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Abstract

Large vision-language models (LVLMs) have001
achieved impressive results in vision-language002
tasks. However, LVLMs suffer from hallucina-003
tions caused by language bias, which neglects004
images while over-relying on text. We identify005
two reasons for the bias: 1). Different training006
scales between the LLM pretraining and LVLM007
alignment stage. 2). The learned inference008
bias due to short-term dependency of text data.009
Therefore, we propose LACING, designed to010
address such bias with MuLtimodal DuAl-011
attention MeChanIsm (MDA) aNd Soft-Image012
Guidance (SIG). Specifically, MDA adopts a013
parallel dual-attention mechanism that con-014
structs separate attention for visual and text015
inputs to enhance integration of visual inputs016
across model. SIG uses a learnable soft visual017
prompt during training and inference to re-018
place visual inputs, designed to compel LVLMs019
to prioritize text inputs during inference. Exper-020
iments across different model architectures and021
scales demonstrate that LACING effectively022
debiases LVLMs from their language bias, en-023
hancing visual comprehension and reducing024
hallucinations without additional resources.025

1 Introduction026

Large Language Models (LLMs) (OpenAI, 2023;027

Dubey et al., 2024) represent a significant mile-028

stone in natural language processing (Yang et al.,029

2024; OpenAI, 2022). By incorporating visual en-030

coders into LLMs (Liu et al., 2023; Bai et al., 2023),031

the development of Large Vision-Language Models032

(LVLMs) (OpenAI, 2024; Team, 2023) has been ac-033

celerated, enabling them to handle both visual and034

text inputs. This facilitates various applications us-035

ing LVLMs such as autonomous driving (Xu et al.,036

2024) and medical assistants (Li et al., 2023b).037

State-of-the-art LVLMs, despite their advanced038

capabilities in handling both modalities, often pro-039

duce erroneous or irrelevant responses to input im-040

ages (Chen et al., 2024b; Lan et al., 2024). he main041

reason behind such hallucinations is referred to 042

as language bias (Zhao et al., 2024a), i.e., models 043

sometimes “ignore” visual inputs and generate text 044

responses solely based on text inputs. However, 045

prior studies have not comprehensively explored 046

the origins of such bias. We suggest that this bias 047

may emerges for the following two reasons: 048

1. Different training scales between pretrain- 049

ing and multimodal alignment stage: The LLM 050

backbone in LVLMs is pre-trained on on exten- 051

sive text corpus, while the multimodal alignment 052

stage of LVLMs involves significantly fewer sam- 053

ples and shorter training duration. For instance, 054

Llama3 (Dubey et al., 2024) is pre-trained with 15T 055

tokens, whereas the multimodal alignment training 056

for LLaVA-Series (Liu et al., 2023, 2024c,d) em- 057

ploys only about 558k–1.3M examples. This scale 058

discrepancy causes the pretraining distribution to 059

dominate the generation process in LVLMs (Pi 060

et al., 2024), resulting in insufficient utilization 061

of visual inputs. As shown in Figure 2, LVLMs 062

allocate minimal attention to visual tokens in over 063

90% layers (Chen et al., 2024a). Conversely, as dis- 064

cussed in § E, models such as Chameleon (Team, 065

2024), pretrained with balanced scales of textual 066

and visual tokens, exhibit significantly reduced 067

bias, further supporting this hypothesis. 068

2. The learned inference bias due to the 069

short-term dependency of text data: Intuitively, 070

a word in a text sequence exhibits a stronger asso- 071

ciative bond with adjacent words than those further 072

apart (Alabdulmohsin et al., 2024; Daniluk et al., 073

2017; Yan et al., 2024), i.e., the short-term depen- 074

dency of text data. LLMs pre-trained on large- 075

scale text corpora are more easily capturing and 076

memorizing such short-term dependency (Yuan 077

et al., 2025), which typically assign higher atten- 078

tion weights to adjacent tokens. However, this 079

learned pattern may be problematic in multi-modal 080

contexts. In current LVLMs, visual features are typ- 081

ically concatenated with text inputs to form input 082
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Figure 1: Overview of LACING, consisting of Multimodal Dual Attention (bottom) and Soft-Image Guidance
(above) to mitigate language bias. MDA proposes a parallel dual-attention mechanism that constructs two separate
attention for visual and text inputs. SIG implements a learnable soft visual prompt during training to replace visual
inputs, which maintains input patterns while compelling model to prioritize text inputs during inference.

context. As generation progresses, the model in-083

creasingly focuses on nearby generated text tokens084

while progressively neglecting fixed-position visual085

inputs (Zhang et al., 2024), as shown in Figure 4.086

These two reasons lead to a systemic bias in087

LVLMs, originating from both training and in-088

ference stages. Consequently, a critical question089

arises: How can we effectively mitigate language090

bias of LVLMs from both training and inference091

perspectives? Therefore, we propose LACING, a092

systemic framework designed to address the lan-093

guage bias of LVLMs with MuLtimodal DuAl-094

attention MeChanIsm aNd Soft-Image Guidance.095

To address training scale gaps in LVLMs, which096

leads to neglect of visual inputs across most lay-097

ers (Chen et al., 2024a), we propose Multimodal098

Dual-Attention Mechanism (MDA). Specifically,099

MDA introduces a parallel dual-attention mecha-100

nism that separately computes attention weights for101

each modality, and then fuses them to form the final102

attention map. This design ensures model to main-103

tain substantial attention to visual inputs across all104

layers, promoting more effective visual-text inte-105

gration. Crucially, unlike previous methods that106

apply bidirectional attention to visual inputs within107

a shared attention matrix (Xie et al., 2024; Zhou108

et al., 2024a), MDA builds parallel attention map109

that compute modality-specific attention scores sep-110

arately. This separation enables flexible attention111

configurations; for instance, visual inputs can adopt112

either causal or bidirectional attention. In our de- 113

sign, we employ bidirectional attention for visual 114

inputs to better capture global visual feature, while 115

retaining causal attention for text to preserve the 116

language modeling capabilities of LLMs. 117

To mitigate learned inference bias in LVLMs, we 118

propose Soft-Image Guidance (SIG), designed to 119

enhance visual guidance by addressing the model’s 120

over-reliance on textual inputs (i.e., language bias). 121

At core of SIG is a learnable soft visual prompt, 122

which replaces visual inputs during both training 123

and inference. It serves as a modality-aware place- 124

holder, preserving input patterns (e.g., the input 125

length and modalities), while implicitly compelling 126

model to prioritize text inputs. Unlike prior meth- 127

ods (Leng et al., 2023; Zhang et al., 2024) that 128

remove visual inputs or inject random noise, SIG 129

maintains input consistency without introducing un- 130

controlled perturbations. During multimodal align- 131

ment stage, visual inputs are randomly replaced 132

with soft prompt, allowing model to learn from 133

complete and visual-substituted inputs. At infer- 134

ence, we replace visual inputs with well-learned 135

soft prompt to form multimodal-null input. Each 136

token’s final output is computed by contrasting 137

model’s output distributions from original and 138

multimodal-null inputs, ensuring each token in re- 139

sponses accounts for visual input more critically 140

and thereby reducing language bias. 141

Our proposed MDA and SIG form a systematic 142
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framework for mitigating language bias in LVLMs,143

with each component complementing the other to144

further enhance overall performance. Comprehen-145

sive experiments across various model architec-146

tures and scales validate the effectiveness of LAC-147

ING. We observe significant improvements, partic-148

ularly in free-form generation and visual halluci-149

nations reduction (e.g., 11.8-point gain on LLaVA-150

Bench (Liu et al., 2023) and a 40% improvement on151

Object Hall (Rohrbach et al., 2019; Yu et al., 2024)).152

Notably, LACING delivers consistent improvement153

without additional resource requirements beyond154

standard multimodal alignment setups (Liu et al.,155

2024c,d). Our analysis further confirms the efficacy156

of MDA in enabling LVLMs to fully utilize visual157

inputs, and robustness of SIG for reducing halluci-158

nations and improving visual comprehension.159

2 Related Work160

2.1 Language Bias in LVLMs161

Despite the impressive capabilities of LVLMs (Ope-162

nAI, 2024; Team, 2023; McKinzie et al., 2024;163

Wang et al., 2024a; Li et al., 2024), these mod-164

els still struggle with generating responses irrel-165

evant to the input images (Lan et al., 2024; Liu166

et al., 2024b), e.g., hallucinating non-existent ob-167

jects (Zhou et al., 2024c). Zhao et al. (2024a) first168

identify this issue in LVLMs and name it as lan-169

guage bias, i.e., LVLMs often ignore visual inputs170

and solely rely on text inputs, leading to hallucina-171

tions. Chen et al. (2024b) observe that LVLMs of-172

ten answer questions using only LLM-derived tex-173

tual knowledge. Chen et al. (2024a) further show174

that attention to visual inputs diminishes signifi-175

cantly in deeper layers, while Zhang et al. (2024)176

find that models increasingly prioritize text as gen-177

eration progresses. These findings collectively in-178

dicate that LVLMs assign disproportionately low179

attention to visual inputs, limiting their ability to180

effectively utilize image information. Therefore,181

to address this challenge, we propose a systematic182

framework, LACING, that mitigates language bias183

from both training and inference perspectives.184

2.2 Addressing Language Bias in LVLMs185

Given the language bias of LVLMs, they exhibit186

similar hallucination issues as LLMs (Huang et al.,187

2023), as well as modality-specific hallucinations188

such as object hallucination (Rohrbach et al., 2019;189

Li et al., 2023c). As noted by Leng et al. (2023),190

this stems from the dominant influence of the191
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Figure 2: Average attention scores for output tokens
towards text and visual tokens across different layers of
encoder-based LVLMs (Liu et al., 2024c) and encoder-
free LVLMs (Diao et al., 2024), showing that only the
first two layers apply considerable attention to visual
tokens. In contrast, deeper layers largely neglect them.

LLM’s pretraining distribution, making hallucina- 192

tion a prominent symptom of language bias. Recent 193

efforts to mitigate hallucination fall into two main 194

categories. The first includes training-intensive 195

methods such as LRV (Liu et al., 2024a), LLaVA- 196

BPO (Pi et al., 2024), LLaVA-RLHF (Sun et al., 197

2023), and RLHF-V (Yu et al., 2024), which rely 198

on supervised fine-tuning or reinforcement learn- 199

ing with preference data. While effective, these 200

methods typically necessitate substantial training 201

data and computational resources. To address this, 202

training-free methods have been proposed, includ- 203

ing VCD (Leng et al., 2023), IBD (Zhu et al., 2024), 204

VDD (Zhang et al., 2024), and ICD (Wang et al., 205

2024b). These methods contrast outputs with those 206

from image-free inputs (or with distorted images) 207

to reduce influence of textual LLMs. However, 208

these methods may introduce inconsistencies be- 209

tween training and inference, limiting their effec- 210

tiveness. Inspired by classifier-free guidance (Ho 211

and Salimans, 2022), which combines conditional 212

and unconditional signals for image generation, we 213

propose a novel approach that addresses language 214

bias from both training and inference perspectives 215

and targets broader bias effects beyond object hal- 216

lucination, improving general LVLM performance. 217

3 Method 218

3.1 Multimodal Dual-Attention Mechanism 219

Most LVLMs project bidirectional visual inputs 220

into unidirectional LLM space using a relatively 221

small amount of multimodal data (Liu et al., 2023, 222

2024c; Li et al., 2024) compared to vast pretraining 223

data scales of LLMs (Dubey et al., 2024). LVLMs 224

treat visual inputs as a different form of text in- 225
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puts in an autoregressive manner. The mismatch in226

both modeling and training scale leads LVLMs to227

partially adapt to data distribution changes using228

only shallow layers during training with limited229

data (Zhang et al., 2024). Consequently, LVLMs230

remains dominated by LLM’s pretraining distribu-231

tion and lacks effective attention to visual inputs232

in deeper layers. Shown in Figure 2, LVLMs (Bai233

et al., 2023; Wang et al., 2024a; Liu et al., 2024d;234

Diao et al., 2024) exhibit considerable attention235

toward visual inputs only in the first two lay-236

ers (Chen et al., 2024a), while deeper layers retain237

their original distributions, causing deeper layers238

of LVLMs to ignore visual inputs. This pheromone239

has been observed across various LVLMs, in-240

cluding encoder-based LVLMs, such as LLAVA-241

Series (Liu et al., 2023, 2024c,d), QwenVL (Bai242

et al., 2023) and Qwen2VL (Wang et al., 2024a),243

and even encoder-free LVLMs like EVE (Diao244

et al., 2024) and Fuyu (Bavishi et al., 2023).245

To address this issue, we propose Multimodal246

Dual-Attention Mechanism (MDA), which in-247

troduces a parallel dual-attention mechanism that248

preserves separate attention metrics for visual and249

text inputs in the LVLMs. It enforces LLMs to al-250

locate sufficient attention toward visual inputs and251

encourages LVLMs to fully leverage their LLM252

backbone for visual comprehension during training.253

This separation enables flexible attention configu-254

rations; for instance, visual inputs can adopt either255

causal or bidirectional attention. In our design,256

MDA retains causal attention for text inputs while257

independently calculating bidirectional attention258

towards visual inputs. As illustrated in Equation 1,259

given multimodal inputs S “ xs1, s2, . . . , sNy, sn260

means the token in inputs. To independently cal-261

culate attention weights across two modalities, we262

define two attention masks: mask MI for visual263

tokens I and mask MT for text tokens T :264

MIri, js “

#

1, if sj P I,
0, otherwise,

MT ri, js “

#

1, if sj P T & i ď j,

0, otherwise,

(1)265

We use the attention masks to calculate attention266

weights of visualpWIq and text tokenspWT q:267

WI “ softmax
´

QKJ
{
a

dk d MI

¯

,

WT “ softmax
´

QKJ
{
a

dk d MT

¯

,
(2)268

where Q,K is query, key and in self-attention of269

LVLMs. Finally, the two attention weights pWIq270
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Figure 3: Attention allocation of a standard LVLM
(LLaVA-1.5) and model trained with MDA. Text and vi-
sual tokens are marked in blue and purple, respectively.

and pWT q, are integrated and multiplied by V, 271

the value in attention mechanism, to derive final 272

attention score A based on MDA. 273

A “ pWI ` WT qV. (3) 274

Parallel computation of attention weights guaran- 275

tees each token separately receives attention from 276

both visual and text inputs, balancing their contri- 277

butions. It allows visual inputs to remain relevance 278

across all layers, avoiding shallow adaptation and 279

language bias. MDA ensures that visual informa- 280

tion is processed with bidirectional attention to cap- 281

ture spatial coherence, while text tokens continue 282

to follow autoregressive patterns, critical for main- 283

taining coherent language generation, as shown in 284

Figure 3. To support this design choice, we present 285

a comparison between causal and bidirectional at- 286

tention for visual inputs in § D.4. 287

3.2 Soft-Image Guidance 288

Due to the sequential nature of language modeling, 289

which prioritizes coherence and continuity, LVLMs 290

tend to focus on nearby text tokens, often at the ex- 291

pense of the visual information that may be distant 292

or disparate, as shown in Figure 4. 293

Inspired by classifier-free guidance (Ho and Sal- 294

imans, 2022) effectively combining the conditional 295

and unconditional score to control the image gener- 296

ation quality, we propose the Soft-Image Guidance 297

(SIG), designed to enhance the guidance of visual 298

inputs during LVLMs’ response generation and 299

mitigate the inference bias of LVLMs. To enhance 300

the guidance of visual inputs in LVLMs, we for- 301

mulate the visual comprehension mathematically. 302

We consider the conditional probability ppyt | vq 303

of generating a response token yt given the visual 304

input v. By applying Bayes’ theorem, we have: 305

ppyt | vq “
ppv | ytq ¨ ppytq

ppvq
(4) 306
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Figure 4: Attention allocation to visual and text tokens.
Attention to visual tokens (a) decreases as response
generates, while attention to text tokens (b) increases.

Then we take the logarithm of both sides of Eq. (4):307

log ppyt | vq “ log ppv | ytq ` log ppytq ´ log ppvq (5)308

In Eq. (5), ppytq is unconditional probability of309

generating token yt without visual input.310

To amplify influence of visual input v on text311

generation, we introduce a scaling parameter λ312

for conditional probability ppv | ytq. We adjust313

ppv | ytq to obtain an enhanced version pppyt | vq:314

log pppyt | vq9λ ¨ log ppv | ytq ` log ppytq ´ log ppvq (6)315

To express log pppyt | vq with known quantities, we316

expand log ppv | ytq using Bayes’ theorem:317

log ppv | ytq “ log ppyt | vq ` log ppvq ´ log ppytq (7)318

Substituting Eq. (7) into Eq. (6), we obtain:319

log pppyt | vq9λ plog ppyt | vq ` log ppvq ´ log ppytqq

` log ppytq ´ log ppvq.
(8)320

Since v is given (fixed), log ppvq is constant for321

ytand can be omitted, we simplify Eq. (8) to:322

log pppyt | vq9λplog ppyt | vq ´ log ppytqq ` log ppytq (9)323

Eq. (9) demonstrates that influence of visual in-324

put v on text generation can be amplified by ad-325

justing scaling parameter λ, once given conditional326

probability ppyt | vq of original inputs and un-327

conditional probability ppytq without visual inputs.328

This formulation highlights a major challenge in329

enhancing visual guidance for LVLMs: accurately330

Algorithm 1 Joint Training of LVLM with SIG
Require: P : Model; X ,V: Training dataset
1: repeat
2: px,vq „ pX ,Vq Ź Sample multimodal input data
3: v Ð ϵ with probability θ Ź Replace visual input

with soft prompt ϵ
4: Lcross-entropy “ ´Epx,vq

ř

i

yi logP px,vq

5: Update P and ϵ
6: until converged

calculating unconditional probability ppytq of gen- 331

erating token yt in the absence of visual input. 332

Previous approaches attempt to ascertain such 333

probabilities probability by either providing the 334

model with text-only input (Zhang et al., 2024) 335

or by injecting randomly generated noise to mask 336

the image (Leng et al., 2023), thereby utilizing 337

the model’s output as the unconditional probability 338

ppytq. Nonetheless, simply removing the visual 339

inputs may disrupt input patterns(e.g., the input 340

length and modalities), as visual tokens typically 341

far surpass text tokens in quantity (Chen et al., 342

2024a; Zhang et al., 2024). Concurrently, adding 343

random noise to distort images relies can introduce 344

uncontrollable and unstable informational pertur- 345

bations. The extra, unforeseen noise introduced 346

by these inputs may lead the LVLMs to behave 347

more like random probability generators, thereby 348

complicating the approximation of ppytq. 349

SIG first employs a learnable soft visual prompt 350

ϵ to replace the visual input, thereby forming a 351

multimodal-null input for the model. The learnable 352

soft visual prompt ϵ will be the jointly trained with 353

the LVLM. As outlined in Algorithm 1, we replace 354

visual input with ϵ with probability θ during train- 355

ing. The soft visual prompt ϵ serves a dual purpose, 356

acting both as a placeholder to maintain the input 357

pattern and as an indicator to make the model pri- 358

oritize text input. This dual functionality ensures a 359

consistent input pattern for LVLMs in both training 360

and inference, allowing the model to produce gen- 361

erate interpretable output and balancing the visual 362

and text inputs. After training, we can directly use 363

the ϵ to query the model and extract the approxima- 364

tion of ppytq. Finally, during inference, we contrast 365

output distributions from original and multimodal- 366

null inputs based on Equation 9 to get the final 367

output. Specifically, logits ℓg of generated tokens 368

are recalculated by adjusting the logits ℓu of the 369

multimodal-null inputs with the scaling parameter 370

λ, based on logits ℓc of original inputs as follows: 371

ℓg “ ℓu ` pℓc ´ ℓuq ˆ λ (10) 372
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Model Model Size Obj Hall MMHall LLaVABenchÒ MM-VETÒ

Res Ó Obj Ó Score Ò Hall Ó

LRV: (Liu et al., 2024a) 7B 32.30 22.30 / / / 31.70
LLaVA-1.5: (Liu et al., 2024c) 7B 46.71 25.08 2.19 59.00 64.40 31.10
VCD; (Leng et al., 2023) 7B 47.40 25.24 2.12 59.00 65.30 30.90
VDD-None; (Zhang et al., 2024) 7B 46.71 25.19 2.22 56.00 66.00 31.70
ICD; (Wang et al., 2024b) 7B 47.40 25.00 2.18 59.00 64.70 31.10
Less-is-more; (Yue et al., 2024) 7B 40.30 17.80 2.33 50.00 60.90 /
OPERA; (Huang et al., 2024) 7B 45.10 22.30 2.15 54.20 60.30 /
HA-DPO˝ (Zhao et al., 2024b) 7B 39.90 19.90 1.98 60.40 67.20 /
POVID˝ (Zhou et al., 2024b) 7B 48.10 24.40 2.08 56.20 62.20 /
LLaVA1.5-7B-BPO˝ (Pi et al., 2024) 7B 31.90 15.10 / / 71.60 36.80
LACING 7B 27.86 14.22 2.53 49.00 72.20 35.20
∆, compare to LLaVA-1.5 7B 40.36% 43.30% 15.53% 16.95% 12.11% 13.18%

LLaVA: (Liu et al., 2023) 13B 63.00 29.50 / / 70.80 26.40
Muffin: (Lou et al., 2024) 13B 50.50 24.50 / / 68.80 /
QWEN-VL: (Bai et al., 2023) 10B 40.40 20.70 / / 52.10 /
LLaVA-1.5: (Liu et al., 2024c) 13B 47.06 23.33 2.54 50.00 72.50 36.10
VCD; (Leng et al., 2023) 13B 46.37 23.10 2.60 49.00 73.60 36.90
VDD-None; (Zhang et al., 2024) 13B 44.64 22.23 2.38 55.00 73.00 36.10
ICD; (Wang et al., 2024b) 13B 45.52 21.93 2.41 54.00 72.50 36.20
LLaVA-RLHF˝ (Sun et al., 2023) 13B 38.10 18.90 2.53 57.00 61.50 /
RLHF-V˝ (Yu et al., 2024) 13B 12.20 7.50 2.45 51.00 51.40 /
LLaVA1.5-13B-BPO˝ (Pi et al., 2024) 13B 27.30 12.90 / / 74.40 41.40
LACING 13B 27.21 14.10 2.65 48.00 84.30 39.90
∆, compare to LLaVA-1.5 13B 42.18% 39.56% 4.33% 4.00% 16.28% 10.53%

Table 1: Comparison across multiple benchmarks, highlighting highest score in bold and second highest underlined.
Baselines are categorized as: : (LVLMs), ; (training-free), and ˝ (reinforcement learning-based).

Eq. (10) facilitates a more balanced and effec-373

tive integration of visual inputs, enhancing visual374

comprehension while addressing the language bias.375

4 Experiments376

4.1 Implementation Details377

To ensure fair comparison and validate the effective-378

ness of our approach, we train LVLMs from scratch379

and evaluate against strong baselines. Given380

availability of open-sourced multimodal alignment381

datasets, we select two representative LVLMs with382

different architectures and model scales: LLaVA-383

1.5 (Liu et al., 2024c) and LLaVA-Next (Liu et al.,384

2024d) as our base model. We strictly follow their385

training settings, including the same dataset and386

model backbone. The model is trained on 8 A100387

GPUs, each with 40 GB of memory. Details of388

scaling parameter λ and replacement probability θ389

are shown in § B.3. Additional information, includ-390

ing extra costs discussion, training and experiment391

details, can be found in § D, § B.1, § B, and § C.392

4.2 Evaluation Setup393

We conduct experiments across three categories:394

Visual Comprehension: MMBench(Liu et al.,395

2024e) evaluates fine-grained abilities of LVLMs,396

assessed with accuracy. TextVQA (Singh et al.,397

2019) employs VQA accuracy (Agrawal et al.,398

2016) as metric for questions with text within im- 399

ages. We send models with pure images for evalua- 400

tion. MM-VET (Yu et al., 2023) evaluates LVLMs 401

with GPT-4 in free-form question-answering. 402

Open-ended Generation: LLaVA-Bench (Liu 403

et al., 2023) uses GPT-4 to compare generated an- 404

swers with reference answers. 405

Visual Hallucination: MMHal-Bench (Sun et al., 406

2023) evaluates hallucinations and response infor- 407

mativeness, with GPT-4 comparing model outputs 408

to human responses and object labels. Object Hall- 409

Bench (Rohrbach et al., 2019) detects object hallu- 410

cinations by comparing model outputs with COCO 411

labels (Lin et al., 2015). We follow same setup as 412

(Yu et al., 2024), which adds diverse prompts with 413

detailed image descriptions for evaluations. 414

4.3 Experimental Results 415

We evaluate our method across benchmarks in Ta- 416

ble 2, comparing with baseline models: (1) LVLMs 417

after multimodal alignment training(:); (2) training- 418

free methods for mitigating hallucinations(;); and 419

(3) reinforcement learning methods(˝). LACING 420

consistently outperforms across all benchmarks. 421

Notably, over LLaVA-1.5 (Liu et al., 2024c), which 422

shares same training data and architecture, LAC- 423

ING achieves double-digit percentage gains across 424

different model sizes(indicated by ∆), demonstrat- 425

ing strong scalability. LACING also surpasses 426
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Method Model Size MMBenchÒ TextVQAÒ LLaVABenchÒ
Obj Hall

Res Ó Obj Ó

Greedy Sampling

LLaVA-1.5 7B 64.61 46.05 64.40 46.71 25.08
VCD 7B 64.69 (+ 0.08) 46.05 (+ 0.00) 65.30 (+ 0.90) 47.40 (+ 0.69) 25.24 (+ 0.16)
VDD-None 7B 64.52 (- 0.09) 44.47 (- 1.58) 66.00 (+ 1.60) 46.71 (+ 0.00) 25.19 (+ 0.10)
w. SIG 7B 66.92 (+ 2.31) 46.77 (+ 0.72) 70.60 (+ 6.20) 30.36 (- 16.35) 15.16 (- 9.92)

Nucleus Sampling

LLaVA-1.5 7B 56.96 35.41 63.00 56.66 29.75
VCD 7B 60.91 (+ 3.95) 40.67 (+ 5.26) 65.30 (+ 2.30) 49.83 (- 6.83) 27.44 (- 2.31)
VDD-None 7B 62.97 (+ 6.01) 42.62 (+ 7.21) 66.50 (+ 2.50) 57.34 (+ 0.86) 28.22 (- 1.53)
w. SIG 7B 63.49 (+ 6.53) 39.40 (+ 3.99) 68.40 (+ 5.40) 29.14 (- 27.52) 15.62 (- 14.13)

Table 2: Comparison of SIG with training-free methods designed to mitigate hallucinations under various decoding
strategies. Performance gap compared to the base model(LLaVA-1.5) are noted in parentheses. Red denotes
improvements, ; green indicates negative effects. Additional results for other model sizes are in § D.2.

training-free methods such as VCD (Leng et al.,427

2023), VDD (Alabdulmohsin et al., 2024) and428

ICD (Wang et al., 2024b), achieving nearly 20429

points reduction on Obj Hall. The underperfor-430

mance of these methods further indicates that431

adding randomly generated noise on input images432

or simply remove images during the inference433

injects the unexpected information that was not434

present during training, thereby diminishing robust-435

ness of their methods. Compared to reinforcement436

learning-based methods, which require extensive437

training resources and additional high-quality feed-438

back data, LACING remains effective and cost-439

efficient while delivering superior results. While440

RLHF-V achieves best score on Obj Hall, likely441

due to overfitting from overlap with its training442

data, base model, and benchmark (Yu et al., 2024;443

Lou et al., 2024). In contrast, LACING outper-444

forms RLHF-V by a wide margin in other tasks445

(e.g., +32.9 on LLaVABench). Overall, our model446

demonstrates lower hallucination rates and higher447

visual comprehension scores without requiring ad-448

ditional resources, showcasing the effectiveness of449

our proposed method. For thorough evaluations,450

we conduct experiments across various benchmarks451

in § D.1, including ScienceQA (Lu et al., 2022),452

POPE (Li et al., 2023c), SeedBench (Li et al.,453

2023a), and MMVP (Tong et al., 2024), showing454

consistent improvements. We also perform LAC-455

ING on LLaVA-Next to demonstrate the generaliza-456

tion across different model architectures in § D.3.457

4.4 Analysis Results458

Effect of SIG in Decoding Perspective To distin-459

guish LACING from prior works, we investigate460

effectiveness of SIG in different decoding strate-461

gies. As shown in Table 2, existing training-free462

methods, like VCD (Leng et al., 2023) and VDD- 463

None (Zhang et al., 2024), only yield gains under 464

Nucleus Sampling (Holtzman et al., 2020), while 465

SIG consistently improves performance under both 466

Greedy and Nucleus Sampling. It is further vali- 467

dated across different model sizes in § D.2. VCD 468

contrasts outputs from original and distorted visual 469

inputs, while VDD uses text-only inputs. However, 470

Adding random noise or omitting visual inputs at 471

inference create discrepancies not present during 472

training, leading to degraded performance and re- 473

duced robustness, especially on benchmarks like 474

MMBench, where outputs are short and determinis- 475

tic. Greedy Sampling, which selects most probable 476

token, offers limited tolerance for the introduced 477

noise, making these methods less effective. By 478

contrast, Nucleus Sampling introduces randomness 479

by sampling from a probability distribution, which 480

mitigate sensitivity to noise, making these meth- 481

ods appear effective. However, this randomness 482

may harm performance in tasks requiring precise 483

outputs (e.g., multi-choice QA), often underper- 484

forming compared to Greedy Sampling. In con- 485

trast, SIG replaces visual inputs with a learnable 486

soft visual prompt that preserves input patterns 487

while compelling model to prioritize text inputs. 488

It ensures consistency between training and infer- 489

ence, enabling SIG to deliver robust gains under 490

both decoding strategies. Additional comparisons 491

in § D.2 further demonstrate SIG’s effectiveness 492

against IBD (Zhu et al., 2024), ICD (Wang et al., 493

2024b), VDD-UNK (Zhang et al., 2024), and a 494

variant using a blank image. 495

How do LVLMs Treat Visual Inputs with MDA? 496

To evaluate the effectiveness of MDA in mitigat- 497

ing language bias caused by training scale dispari- 498

ties, we analyze how LVLMs process visual inputs 499
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Model LLaVABench

Complex Conv Detail All

LLaVA-1.5 75.50 54.10 56.60 64.40
w. FastV 79.80 54.10 46.70 63.90
∆ + 4.30 + 0.00 - 9.90 - 0.50

MDA 83.20 59.70 59.20 70.30
w. FastV 10.70 10.20 10.40 10.50
∆ - 72.50 - 49.50 - 48.80 - 59.80

Table 3: Performance on LLavaBench between LLaVA-
1.5 and those with MDA, with and without FastV.

across layers. To assess whether MDA addresses500

this issue, we adopt the pruning method proposed501

by Chen et al. (2024a) on LLaVA-1.5 with MDA502

by pruning half of the visual tokens in deeper lay-503

ers and measuring performance on LLaVA-Bench.504

Prior work (Chen et al., 2024a) shows that pruning505

visual tokens in deeper layers has minimal impact506

on standard LVLMs, indicating poor utilization of507

visual inputs at those layers. In contrast, our results508

in Table 3 show a significant performance drop509

when pruning is applied to the model with MDA,510

confirming that visual information is effectively uti-511

lized throughout all layers—not just shallow ones.512

MDA ensures comprehensive attention to visual in-513

puts across the model’s layers, thereby facilitating514

LVLMs in fully exploiting its visual comprehen-515

sion capabilities. The 7.7-points improvement for516

complex tasks on LLaVABench in Table 3 validate517

this conclusion, as complex tasks generally require518

deeper layers for precise understanding (Ben-Artzy519

and Schwartz, 2024; Jin et al., 2024).520

Ablation Study To understand contributions of521

each component, we conduct an ablation study522

across multiple benchmarks in Table 4 on the 7B523

model under different decoding strategies. Remov-524

ing MDA (“ w/o MDA ”) causes a significant drop525

in performance, particularly on LLavaBench and526

MM-VET. This suggests that MDA is crucial for527

enabling the model to effectively integrate visual528

information across the model. Excluding the SIG529

(“ w/o SIG ”) also leads to a notable performance530

decrease across all benchmarks. Both components531

individually contribute to substantial improvements532

over the baseline LLaVA-1.5 model. Even when533

one component is removed, the model still outper-534

forms the baseline. To further validate LACING,535

we conduct ablation studies across various model536

sizes on multiple benchmarks in § D.5.537

Effectiveness on Different Model Architecture538

To validate robustness of LACING, we conduct ad-539

ditional experiments on other model architectures.540

Sampling Model TextVQA LLavaBench MM-VET

Greedy

LLaVA-1.5 46.05 64.40 31.10
LACING 46.94 72.20 33.50

-w/o. MDA 46.77 70.60 32.00
-w/o. SIG 46.03 70.30 32.80

Nucleus

LLaVA-1.5 35.41 63.00 29.80
LACING 42.05 72.20 35.20

-w/o. MDA 39.40 68.40 33.30
-w/o. SIG 36.40 67.80 30.50

Table 4: Ablation study on under different decoding
strategy across multiple benchmarks on 7B model.

We use LLaVA-NEXT (Liu et al., 2024d) as base 541

model, which supports dynamic resolution. Due 542

to training data availability, we leverage training 543

data from fully open-sourced version of LLaVA- 544

NEXT (Chen and Xing, 2024). Results show that 545

our approach applies to LLaVA-NEXT as well, 546

proving its versatility across different architectures 547

and training methods. See § D.3 for details. 548

Effect of Bidirectional Attention in MDA for Vi- 549

sual Inputs. To validate our design choice and 550

highlight that the core strength of MDA lies in its 551

parallel dual-attention mechanism, we compare at- 552

tention strategies for visual inputs in § D.4. Results 553

show that even with causal attention, MDA outper- 554

forms the baseline, confirming the effectiveness of 555

the dual-attention design. Bidirectional attention 556

yields greater gains, aligning better with the spatial 557

nature of visual data and justifying its use in MDA. 558

Parameter Study. We conduct the parameter study 559

in § B.3 with the detailed discussion. 560

Human Evaluation and Case Study. The human 561

evaluation on LLaVABench and a practical case 562

study are detailed in § G and § H, respectively, 563

demonstrating effectiveness of LACING. 564

5 Conclusion 565

This paper tackles the language bias in LVLMs, 566

which often leads to neglect of visual inputs and 567

hallucinatory responses. We identify two primary 568

sources of this bias: gap in training scales between 569

the pretraining and multimodal alignment, and 570

learned inference bias. To reduce language bias, we 571

introduced Multimodal Dual-Attention Mechanism 572

(MDA) and Soft-Image Guidance (SIG). MDA en- 573

hances the integration of visual inputs across all 574

layers. SIG proposes a novel decoding strategy 575

to mitigate over-reliance on adjacent text tokens, 576

using a learnable soft visual prompt. Our work 577

highlights the importance of addressing language 578

biases from both training and inference perspec- 579

tives, paving the way for more advanced LVLMs. 580
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6 Limitation581

Despite the promising results demonstrated by582

LACING in addressing the language bias of583

LVLMs, several limitations must be acknowledged.584

First, although we validate the effectiveness of585

our method on two representative LVLMs that586

has different architecture—LLaVA-1.5 and LLaVA-587

Next—more extensive evaluation across a wider588

range of LVLM architectures is still lacking. This589

is primarily because our method targets the mul-590

timodal alignment stage that post-trains an LLM-591

based backbone into an LVLM, requiring fair com-592

parisons that retrain models from scratch. How-593

ever, for more advanced LVLMs such as Qwen-594

VL-2.5 and InternVL-3, the data and training de-595

tails for their multimodal alignment stages are not596

fully open-sourced, making it infeasible to apply or597

evaluate our approach directly. Nevertheless, lan-598

guage bias is commonly observed across various599

LVLMs (Zhao et al., 2024a; Chen et al., 2024b,a)600

and even the SOTA LVLMs (Wang et al., 2024a)601

exhibits such phenomena. Therefore, inspired by602

this common observation and the consistent gains603

observed across model sizes and different in our604

experiments, we anticipate the implementation and605

effectiveness of LACING on diverse LVLMs. Ad-606

ditionally, due to resource constraints, we are un-607

able to acquire LVLMs that achieve a similar scale608

of training between the LLM pretraining stages609

and the LVLM alignment stage to accurately val-610

idate the source of language bias. Finally, while611

LACING has significantly reduced hallucinations612

in LVLMs and enhanced visual comprehension ca-613

pabilities, there remains a possibility for it to pro-614

duce hallucinations or disseminate misinformation.615

Therefore, it still should be employed with caution616

in critical applications. Consequently, future re-617

search could involve broadening our approach to618

include a wider spectrum of LVLMs with different619

architectures and training them using a compara-620

ble training scale to observe the manifestations of621

language bias.622
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A Appendix962

This Appendix is organized as follows.963

• In § B, we show implementation details of our964

method: training details(§ B.1), datasets(§ B.2)965

and hyperparameters(§ B.3).966

• In § C, we present the details of our experi-967

ments and evaluation. Specifically, dataset and968

metric(§ C.1), baselines(§ C.2) and GPT-4 Ver-969

sion(§ C.3)970

• In § D, we provide the additional experi-971

ments, including the evaluations across wide-972

range of benchmarks(§ D.1), baselines(§ D.2),973

different architecture(§ D.3), different design974

choice(§ D.4) and different model size(§ D.5).975

• In § E, we analyze early-fusion LVLMs like976

Chameleon, trained from scratch with a balanced977

mix of text and visual tokens, distinguishing978

them from the LVLMs discussed in this paper.979

• In § F, we detail the experiments and provide an980

in-depth discussion on the impact of hyperparam-981

eters, specifically the replace probability θ(§ F.1)982

and the scaling parameter λ(§ F.2).983

• In § G, we present a human evaluation of LAC-984

ING versus LLaVA-1.5 across LLaVABench.985

• In § H, we present more qualitative results.986

• In § I, we visualized the attention distribution987

across different layers in LLaVA-1.5 and LAC-988

ING.989

B Training Details990

To make fair compression, we adopt the same train-991

ing settings as LLaVA-1.5 (Liu et al., 2024c), main-992

taining consistency in hyperparameters, training993

dataset, data preprocessing, and model architec-994

ture. The only differences lies in the introduction995

of the multimodal dual-attention mechanism and996

the learnable soft visual prompt for soft-image guid-997

ance.998

B.1 Training999

Following the setting of LLaVA-1.5 (Liu et al.,1000

2024c), we employ CLIP-ViT-L-14-336 (Radford1001

et al., 2021) as the visual encoder, paired with a1002

two-layer MLP adapter to project visual embed-1003

dings from the encoder to the LLM backbone.1004

Vicuna-1.5 (Chiang et al., 2023) serves as the LLM1005

Dataset Data Size

LLaVA (Liu et al., 2023) 158K
ShareGPT (ShareGPT, 2023) 40K
VQAv2 (Goyal et al., 2017) 83K
GQA (Hudson and Manning, 2019) 72K
OKVQA (Marino et al., 2019) 9K
OCRVQA (Mishra et al., 2019) 80K
A-OKVQA (Schwenk et al., 2022) 66K
TextCaps (Sidorov et al., 2020) 22K
RefCOCO (Kazemzadeh et al., 2014) 48K
VG (Krishna et al., 2017) 86K
Total 665K

Table 5: Instruction-following Data Mixture Used for
Finetuning (Liu et al., 2024c).

backbone. All of the experiments are conducted 1006

on the 8 ˆ A100 GPUs, each with 40 GB of mem- 1007

ory. We employ the Deepspeed Zero2 (Rajbhandari 1008

et al., 2020) and Deepspeed Zero3 (Rajbhandari 1009

et al., 2020) for training the 7B and 13B model, 1010

respectively. 1011

In addition to these standard components of 1012

LLaVA-1.5, our method includes two significant 1013

modifications to the model architecture. Firstly, we 1014

adopt the multimodal dual-attention mechanism 1015

proposed in this paper, replacing the vanilla self- 1016

attention in the LLM. This modification slightly 1017

increases the computational cost due to the dual- 1018

attention calculation. We further incorporate a 1019

learnable soft visual prompt for soft-image guid- 1020

ance. We maintain a learnable embedding with 1021

dimensions rlvisual, hLLMs, where lvisual is the vi- 1022

sual embedding length and hLLM is the LLM hid- 1023

den state size. In our practice, the learnable soft 1024

visual prompt has a size of r576, 4096s for a 7B 1025

model and r576, 5120s for a 13B model, which cor- 1026

respondingly adds 2.36M and 2.95M parameters to 1027

the 7B and 13B models. Compared to the billion- 1028

level parameters of these LVLMs, the additional 1029

parameters account for only 0.03% and 0.02%, 1030

respectively, which are minimal and negligible. 1031

Therefore, compared to LLaVA-1.5, our method 1032

does not require additional training resources or 1033

computational costs, thereby demonstrating the ef- 1034

ficiency of our approach. Practically speaking, the 1035

time cost of our method is approximately identical 1036

to that of LLaVA-1.5 under the same setting. 1037

B.2 Data 1038

We strictly follows the data setting of LLaVA-1.5 1039

for both pretraining and finetuning. Specifically, 1040

the LLaVA-558K (Liu et al., 2023) for pertrain- 1041

ing and a mixture of instruction-following data for 1042
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Hyperparameter Pretrain Finetune

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay cosine decay
lr warmup ratio 0.03 0.03
weight decay 0 0
optimizer AdamW AdamW
DeepSpeed stage 2 3
replace prob. θ 10% 10%

Table 6: Hyperparameters of LACING, which are
the same as the original LLaVA-1.5 (Liu et al., 2024c),
except that we set the replace probability θ for training
with soft-image guidance.

finetuning shown in Table 5.1043

B.3 Hyperparameters1044

N/A 1.25 1.50 1.75 2.00 2.25 2.50

All

Complex

Conv.

Detail

72.6 73.0 82.6 84.3 74.8 81.1 69.4

80.2 82.4 87.3 90.3 85.3 89.5 83.8

69.5 68.8 82.6 82.8 67.0 73.3 50.0

62.8 59.8 73.1 74.8 64.2 74.2 63.8
50

60

70

80

90

100

Figure 5: Model performance on LLaVABench across
various scaling parameter λ.

We utilize the identical set of hyperparameters as1045

the original LLaVA-1.5 (Liu et al., 2024c), with the1046

exception of specifying the replacement probability1047

θ for training with soft-image guidance. Detailed1048

training hyperparameters for both stages are pro-1049

vided in Table 6. During the inference, we use the1050

hyperparameter λ to control the guidance of the1051

visual inputs on the response generation. As illus-1052

trated in Figure 5, we report the performance of the1053

13B model on LLaVABench across various the scal-1054

ing parameter λ, thereby demonstrating the impact1055

of different λ scales on model performance. The1056

optimal performance of our method under various1057

λ values is reported in the experiments.1058

C Detailed Experimental Settings1059

C.1 Dataset and Metric1060

MMBench (Liu et al., 2024e) provides a pro-1061

gressive evaluation framework, advancing from1062

perception to reasoning, and covers 20 fine-grained1063

abilities. It is assessed through multiple-choice 1064

question answering, using accuracy as the metric. 1065

MMBench (Liu et al., 2024e) provides a pro- 1066

gressive evaluation framework, advancing from 1067

perception to reasoning, and covers 20 fine-grained 1068

abilities. It is assessed through multiple-choice 1069

question answering, using accuracy as the metric. 1070

TextVQA (Singh et al., 2019) is designed for 1071

visual question answering involving text within 1072

images. It employs VQA accuracy as the evalua- 1073

tion metric. Unlike LLaVA-1.5 (Liu et al., 2024c), 1074

which includes OCR results of the images in the 1075

question, our approach provides the model solely 1076

with the image and the question. This setup aims to 1077

assess the model’s visual comprehension abilities 1078

without supplementary textual data. 1079

MM-VET (Yu et al., 2023) evaluates mul- 1080

timodal understanding across six core vision- 1081

language capabilities over 128 tasks. The eval- 1082

uation is conducted using GPT-4 to assess model 1083

performance in a free-form question-answering for- 1084

mat. MM-Vet defines 16 integrations derived from 1085

combinations of these core capabilities, providing a 1086

structured assessment of models’ abilities to handle 1087

complex multimodal tasks. 1088

LLaVABench (Liu et al., 2023) is utilized 1089

for evaluating open-ended generation capabilities. 1090

This benchmark consists of 60 tasks focused on 1091

LLaVA’s visual instruction-following and question- 1092

answering abilities in natural environments. It 1093

employs GPT-4 as the evaluator to compare the 1094

model’s generated answers with reference an- 1095

swers, ensuring a comprehensive assessment of 1096

the model’s generative performance. 1097

Object HalBench (Rohrbach et al., 2019) de- 1098

tects object hallucinations by comparing model 1099

outputs with COCO image labels (Lin et al., 2015). 1100

Yu et al. (2024) further augment this benchmark 1101

by adding eight diverse prompts with detailed im- 1102

age descriptions for stable evaluations. We follow 1103

the same evaluation setup and use GPT-4 as the 1104

evaluator. We report the two metrics in this bench- 1105

mark: The response-level hallucination rate and the 1106

object-level hallucination rate. 1107

MMHall-Bench (Sun et al., 2023) evaluates hal- 1108

lucinations and response informativeness. It em- 1109

ploys GPT-4 to compare model output with human 1110

response and several object labels to get the final 1111

scores. 1112

14



Model SCIQAÒ POPEÒ SeedBenchÒ MMVPÒ

LLaVA-1.5 70.12 87.38 84.26 86.21 58.60 66.10 37.30 26.00
VCD 70.12 87.39 84.25 86.21 59.93 65.62 38.41 26.00
LACING 71.26 87.74 85.60 86.50 61.35 67.46 38.19 32.00

Table 7: Experiments with more benchmarks across 7B model

Model MMBench TextVQA

Greedy Sampling

LLaVA-1.5 (Liu et al., 2024c) 64.61 46.05
-w. Two epoch 65.63 45.83

w. SIG 66.92 46.77
-w. Two epoch 66.58 47.15

Nucleus Sampling

LLaVA-1.5 (Liu et al., 2024c) 56.96 35.41
-w. Two epoch 60.82 36.70

w. SIG 63.49 39.40
-w. Two epoch 62.97 41.27

Table 8: Performance comparison of models undergoes
training for one or two epochs across MMBench and
TextVQA.

C.2 Baselines1113

General LVLMs that have undergone multi-1114

modal alignment training. Specifically, we uti-1115

lize LLaVA (Liu et al., 2023), Qwen VL (Bai1116

et al., 2023), LLaVA-1.5 (Liu et al., 2024c), Muf-1117

fin (Lou et al., 2024), and LRV (Liu et al., 2024a)1118

as representative baselines. These LVLMs are pre-1119

dominantly trained with multimodal data for align-1120

ment (Liu et al., 2023; Bai et al., 2023; Lou et al.,1121

2024) and fine-tuned using high-quality instruction1122

data (Liu et al., 2024c,a), thereby achieving excep-1123

tional performance in various multimodal tasks.1124

For example, LRV (Liu et al., 2024a) employs1125

supervised fine-tuning on an expertly crafted vi-1126

sual preference dataset to mitigate hallucinations1127

in LVLMs. Typically, these models integrate a pre-1128

trained visual encoder with a large language model1129

through an alignment module.1130

Training-free methods designed to mitigate hal-1131

lucination of LVLMs. VCD (Leng et al., 2023)1132

contrast model outputs generated from original1133

inputs and distorted visual input to reduce over-1134

reliance on statistical bias and unimodal priors. Si-1135

miliarly, VDD (Zhang et al., 2024) contrast model1136

outputs from original inputs and inputs without vi-1137

sual inputs to reduce the influence of textual LLMs.1138

OPERA (Huang et al., 2024) introduces a penalty1139

term on the model logits during the beam-search1140

decoding to mitigate the over-trust toward a few1141

summary tokens. Less-is-more (Yue et al., 2024)1142

proposes a selective end-of-sentence (EOS) special 1143

token supervision loss coupled with a data filtering 1144

strategy to improve the model’s capacity for timely 1145

termination of generation, thereby mitigating hallu- 1146

cinations. 1147

Reinforcement Learning-based method aimed 1148

at aligning LVLM outputs with human intentions 1149

to mitigate hallucination of LVLMs. Specifically, 1150

POVID (Zhou et al., 2024b) addresses halluci- 1151

nations in VLLMs using AI-generated feedback. 1152

It first prompts GPT-4V to add hallucinations to 1153

correct answers and use distorts images to in- 1154

voke the VLLM’s inherent hallucination tenden- 1155

cies. The model is then trained with this gener- 1156

ated data using direct preference optimization ap- 1157

proaches (Rafailov et al., 2024) to mitigate hallu- 1158

cinations. HA-DPO (Zhao et al., 2024b) propose 1159

a pipeline for constructing positive and negative 1160

sample pairs and adopt the direct preference op- 1161

timization (Rafailov et al., 2024) using the con- 1162

structed dataset to reduces hallucination. RLHF- 1163

V (Yu et al., 2024) employs the Muffin (Lou et al., 1164

2024) as the LLM backbone and collects 1.4k fine- 1165

grained correctional human feedback. The model 1166

is trained using this dataset through the proposed 1167

dense direct preference optimization method to re- 1168

duce hallucination. LLaVA-BPO (Pi et al., 2024) 1169

proposes a pipeline to gather preference datasets 1170

and conduct preference learning to mitigate this 1171

type of hallucination. 1172

C.3 GPT-4 Version 1173

For all evaluations conducted using the GPT- 1174

4(evaluation for Object HalBench, MMHall-Bench, 1175

LLaVABench, and MM-VET), we utilized the 1176

GPT-4 API in October 2024. It ensures consis- 1177

tency with prior research (Yu et al., 2023, 2024; 1178

Sun et al., 2023; Liu et al., 2023). According to the 1179

documentation provided by OpenAI1, GPT-4 API 1180

currently points to GPT-4-0613 API. 1181

1https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4
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Method LLaVABenchÒ MM-VETÒ
MMHall Obj Hall

Score Ò Hall Ó Res Ó Obj Ó

LLaVA-1.5 (Liu et al., 2024c) 64.40 31.10 2.19 59 46.71 25.08
IBD (Zhu et al., 2024) 64.60 31.10 2.24 58 46.31 24.16
ICD (Wang et al., 2024b) 64.70 31.10 2.18 59 47.40 25.00
VDD-UNK (Zhang et al., 2024) 65.30 31.00 2.22 56 46.71 24.82
SIG-blank 68.40 31.50 2.42 52 34.41 17.80
SIG 70.60 32.00 2.47 50 30.36 15.16

Table 9: Comparison of SIG with other baselines on 7B model
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Figure 6: Model performance on MMHall-Bench across
various scaling parameter λ.

D Additional Experiments1182

D.1 Additional Evaluations across other1183

benchmarks1184

To further demonstrate the generalizability of LAC-1185

ING, we conducted experiments on additional1186

benchmarks, including ScienceQA, POPE, Seed-1187

Bench, and MMVP. The results presented in Ta-1188

ble 7 consistently show improvements, confirming1189

the effectiveness of our method.1190

D.2 Comparison Between SIG and Other1191

Methods1192

Table 9 compares SIG with other training-free base-1193

lines, including a variant using a blank image in-1194

stead of the learnable soft-image prompt. The re-1195

sults show that SIG outperforms all baselines, with1196

the learnable prompt significantly surpassing the1197

blank-image variant while adding only 0.02–0.03%1198

more parameters.1199

Table 10 compares SIG with other training-free1200

baselines for the 13B model. The results confirm1201

that while prior training-free approaches improve1202

performance only with Nucleus Sampling, SIG1203

demonstrates effectiveness across all decoding set-1204

tings.1205

D.3 Evaluation Across Different Model 1206

Architectures 1207

To ensure a fair comparison, we train the LVLM 1208

from scratch using our method and evaluate its per- 1209

formance against baseline models. Given the avail- 1210

ability of training data, we select LLaVA-1.5 (Liu 1211

et al., 2024c) as our base model and strictly adhere 1212

to its training settings, including the same dataset 1213

and model backbone. To further validate the robust- 1214

ness of our approach, we conduct additional exper- 1215

iments across various model architectures. Specif- 1216

ically, we use LLaVA-NEXT (Liu et al., 2024d) 1217

as the base model, which supports dynamic resolu- 1218

tion. Due to training data availability, we leverage 1219

the dataset from the fully open-sourced version of 1220

LLaVA-NEXT (Chen and Xing, 2024) and adhere 1221

to its training settings. We set the Vicuna-1.5 (Chi- 1222

ang et al., 2023) language model backbone and 1223

ViT-L-14-336 (Radford et al., 2021) as the visual 1224

encoder. Our preliminary results, presented in Ta- 1225

ble 11, indicate that similar performance trends 1226

hold across additional LVLMs. This underscores 1227

that our approach is not limited to a specific archi- 1228

tecture or training setup. 1229

D.4 Comparison of Different Attention 1230

Mechanism for Visual Inputs in MDA 1231

To validate our design choice and highlight that 1232

the core strength of MDA lies in its parallel dual- 1233

attention mechanism, we compare different atten- 1234

tion strategies for visual inputs in Table 12. The 1235

results show that even when using only causal atten- 1236

tion, MDA still yields performance gains over the 1237

baseline, confirming the effectiveness of the dual- 1238

attention design. However, bidirectional attention 1239

achieves more significant improvements, aligning 1240

more naturally with the spatial characteristics of vi- 1241

sual data. This further supports our motivation for 1242

adopting bidirectional attention for visual inputs in 1243

MDA. 1244
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Method Model Size MMBenchÒ TextVQAÒ LLaVABenchÒ
Obj Hall

Res Ó Obj Ó

Greedy Sampling

LLaVA-1.5 13B 67.74 48.66 72.50 47.06 23.33
VCD 13B 68.38 (+ 0.64) 48.63 (- 0.03) 73.60 (+ 1.10) 46.37 (- 0.69) 23.10 (- 0.23)
VDD-None 13B 68.56 (+ 0.82) 47.31 (- 1.35) 73.00 (+ 0.05) 44.64 (- 2.42) 22.23 (- 1.10)
w. SIG 13B 70.19 (+ 2.45) 48.74 (+ 0.07) 74.70 (+ 2.20) 28.27 (- 18.79) 15.21 (- 8.12)

Nucleus Sampling

LLaVA-1.5 13B 62.11 38.92 68.10 50.52 25.74
VCD 13B 65.38 (+ 3.27) 43.56 (+ 4.64) 70.70 (+ 2.60) 49.83 (- 0.69) 24.23 (- 1.51)
VDD-None 13B 66.32 (+ 4.21) 45.99 (+ 7.07) 71.40 (+ 3.30) 47.90 (- 2.62) 23.25 (- 2.49)
w. SIG 13B 64.77 (+ 2.66) 40.31 (+ 1.39) 72.00 (+ 3.90) 30.55 (- 19.97) 17.45 (- 8.29)

Table 10: Comparison of SIG with training-free methods under different decoding strategies in 13B model. Perfor-
mance gap compared to the base model(LLaVA-1.5) are noted in parentheses. Red denotes positive improvements,
while green indicates negative effects.

Model Obj Hall MMHall MM-VET Ò

Res Ó Obj Ó Score Ò Hall Ó

LLaVA-Next 13.81 7.50 2.67 51.00 37.6
LACING 7.92 4.29 2.84 49.00 42.2

Table 11: Performance of LACING on LLaVA-Next.

Method MM-VET Ò LLavaBench Ò

LLaVA-1.5 31.10 64.40
Causal Attn. 31.90 69.60
Bi-Attn.(MDA) 32.80 70.30

Table 12: Comparison of different visual attention strate-
gies in MDA.

D.5 Ablation Studies Across Different Model1245

Size1246

To further validate our method, we conduct abla-1247

tion studies across various model sizes on multiple1248

benchmarks. Specifically, we perform an ablation1249

study on the 13B model across multiple bench-1250

marks to analyze the impact of different compo-1251

nents. Table 13 presents the results, demonstrating1252

that our approach outperforms the baseline and1253

its ablated variants across both MMBench and1254

LLaVABench, under both greedy decoding and1255

sampling strategies.1256

MMBench LLaVABench

Greedy Sampling Greedy Sampling

LLaVA-1.5 67.74 62.11 72.5 68.1
w.o. SIG 68.73 65.55 76.7 75.5
w.o. MDA 68.99 64.77 74.7 72.0
LACING 70.01 66.92 78.5 76.6

Table 13: Ablation study on 13B models.
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Figure 7: Average attention scores for output tokens
towards text and visual tokens across different layers of
early-fusion LVLMs (Chameleon (Team, 2024)).

E Analysis of Early-fusion LVLMs 1257

The performance of LVLMs is often hindered by 1258

the disparity in training scales between the LLM 1259

pretraining phase and the subsequent LVLM align- 1260

ment stage. This imbalance results in suboptimal 1261

utilization of visual inputs, as evidenced by the at- 1262

tention distributions: only the initial layers demon- 1263

strate significant attention to visual tokens, while 1264

the deeper layers tend to neglect them. In contrast, 1265

early-fusion LVLMs, such as Chameleon (Team, 1266

2024), which are trained from scratch using a bal- 1267

anced mix of visual and textual tokens, exhibit a 1268

more effective modality fusion. As shown in Fig- 1269

ure 7, this balanced training approach enables the 1270

model to allocate attention more uniformly across 1271

modalities, thereby mitigating the issues associ- 1272

ated with scale disparities during pretraining and 1273

alignment. 1274

Following pervious work (Zhao et al., 2024a), 1275

we measure performance gaps on image-required 1276

vs.non-image-required questions gathered from 1277

Science QA (Lu et al., 2022) dataset to evaluate 1278
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language bias. As shown in Table 14, although1279

showing better fusion, Chameleon, as well as other1280

LVLMs still remains substantial language bias.1281

F Parameter Study1282

Model Don’t Req Req Gap

LLaVA 56.78 72.84 16.06
EVE 68.13 45.33 22.80
Chameleon 56.12 37.33 18.79

Table 14: Language Bias Evaluation.

F.1 Influence of the Replace Probability θ1283

In the soft-image guidance we proposed, we inter-1284

mittently replace the visual input with a learnable1285

soft visual prompt at a predetermined probability1286

rate to give the model an input without visual input1287

during training. This introduces segments of train-1288

ing data that remain unseen by the LVLMs during1289

training. Consequently, we make the model that1290

undergoes training for two epochs as a baseline to1291

ensure comprehensive exposure to all samples in1292

the training dataset. Subsequently, we evaluate the1293

model after one and two epochs of training on the1294

same benchmarks to determine the impact of visual1295

input replacement. The results presented in Table 81296

indicate that neither the number of training epochs1297

nor the visual input replacement significantly im-1298

pacts model performance, as it remains consistent1299

across various settings and does not exhibit a clear1300

trend of performance variation related to different1301

training settings. To further establish the appropri-1302

ate value of the replace probability θ, we present1303

an experiment in Table 15 to identify the optimal1304

value for this parameter.1305

F.2 Impact of the Scaling Parameter λ1306

Another essential hyperparameter is the scaling pa-1307

rameter λ, which is employed in soft-image guid-1308

ance to regulate the guidance of the visual inputs1309

towards the response generateion. Therefore, To as-1310

sess the effect of varying λ values comprehensively,1311

we examine our method’s performance on MM-1312

Bench, LLaVABench and Hall-Bench with differ-1313

ent λ values, which can be divided into two distinct1314

scenarios: multi-choice generation and open-end1315

generation. The experimental results, illustrated1316

in Figure 8, Figure 5, and Figure 6, suggest that1317

an optimal value for the scaling parameter λ lies1318

between 1.5 and 2.0. This range provides suitable1319
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Figure 8: Model performance on MMBench across var-
ious scaling parameter λ.

θ 5% 10% 15% 20%

MMBench 66.32 66.92 66.75 65.64
LLaVABench 67.00 70.60 67.80 66.90

Table 15: Performance of SIG on MMBench and
LLavaBench across different replace probability θ

visual guidance without impairing the text genera- 1320

tion capabilities of LVLMs. 1321

G Human Evaluation on LLaVABench 1322

To better illustrate the efficacy of our method, a 1323

further human evaluation has been undertaken to 1324

compare the model performance of LACING ver- 1325

sus LLaVA-1.5 (Liu et al., 2024c). Specifically, we 1326

evaluate the model perofrmance on LLaVABench, 1327

which consists of 60 instances. We invited three 1328

human participants (all of them are Ph.D. students 1329

or Master students) to compare the responses gen- 1330

erated by the models. For each comparison, three 1331

options were provided (Win, Tie, and Lose), with 1332

the final results determined by the majority vote of 1333

the participants. Figure 9 showcases the effective- 1334

ness of our method. 1335

During the human evaluation, the participants 1336

0% 20% 40% 60% 80% 100%
Proportion

7B

13B

0.48 0.30 0.22

0.65 0.18 0.17

Ours Wins Tie LLaVA-1.5 Wins

Figure 9: Human evaluation on LLaVABench.
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adhere the following principles to make the deci-1337

sion:1338

Principles of Human Evaluation for
LLaVABench

You are asked to evaluate the responses gen-
erated by different models. Your evaluation
should adhere to the following principles:
1. Correctness: Assess whether responses
address the key points outlined in the
reference answer and image. For reference
answers with multiple key points, evaluate
how many of these the response accurately
addresses and score accordingly. Addition-
ally, ensure that the response provides the
necessary information for the user.
2. Faithfulness: Examine any additional
information in the answer to verify its
accuracy and relevance to the question
and image. If this information is incorrect
or not relevant to the question and image,
points should be deducted.
3. Coherence: Evaluate the fluency and
coherence of the responses. Also, consider
deducting points for overly verbose
responses or those that are excessively
generalized.

Finally, please make a decision among 3
opinions, including Win, Tie, and Loss.

1339

If the majority voting of three participants not1340

yield a decisive outcome, we will engage in fur-1341

ther discussions among the involved participants1342

and subsequently conduct another vote to deter-1343

mine the final result. The human evaluation results1344

in Figure 9 shows that LACING can generate re-1345

sponses that consistently outperformed baseline1346

models across all three evaluation criteria. These1347

results highlight the model’s ability to deliver high-1348

quality answers that are both factually accurate and1349

contextually relevant, while maintaining fluency1350

and coherence.1351

H Case Studies1352

To deliver a thorough evaluation of the effective-1353

ness of our methods in mitigating visual halluci-1354

nations and enhancing the visual comprehension1355

of LVLMS, we present a case study in this section.1356

We compare the open-ended generation results of1357

our methods against several baseline models utiliz-1358

Question: What type of fruit is this?

LLaVA: The image shows a group of unripe lychee 
fruits.

VDD: The fruit in the image is a lychee or 
rambutan, which is characterized by its purple 
color and unique appearance.

Ours: The image shows purple mangosteen with 
white interiors. The fruit has been cut open to 
show the inside of one of the mangosteen.

VCD: The image shows a group of unripe lychee 
fruits.

Figure 10: Comparison of LACING with other baselines
on a sample from LLaVABench. Hallucinated responses
and our corrections are highlighted in red.

Question: Is there any strawberry-flavored yogurt in 
the fridge?

LLaVA: Yes, there is a container of strawberry-flavored 
yogurt in the refrigerator.

VDD: Yes, there is strawberry-flavored yogurt in the 
refrigerator among other food items.

Ours: No, there is no strawberry-flavored yogurt in the 
fridge. However, there are fresh strawberries stored in 
the refrigerator next to carrots.

VCD: Yes, there is a container of strawberry-flavored 
yogurt in the refrigerator.

Figure 11: Comparison of LACING with other baselines
on a sample from LLaVABench. LACING demonstrates
a reduction in object hallucination and an enhancement
in fine-grained visual comprehension, such as the iden-
tification of fresh strawberries in the refrigerator.

ing samples from LLaVABench. The evaluations 1359

of the case studies on the 13B model are illustrated 1360

in Figure 10, Figure 11, Figure 12, and Figure 13. 1361

Case studies demonstrate that LACING effectively 1362

reduces hallucinations while generating accurate 1363

responses, showcasing fine-grained visual compre- 1364

hension abilities. 1365

I Comparison of Attention Allocation 1366

with Standard LVLMs 1367

To provide a clear illustration of our proposed mul- 1368

timodal dual-attention mechanism and distinguish 1369

the attention allocation towards visual tokens and 1370

text tokens between our model and the standard 1371

LVLM, we visualized the attention distribution 1372

across different layers in LVLMs in Figure 14 and 1373

Figure 15, comparing the standard LVLM (LLaVA- 1374

1.5) with MDA. We get the attention allocation of 1375

LVLMs shown in this paper, such as Figure 14, and 1376

Figure 15, using the data from LLaVABench. We 1377

select 30 samples from the LLaVABench to query 1378

the LVLMs and examine the attention allocation 1379

during generation. We report the avg scores in 1380

Figure 2 and Figure 4 of the main paper. 1381
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Question: Which iconic movie 
scene is being parodied in 
the meme?

LLaVA: The meme is parodying the iconic scene from the movie "The Lion King" where Simba is 
lifted up by Rafiki, who holds him above the Pride Rock. In the meme, a man is holding a 
small dog, and the dog is positioned in a way that it appears to be lifted up by the man, 
mimicking the scene from "The Lion King." This humorous and creative adaptation of the 
original scene adds a playful twist to the image.

VDD: The meme parodies the iconic scene from the movie "The Lion King" where Simba holds a 
baby animal, likely a lion cub, in his hands. In this particular meme, a man, possibly Elon 
Musk, is portrayed as the character Simba, holding a small dog in his arms. This creative 
and humorous adaptation of the original scene adds a modern twist by incorporating a well-
known person, Elon Musk, into the parody.

Ours: The meme in the image is a parody of a scene from the Lion King, where Rafiki holds up 
a baby lion while Simba adoringly looks up at him. Elon Musk is portrayed as Rafiki, smiling
as he looks up at the puppy he's holding. The meme has skillfully combined elements from the 
Lion King and a photograph of Elon Musk to create an amusing and entertaining scene.

VCD: The meme is parodying the iconic scene from the movie "The Lion King" where Simba is 
lifted up by Rafiki, who holds him above the Pride Rock. In the meme, a man is holding a 
small dog, and the dog is positioned in a way that it appears to be lifted up by the man, 
mimicking the scene from "The Lion King." This humorous and creative adaptation of the 
original scene adds a playful twist to the image.

Figure 12: Comparison of LACING with other baselines on a sample from LLaVABench. LACING effectively
recognizes the individual in the meme and provides a thorough description, guiding to accurate responses to the
question.
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Question: Please explain the 
meme in detail.

LLaVA: The image features a small dog lying on a wooden floor, possibly a deck, with a caption 
above it. The caption reads "Monday. Just Monday. . ." The dog appears to be relaxed and 
enjoying its time on the wooden surface. The scene captures a moment of leisure and contentment 
for the dog, as it spends its day indoors.

VDD: The image features a small brown dog lying on a hardwood floor on its side, taking up a 
significant portion of the floor. The caption above the dog reads "Monday. Just... Monday!". In 
the background, there are chairs placed at various positions, adding to the overall setting of 
the scene. The combination of the dog's playful position and the caption's clever wordplay 
creates a light-hearted and relatable meme.

Ours: The image is a Monday motivation meme featuring a small tan dog lying on a hardwood floor. 
The caption reads, "Monday. Just... Monday." The meme expresses the sentiment of feeling down 
or unenthusiastic about the start of the work week, as mondays are often associated with work, 
school, and other responsibilities. The dog in the image symbolizes a sense of relaxation and 
leisure, contrasting with the more stressful start of the week.

VCD: The image features a small brown dog lying on a wooden floor, appearing to be sleeping or 
resting. The dog is positioned in the center of the scene, occupying a significant portion of 
the image. The floor appears to be made of wood, giving the scene a cozy and warm atmosphere.
The image is accompanied by a caption that reads, "Monday. Just... Monday." This caption adds 
a humorous touch to the scene, as it suggests that the dog is expressing its feelings about 
the start of the week. The combination of the dog's relaxed posture and the caption creates a 
lighthearted and amusing meme.

Figure 13: Comparison of LACING with other baselines on a sample from LLaVABench. LACING is the only model
capable of successfully articulating the idea that the meme is trying to convey, by contrasting image information and
questions.
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Figure 14: Comparison of Attention Maps across the 1st to 16th Layer in LLaVA and LACING.

22



Figure 15: Comparison of Attention Maps across the 17th to 32nd Layer in LLaVA and LACING.
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