum 300 6.05 176.98
Panther 300 4.33 124.63
Train 300 4.80 108.18

R
ea

lE
v-

D
AV

IS building 500 5.65 67.65
hall 500 3.88 106.73

corner 500 3.04 96.11
outdoor 500 2.36 77.18

A.3 Overall Training Pipeline

We detail the comprehensive training pipeline in Algorithm 1. Note that for notational simplicity, we
consolidate the subscripts (i, j) into a single index k. Our approach incorporates the dynamic radiance
field allocation strategy from LocalRF [8], which assigns a new radiance field when the current pose
exceeds a distance threshold of 1 from the existing field. However, in practical implementations, we
encountered the OOM(out of memory) problem with this approach. To address this, we adopted
a modified strategy of allocating a new 3DGS every 50 frames, based on the sequence length.
This adjustment ensures efficient memory utilization while maintaining the benefits of dynamic
allocation. For pose optimization and scene reconstruction, we adopt strategies from CF-3DGS.
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And we incorporate event-driven brightness and motion coherence constraints, enabling robust
reconstruction in challenging high-speed scenarios.

Algorithm 1 Overall Training Pipeline.

1: Input: event frames {Ik}Kk=0(k = i ·N + j).
2: Output: camera poses {Tk}Kk=1, 3DGS {Gθn}.
3: Initialize current center frame of 3DGS, l = 0;
4: while l < K do ▷ Not finish the optimization yet
5: Gθn ← Initialize(Il) ▷ Following [5], initialize global 3DGS using the current center frame

Il
6: for k in [l + 1,min(l + 50,K)] do ▷ Optimize the 3DGS and the poses of next 50 frames
7:
8: # Pose Estimation Step
9: Glocal ← Initialize(Ik−1) ▷ Following [5], initialize local 3DGS using the previous

frame Ik−1

10: Tk ← Optimize(Levent, Tk) ▷ estimate camera pose Tk by minimizing Levent at Tk

11: end for
12:
13: # Scene Reconstruction Step
14: {Gθn} ← Optimize(Levent, T[l,l+50]) ▷ Optimizing 3DGS Gθn by minimizing Levent at

T[l,l+50]

15: SHs of {Gθn} ← Optimize(Lcolor, T[l,l+50]) ▷ Fixed-GS stage: optimizing SHs of 3DGS
Gθn by minimizing Lcolor at RGB frames

16: l← k ▷ Slide the current center frame to the next center frame
17: end while

Table 7: Ablation study results of parameter r in CMax framework

r
NVS Pose

PSNR ↑ SSIM ↑ LPIPS ↓ RPEt ↓ RPEr ↓ ATE ↓
1 22.94 0.70 0.39 0.0591 0.6829 0.4851
3 23.96 0.72 0.36 0.0487 0.6259 0.3753
5 23.49 0.72 0.37 0.0524 0.6431 0.4338

A.4 Additional Experiments

A.4.1 Detailed Experiment Results on RealEv-DAVIS

Due to space constraints in the main text, we provide a detailed table of our method’s performance on
the RealEv-DAVIS dataset in the supplementary materials, as shown in Tab. 8 and Tab. 9.

Table 8: Quantitative Evaluations on RealEv-DAVIS. We select the top-performing methods from the
previous evaluation. Each baseline method is trained with its public code under the original settings
and evaluated with the same evaluation protocol. The best results are highlighted in bold.

Methods Pose-Free Input
SLOW FAST

hall building corner outdoor hall building corner outdoor
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LocalRF ✓ F 18.76 0.5589 0.65 20.33 0.5751 0.45 21.09 0.5809 0.43 23.13 0.7146 0.36 17.89 0.4935 0.65 16.33 0.4607 0.63 17.27 0.4859 0.58 19.01 0.6369 0.46
CF-3DGS ✓ F 22.37 0.5990 0.51 21.33 0.5848 0.39 22.48 0.5976 0.42 24.52 0.7334 0.29 17.33 0.4923 0.66 16.92 0.4650 0.66 16.67 0.4835 0.59 19.42 0.6407 0.43

EvDeblurNeRF × E+F 20.24 0.5762 0.55 19.35 0.5649 0.50 20.47 0.5757 0.44 22.36 0.7087 0.38 18.23 0.5043 0.65 16.41 0.4624 0.63 17.82 0.4959 0.59 19.44 0.6448 0.42
ENeRF × E+F 21.89 0.5933 0.52 21.94 0.5918 0.36 22.01 0.5918 0.42 23.91 0.7266 0.30 20.09 0.5261 0.62 18.99 0.4903 0.50 19.61 0.5173 0.52 20.00 0.6494 0.42

Event-3DGS × E+F 23.01 0.6085 0.47 22.45 0.6191 0.34 23.11 0.6148 0.41 25.14 0.7399 0.23 20.35 0.5328 0.62 18.52 0.4907 0.51 20.05 0.5231 0.51 21.24 0.6596 0.40
EvCF-3DGS ✓ E+F 22.58 0.6014 0.48 21.71 0.5878 0.38 22.61 0.6013 0.42 24.66 0.7363 0.25 19.01 0.5139 0.64 17.99 0.4766 0.59 18.81 0.5061 0.55 20.70 0.6554 0.44

EF-3DGS(Ours) ✓ E+F 23.43 0.6103 0.47 22.30 0.6094 0.35 23.38 0.6210 0.41 25.50 0.7458 0.23 21.14 0.5386 0.60 20.05 0.5016 0.47 20.68 0.5294 0.50 22.61 0.6783 0.39

A.4.2 Evaluating the Influence of parameter r in LEGM

We investigate the impact of the parameter r in the Contrast Maximization (CMax) framework, which
determines the number of previous event frames warped to the current sampled timestamp. Table 7
presents the results of this ablation study. The optimal value for r is found to be 3, yielding the best
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Table 9: Pose accuracy on RealEv-DAVIS. The unit of RPEr is in degrees, ATE is in the ground truth
scale and RPEt is scaled by 100. Those methods which require precomputed poses are excluded.

Methods Input
SLOW FAST

hall building corner outdoor hall building corner outdoor
RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓

LocalRF F 4.4017 2.5067 0.2705 4.6186 1.9409 0.4909 1.9296 2.5183 0.4177 3.4307 1.3005 0.1984 5.6061 3.2265 0.3250 7.0611 2.8722 0.6853 3.4767 3.8950 0.5693 4.7229 1.8595 0.2798
CF-3DGS F 2.7106 0.6035 0.1459 3.0374 3.2761 0.2142 1.9437 1.4954 0.2225 2.2747 0.8053 0.0865 3.5025 0.7639 0.2635 4.6758 4.5256 0.4640 3.4950 2.2855 0.3482 3.0551 1.1198 0.1909

Ev-Baseline E+F 0.7063 0.4386 0.1218 3.4225 1.1717 0.1988 2.1283 1.3361 0.1565 0.8647 0.3455 0.0857 0.8898 0.7734 0.1307 5.0707 1.6997 0.3166 3.6785 2.1552 0.2121 1.1645 0.5001 0.1556
EF-3DGS(Ours) E+F 0.5262 0.3251 0.1041 2.8008 0.4633 0.1737 1.8386 1.6168 0.1864 0.4726 0.3699 0.0749 0.5424 0.3464 0.1369 3.5848 0.5589 0.2645 2.5396 2.2157 0.2029 0.5218 0.4462 0.1136

performance across all metrics for both novel view synthesis and pose estimation. When r = 1,
the performance degrades significantly, likely due to insufficient temporal information for accurate
motion estimation. Increasing r to 5 leads to a performance decline, though less severe than r = 1.
This degradation at r = 5 can be attributed to the violation of the local linear motion assumption,
which is fundamental to the CMax framework.

A.4.3 Computational Efficiency and Impact of Subinterval Number N

To investigate the impact of the number of subintervals N on our method, we conduct ablation studies
on the Tanks and Temples dataset under the 2 FPS setting. The results are shown in Table 10 and
Fig. 8. We test the speed on RTX2080ti. Note that in the t-PSNR figure in Fig 8, circular nodes
represent pose-free methods, while diamond-shaped nodes indicate methods that require precomputed
poses. The results in Table 10 reveal that increasing N improves PSNR, indicating that finer temporal
resolution enhances reconstruction quality. However, this improvement comes at the cost of an
extended training time, increasing from 1.3 hours at N=2 to 7 hours at N=6. Importantly, our
method maintains real-time rendering performance (30+ FPS), matching CF-3DGS as both utilize
the same efficient 3DGS rendering framework. This gives our approach a significant advantage
over slower NeRF-based methods. Even at N=2, our approach outperforms baselines in both PSNR
and rendering speed. Event-3DGS achieves a good balance of efficiency and performance, but it
requires precomputed poses. The setting of N=3 offers a good balance, achieving higher PSNR than
CF-3DGS with comparable training time. However, it’s important to note that the optimal N may
vary for different frame rates and motion characteristics.

Table 10: Effect of the number of event subintervals N.

PSNR↑ FPS↑ t↓
N = 2 23.56 30+ 1.3h
N = 3 24.43 30+ 3h
N = 6 24.81 30+ 7h

LocalRF 21.20 <1 8h
CF-3DGS 22.08 30+ 3h Figure 8: Comparison of

training time vs PSNR
for various methods

Figure 9: Study of the differ-
ent evalution metrics with re-
spect to λcm

Figure 10: Study of the dif-
ferent evalution metrics with
respect to λgrad

Figure 11: Study of the dif-
ferent evalution metrics with
respect to λPBA
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Figure 12: Qualitative Results
of the effectiveness of LEGM .

Figure 13: Qualitative Results
of the effectiveness of LLEGM .

Figure 14: Qualitative
Results of the effective-
ness of LPBA.

A.4.4 Analysis of Loss Coefficients

Different components of our method play crucial roles in overall performance. To comprehensively
understand these effects and determine optimal weight settings, we conducted a detailed analysis of
the loss weights: λcm, λgrad and λPBA.

Contrast Maximization Coefficient λcm As shown in Fig. 9, the contrast maximization coefficient
λcm significantly affects both NVS quality and pose estimation. We observe that a value of 0.1
achieves the best overall performance. Lower values (0.01) lead to decreased performance, likely
due to insufficient utilization of motion information from events. Higher values (0.5) also result in
performance degradation, possibly due to over-reliance on the contrast maximization term at the
expense of other constraints. The optimal λcm suggests that while event data is crucial, it should not
dominate the reconstruction process. This balance allows our method to leverage the high temporal
resolution of events without sacrificing the global supervision provided by frame data.

Gradient-based Loss Coefficient λgrad As shown in Fig. 10, the gradient-based loss coefficient λgrad

shows optimal performance at 0.2. Lower values (0.1) slightly decrease performance, while higher
values (0.3, 0.5) lead to more significant drops in both NVS quality and pose accuracy. This is likely
because LEGM and 3DGS primarily focus on rendering absolute brightness, and excessive gradient
constraints may interfere with this process. Therefore, a moderate λgrad value is crucial to balance
gradient information with the primary rendering objectives.

Photometric Bundle Adjustment Coefficient λPBA As illustrated in Figure 11, our method demon-
strates remarkable stability across λPBA values ranging from 0.1 to 0.5. However, while LPBA has
minimal effect on PSNR and ATE metrics, its absence leads to noticeable color distortion artifacts in
visual results. This underscores the importance of λPBA in maintaining visual fidelity. Conversely,
setting λPBA to 1.0 results in significant performance degradation, indicating that overemphasis on
cross-view consistency can be counterproductive.

A.5 Visualization of Ablation Studies

Due to space constraints, we provide comprehensive visualizations of our ablation studies in this
section. Our visualizations demonstrate that while CF-3DGS can produce high-quality renderings at
training views, it struggles with adjacent novel views. The rendered depth maps expose considerable
inaccuracies in scene geometry reconstruction. With LEGM , as shown in Fig. 12, we observe marked
improvements as it effectively harnesses continuous brightness change data captured by event cameras,
compensating for inter-frame information loss. For LLEGM , as shown in Fig. 13, our visualizations
show that without this component, the generated Image of Warped Events (IWE) exhibits blurring
effects, indicating inaccurate pose estimation. This is particularly evident in self-similar regions with
repetitive textures, which pose additional challenges. LLEGM optimizes IWE sharpness, effectively
improving both rendering quality and pose estimation. Regarding LPBA and Fixed-GS, as shown in
Fig. 14, our visualizations reveal that without these components, the reconstructed scene loses almost
all color information. This occurs because event-guided optimization, with substantially more event
frames than image frames, dominates scene reconstruction and suppresses color information. LPBA

alone, which reprojects neighboring video frames onto event frames, only partially addresses this
imbalance. The Fixed-GS strategy separates color and structure optimization, and when combined
with PBA, they complement each other to effectively resolve color distortion issues.
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A.6 Additional Challenging Scenario Experiments

To further demonstrate event camera advantages, we constructed a FASTER scenario by selecting
every 10th frame from the SLOW dataset and directly applied COLMAP pose estimation on these
challenging sequences. We added COLMAP+3DGS as a comparison baseline. Notably, in the corner
and outdoor scenes, several frames exhibit registration failures where the estimated poses greatly
deviate from the overall video trajectory, indicating COLMAP’s limitations in challenging real-world
scenarios.

Table 11: Rendering quality comparison across different speed scenarios on RealEv-DAVIS dataset.

Methods SLOW FAST FASTER

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

CF-3DGS 22.68 0.629 17.59 0.520 15.61 0.504
COLMAP+3DGS 23.27 0.633 19.79 0.548 17.25 0.521
EF-3DGS (Ours) 23.65 0.647 21.12 0.562 20.18 0.532

As shown in Table 11, the results demonstrate that: (1) COLMAP+3DGS rendering quality degrades
significantly as motion speed increase confirming pose estimation inaccuracies in challenging con-
ditions. (2) Compared to CF-3DGS, our method maintains substantially better rendering quality in
high-speed scenarios, highlighting our method robustness and demonstrating the potential of event
cameras in high-speed scenarios.

A.7 Necessity of Two-Stage Optimization

To validate the necessity of our two-stage Fixed-GS training strategy, we explore an alternative
approach: incorporating a reference view rendering loss Lref at each training iteration to address the
color distortion challenge without requiring a separate optimization stage.

Given that events have much higher temporal resolution than RGB frames, the sparse color constraints
from RGB images are largely overwhelmed by the abundant grayscale constraints from event data,
ultimately resulting in color distortion. By incorporating Lref, the backpropagated gradients at each
iteration would be augmented with color information from the reference view, potentially alleviating
the color distortion issue. We conducted additional experiments comparing this approach with
our two-stage strategy. As shown in Table 12, the results show that incorporating Lref achieves
comparable rendering quality. Although we cannot include visualizations here, our qualitative results
confirm that the color distortion issue is effectively alleviated with this approach. However, this
comes at a significant computational cost, increasing training time (3.8h vs 2.5h) due to additional
reference view rendering at each iteration. Considering the modest performance difference relative
to the substantial training overhead, we believe the two-stage optimization strategy offers a more
efficient and practical solution.

Table 12: Comparison of different color correction strategies.

Method Description PSNR↑ SSIM↑ LPIPS↓ Training Time↓

Baseline 23.09 0.70 0.38 2.7h
Levent + Lcolor 24.11 0.73 0.36 3.8h
Levent + two-stage (Fixed-GS) strategy 23.96 0.72 0.36 2.5h

A.8 Additional Visualization

We present additional qualitative results on both Tanks and Temples and RealEv-DAVIS.

A.9 Limitations

Our method combines event streams with conventional video frames, which require the input data to
be time-ordered. So it can not handle the unordered image input. And, our method relies on several
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key parameters (e.g., λcm, λgrad and λPBA) that may require manual tuning for optimal performance
across different speed scenarios. This dependency on scene-specific parameter settings could limit the
method’s adaptability to diverse environments. Future work should explore self-adaptive parameter
adjustment strategies to enhance the method’s versatility and ease of use across various reconstruction
tasks.

A.10 Broader Impacts

To the best of our knowledge, the proposed method will not have significant negative social impact.
The proposed scene reconstruction method can be used to reconstruct and render some wild scenes.
Users can use the video shot by their mobile phones as input to obtain an explicit 3D asset represented
by a 3D Gaussian. This 3D asset can be used for subsequent editing, development, secondary creation
for entertainment.

A.11 Data Availability

The datasets that support the findings of this study are available in the following reposito-
ries: Tanks and Temples [50] at https://www.tanksandtemples.org/ under CC BY 4.0 li-
cense, The code of choosen baseline, Nope-NeRF [10] is available at https://github.com/
WU-CVGL/BAD-Gaussians under Apache-2.0 license, LocalRF [8] is available at https://
localrf.github.io/ under Apache-2.0 license, Event-3DGS [44] is available at https://
github.com/lanpokn/Event-3DGS under Apache-2.0 license, EvDeblurNeRF [40] is available at
https://github.com/uzh-rpg/EvDeblurNeRF under Apache-2.0 license, ENeRF [36] is avail-
able at https://github.com/knelk/enerf under MIT license, CF-3DGS [5] is available at
https://github.com/NVlabs/CF-3DGS under Apache-2.0 license, .
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Figure 15: Qualitative comparison for novel view synthesis on Tanks and Temples. Our approach
produces more realistic rendering results with fine-grained details. Better viewed when zoomed in.

28



Figure 16: Qualitative comparison for novel view synthesis on RealEv-DAVIS. Our approach
produces more realistic rendering results with fine-grained details. Better viewed when zoomed in.
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Figure 17: Pose Estimation Comparison on Tanks and Temples. We visualise the trajectory (3D plot)
and relative rotation errors RPEr (bottom colour bar) of each method. We clip and normalize the
RPEr by a quarter of the max RPEr across all results of each scene.
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Figure 18: Pose Estimation Comparison on Tanks and Temples. We visualise the trajectory (3D plot)
and relative rotation errors RPEr (bottom colour bar) of each method. We clip and normalize the
RPEr by a quarter of the max RPEr across all results of each scene.
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Figure 19: Pose Estimation Comparison on Tanks and Temples and RealEv-DAVIS. We visualise the
trajectory (3D plot) and relative rotation errors RPEr (bottom colour bar) of each method. We clip
and normalize the RPEr by a quarter of the max RPEr across all results of each scene.
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