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Abstract
Multimodal Large Language Models (MLLMs) ex-
cel at high-level visual reasoning, but their per-
formance on nuanced perceptual tasks remains
surprisingly limited. We present HueManity, a
benchmark designed to assess visual perception in
MLLMs. The dataset comprises 83,850 images
featuring two-character alphanumeric strings em-
bedded in Ishihara test style dot patterns, chal-
lenging models on precise pattern recognition.
Our evaluation of nine state-of-the-art MLLMs
on HueManity demonstrates a significant perfor-
mance deficit compared to human and traditional
computer vision baselines. The best-performing
MLLM achieved a 33.6% accuracy on the nu-
meric ‘easy’ task and a striking 3% on the alphanu-
meric ‘hard’ task. In contrast, human participants
achieved near-perfect scores (100% and 95.6%)1,
and a fine-tuned ResNet50 model reached accura-
cies of 96.5% and 94.5%. These results highlight
a critical gap in the visual capabilities of current
MLLMs. Our analysis further explores potential ar-
chitectural and training-paradigm factors contribut-
ing to this perceptual gap in MLLMs. We open-
source HueManity dataset and code to foster fur-
ther research in improving perceptual robustness of
MLLMs.
Code: https://github.com/rynaa/huemanity
Dataset: https://huggingface.co/datasets/Jayant-
Sravan/HueManity

1 Introduction
The trajectory of Multimodal Large Language Models
(MLLMs) [Team et al., 2023; Achiam et al., 2023; Bai et al.,
2023a; Li et al., 2023b; Gong et al., 2023; Liu et al., 2024a;
Liu et al., 2023; Anthropic, 2025] in recent years has been
marked by impressive advancements, demonstrating sophis-
ticated capabilities in bridging visual and textual informa-
tion. Their capabilities extend well beyond simple im-

∗Equal Contribution.
1Human evaluations utilized 100-image representative subsets,

sampled from the model evaluation sets for each respective task.

age labeling [Russakovsky et al., 2015; Deng, 2012], en-
abling complex tasks like generating detailed image descrip-
tions [Dong et al., 2024; Fu et al., 2024a], answering in-
tricate visual questions requiring inference about relation-
ships and activities [Weng et al., 2025; Chen et al., 2025;
Kuang et al., 2024], and participating in nuanced dialogue
about visual content [Cao et al., 2024]. A key factor in
their success is pre-training on vast web-scale image-text
datasets, which facilitates learning powerful representations
that capture high-level semantic links between visual fea-
tures and language [Jia et al., 2021; Radford et al., 2021;
Schuhmann et al., 2022; Alayrac et al., 2022; Qi et al., 2020;
Zhai et al., 2022; Pham et al., 2023]. Consequently, MLLMs
perform strongly on tasks benefiting from this conceptual un-
derstanding, including recognizing common objects, inter-
preting general scene structure, and relating them to text.

However, the predominant evaluation paradigms for
MLLMs have centered on these conceptual capabilities,
largely overlooking their fine-grained perceptual acuity [Bai
et al., 2023b; Li et al., 2024; Li et al., 2023a; Xu et al., 2024;
Yin et al., 2023; Liu et al., 2023]. This leaves a critical
gap in understanding their performance on tasks demanding
precise visual discernment – such as intricate pattern recog-
nition, subtle feature differentiation, and robust segregation
within visually cluttered background. Unlike tasks solvable
through broad semantic association, these perceptual chal-
lenges require a more fundamental visual processing capac-
ity, akin to the human ability to resolve intricate details.
This paper introduces a benchmark specifically designed to
probe this nuanced dimension of MLLM performance. Our
methodology draws inspiration from the principles of Ishi-
hara plates [Clark, 1924], a technique traditionally employed
in human ophthalmology to assess color vision by embedding
figures (like numbers or paths) within fields of multicolored,
varied-size dots. It is crucial to clarify that HueManity does
not aim to diagnose ‘color blindness’ in MLLMs. Instead,
our Ishihara-style stimuli, created using controlled generation
techniques, rigorously test an MLLM’s fundamental ability
to identify embedded alphanumeric characters by their subtle
color and luminance contrasts within visually cluttered dot
patterns.

Success on the HueManity benchmark serves as a crucial
indicator of an MLLM’s potential for robust visual under-
standing in complex, real-world scenarios. Unlike often cu-
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Figure 1: HueManity — A new benchmark for MLLM fine-grained visual perception. The pipeline creates a character mask from
alphanumeric characters and renders it as an Ishihara-style pattern. While models achieve high accuracy on clear masks, they struggle on the

challenging pattern images.

rated benchmark datasets, real-world visual environments are
frequently characterized by clutter, partial occlusions, vari-
able lighting, and unconventional information presentation.
The ability of an MLLM to reliably parse characters in our
Ishihara-style plates is intended to assess its resilience to vi-
sual clutter and its pattern recognition capabilities — founda-
tional skills often linked to dependable performance in chal-
lenging visual settings. Furthermore, mastering this level
of fine-grained perception is foundational for more intricate
forms of visual reasoning. An MLLM’s struggles with basic
pattern recognition under challenging conditions could imply
difficulties in performing higher-order tasks that depend on
the accurate interpretation of subtle details. Thus, HueMan-
ity serves not merely as a test of pattern recognition, but as
a probe into architectural or training limitations that hinder
MLLMs from achieving comprehensive, detailed visual in-
telligence.

To address this identified gap and facilitate further research
in this domain, this paper makes the following specific con-
tributions:

1. We introduce HueManity, a new large-scale bench-
mark (83,850 images) featuring Ishihara-inspired al-
phanumeric stimuli. The benchmark utilizes a principled
design with 25 carefully curated color pairs, selected us-
ing CIEDE2000 (∆E2000) metrics and manual verifica-
tion, ensuring both systematic challenge and fairness for
human comparison.

2. We conducted a comprehensive evaluation of nine
state-of-the-art MLLMs on HueManity’s easy and
hard sets. Findings reveal a significant performance
gap compared to strong human and fine-tuned ResNet50
baselines. Baseline success suggests MLLM limita-
tions are due to their current architectures or training
for fine-grained perception, rather than the task being
intractable.

3. We release open-source code for generating challeng-

ing Ishihara-style perceptual stimuli (alphanumeric
characters embedded in dot patterns), enabling repro-
ducible research and community-driven extensions.

2 Related Works

2.1 Multimodal Models

With the remarkable advancements of Large Language Mod-
els (LLMs), recent research has extended their capabilities to
multimodal domains by integrating visual information, giv-
ing rise to Multimodal Large Language Models (MLLMs)
[Team et al., 2023; Achiam et al., 2023; Bai et al., 2023a;
Li et al., 2023b; Gong et al., 2023; Liu et al., 2024a;
Liu et al., 2023]. These models typically align visual features
from pre-trained image encoders with LLMs via modality
adaptation layers. Early works like BLIP-2 [Li et al., 2023b]
pioneered this architecture by first pre-training on image-text
datasets and fine-tuning on task-specific benchmarks such as
Visual Question Answering (VQA). Subsequent models like
LLaVA [Liu et al., 2023] advanced this approach by leverag-
ing synthetic instruction-following data in VQA formats, sig-
nificantly improving instruction tuning performance. More
recent efforts have expanded into video understanding and
even image generation, showcasing the versatility of MLLMs
across modalities. However, much of their celebrated suc-
cess in visual tasks often appears intertwined with, and per-
haps reliant upon, their powerful language capabilities to in-
terpret, reason about, and generate text from visual content.
This inherent strength in linguistic processing may have led
to less emphasis on developing or scrutinizing their more fun-
damental, non-linguistic visual perception skills. HueManity
directly addresses this gap in scrutinizing MLLM visual per-
ception. It is a benchmark specifically designed to isolate and
rigorously evaluate these core abilities.



2.2 MLLM Evaluation
Multimodal Large Language Models (MLLMs) are highly ca-
pable of global image understanding and reasoning but con-
sistently struggle with fine-grained visual tasks such as pre-
cise recognition and localization [Huang and Zhang, 2024;
Li et al., 2024]. Several benchmarks have been proposed to
address these challenges. TouchStone [Bai et al., 2023b] of-
fers 908 manually annotated visual dialog questions across
five abilities and 27 sub-tasks, while LLaVA-Bench [Liu
et al., 2023] includes 24 images with 60 curated questions
covering diverse content like scenes, memes, and sketches.
To automate evaluation, LLaVA-Bench [Liu et al., 2023],
LAMM [Yin et al., 2023], and TouchStone [Bai et al., 2023b]
rely on GPT-based models to judge relevance and accuracy,
but this introduces inherent reliability issues and cost ineffi-
ciencies. Similarly, LVLM-eHub [Xu et al., 2024] aggregates
multiple vision benchmarks but still depends on human an-
notators to compare model outputs, making it both subjective
and expensive. More structured efforts like MME and MM-
Bench [Liu et al., 2024b] attempt to provide objective eval-
uations with multiple-choice questions across a wide range
of ability dimensions. MME pioneered multimodal Yes/No
questions for perception and reasoning, with MM-Vet [Yu et
al., 2023] and MMBench [Liu et al., 2024b] extending cov-
erage to sub-tasks like OCR, math, and recognition, yet they
all heavily rely on existing VQA datasets or GPT-generated
questions. SEED-Bench [Li et al., 2024; Li et al., 2023a]
scales up to 24,000 human-annotated multiple-choice ques-
tions covering varied input-output modalities, but its chal-
lenges remain simple, with most open-source models reach-
ing 30–60% accuracy at the easiest level. Blink [Fu et al.,
2024b] attempts a more holistic evaluation across 14 percep-
tion tasks with 3,900 questions and 7,300 images, but does
not assess models on combinations of tasks, and remains less
challenging, as evidenced by higher model accuracies.

HueManity uniquely evaluates Multimodal Large Lan-
guage Models (MLLMs) on the foundational visual skill of
discerning patterns from subtle cues in cluttered environ-
ments, employing alphanumeric characters within Ishihara-
style dot patterns with controlled color contrasts as a robust
proxy. This stimulus design, combined with procedural gen-
eration and exact-match evaluation, establishes a scalable,
objective, and reliable methodology distinct from more sub-
jective or resource-intensive techniques.

3 Data Creation
The HueManity dataset comprises 83,850 images, each pair-
ing a two-character alphanumeric string with its ground truth
label and full generation parameters. These strings are
formed from lowercase letters (a-z), uppercase letters (A-Z),
and digits (0-9). To enhance clarity and prevent evaluation
errors, we excluded visually ambiguous characters (‘l’, ‘I’,
‘J’, ‘O’) and combinations commencing with ‘0’ (e.g., ‘01’,
to avoid ‘1’ vs. ‘01’ prediction conflicts). The entire dataset
was produced by rendering all valid two-character combina-
tions using 25 meticulously curated color pairs, which then
formed the basis for our evaluation sets.

The full HueManity dataset, encompassing all 83,850 gen-

(a) Binary Text Mask (b) Ishihara pattern

Figure 2: Image generation process for the alphanumeric string
“Y8”. (a) The binary text mask. (b) The corresponding Ishihara-
style dot pattern.

erated images, serves as a comprehensive resource for evalu-
ating MLLM perception. However, for the specific MLLM
evaluations reported in this paper, particularly considering
practical constraints such as time and API access costs, we
defined two distinct tasks using carefully sampled subsets.
Each subset comprises 1,000 images, randomly selected to
be representative for these focused evaluations:

1. Number Recognition Set (Used for the ‘Easier’
Task): This subset of 1,000 images is used to evaluate
models on the Number Identification task. It exclu-
sively contains images displaying two-character strings
composed solely of numeric digits (e.g., ‘17’, ‘83’,
‘05’).

2. Text Recognition Set (Used for the ‘Harder’ Task):
This subset of 1,000 images, drawn from the broader
pool of alphanumeric combinations, is employed for
the Text Identification task. It features diverse two-
character alphanumeric strings, including various com-
binations of letters and digits (e.g., ‘A7’, ‘b9’, ‘XG’).

3.1 Text Mask Generator
The initial stage in our data pipeline is the creation of a
900x900 pixel resolution binary text mask for each two-
character string. Using Pygame, we render these strings in
white against a black background. To ensure both clear read-
ability and adequate character width suitable for the subse-
quent dot-based rendering, all masks utilize the DejaVu Sans
font (size 550, bold and italic styles), as exemplified in Figure
2a.

3.2 Ishihara-Style Pattern Generation
Our pattern generator, adapted from an open-source
Pygame project2, iteratively populates the image with non-
overlapping circles. Over 30,000 iterations, the generator per-
forms the following steps for each potential circle:

1. Placement: Randomly sample (x,y) coordinates and
compute the maximum non-colliding radius (ranging
from 4 to 15 pixels).

2https://github.com/hakrackete/Ishihara-color-plate-generator
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2. Initial Color: Assign initial color (fore-
ground/background) based on whether the center
falls within the character mask (Fig. 2a).

3. Color Transformation: Apply three randomized trans-
formations to the initial color: gradient shift towards the
other pair color, RGB color shift (range [−30,+30]),
and RGB lightness scaling (factor 0.66-1.5).

4. Rendering: Render the transformed circle at the com-
puted position.

This iterative process ultimately yields the final, dense
Ishihara-style pattern (as shown in Figure 2b).

3.3 Color Pairs Selection
The 25 distinct foreground-background color pairs used in
the HueManity stimuli were meticulously selected through a
multi-stage process to ensure a balance between perceptual
challenge and unambiguous human legibility. This procedure
involved quantitative CIEDE2000 [Luo et al., 2001] analysis
and extensive manual verification, with the full methodology
detailed in Appendix B.

4 Experiments
We evaluated a diverse set of nine state-of-the-art Multimodal
Large Language Models (MLLMs), encompassing prominent
commercial APIs and publicly available open-source models.
Model inference was orchestrated using Promptfoo3, a plat-
form facilitating reproducible benchmarking through flexible
prompt definition and API integration. Open-source mod-
els were hosted locally via Ollama4 and inferred on a single
NVIDIA A100 GPU.

Evaluation focused on two primary tasks: numerical recog-
nition (digits only) and alphanumeric recognition (digits and
letters). For each of these tasks, a subset of 1,000 points
from HueManity: two-character strings and their correspond-
ing generated images were used. Models were evaluated on
two types of visual stimuli for each datapoint:

• HueManity Plates: The 1,000 randomly sampled
Ishihara-style dot pattern images from the HueManity
benchmark.

• Text Masks: The corresponding 1,000 binary text mask
images (i.e., white text on a black background, as exem-
plified in Figure 2a). This additional evaluation on text
masks was performed to establish a baseline for each
model’s ability to recognize the characters in a clear, un-
obstructed format, helping to differentiate fundamental
OCR capabilities from performance on the perceptually
challenging dot patterns.

All images (both HueManity plates and text masks) were
provided to the models encoded in Base64 format. The fol-
lowing task-specific prompts were used for both stimulus
types:

• Number Recognition Prompt: “What is the number in
this image? Strictly stick to the format: Answer: [num-
ber in the image]”

3https://www.promptfoo.dev
4https://ollama.com

• Text Recognition Prompt: “What is the exact text in
this image? It has only alpha-numeric characters exclud-
ing small L, capital O, capital I, and capital J to avoid
ambiguity. Strictly stick to the format: Answer: [exact
text in the image]”

4.1 Human Performance Evaluations
To establish a human performance baseline, evaluations in-
volved three adult volunteers, all with self-reported normal
color vision. This group size was considered adequate be-
cause identifying characters in HueManity plates is a rudi-
mentary perceptual task for humans with normal vision, one
that requires no specialized skills and typically exhibits low
inter-volunteer performance variance. For each of the two
tasks (numerical and alphanumeric recognition), these volun-
teers were tested on a representative subset of 100 images,
randomly sampled from the corresponding 1,000-image eval-
uation sets used for MLLMs.

Volunteers viewed the images at their original 900x900
pixel resolution within a Google Sheets document. Using the
identical prompts provided to the MLLMs, they were asked to
identify the embedded characters, entering their responses di-
rectly into the document. This methodology ensured a direct
comparison of human and MLLM performance under equiv-
alent conditions.

4.2 Traditional Computer Vision Baseline
(ResNet50)

As a representative traditional computer vision baseline, we
trained and evaluated a ResNet50 model. We utilized a
ResNet50 pre-trained on ImageNet, obtained from the Py-
Torch vision library.

The standard classification layer of the ResNet50 was re-
placed with two independent classification heads. Each head
was designed to predict one character, treating the task as two
independent character recognition problems. For the purpose
of fine-tuning this model, we utilized 2,000 images randomly
sampled from the broader HueManity dataset, ensuring these
were distinct from the final evaluation subsets. Training was
conducted for 30 epochs using the Adam optimizer with a
learning rate of 1e − 3. The loss function for training was
the sum of the cross-entropy losses calculated independently
for each of the two classification heads. The trained model
was evaluated on the same 1,000-image subsets used for the
MLLM evaluations.

5 Results and Analysis
5.1 Human Performance: A Near-Perfect Baseline
Human volunteers established a crucial performance base-
line, demonstrating exceptionally high accuracy and effi-
ciency on the HueManity benchmark (detailed in Table 3).
On the numerical recognition task, volunteers achieved a per-
fect 100% average accuracy, indicating that identifying two-
digit strings within the dot patterns was straightforward. The
more complex alphanumeric task also yielded a very strong
average accuracy of 95.6%.

The minor errors in the alphanumeric task were insight-
ful: annotator feedback consistently attributed confusion not
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to an inability to perceive the characters, but to difficulty dif-
ferentiating visually similar character forms (e.g., ‘s’, ‘c’,
‘w’ upper and lower case variants). This distinction is impor-
tant, as it underscores that the primary perceptual challenge
of extracting patterns from the dots was readily overcome by
the human visual system. Furthermore, volunteers processed
these images with remarkable efficiency, typically requiring
less than one second per image to identify the characters.

Near-perfect and rapid human scores offer crucial insights
into MLLM performance on this task for several key reasons:

• Confirms Task Solvability and Stimulus Clarity:
High human accuracy confirms the stimuli provide un-
ambiguous visual information for character identifica-
tion, showing the tasks are well-defined and solvable by
proficient visual systems.

• Establishes a Performance Ceiling: Human perfor-
mance sets a clear accuracy ceiling, highlighting the tar-
get for machine perception systems on this (for humans)
perceptually simple task.

• Highlights the Nature of MLLM Deficiencies: Sig-
nificant MLLM deviations from human scores indicate
machine-specific limitations, not task impossibility or
unclear stimuli. This contrast helps determine if MLLM
struggles lie in initial perceptual grouping or later recog-
nition.

• Contextualizes Machine Errors: Human ease and mi-
nor confusions (e.g., similar glyphs) provide valuable
context for analyzing MLLM error types and severity,
pinpointing where machine perception diverges from
human visual understanding.

In essence, the human baseline shows HueManity tests
foundational visual skills that humans execute efficiently, de-
spite MLLM challenges. This context is vital for appreciating
the scale and nature of MLLM performance gaps.

5.2 ResNet50 Baseline: Demonstrating Task
Learnability

To further contextualize the performance of Multimodal
Large Language Models (MLLMs), we established a strong
baseline using a fine-tuned ResNet50 [He et al., 2015], a
well-established traditional computer vision architecture. As
detailed in Table 1 and Table 2, the ResNet50 model achieved
high accuracy, scoring 96.5% on the numerical recognition
task and 94.5% on the alphanumeric task.

This robust performance from a standard convolutional ar-
chitecture, fine-tuned on a relatively small set of 2,000 images
from the HueManity dataset (as described in Section 4.2), is
highly informative. It clearly demonstrates that the task of
identifying characters within the HueManity dot patterns is
fundamentally learnable by established computer vision tech-
niques.

Furthermore, achieving near-human accuracy with this
setup suggests that the perceptual cues embedded in the stim-
uli are sufficiently rich and consistent for a focused model
to learn effective recognition. This implies that the task,
while designed to challenge nuanced perception, is not in-
herently intractable for AI and can be considered rela-
tively easy for appropriately adapted vision models. The

Mask Patterned Image
Humans (average) 100% 100%
ResNet50 - 96.5%

API-based models

GPT-4.1 mini 100% 19.0%
GPT-4.1 100% 33.6%
Claude 3.7 Sonnet 100% 0.4%

Open-source models

LLaVA-v1.6-7B 87.7% 3.3%
LLaVA-v1.6-13B 87.2% 8.1%
LLaVA-v1.6-34B 96.6% 7.8%
Mistral-small3.1-24b 100% 0.1%
Qwen VL Max 100% 0.2%
Pixtral 100% 1%

Table 1: Accuracy on the number recognition task for human
evaluators, ResNet50, and various MLLMs on both text masks and
patterned HueManity images.

Mask Patterned Image
Humans (average) 100% 95.6%
ResNet50 - 94.5%

API-based models

GPT-4.1 mini 72.4% 0.6%
GPT-4.1 80% 3.0%
Claude 3.7 Sonnet 82.2% 0%

Open-source models

LLaVA-v1.6-7B 15% 0%
LLaVA-v1.6-13B 31.8% 0.1%
LLaVA-v1.6-34B 27.1% 0%
Mistral-small3.1-24b 58.7% 0%
Qwen VL Max 83.5% 0%
Pixtral 65.8% 1.8%

Table 2: Accuracy on the alphanumeric recognition task, com-
paring human performance with ResNet50 and MLLMs across text
masks and patterned HueManity images.

ResNet50 baseline’s success, therefore, pinpoints the chal-
lenges as MLLM-specific. This suggests that MLLM difficul-
ties likely arise not from an inherently unsolvable visual task,
but from how these larger, more general models currently pro-
cess or prioritize fine-grained perceptual information.

5.3 The Perceptual Gap: MLLM Performance vs.
Baselines on HueManity

The performance of the nine evaluated Multimodal Large
Language Models (MLLMs) on the HueManity bench-
mark stands in stark contrast to the near-perfect accura-



Number Pattern Alphanumeric Pattern
Evaluator 1 100% 97%
Evaluator 2 100% 95%
Evaluator 3 100% 95%

Average 100% 95.6%

Table 3: Human evaluation accuracies on 100-image subsets for
both number and alphanumeric pattern recognition tasks.

cies achieved by both human volunteers and the fine-tuned
ResNet50 baseline [He et al., 2015] (detailed in Table 1 and
Table 2). Across both the numerical and alphanumeric tasks,
all evaluated MLLMs exhibited a profound and consistent in-
ability to match these baselines. For instance, even the best-
performing MLLM achieved only 33.6% on the easier nu-
meric task and a mere 3% on the harder alphanumeric
task—figures that dramatically underscore their struggle.

This significant and consistent underperformance, on tasks
demonstrably solvable by human vision and traditional AI
methodologies, signals a critical gap in the fine-grained vi-
sual perception capabilities of current MLLMs. Such results
necessitate a deeper exploration into the potential underlying
reasons for these models’ difficulties.

Several characteristics inherent to the current design and
training paradigms of many Multimodal Large Language
Models (MLLMs) may contribute to their observed difficul-
ties on tasks demanding nuanced visual perception. Firstly,
the visual processing pipeline itself could be a factor. Vi-
sion encoders in MLLMs, though often powerful and pre-
trained on diverse datasets (e.g., ViT variants [Liu et al.,
2023; Liu et al., 2024a; Agrawal et al., 2024; Bai et al.,
2023a; Bai et al., 2025], are typically optimized for cap-
turing semantic information and global scene context. This
optimization focus might lead to the unintentional down-
weighting or loss of extremely fine-grained local details—
like subtle color shifts defining patterns within a dense, simi-
larly featured background—that are crucial when strong se-
mantic cues are absent. Furthermore, the interface used
to connect these vision encoders to the language model—
often a projection layer or a small MLP [Liu et al., 2023;
Liu et al., 2024a; Agrawal et al., 2024; Bai et al., 2023a;
Bai et al., 2025]—necessarily transforms and condenses vi-
sual information. This critical step, while enabling multi-
modal fusion, might inadvertently act as an information
bottleneck, potentially abstracting or losing the precise,
high-resolution feature distinctions necessary for meticu-
lous perceptual tasks.

Secondly, the nature of MLLM pre-training data and
their resulting operational strengths may not fully align
with the demands of certain fundamental perception chal-
lenges. MLLMs are typically pre-trained on vast web-scale
corpora where images are often paired with textual descrip-
tions or interleaved image-text documents [Liu et al., 2023;
Liu et al., 2024a; Agrawal et al., 2024; Bai et al., 2023a;
Bai et al., 2025; Achiam et al., 2023]. Such datasets, while
fostering robust semantic alignment and impressive contex-
tual understanding, might underrepresent stimuli requiring

intensive perceptual organization purely from low-level vi-
sual features, without strong linguistic or clear object-based
anchors. Consequently, MLLMs may not have adequately de-
veloped the specialized visual routines needed for tasks like
consistently grouping spatially distributed elements based
only on subtle shared properties (e.g., color similarity) within
a field of similar distractors. Their celebrated success in
many multimodal tasks often stems from leveraging their
powerful integrated Large Language Models (LLMs) to in-
terpret, reason about, and generate language from visual in-
put [Achiam et al., 2023; Anthropic, 2025; Liu et al., 2023;
Gong et al., 2023; Jiang et al., 2023]. This reliance on higher-
level, often text-mediated, understanding can be less effec-
tive when the core challenge demands direct, bottom-up vi-
sual processing and pattern extraction, rather than concep-
tual inference or semantic association. Such tasks require
a foundational visual acuity that may not be a primary
emergent outcome of training regimes largely focused on
multimodal semantics and instruction following.

6 Conclusion and Future Directions
In this work, we introduced HueManity, a new benchmark
dataset comprising 83,850 Ishihara-style images designed to
rigorously evaluate the fine-grained visual perception of Mul-
timodal Large Language Models (MLLMs). Our comprehen-
sive evaluations of nine MLLMs revealed a stark performance
gap: these advanced models struggled significantly (e.g., 3-
34% accuracy) on tasks readily solved by human volunteers
(95-100% accuracy) and traditional computer vision models
like a fine-tuned ResNet50 (94-96% accuracy). This high-
lights a critical limitation in current MLLM capabilities to
discern patterns based on subtle visual cues in complex, noisy
environments. We provide the dataset and generation code to
the community to foster further research.

The observed MLLM deficiencies likely stem from a com-
bination of factors, including vision encoders not optimized
for such fine-grained detail, information bottlenecks at the
vision-language interface, pre-training data that underrepre-
sents such perceptual challenges, and an over-reliance on
text-mediated or high-level semantic reasoning for tasks de-
manding direct, bottom-up visual processing. Future work
should therefore focus on several key directions to bridge this
perceptual gap: 1) Developing novel MLLM architectures
with improved visual front-ends and fusion mechanisms that
better preserve and process low-level visual information. 2)
Augmenting pre-training and fine-tuning datasets with stim-
uli specifically designed to enhance robust perception in visu-
ally complex scenarios. 3) Exploring training objectives that
explicitly encourage the development of fundamental visual
acuity and perceptual organization skills, independent of, yet
complementary to, high-level reasoning. Addressing these ar-
eas will be crucial for advancing MLLMs towards more holis-
tic and human-like visual understanding.

7 Limitations
While HueManity provides valuable insights into a specific
facet of MLLM visual perception, we acknowledge certain



limitations. Firstly, the benchmark evaluates a focused per-
ceptual task: identifying two-character alphanumeric strings
within Ishihara-style dot patterns. Although this serves as a
robust proxy for the ability to discern patterns from visually
complex backgrounds based on subtle cues, its direct general-
ization to the full spectrum of diverse, real-world fine-grained
perceptual challenges MLLMs may encounter requires fur-
ther investigation. Secondly, our current dataset, while sub-
stantial and systematically generated with controlled color
contrasts, primarily explores variations in color and basic
character forms. Future iterations or complementary bench-
marks could expand to assess a wider array of perceptual di-
mensions, such as sensitivity to texture, orientation, motion,
or more intricate compositions of embedded elements. Fi-
nally, while our study includes a diverse set of nine contem-
porary MLLMs, the MLLM landscape is evolving rapidly.
Consequently, our findings represent a snapshot based on the
models and their versions tested at the time of this study, and
newer or differently architected models might exhibit differ-
ent performance characteristics.

8 Usage of Generative AI tools
We utilized Generative AI tools to help improve the language,
phrasing, and readability of this manuscript.
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Héliou, Paul Jacob, Albert Q. Jiang, Kartik Khandelwal,
Timothée Lacroix, Guillaume Lample, Diego Las Casas,
Thibaut Lavril, Teven Le Scao, Andy Lo, William Mar-
shall, Louis Martin, Arthur Mensch, Pavankumar Mud-
direddy, Valera Nemychnikova, Marie Pellat, Patrick Von
Platen, Nikhil Raghuraman, Baptiste Rozière, Alexandre
Sablayrolles, Lucile Saulnier, Romain Sauvestre, Wendy
Shang, Roman Soletskyi, Lawrence Stewart, Pierre Stock,
Joachim Studnia, Sandeep Subramanian, Sagar Vaze,
Thomas Wang, and Sophia Yang. Pixtral 12b, 2024.

[Alayrac et al., 2022] Jean-Baptiste Alayrac, Jeff Donahue,
Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi,
Tengda Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew
Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj
Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zis-
serman, and Karen Simonyan. Flamingo: a visual lan-
guage model for few-shot learning, 2022.

[Anthropic, 2025] Anthropic. Claude 3.5 sonnet, 2025. Ac-
cessed May 18, 2025.

[Bai et al., 2023a] Jinze Bai, Shuai Bai, Shusheng Yang,
Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-
language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 1(2):3, 2023.

[Bai et al., 2023b] Shuai Bai, Shusheng Yang, Jinze Bai,
Peng Wang, Xingxuan Zhang, Junyang Lin, Xinggang
Wang, Chang Zhou, and Jingren Zhou. Touchstone: Eval-
uating vision-language models by language models. arXiv
preprint arXiv:2308.16890, 2023.

[Bai et al., 2025] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye,
Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo
Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl techni-
cal report, 2025.

[Cao et al., 2024] Qingxing Cao, Junhao Cheng, Xiaodan
Liang, and Liang Lin. VisDiaHalBench: A visual di-
alogue benchmark for diagnosing hallucination in large
vision-language models. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 12161–12176,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics.

[Chen et al., 2025] Boqi Chen, Anuj Khare, Gaurav Kumar,
Arjun Akula, and Pradyumna Narayana. Seeing beyond:
Enhancing visual question answering with multi-modal re-
trieval. In Owen Rambow, Leo Wanner, Marianna Apid-
ianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven
Schockaert, Kareem Darwish, and Apoorv Agarwal, ed-
itors, Proceedings of the 31st International Conference on
Computational Linguistics: Industry Track, pages 410–
421, Abu Dhabi, UAE, January 2025. Association for
Computational Linguistics.

[Clark, 1924] JH Clark. The ishihara test for color blindness.
American Journal of Physiological Optics, 1924.

[Deng, 2012] Li Deng. The mnist database of handwritten
digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142,
2012.

[Dong et al., 2024] Runpei Dong, Chunrui Han, Yuang
Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao,
Jianjian Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong,
Xiangyu Zhang, Kaisheng Ma, and Li Yi. Dreamllm: Syn-
ergistic multimodal comprehension and creation, 2024.

[Fu et al., 2024a] Tsu-Jui Fu, Wenze Hu, Xianzhi Du,
William Yang Wang, Yinfei Yang, and Zhe Gan. Guid-
ing instruction-based image editing via multimodal large
language models, 2024.

[Fu et al., 2024b] Xingyu Fu, Yushi Hu, Bangzheng Li,
Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Mul-
timodal large language models can see but not perceive.



In European Conference on Computer Vision, pages 148–
166. Springer, 2024.

[Gong et al., 2023] Tao Gong, Chengqi Lyu, Shilong Zhang,
Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu, Wen-
wei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt:
A vision and language model for dialogue with humans.
arXiv preprint arXiv:2305.04790, 2023.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

[Huang and Zhang, 2024] Jiaxing Huang and Jingyi Zhang.
A survey on evaluation of multimodal large language mod-
els. arXiv preprint arXiv:2408.15769, 2024.

[Jia et al., 2021] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting
Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and
vision-language representation learning with noisy text su-
pervision, 2021.

[Jiang et al., 2023] Albert Q. Jiang, Alexandre Sablayrolles,
Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023.

[Kuang et al., 2024] Jiayi Kuang, Jingyou Xie, Haohao Luo,
Ronghao Li, Zhe Xu, Xianfeng Cheng, Yinghui Li, Xika
Lin, and Ying Shen. Natural language understanding and
inference with mllm in visual question answering: A sur-
vey, 2024.

[Li et al., 2023a] Bohao Li, Rui Wang, Guangzhi Wang,
Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench:
Benchmarking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125, 2023.

[Li et al., 2023b] Junnan Li, Dongxu Li, Silvio Savarese,
and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large lan-
guage models. In International conference on machine
learning, pages 19730–19742. PMLR, 2023.

[Li et al., 2024] Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi
Wang, Rui Wang, Ruimao Zhang, and Ying Shan. Seed-
bench: Benchmarking multimodal large language mod-
els. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13299–
13308, 2024.

[Liu et al., 2023] Haotian Liu, Chunyuan Li, Qingyang Wu,
and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–34916,
2023.

[Liu et al., 2024a] Haotian Liu, Chunyuan Li, Yuheng Li,
and Yong Jae Lee. Improved baselines with visual in-
struction tuning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
26296–26306, 2024.

[Liu et al., 2024b] Yuan Liu, Haodong Duan, Yuanhan
Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike
Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mm-
bench: Is your multi-modal model an all-around player?
In European conference on computer vision, pages 216–
233. Springer, 2024.

[Luo et al., 2001] Ming Luo, Guihua Cui, and B. Rigg. The
development of the cie 2000 colour-difference formula:
Ciede2000. Color Research Application, 26:340 – 350,
10 2001.

[Pham et al., 2023] Hieu Pham, Zihang Dai, Golnaz Ghiasi,
Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, Mingx-
ing Tan, and Quoc V. Le. Combined scaling for zero-shot
transfer learning, 2023.

[Qi et al., 2020] Di Qi, Lin Su, Jia Song, Edward Cui,
Taroon Bharti, and Arun Sacheti. Imagebert: Cross-modal
pre-training with large-scale weak-supervised image-text
data, 2020.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervi-
sion, 2021.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge, 2015.

[Schuhmann et al., 2022] Christoph Schuhmann, Romain
Beaumont, Richard Vencu, Cade Gordon, Ross Wight-
man, Mehdi Cherti, Theo Coombes, Aarush Katta, Clay-
ton Mullis, Mitchell Wortsman, Patrick Schramowski, Sri-
vatsa Kundurthy, Katherine Crowson, Ludwig Schmidt,
Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open
large-scale dataset for training next generation image-text
models, 2022.

[Team et al., 2023] Gemini Team, Rohan Anil, Sebastian
Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

[Weng et al., 2025] Weixi Weng, Jieming Zhu, Xiaojun
Meng, Hao Zhang, Rui Zhang, and Chun Yuan. Learning
to compress contexts for efficient knowledge-based visual
question answering, 2025.

[Xu et al., 2024] Peng Xu, Wenqi Shao, Kaipeng Zhang,
Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan
Huang, Yu Qiao, and Ping Luo. Lvlm-ehub: A compre-
hensive evaluation benchmark for large vision-language
models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2024.

[Yin et al., 2023] Zhenfei Yin, Jiong Wang, Jianjian Cao,
Zhelun Shi, Dingning Liu, Mukai Li, Xiaoshui Huang,



Zhiyong Wang, Lu Sheng, Lei Bai, et al. Lamm:
Language-assisted multi-modal instruction-tuning dataset,
framework, and benchmark. Advances in Neural Informa-
tion Processing Systems, 36:26650–26685, 2023.

[Yu et al., 2023] Weihao Yu, Zhengyuan Yang, Linjie Li,
Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multi-
modal models for integrated capabilities. arXiv preprint
arXiv:2308.02490, 2023.

[Zhai et al., 2022] Xiaohua Zhai, Xiao Wang, Basil Mustafa,
Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-
image text tuning, 2022.

A A Brief Discussion on CIEDE2000 Color
Difference

The CIEDE2000 score (∆E2000, Equation 1) [Luo et al.,
2001] quantifies the perceived difference between two col-
ors more accurately than prior formulae, especially for sub-
tle variations. It calculates a single value representing the
“distance” between colors in the perceptually uniform CIE
L∗a∗b∗ space, considering lightness, chroma, and hue. In
the HueManity benchmark, ∆E2000 was pivotal for sys-
tematically designing stimuli. The ability to discern char-
acters in the Ishihara-style plates directly depends on the
perceived color contrast between foreground (character) and
background dots. This score provided a perceptually relevant,
objective method to quantify this contrast, enabling the selec-
tion of color pairs across a controlled spectrum of difficulty,
refer to Figure 3. This ensured the benchmark could rigor-
ously test visual perception for varying degrees of color dis-
criminability while maintaining stimuli legibility for human
comparison, forming a foundational aspect of our dataset’s
controlled experimental design.

B Color Pairs Selection
The selection of appropriate color pairs for the foreground
(characters) and background dots was a critical phase in the
development of HueManity, undertaken with considerable
care to ensure a balance between perceptual challenge and
unambiguous human legibility. The process involved several
stages:

1. Initial Candidate Generation: We bootstrapped the
process with 15 medium-contrast color pairs generated
by LLMs (Gemini, ChatGPT). This initial pool was iter-
atively refined by evaluating pairs against CIEDE2000
(∆E2000, Eq. 1) scores and visual checks. We re-
tained promising candidates, modified some, and dis-
carded others, while simultaneously manually crafting
and vetting new pairs to meet the benchmark’s final re-
quirements (detailed below). This refinement cycle cul-
minated in the selection of 25 distinct pairs for the sub-
sequent validation stages.

2. Quantitative Contrast Filtering (CIEDE2000): Each
of these candidate pairs then underwent rigorous quan-
titative analysis using the CIEDE2000 (∆E2000) color

difference formula (Equation 1). This formula is a stan-
dard measure in color science, designed to reflect per-
ceptually meaningful differences as perceived by hu-
mans. We established a specific target range for the
∆E2000 score, retaining only pairs with contrast values
between 25 and 75. The lower bound of 25 was set to
ensure sufficient theoretical distinguishability for indi-
viduals with normal color vision, preventing pairs that
would be inherently ambiguous. The upper bound of 75
aimed to exclude pairs with excessively high contrast,
which might render the perceptual task trivial and devi-
ate from the subtle challenge intended.

3. Balanced Contrast Distribution: A key objective dur-
ing selection was to ensure the benchmark included
stimuli across a spectrum of difficulty levels related to
color similarity. Therefore, we deliberately curated the
final set of 25 color pairs to achieve an approximately
equal distribution around a ∆E2000 score of 50. This
threshold is grounded in color science literature, often
considered a point distinguishing more subtle (scores
<50) from more clearly distinct (scores >50) color dif-
ferences. We aimed for roughly half the selected pairs to
fall below this threshold and half above, ensuring Hue-
Manity evaluates performance across varying, literature-
informed degrees of color contrast difficulty.

4. Manual Verification and Legibility Check: Recogniz-
ing that a single numerical contrast score like ∆E2000

captures overall perceived difference but may not fully
account for the complex interplay of hue, saturation,
and luminance components, especially when rendered
as dots and subjected to further transformations (gradi-
ent, color, and light shifts as described in Section 3.2), a
crucial final step of manual verification was performed.
As you noted, it is hard to quantify the nuanced visual
impact of these combined factors with a single metric.
Therefore, for every color pair that passed the quantita-
tive filtering, sample HueManity images were generated.
These renderings were meticulously inspected by the au-
thors. The primary goal was to reject pairs where the
characters, despite an acceptable overall contrast score,
appeared visually too similar to the background due to
the specific combination of hue, saturation, luminance,
or the effect of the applied shifts. This ensured that the
embedded alphanumeric characters were clearly legible
and that the pattern recognition was unambiguous for
human observers with normal color vision. Any pairs
that resulted in ambiguous characters or were otherwise
problematic during this visual check were discarded.

This multi-stage process, combining LLM-based idea gen-
eration, principled quantitative filtering based on color sci-
ence, a balanced distributional strategy, and crucial human
judgment to account for complex visual interactions, resulted
in the final curated set of 25 color pairs. This ensures that the
stimuli used in HueManity are not only theoretically sound
but also practically validated for fairness, legibility, and the
intended level of perceptual challenge.
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KL,KC ,KH are parametric factors (typically 1),
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RT is a rotation term accounting for hue-chroma interaction.
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Figure 3: Distribution of CIEDE2000 color difference scores for the 25 selected foreground-background color pairs utilized in the HueManity
benchmark.

C Qualitative Analysis of MLLM Failure
Patterns

This section details common failure patterns observed in Mul-
timodal Large Language Models (MLLMs) when tasked with
identifying alphanumeric characters embedded in Ishihara-
style dot patterns from the HueManity dataset. These ob-
servations stem from a comparative analysis of MLLM re-
sponses against human performance and ground truth data.
Notably, human visual perception proved highly accurate on
these tasks, with any infrequent errors typically involving
confusion between graphically similar characters. In con-
trast, MLLMs exhibited distinct and more fundamental fail-
ure modes.

C.1 Prevalent Hallucination of Unrelated or
Overly Complex Characters

A dominant failure mode across multiple MLLMs was the
generation of characters, words, or even entire phrases that
bore no resemblance to the two-character ground truth. This

phenomenon of “hallucination” often resulted in outputs sig-
nificantly more complex or contextually incongruous than
the target stimuli. For instance, in the alphanumeric task,
a model such as Claude 3.7 Sonnet might interpret a
simple two-letter combination as a short phrase (e.g., re-
sponding with “MUST SEE” or “SOLU” for simple targets
like “Rw” or “Tv”). Similarly, llava-7b could produce
non-sensical strings like “HQJHSTOS”, and LLaVA-13b
occasionally generated contextually unrelated phrases like
“[G3T1NGST4RT3D]”. The numeric task was not immune
— for a two-digit number, Claude 3.7 Sonnet was ob-
served to list a sequence of unrelated two-digit numbers. This
pattern suggests that when the fine-grained perceptual chal-
lenge overwhelms the MLLMs’ visual processing, they may
default to generating text that, while perhaps linguistically
plausible, is detached from the actual visual content.



C.2 Frequent Resort to Descriptive Evasion or
Explicit Admission of Inability

Rather than consistently attempting to identify the embed-
ded characters, many MLLMs frequently defaulted to one
of two evasive strategies: providing a general description
of the image (often correctly identifying it as a color vi-
sion test) or explicitly stating their incapacity to discern any
characters. This behavior contrasted significantly with hu-
man participants, who invariably attempted the identifica-
tion task. For example, models like GPT-4.1 Mini and
Mistral-small3.1-24b, when presented with alphanu-
meric stimuli, often responded by describing the image as an
Ishihara test but stated they could not clearly identify specific
characters. In the numeric task, Claude 3.7 Sonnet
sometimes offered similar descriptive evasions, asserting no
number was visible and describing the circular dot pattern.
Furthermore, some models, such as LLaVA-34b, occasion-
ally provided categorical statements of inability, indicating
they could not recognize or interpret images and requesting
a description or textual input instead. This pattern suggests
that MLLMs may possess internal confidence thresholds that,
when triggered by low-confidence visual parsing, lead to eva-
sive or pre-programmed “unable to process” responses rather
than a forced, best-guess attempt at character recognition.

C.3 Erratic, Unpredictable, and Systematically
Flawed Output Patterns

MLLM outputs were frequently characterized by their er-
ratic and unpredictable nature. This included the genera-
tion of seemingly random strings of characters, peculiar sys-
tematic but incorrect patterns, or extreme numerical inven-
tions far removed from the two-character target. This high
variance in error types was observed both across different
models for the same input and within the outputs of a sin-
gle model across different images. For instance, when pre-
sented with the same alphanumeric target (e.g., “Wh”), while
one model (GPT-4.1) might respond almost correctly, oth-
ers exhibited diverse failures: Claude 3.7 Sonnet pro-
duced an unrelated number (“4726”); LLaVA-13b gener-
ated an exceptionally long string of sequential numbers; and
Qwen VL Max incorrectly reasoned the presence of a dif-
ferent number (“12”). Some incorrect outputs also suggested
flawed systematic processing, such as LLaVA-13b respond-
ing with a patterned string like “[L1L1L1]” for one target or
generating extremely long, patterned numeric strings for oth-
ers. Lengthy, seemingly gibberish character strings were also
common from models like LLaVA-7b. This unpredictability
underscores a lack of robust and stable visual feature extrac-
tion and interpretation, contrasting with human visual pro-
cessing, which tends towards predictable errors based on sim-
ilarity.
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