
The Graph Lottery Ticket Hypothesis:
Finding Sparse, Informative Graph Structure

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph learning methods help utilize implicit relationships among data items,1

thereby reducing training label requirements and improving task performance.2

However, determining the optimal graph structure for a particular learning task3

remains a challenging research problem.4

In this work, we introduce the Graph Lottery Ticket (GLT) Hypothesis – that there5

is an extremely sparse backbone for every graph, and that graph learning algorithms6

attain comparable performance when trained on that subgraph as on the full graph.7

We identify and systematically study 8 key metrics of interest that directly influence8

the performance of graph learning algorithms. Subsequently, we define the notion9

of a “winning ticket” for graph structure – an extremely sparse subset of edges that10

can deliver a robust approximation of the entire graph’s performance. We propose11

a straightforward and efficient algorithm for finding these GLTs in arbitrary graphs.12

Empirically, we observe that performance of different graph learning algorithms13

can be matched or even exceeded on graphs with the average degree as low as 5.14

1 Introduction15

Graph data naturally arises in many domains, including social networks, interactions on the Web, and16

in many biological applications. Building graphs directly from data proves useful for massive-scale17

data analysis; for instance, graphs can be clustered in near-linear time [18].18

Figure 1: The Graph Lottery Hypothe-
sis postulates that there is a sparse sub-
structure (a winning ticket) present in
all graphs which captures its utility for
graph learning tasks. The winning ticket
of the Karate club graph [59] in bold.

In recent years, graph machine learning has become a19

dominant paradigm in analysis of network data. The per-20

formance of many graph learning algorithms is heavily21

dependent on the structure of data in terms of the graph22

curvature [53, 49], intrinsic dimensionality [54], or many23

other metrics [42]. A natural compulsion is to rewire24

graphs to optimize such metrics. However, adding or25

rewiring edges may hallucinate connections that could26

never exist – violating the natural graph structure.27

In this paper, we investigate the general problem of finding28

sparse subgraphs well-suited for graph learning – graph29

lottery tickets. Unlike most existing work, we focus on30

finding substructures already present in data, just like the31

“lottery tickets” in deep neural networks parameters [21].32

We briefly formalize this notion as follows:33

Hypothesis 1 (Graph Lottery Ticket Hypothesis)34

Any graph contains a sparse subset of edges that—when trained on that subset only—any graph35

learning algorithm can match the performance of the original graph.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

We summarize our key contributions as follows:37

• We formulate the Graph Lottery Ticket (GLT) hypothesis that implies the existence of38

an extremely sparse backbone for every graph for which graph learning algorithms attain39

comparable performance as on the full graph.40

• We propose a straightforward yet efficient algorithm to recover “winning tickets” – extremely41

sparse subgraphs which still preserve task performance.42

• Our experimental results illustrate our method’s effectiveness. The winning tickets (sparse43

networks) we find match the performance for three graph learning algorithms, but with44

much lower average degree (≈ 5).45

2 Preliminaries and Related Work46

This section reviews previous attempts to optimize the structure of graphs for graph learning tasks47

including approaches that change the graph structure implicitly. Before diving into the related work,48

Section 2.1 establishes basic notation to be used throughout the paper.49

2.1 Preliminaries50

A graph is a pair G = (V,E) with n vertices V = (v1, · · · , vn), |V | = n, and edges E ⊆51

V × V, |E| = m, represented by an adjacency matrix A for which Aij = 1 if eij ∈ E1 is an52

edge between nodes i and j, otherwise Aij = 0. We denote the neighborhood set of the node u53

as N(u) = v : (u, v) ∈ E. Then, #∆(i, j) = N(i) ∩ N(j) denotes the set of triangles with the54

edge (i, j). For generality and simplicity of notation, we assume undirected and unweighted graphs,55

however, content of the paper can be easily generalized to the weighted and directed cases.56

The degree of a node is defined as di = |N(i)|, and the degree matrix D is the diagonal matrix with57

node degrees Dii = di. The combinatorial (unnormalized) Laplacian matrix of a graph is defined58

as L = D−A. Its normalized counterpart L̃ is defined as L̃ = I−D−1/2AD−1/2, where I is the59

identity matrix. We use (λ1, · · · , λn) to denote the ordered set of eigenvalues of graph Laplacians60

and (µ1, · · · , µn) – of graph adjacency.61

2.2 Graph Sparsifiers and Spanners62

Graph sparsifier is a sparse subgraph that preserves particular properties of the original graph. For63

instance, the surprising fact that ε-approximate cut sparsifier with Õ(n/ε2) edges can be constructed in64

Õ(m) time was first established in [30, 6]. That notion was strengthened [52] to spectral sparsifiers –65

a graph G̃ is called a spectral sparsifier of G if66

(1− ε)x>LG̃x ≤ x
>LGx ≤ (1 + ε)x>LG̃x

for all x ∈ RV . Cut sparsifiers are only required to satisfy these inequalities for all x ∈ {0, 1}V . The67

factors hidden in Õ are, however, large. Good sparsifiers, e.g. [51, 5], are computationally expensive,68

limiting their practicality. More scalable solutions, e.g. [22], are restricted to cut sparsification and do69

not guarantee graph connectivity, which is crucial for many graph learning algorithms.70

Spanners [44] provide a combinatorial view to sparsification. Instead of preserving algebraic proper-71

ties of linear systems, spanners preserve the distances in graphs with multiplicative (t-spanners) or72

additive (+β-spanners) distortion. [1] propose to find t-spanners via a generalization of the classical73

greedy minimum spanning tree algorithm due to [34]. [9] proposes a way to sparsify near-cliques74

during graph construction process. The modified graph is provably a 2-hop spanner of the original,75

however, the number of spurious added edges can be of size of the graph itself. In general, it is76

unclear how graph distances translate to the performance of graph learning algorithms.77

2.3 Graph Rewiring78

Graph rewiring approaches aim to optimize the structure of a given graph via changing, adding, or79

deleting edges. A heuristic edge-swap algorithm was proposed in [10] to optimize multiple spectral80

1For readability purposes we use “node i” instead of vi here and further, wherever appropriate.

2

graph robustness measures (which we review in Section 3) with updates computed using matrix81

perturbation theory. The same strategy is used in [31] with an even more crude update approximation82

for improving the algebraic connectivity, leading to improvements in learning graph neural networks.83

In a similar vein, [53] propose a greedy rewiring algorithm for optimizing the structure of a graph84

for a modified definition of augmented Forman curvature. A different optimization metric was85

offered by [4]: they flip edges that minimize the number of triangles in a graph. These methods86

introduces spurious edges to the graph and keep the total number of edges approximately the same.87

Similarly, [13] proposes to sparsify a graph iteratively with training a GNN model. In contrast, this88

works finds extremely sparse subgraphs without spurious edges and in a model-agnostic fashion.89

Contrapositively, [24] propose to augment the edges of the graph with extra edges derived from the90

diffusion process from the original graph. This approach densifies the graph to an extreme degree,91

sometimes adding hundred times more edges than in the original graph.92

2.4 Implicit Graph Rewiring93

Many graph learning methods implicitly modify the graph to achieve scalability linear in terms of94

the number of nodes. A common approach for scaling up GNN training to large graphs is to sample95

rooted subgraphs from each node [27, 12]. While graph that were implicitly sampled during GNN96

training have constant degree in theory, the upper bound, assuming parameters from [27], is 250097

neighbors per node, which significantly densifies the graph. In another vein, [3] propose to rewire98

the subgraphs during GNN training to optimize the connectivity of these sampled subgraphs. This99

approach densifies local subgraphs and is not applicable to general graph learning algorithms.100

The same is true for sampling in the process of graph embedding. DeepWalk [45] samples long101

random walks from each node, and further densifies the implicit graph by running a long-range102

window An example more amenable for analysis is the sampling process of personalized PageRank-103

based embedding methods, e.g. [55]. Even with approximate computation [2], PPR values of the104

neighborhood nodes are O(α(1− α))� 0, meaning the graph is densified to an extreme degree.105

3 What is a Good Graph Structure?106

Structural graph properties have an outsized impact on the performance of graph learning algorithms,107

however, to our knowledge, there is no systematic study of the phenomenon. This section covers108

that from two different perspectives on graph structure: spectral expansion properties and local edge109

curvature. Through these two lenses we try to answer the question in the section title—what does110

make graph structure good?111

3.1 Spectral Properties112

Laplacian systems are at the heart of many graph machine learning, including label propagation [60],113

clustering [38], and more. Condition number κ(A) = λn

λ1
bounds the convergence rate of iterative114

algorithms for solving linear equations in A. Since graph Laplacians are singular, the convergence can115

be instead measured in terms of the finite condition number κf = λn/λ2. From a signal propagation116

perspective, λ2 is related to the worst-case mixing of a random walk over G.117

Algebraic connectivity, the second eigenvalue of the graph Laplacian, is ubiquitous due to its relation118

to vertex connectivity. For instance, λ2 ≥ 4
nD , where D is graph’s diameter, but the most exciting119

appearance of λ2 is arguably in the Cheeger constant h(G) of a graph, which is the lowest-density120

cut of the graph normalized by cut size. Algebraic connectivity can be used to bound the Cheeger121

constant [14]: λ2

2 ≤ h(G) ≤
√

2λ2.122

Over-smoothing in GNNs happens with the rate ofO((sλ2)L), where s is the largest singular value of123

node features and L is the number of GNN layers [41, 8]. While high oversmoothing does not sound124

very desirable, [31] showed that relational GCNs are flexible in how much the smooth the graph, in125

the range of [0, λ2], as measured by the Dirichlet energy of the GCN layer. Therefore, having large126

algebraic connectivity should be considered advantageous from graph neural network perspective.127

High λ2 implies that a graph can not be well embedded in R [25]. For higher-dimensional Euclidean128

embeddings, [54] empirically studies the reconstruction ability with respect to the spectral dimen-129

3

sionality of graphs. Instead of computing the spectral dimensionality directly, they estimate the graph130

Laplacian eigenvalue growth rate. While it may be easier to embed graphs with small λ2, we are131

interested in the most informative subgraphs of a given graph. Therefore, evidence from both GNNs132

and graph embedding points to positive effects for maximizing λ2, which we study in Section 5.3.133

Graph robustness studies [15] introduced two additional spectral measures. Spectral radius—the134

largest eigenvalue of the adjacency matrix—controls the speed of various dynamic processes defined135

on graphs, for instance, the spread of contagious viruses. Total number of spanning trees can be136

thought of as the total number of ways information can be transmitted in the network. Due to the137

matrix-tree theorem, it can be efficiently approximated as a product of the eigenvalues of the graph138

Laplacian. We use both spectral radius and the number of spanning trees in our experimental study.139

3.2 Curvature140

Graph curvature [20, 40] adapts the notion of “flatness” from manifolds to graphs. Near-cliques141

tend to have large positive curvature, planar grids have zero curvature, and trees have negative142

curvature. Forman curvature is the most computationally efficient version that is also easier to analyze143

combinatorially. There are multiple definitions of Forman curvature, we introduce the one due to [46],144

since it was shown that augmented Forman curvature is tightly correlated with definition due to [40].145

Definition 3.1. For any edge (i, j) the augmented Forman Ricci curvature is given by

F#(i, j) = 4− di − dj + 3γ|#∆(i, j)|, γ > 0.

An exciting recent development [17] connects the notion of the effective resistance to curvature146

of graphs. Effective resistance is defined through the Moore-Penrose pseudoinverse of the graph147

Laplacian L† as ω(i, j) = (ei − ej)>L†(ei − ej).148

Definition 3.2. For a node i, the link resistance curvature is given by ρi = 1− 1
2

∑
j∈N(i) ω(i, j).149

All notions of curvature have intimate connections to the number of triangles. Effective resistance150

of an edge is bounded by the number of triangles containing this edge: ω(i, j) ≤ 2
#∆(i,j)+2 . [49]151

proves that it is impossible to faithfully embed triangle-rich graphs in the Euclidean space2. This152

provides evidence against having too many triangles in the graph for faithful embedding.153

There is evidence [53] that large negative curvature leads to over-squashing of the gradients in graph154

neural networks. However, negative negative curvature is not strictly bad for GNNs – [16] shows how155

propagating the information alongside the edges of a random expander graph with small negative156

curvature empirically improves performance of GNNs.157

These results in graph curvature motivate us to include a scalable approximation [56] to the total158

number of triangles in a graph and its total effective resistance R =
∑
i,j∈E ω(i, j) = n

∑
i λ
−1
i as159

metrics in experiments in Section 5.3. Additionally, we include a bound [29] on the Ollivier’s notion160

of curvature by the means of local graph clustering coefficient of [57]. In total, we will experimentally161

study three metrics related to graph curvature.162

4 Finding Winning Graph Lottery Tickets163

As we can see from the previous section, there is no single metric dictating performance of graph164

learning algorithms. Therefore, a one-size-fits-all algorithm that can produce graph lottery tickets165

that optimize all the metrics simultaneously does not exist. Instead, this section presents two166

straightforward yet effective approaches to finding lottery ticket structure in general graphs in a167

scalable and effective way, which approximately optimize the metrics discussed above.168

We want to stress that our formulation of GLT does not require knowledge of which graph learning169

algorithm will be run on the graph nor any extra information such as node features or labels.170

Additionally, being algorithm-agnostic implies that a successful GLT search algorithm must preserve171

graph connectivity, since most graph learning algorithms rely on that notion.172

These requirements naturally leads us to the notion of spanning trees. Specifically, we propose to take173

a union of k random spanning trees as our GLT construction. This approach was used to construct174

2[11] shows how nonlinear embedding models are able to circumvent this restriction.

4

Algorithm 1 KTREE(G, m̄)

1: Input: Graph G, target number of edges m̄.
2: Output: GLT of G.
3: GLT ← (V, ∅)
4: while |EGLT | ≤ m̄ do
5: T ← RANDOMTREE(G).
6: if |EGLT | ≤ m̄− n+ 1 then
7: GLT ← GLT ∩ T
8: else
9: GLT ← RANDOMSELECT(T, m̄− |EGLT |)

10: end if
11: end while
12: Output GLT .

Algorithm 2 1TREE(G, m̄)

1: Input: Graph G, target number of edges m̄.
2: Output: GLT of G.
3: GLT ← RANDOMTREE(G)
4: GLT ← RANDOMSELECT(EG, m̄− n+ 1)
5: Output GLT .

expander graphs and spectral sparsifiers in [26]. Algorithms 1 presents the version that we use in our175

experiments. Given an edge budget m̄, we iteratively combine random spanning trees of G to form176

the GLT graph. We also experimentally study a more bare-bone version, 1Tree, which constructs a177

single random spanning tree and adds random edges of G to that tree (cf. Algorithm 2).178

There are many exciting connections of random spanning trees to various properties of graphs, mainly179

through the algebraic lens of the matrix-tree theorem. One of the most interesting connections is to180

the notion of the effective resistance: the probability of the edge being included in a random spanning181

tree is in fact equal to its effective resistance.182

Theorem 4.1 ([26]). The union of two random spanning trees of the complete graph on n vertices183

has constant vertex expansion with probability 1− o(1).184

Random trees were recently used as graph sparsifiers [23]. They show that a slightly advanced version185

(with extra edge reweighting step) of the Algorithm 1 produces a spectral sparsifier in the sense of186

Equation 2.2. Constructing a random spanning tree takes near-linearO(m1+o(1)) time in terms of the187

number of edges m, due to a recent algorithm due to [47]. Therefore, both kTree and 1Tree are almost188

linear in the number of the edges of the input graph. In the next section we show that in addition to189

attractive computational properties, both kTree and 1Tree provide significant improvements on graph190

learning metrics studied in Section 3.191

5 Experiments192

We present a wide range of experiments on real and synthetic graphs using (arguably) the three most193

popular graph learning algorithms:194

• Louvain graph clustering [7] greedily partitions the input graph hierarchically optimizing195

the modularity of the graph.196

• DeepWalk graph embedding [45] trains a shallow neural network on a dataset of short197

random walks to extract node embeddings in Rd.198

• Graph convolutional networks [32] uses the graph structure to propagate information for199

making graph-informed predictions.200

In each experiment, we sparsify a a graph and run analyses on the sparse graph backbone. Since201

some of our metrics depend on the total number of edges in the graph, we use a fixed number of202

edges corresponding to a target average node degree from the range [1.1, 10]. Some graphs in our203

studies have an average node degree of less that 10 naturally, in this case, we stop at that number.204

5

5.1 Baselines205

We evaluate against two state-of-the-art baselines:206

• Spectral radius [10, 31]: each edge is weighted as the gradient the spectral radius of the207

adjacency matrix of a graph.208

• Edge significance [19] computes statistical edge significance for every edge. We note that209

for undirected and unweighted graphs this weighting strategy is equivalent to computing the210

contribution of an edge to the modularity metric [37].211

Most graph learning algorithms require input graph to be connected, moreover, some of the metrics212

introduced in Section 3 are sensitive to the number of connected components in graphs. Because of213

that, we slightly modify competing methods to first find a minimum spanning tree of a graph with214

respect to the weights produced by respective baseline, and then greedily add remaining edges. For215

graph learning algorithms that are not sensitive to disconnected components we additionally report216

results of a completely random baseline. We do not report graph-level statistics for that strategy, as217

many of the metrics are not defined for disconnected graphs.218

5.2 Datasets219

We evaluate the proposed search method on a wide selection of 7 natural graphs, 3 graphs constructed220

from the data, and a set of synthetic stochastic blockmodel (SBM) graphs [39]. We provide a brief221

description of real-world datasets in the Appendix A.1. We randomize the train and test splits using222

the strategy of [50] and pick 20 nodes per class as a training set, and leave all other nodes for testing.223

SBM is a generative graph model which divides graph vertices into k classes, and then places edges224

between two vertices i and j with probability pij derived from the assignments. Specifically, each225

vertex i is given a class yi ∈ {1, . . . , k}, and an edge (i, j) is added with probability Pyiyj , where226

P is a symmetric k × k matrix containing the between/within-community edge probabilities. We227

set Pyiyj = q if i = j and to p otherwise. In this simple setup, p/q is the signal-to-noise ratio228

that measures the strength of the assortativity of a graph. For our graph statistics study, we vary229

n ∈ [1000, 10000] and set k = 10, p/q = 5, and d̄ = 100. We observe no significant performance230

fluctuations when varying other parameters.231

5.3 Graph Robustness Measures232

We evaluate five graph robustness measures from [10] as well as two versions of the clustering233

coefficients of the graph. For measures that require knowledge of all eigenvalues, we approximate the234

quantity via stochastic Lanczos quadrature method [56] with 100 starting vectors and 10 iterations.235

We provide a brief description of the measures, indicating whether a particular measure is ideally236

maximized (↑) or minimized (↓):237

103 104

0.2
0.3
0.4
0.5

↑ Alg. Connectivity
kTree 1Tree Edge Significance Spectral Radius

103 104
4
6
8

10
12
14

↓ Spectral radius

103 104

103

104
↓ Eff. Resistance

103 104

10−3

10−2

n

↓ Global CC

103 104
0

5,000

10,000

n

↑ log(# trees)

103 104
9

10
11
12

n

↓ log(# triangles)

Figure 2: Graph statistics measured on stochastic blockmodel graphs, averaged acros 1000 graphs
with p/q ratio of 5, sparsified to average degree of 2.

6

5 10
0

10,000

20,000

1.1

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10
106

107

1.1

↓ Eff. Resistance

5 10
10−1

100

101

1.1

↓ Global CC

5 10
10−1

100

101

1.1
d

↓ Local CC

5 10
0

5 · 106

1 · 107

1.1
d

↑ log(# trees)

5 10
1,200
1,400
1,600
1,800

1.1
d

↓ log(# triangles)

Figure 3: Statistics measured on the ε-nearest-neighbor graph constructed from the MNIST dataset.

• ↑ Algebraic connectivity is the smallest eigenvalue of the combinatorial graph Laplacian.238

• ↓ Spectral Radius defined as the largest eigenvalue of the adjacency matrix of a graph.239

• ↓ Effective resistance computed as R = n
∑
i

1
λi

.240

• ↑ Number of trees computed3 as logS =
∑
i λi.241

• ↓ Number of triangles computed as #∆ = 1
6

∑
i µi.242

• ↓ Global clustering coefficient [36] is defined as TrA3
/
∑

i6=jA2
ij

.243

• ↓ Average local clustering coefficient [57] is defined as ci =
∑

j∈Ni

∑
k∈N(i)|ejk|/di(di−1).244

We average ci across all nodes in the graph.245

We present results on the synthetic SBM graphs on Figure 2. Interestingly, the only metric with a crit-246

ical difference between the kTree and 1Tree strategy is the algebraic connectivity of a graph. Overall,247

we can observe a big difference between tree-based and greedy selection strategies, sometimes in the248

orders of magnitude better for random tree-based methods.249

We present results on an exemplar MNIST graph on Figure 3. Figures for all other datasets can be250

found in Appendix. There, we observe dramatic differences between approaches in terms of all of the251

metrics considered. For real graphs, we do not report λ2 because of numerical instabilities of finding252

it precisely in case when it is very close to 0. Note how the differences in terms of the tree number253

are in logathmic terms, meaning kTree is better than the competitors by several orders of magnitude.254

Compared to synthetic graphs, we observe stark contrast between different methods.255

5.4 Graph Clustering256

We now discuss the performance of the graph clustering algorithms on sparsified graphs. For each257

graph, we cluster it using the Louvain method [7] for community detection. Figure 4 reports the258

normalized mutual information between the clustering of the sparsified graph and ground-truth node259

labels on both natural and nearest neighbor graphs.260

We observe that unweighted random tree-based methods produce significantly better results than261

their weighted counterparts regardless for both edge significance and spectral radius-based strategies4.262

kTree is significantly better than 1Tree strategy on Amazon-PC, OGB-ArXiv, and MNIST datasets.263

We can attribute that to the overall larger correlation of the label information to the ground-truth264

labels. There is no case where it is losing to 1Tree. In stark comparison, both weighting strategies265

of [10, 31] and [19] significantly underperform on all graphs we considered, with most degradation266

occurring in the very sparse regime. This trend will continue in the other experiments, perhaps with267

a less severe trend: in general, we observe significant degradation of quality of all graph learning268

algorithms when using these sparsification techniques. We do not report results of the completely269

random baseline, as it produces many disconnected components which get assigned a separate cluster,270

and NMI is ill-defined for these solutions.271

3We omit the log(n) normalization factor.
4One might assume that there is an error in the weight calculation; however we have checked this thoroughly.

7

5 10
30
40
50

1.1

N
M

I×
10

0

Amazon PC

5 10

40
50
60

1.1

Amazon Photo

1.1 3 5 7

25
30
35
40

1.1

OGB-ArXiv

5 10
30
31
32
33

1.1

CIFAR-10

1.1 1.3 1.5

30
31
32
33

1.1

Citeseer
kTree 1Tree Edge Significance Spectral Radius Full graph

42
44
46
48

1.1 2 3
d

N
M

I×
10

0

Cora

5 10
40

42

44

1.1
d

FashionMNIST

5 10

50

60

70

1.1
d

MNIST

1.1 3 5 7

20
30
40

1.1
d

MSA-Physics

1.5 2
12
14
16
18
20

1.1
d

Pubmed

Figure 4: Clustering results on 10 real-world datasets. We vary the target average degree d and
report the normalized mutual information (multiplied by 100 for convenience) with respect to the
ground-truth labels in each dataset. Random baseline is not present in this study due to the fact that
disconnected components produce disconnected components that make NMI overly optimistic.

5 10
40

60

80

1.1

A
C

C
(%

)

Amazon PC

5 10

60

80

1.1

Amazon Photo

1.1 3 5 7

20

40

1.1

OGB-ArXiv

5 10
10

20

30

1.1

CIFAR-10

1.1 1.3 1.5
45
50
55
60

1.1

Citeseer
kTree 1Tree Edge Signif. Spectral Radius Random Full Graph

50

60

70

1.1 2
d

A
C

C
(%

)

Cora

5 10

40

60

80

1.1
d

FashionMNIST

5 10
40
60
80

100

1.1
d

MNIST

1.1 3 5 7

40
60
80

1.1
d

MSA-Physics

1.5 2

50

60

70

1.1
d

Pubmed

Figure 5: Graph embedding performance on 10 real-world datasets. We vary the target average degree
d and report classification accuracy with respect to the ground-truth labels.

Averaged across all datasets, the budget required for the best sparsification method to match the272

performance of graph clustering on the whole dataset is only 2–5 edges per node. The only exception273

is Pubmed, where the graph structure seems to be very efficient, and all sparsification algorithms274

bring the performance down.275

5.5 Graph Embedding276

We now discuss the performance of graph embedding on sparsified graphs. For each graph, we train277

a graph embedding [45] with parameters from the original paper (dimensionality 128, 80 walks per278

node of length 80, window size 10). Then, we train a logistic regression model using scikit-learn [43]279

with default parameters to predict the node labels.280

Figure 5 presents the results on 8 most informative datasets. We observe that random tree-based281

methods are superior yet again, however, this time there is a noticeable difference in performance282

between kTree and 1Tree on almost all datasets. We attribute that to the fact that DeepWalk algorithm283

performs aggressive smoothing of the input graph, so explicit decorrelation of the edges in the284

construction of kTree is more beneficial in this case.285

Spectral radius-based weighting strategy is again performing the worst. However, in the case of graph286

embedding, we can compare it to the random baseline: in 3 cases, it is significantly worse, in 2 it287

is better and in 3 more they are tied. In this experiment, we can finally observe the extreme gains288

we can get by preserving the connectivity structure of graphs: the difference between the random289

baseline and kTree on MNIST dataset at its peak is more than 50% in terms of accuracy!290

8

5 10

70

75

80

1.1

A
C

C
×

1
00

Amazon PC

kTree 1Tree Edge Significance Spectral Radius Random Full graph

5 10
80

85

90

1.1

Amazon Photo

35

40

45

1.1 3 4 6

OGB-ArXiv

1.2 1.4
63

64

65

66

1.1

Citeseer

74
76
78
80

1.1 2
d

A
C

C
×

1
00

Cora

5 10

40

60

80

1.1
d

MNIST

2 4 6

90

92

1.1
d

MSA-Physics

1.5 2

72

74

76

1.1
d

Pubmed

Figure 6: GNN training results on 8 real-world datasets. We vary the target average degree d and
report the normalized mutual information (multiplied by 100 for convenience) with respect to the
ground-truth labels in each dataset.

5.6 Graph Neural Networks291

We proceed with evaluating the performance of graph neural networks on sparsified graphs. To unify292

the experimental setting across the For each graph, we train a basic Graph Convolutional Network293

(GCN) model [32] with 2 layers of 64 units each for 100 epochs. We apply dropout to hidden units294

with a factor of 0.3 to stabilize the training process.295

We present the results on Figure 6. We can observe that on most datasets tree-based sparsification296

methods outperform other baselines. Compared to graph clustering and embedding, graph neural297

networks are more robust to disconnected components—in fact, GNNs are less sensitive to structure298

of graphs overall, since these models have features to rely on. Therefore, differences between methods299

are less pronounced for this graph learning approach. However, we can still reap the benefits of300

tree-based sparsification: kTree is consistently a top performer.301

We obtain sizeable benefits in sparsifying graphs for GNNs. On all datasets, graph neural networks302

obtain performance comparable or better than the full graph at average degree equal to d̄ = 5, when303

this level of sparsification was available. This point is obtained at slightly lower sparsity levels than304

for graph clustering and embedding, which can be explained by the fact that GNNs smooth the305

information via graph structure, and that process works best with more connections on average.306

5.7 General Observations and Trends307

Overall, our extensive experimental study suggests that finding very sparse GLT winners is possible.308

Our algorithms are able to offer significant improvements compared to baselines in terms of six graph309

structure quality metrics introduced in Section 3.310

On three distinct graph learning problems, we have showed that it is possible to obtain comparable311

or better performance than the original graph structure with average node degree in the range 2–5.312

Importantly, we show considerable performance improvements on graphs constructed from data.313

6 Conclusion314

This work postulates the GLT hypothesis that states that extremely sparse backbones allow various315

graph learning algorithms to attain comparable performance as on the full graph. We suggest316

two efficient algorithms to uncover such “winning tickets”. Our experimental results illustrate our317

methods’ effectiveness, matching the performance of different graph learning algorithms in very318

sparse graphs (≈ average degree of 5). Extensions to bipartite graphs are of immediate interest since319

bipartite interaction graphs suffer from various problems with high-degree “celebrity” nodes.320

9

References321

[1] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse322

spanners of weighted graphs. Discrete & Computational Geometry, 1993. Cited on page 2.323

[2] Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a graph.324

Internet Mathematics, 2007. Cited on page 3.325

[3] Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire:326

Inductive graph rewiring via the lovász bound. In LoG, 2022. Cited on page 3.327

[4] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.328

Oversquashing in GNNs through the lens of information contraction and graph expansion. In329

58th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2022.330

Cited on page 3.331

[5] Joshua D Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. In332

STOC, 2009. Cited on page 2.333

[6] András A Benczúr and David R Karger. Approximating st minimum cuts in Õ(n2) time. In334

STOC, 1996. Cited on page 2.335

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast336

unfolding of communities in large networks. Journal of statistical mechanics: theory and337

experiment, 2008. Cited on pages 5 and 7.338

[8] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint339

arXiv:2006.13318, 2020. Cited on page 3.340

[9] CJ Carey, Jonathan Halcrow, Rajesh Jayaram, Vahab Mirrokni, Warren Schudy, and Peilin341

Zhong. Stars: Tera-scale graph building for clustering and learning. In NeurIPS, 2022. Cited342

on page 2.343

[10] Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general344

framework. DMKD, 2016. Cited on pages 2, 6, and 7.345

[11] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos346

Tsourakakis. Node embeddings and exact low-rank representations of complex networks.347

NeurIPS, 2020. Cited on page 4.348

[12] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: fast learning with graph convolutional networks349

via importance sampling. In ICLR, 2018. Cited on page 3.350

[13] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery351

ticket hypothesis for graph neural networks. In ICML, 2021. Cited on page 3.352

[14] Fan RK Chung. Spectral graph theory. AMS, 1997. Cited on page 3.353

[15] L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Villas Boas.354

Characterization of complex networks: A survey of measurements. Advances in physics, 2007.355

Cited on page 4.356

[16] Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. arXiv357

preprint arXiv:2210.02997, 2022. Cited on page 4.358

[17] Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective359

resistance. Journal of Physics: Complexity, 2022. Cited on page 4.360

[18] Laxman Dhulipala, David Eisenstat, Jakub Łącki, Vahab Mirrokni, and Jessica Shi. Hierarchical361

agglomerative graph clustering in nearly-linear time. In ICML, 2021. Cited on page 1.362

[19] Navid Dianati. Unwinding the hairball graph: Pruning algorithms for weighted complex363

networks. Physical Review E, 2016. Cited on pages 6 and 7.364

[20] Robin Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete365

and Computational Geometry, 29(3):323–374, 2003. Cited on page 4.366

10

[21] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable367

neural networks. In ICLR, 2019. Cited on page 1.368

[22] Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A general369

framework for graph sparsification. In STOC, 2011. Cited on page 2.370

[23] Wai Shing Fung and Nicholas JA Harvey. Graph sparsification by edge-connectivity and random371

spanning trees. arXiv preprint arXiv:1005.0265, 2010. Cited on page 5.372

[24] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph373

learning. In NeurIPS, 2019. Cited on page 3.374

[25] Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings of the 45th375

IEEE Conference on Decision and Control. IEEE, 2006. Cited on page 3.376

[26] Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random spanning trees.377

In SODA. SIAM, 2009. Cited on page 5.378

[27] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large379

graphs. In NIPS, 2017. Cited on page 3.380

[28] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele381

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.382

arXiv preprint arXiv:2005.00687, 2020. Cited on page 13.383

[29] Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension384

inequalities on graphs. Discrete & Computational Geometry, 2014. Cited on page 4.385

[30] David R Karger. Using randomized sparsification to approximate minimum cuts. In SODA,386

1994. Cited on page 2.387

[31] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. FoSR: First-order spectral388

rewiring for addressing oversquashing in gnns. In ICLR, 2023. Cited on pages 3, 6, and 7.389

[32] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional390

networks. In ICLR, 2017. Cited on pages 5 and 9.391

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.392

2009. Cited on page 13.393

[34] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman394

problem. Proceedings of the American Mathematical society, 1956. Cited on page 2.395

[35] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten396

digits. http://yann. lecun. com/exdb/mnist/, 1998. Cited on page 13.397

[36] Mark EJ Newman. The structure and function of complex networks. SIAM review, 2003. Cited398

on page 7.399

[37] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the400

national academy of sciences, 2006. Cited on page 6.401

[38] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.402

NIPS, 2001. Cited on page 3.403

[39] Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic blockstruc-404

tures. Journal of the American statistical association, 2001. Cited on page 6.405

[40] Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional406

Analysis, 256(3):810–864, 2009. Cited on page 4.407

[41] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for408

node classification. In ICLR, 2020. Cited on page 3.409

[42] John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs410

bring real insights for gnns. In KDD, 2022. Cited on page 1.411

11

[43] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,412

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-413

learn: Machine learning in python. JMLR, 2011. Cited on page 8.414

[44] David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, 1989. Cited415

on page 2.416

[45] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social417

representations. In KDD, 2014. Cited on pages 3, 5, and 8.418

[46] Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative419

analysis of two discretizations of ricci curvature for complex networks. Scientific reports,420

8(1):1–16, 2018. Cited on page 4.421

[47] Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.422

In STOC, 2018. Cited on page 5.423

[48] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-424

Rad. Collective classification in network data. AI magazine, 2008. Cited on page 13.425

[49] C Seshadhri, Aneesh Sharma, Andrew Stolman, and Ashish Goel. The impossibility of low-rank426

representations for triangle-rich complex networks. Proceedings of the National Academy of427

Sciences, 117(11):5631–5637, 2020. Cited on pages 1 and 4.428

[50] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.429

Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. Cited on430

pages 6 and 13.431

[51] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In432

STOC, 2008. Cited on page 2.433

[52] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on434

Computing, 2011. Cited on page 2.435

[53] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and436

Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.437

In International Conference on Learning Representations, 2022. Cited on pages 1, 3, and 4.438

[54] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.439

Spectral graph complexity. In Companion Proceedings of The 2019 World Wide Web Conference,440

pages 308–309, 2019. Cited on pages 1 and 3.441

[55] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile442

graph embeddings from similarity measures. In WWW, 2018. Cited on page 3.443

[56] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochastic lanczos444

quadrature. SIAM Journal on Matrix Analysis and Applications, 2017. Cited on pages 4 and 6.445

[57] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. Nature,446

1998. Cited on pages 4 and 7.447

[58] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for448

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. Cited on449

page 13.450

[59] Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal451

of anthropological research, 1977. Cited on page 1.452

[60] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian453

fields and harmonic functions. In ICML, 2003. Cited on page 3.454

12

A Appendix.455

A.1 Dataset description456

Here we present a brief description of real-world datasets:457

• Cora, Citeseer, and Pubmed [48] are citation networks; nodes represent papers connected458

by citation edges; features are bag-of-word abstracts, and labels represent paper topics. We459

use a re-processed version of Cora from [50] due to errors in the processing of the original460

dataset.461

• Amazon {PC, Photo} [50] are two subsets of the Amazon co-purchase graph for the462

computers and photo sections of the website, where nodes represent goods with edges463

between ones frequently purchased together; node features are bag-of-word reviews, and464

class labels are product category.465

• OGB-ArXiv [28] is a paper co-citation dataset based on arXiv papers indexed by the466

Microsoft Academic graph. Nodes are papers; edges are citations, and class labels indicate467

the main category of the paper.468

• CIFAR, MNIST, and FashionMNIST [33, 35, 58] are ε-nearest neighbor graphs with ε such469

that the average node degree is 100.470

Table 1: Dataset statistics. We report total number of nodes |V |, average node degree d̄, number of
features |X| and labels |Y |.

dataset |V | d̄ |X| |Y |
Cora 19793 3.20 1433 7
Citeseer 3327 1.37 3703 6
PubMed 19717 2.25 500 3
Amazon PC 13752 17.88 767 10
Amazon Photo 7650 15.57 745 8
MSA-Physics 34493 7.19 8415 5
OGB-arXiv 169343 6.84 128 40
CIFAR-10 50000 99 3072 10
FashionMNIST 60000 99 784 10
MNIST 60000 99 784 10

13

A.2 Metrics on Real-World Datasets471

Here we present graph metrics computed on real-world graphs present in our experimental study.472

5 10

2,000
4,000
6,000
8,000

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10
105

106

1.1
d

↓ Eff. Resistance

5 10
10−1

100

101

1.1
d

↓ Global CC

5 10
0

1 · 106
2 · 106
3 · 106

1.1
d

↑ log(# trees)

5 10

1,200

1,400

1.1
d

↓ log(# triangles)

Figure 7: Graph statistics measured on the AmazonPC graph.

5 10

2,000
4,000
6,000
8,000

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10
105

106

1.1
d

↓ Eff. Resistance

5 10

100

101

1.1
d

↓ Global CC

5 10
0

5 · 105
1 · 106

1.5 · 106
2 · 106

1.1
d

↑ log(# trees)

5 10

1,200

1,400

1.1
d

↓ log(# triangles)

Figure 8: Graph statistics measured on the AmazonPhoto graph.

1.1 3 6
0

0.5
1

1.5
·104

d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

1.1 3 6

106.5

107

107.5

d

↓ Eff. Resistance

1.1 3 6

10−1

100

101

d

↓ Global CC

1.1 3 6

1 · 107
2 · 107
3 · 107

d

↑ log(# trees)

1.1 3 6

1,400

1,600

1,800

d

↓ log(# triangles)

Figure 9: Graph statistics measured on the OGB-ArXiv graph.

5 10
0

0.5
1

1.5
·104

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10

105.5

106

106.5

1.1
d

↓ Eff. Resistance

5 10
10−2
10−1

100
101

1.1
d

↓ Global CC

5 10
0

1 · 106
2 · 106
3 · 106

1.1
d

↑ log(# trees)

5 10

1,200

1,400

1,600

1.1
d

↓ log(# triangles)

Figure 10: Graph statistics measured on the CIFAR10 graph.

14

1.1 2 3

1,000

2,000

d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

1.1 2 3

106

106.5

d

↓ Eff. Resistance

1.1 2 3
100

101

d

↓ Global CC

1.1 2 3

1 · 106

2 · 106

d

↑ log(# trees)

1.1 2 3

1,200

1,300

d

↓ log(# triangles)

Figure 11: Graph statistics measured on the Cora graph.

5 10

0

10,000

20,000

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10
105.5

106

106.5

1.1
d

↓ Eff. Resistance

5 10
10−1

100
101

1.1
d

↓ Global CC

5 10
0

2 · 106
4 · 106
6 · 106
8 · 106

1.1
d

↑ log(# trees)

5 10
1,200
1,400
1,600
1,800

1.1
d

↓ log(# triangles)

Figure 12: Graph statistics measured on the FashionMNIST graph.

5 10
0

10,000

20,000

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

5 10
106

107

1.1
d

↓ Eff. Resistance

5 10
10−1

100

101

1.1
d

↓ Global CC

5 10
0

5 · 106

1 · 107

1.1
d

↑ log(# trees)

5 10
1,200
1,400
1,600
1,800

1.1
d

↓ log(# triangles)

Figure 13: Graph statistics measured on the MNIST graph.

1.1 3 6

2,000

4,000

d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

1.1 3 6

106

107

d

↓ Eff. Resistance

1.1 3 6
100

101

d

↓ Global CC

1.1 3 6
0

2 · 106
4 · 106
6 · 106
8 · 106

d

↑ log(# trees)

1.1 3 6
1,200
1,300
1,400
1,500

d

↓ log(# triangles)

Figure 14: Graph statistics measured on the MSA-Physics graph.

1.5 2

1,000
1,500
2,000

1.1
d

↓ Spectral radius
kTree 1Tree Edge Significance Spectral Radius

1.5 2

106.2

106.4

1.1
d

↓ Eff. Resistance

1.5 2

100

1.1
d

↓ Global CC

1.5 2

5 · 105

1 · 106

1.5 · 106

1.1
d

↑ log(# trees)

1.5 2

1,200

1,250

1,300

1.1
d

↓ log(# triangles)

Figure 15: Graph statistics measured on the Pubmed graph.

15

	Introduction
	Preliminaries and Related Work
	Preliminaries
	Graph Sparsifiers and Spanners
	Graph Rewiring
	Implicit Graph Rewiring

	What is a Good Graph Structure?
	Spectral Properties
	Curvature

	Finding Winning Graph Lottery Tickets
	Experiments
	Baselines
	Datasets
	Graph Robustness Measures
	Graph Clustering
	Graph Embedding
	Graph Neural Networks
	General Observations and Trends

	Conclusion
	Appendix.
	Dataset description
	Metrics on Real-World Datasets

