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Abstract

The latency and computational demand of
End-to-end (E2E) automatic speech recogni-
tion (ASR) models hinder their deployment on
lightweight devices. We find that, although
these models can be tuned for efficiency con-
cerns, the computational burden of large vocab-
ularies remains a challenge. In this paper, we
propose an adaptive decoding method (ADD)
to speed up E2E ASR systems. It segments
the vocabulary based on the inherent charac-
teristics of speech, enabling the models to pre-
dict each word with a much smaller vocabulary.
Our method significantly reduces the FLOPs
required for calculations. We also find that the
unit-based methods, developed through self-
supervised learning, capture acoustic features
well and achieve performance comparable to
the phone-based methods.

1 Introduction

End-to-end (E2E) fashion based on neural networks
has become the mainstream for automatic speech
recognition (ASR) tasks (Dong et al., 2018; Liet al.,
2022). Though E2E ASR achieves better perfor-
mance and generalization, it still has high latency
and requires a high-performance computing device.
The latency can be much worse, especially on the
mobile phone or embedded device that cannot em-
ploy GPUs (Shangguan et al., 2021). This is caused
by the advanced attention-based model always con-
taining a multitude of parameters and requiring
frequent matrix calculations (Vaswani et al., 2017).

Many speedup methods have been proposed to
solve this issue (Tay et al., 2022). Generally, there
are two ways: 1) model compression, such as the
knowledge distillation (KD) method (Hinton et al.,
2015) and quantization (Gholami et al., 2021), and
2) attention module acceleration, such as Average
Attention (Zhang et al., 2018) and Flash Attention
(Dao et al., 2022). However, most of the methods
aim for a general domain or are tested under iso-
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Figure 1: The FLOPs proportion of output layer in the
decoder. It rises sharply when the model is compressed.

lated circumstances. There is a lack of analysis
on the effect of these methods working together on
E2E ASR models deployed on on-device platforms.

We carried out an analysis to verify the effect of
mainstream methods on lightweight devices. How-
ever, the speedup for attention does not bring a
significant improvement after applying the model
compression method. Unlike the conventional con-
clusion, the output layer takes a considerable pro-
portion in the highly optimized system as Figure
1 shows. The reason is that the large size of the
vocabulary causes a multitude of softmax and mul-
tiplication costs (Joulin et al., 2017; Stevens et al.,
2021; Banerjee et al., 2020). Thus, an intuitive
strategy is cutting off the size of the vocabulary.

We propose a novel adaptive decoding method
(called ADD), which is based on the inherent char-
acteristics of voice. We cluster all the words based
on the phone, then split the entire vocabulary into
small vocabularies from the perspective of pronun-
ciation. At inference time, the model first predicts
the most proper vocabulary with minimal cost, then
generates the token from the selected vocabular-
ies, which only contain hundreds of words. This
method finds the right answer from the most likely
candidates rather than a mass of irrelevant words,
thus speeding up the decoding process. The contri-
butions of this paper are as follows:

e We find that the output layer poses a compu-
tational challenge for ASR, while this issue has
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Figure 2: An overview of our method.

received relatively less attention in previous work.
e We propose the ADD method, which adap-
tively employs a smaller vocabulary to speed up
ASR decoding.
e Our analysis shows that the unit-based method
captures acoustic features well, providing an alter-
native to phonetic methods.

2 Acceleration Analysis for E2E ASR

We conducted experiments using two advanced
strategies on the state-of-the-art (SOTA) E2E ASR
model, Conformer (Gulati et al., 2020), to verify
their on-device effects. We apply the KD method to
compress the model size and reduce the computing
cost. The classic KD method consists of online and
offline approaches. The ASR task is prone to over-
fitting (Park et al., 2019), thus the offline method
cannot supply additional information. We choose
the online method, which learns the distribution
from the teacher model and sets the weight to 0.5
to balance the losses. We find that the KD method
still works well as Table 1 shown.

Another attractive strategy is optimizing atten-
tion modules. We selected the Average Attention
(AAN) (Zhang et al., 2018), which has been widely
verified in natural language processing tasks. The
method replaces the self-attention with an aver-
age distribution in the decoder to achieve decent
speedup. Table 1 shows it only achieves a 3.9%
improvement in FLOPs based on a small model.
This proves that the attention module is not al-
ways the key module when the model deploys on a
lightweight device with small settings.

Figure 1 shows that the output layer starts to
play an important role if the model becomes small.
Thus applying a smaller vocabulary can further
speed up the inference. However, Table 1 shows a

Test (WER)
Method Param. (M) Clean Other FLOPs (M)
Base 45.42 3.11 7.34 426.97
Small 17.52 3.93 8.52 95.46
+KD 17.52 3.72 843 95.46
+KD+AAN 17.52 3.61 8.56 91.82
Small w/ 1k vocab 16.22 3.83 9.57 25.67

Table 1: The acceleration performance comparison

significant decrease in performance, indicating that
this method is not a proper solution.

3 Method
3.1 The Adaptive Decoding Strategy

We show an overview of adaptive decoding in Fig-
ure 2. For each step, the model first selects the
vocab that has been built by cluster method (refer
the Figure 2 right). The model predicts the word
based on the small vocab rather than the whole.

Training We first use the output feature o of
the decoder to select the corresponding vocabulary.
Since the next stage requires the argmax of this
prediction, we utilize the Gumbel softmax (Jang
et al., 2016). It enables choosing the discrete vo-
cabulary in a fully differentiable way and keeps
training and decoding consistent. We convert the
o with linear layer to classification logits ¢ € RV
and N is the number of prepared vocabs. We can
get the probability for n-th as following

exp(cn + gn)/T

N
>imiexp(ci +gi) /T
where 7 is the temperature and we gradually de-
crease it to control distribution from smooth to

sharp. The noise ¢ = —log(—log(u)) and w is
sampled from the uniform distribution ¢/ (0, 1).

Pn = ey



Method Param. Test (WER) Speed FLOPs Rate of
M) Clean Other Avg. (tokens/s) (M) Acceleration

Wenet w/ LM (Zhang et al., 2022) 34.76  3.09 7.40 5.25 - 394.97 -
Base 4542 3.18 7.54 5.36 60.00 426.97 100.00%
Base+Random 3.83(4 0.65) 8.37(40.83) 6.10

Base+W2P 4798 3.36({ 0.18) 7.93(J 0.39) 5.65 65.00 369.37 108.33%
Base+W2U 3.03(1 0.15) 7.93(10.39) 5.48

Small* 17.52 3.62 8.68 6.15 103.67 91.82 172.77%
Small*+Random 3.82(J 0.20) 9.34(] 0.66) 6.58

Small*+W2P 18.92 3.70(J 0.08) 9.12( 0.44) 6.41 118.33 25.67 197.22%
Small*+W2U 3.71(4 0.09) 8.89({ 0.21) 6.30

Table 2: The clustering effect on real performance. small* denotes the small model with KD and AAN methods.

We calculate the possibility of all the words to
train the model stably. For the n-th vocab, the
corresponding output layer converts the o to the
predicted logits 1. Then we get the normalize 1 by
the softmax with static temperature 1.0:

P = —2e) @)
> i exp(ly)
where V,, is the size of n-th vocab. The predicted
probability of the model is p,, X p,, ;. for k-th token
in n-th vocab. Thus the final cross-entropy loss can
be denoted as following for each word:

N V,

L= yur(log(p) +log(pnr) (3)

n k

where ¥, 1 is the gold value of k-th position in the
n-th vocab.

Inference During the forward pass, we take the
t-th vocab which is chosen by ¢ = argmax p,,.

We then search for the best candidate fiom the
selected vocab. We only use the selected vocab
when applying the beam search and achieve a better
speedup effect.

3.2 Word Clustering

The performance of adaptive decoding relies on the
well-set vocab sets. We cluster words with the prior
knowledge (e.g. phone) as the vocab according to
the vocal feature of speech.

Word2Phone cluster The Word2Phone (W2P)
belongs to the Text analysis sub-task (Mehl, 2006)
during text-to-speech processing. We convert all
the words to phonetic level according to the dictio-
nary. Then the phone can be viewed as a feature
to cluster words. Due to the order of the phone
also differing the word, we use the prefix match to
select the cluster. We set the cluster rule that the

word in one cluster should contain m same prefix
phones where m is a super-parameter. To control
the size of the vocabulary, we merge the clusters to
N vocabs.

Word2Unit cluster We turn to use the speech
unit to cluster words for languages with no pho-
netic information (called W2U). The speech unit
is obtained by the HuBert (Hsu et al., 2021) which
is pre-trained by a self-supervisor method. Then
we reverse the ASR dataset and replace the audio
with unit as the text-to-unit corpus. After train-
ing a text-to-unit model, we convert each word to
units. Differing from the phone, the unit for word
has a much longer length and it is hard to find the
proper cluster center. For the former problem, we
apply the metric to evaluate the similarity of two
sequences. For the latter problem, we sample N
words as the cluster center (called policy 7). For
every other unit of words, we compute the similar-
ity with the cluster center by negative Levenshtein
distance and put the word into the cluster with max
similarity. To balance the size of vocabularies, the
score of 7 is computed by the Entropy as follows:

N
V, +10 . V, +10
=3 (1 4
‘ Z<Og(v+10N)V+1ON> @

n

We repeat this process hundreds of times and use
the policy with the maximum Entropy.

4 Experiments

4.1 Data and Model Settings

We selected LibriSpeech (Panayotov et al., 2015) as
the training and evaluation dataset. The default vo-
cabulary size is 10, 000, which is generated by sen-
tencepiece (Kudo and Richardson, 2018). About
the phonetic dictionary for word2phone, we use
The CMU Pronouncing Dictionary. The N is set to
10 by default. The m for prefix match is set to 1.



Test (WER)
Method N  Epoch Clean  Other
Random 10 100 19.37  34.80
Frequency 5 28 26.14  34.18
(Joulin et al., 2017) 10 89 1438 24.84
6 100 10.53 22.68
w2p 1179 1022 22.62
5 100 19.23  38.47
w2U 10 96 12.99 26.17
20 100 15.69  30.04

Table 3: The comparison of clustering approaches

The base model is a 12-layer Conformer as
the encoder and a 6-layer vanilla Transformer
(Vaswani et al., 2017) decoder to reproduce the sub-
sampling method to establish a baseline (Zhang
et al., 2023), with a hidden layer dimension of 256.
For the small model, we used a 16-layer Conformer
as the Encoder and a 3-layer Transformer Decoder,
with a hidden layer dimension of 144. All models
are implemented in Fairseq toolkit (Ott et al., 2019;
Wang et al., 2020). Data augmentation (Park et al.,
2019) is adopted in our training. During inference,
we average the last 10 checkpoints. We test with
beam 1 on a 10-core Processor. More details can
be found in the Appendix.

4.2 Results

The results of our method on different model pa-
rameters are shown in Table 2. We find our method
achieves real speed increases and FLOPs descend
on both base and small models. Especially on the
small model which aims to deploy on lightweight
devices, our method reduces 39.34% FLOPs com-
putation compared with the small model, which
is very effective. Differing from directly applying
a small vocab that suffers a significant degrada-
tion, our ADD method obtains a comparable per-
formance. Specifically, our W2U method causes
a slight loss with 0.15 WER on average compared
with small models.

Diverse vocabulary clustering reveals a similar
trend, which is that from random to phone-based
method, then to unit-based method. This proves
that clustering is more acceptable to models.

5 Analysis

We compare the classification accuracy of several
clustering methods. We use the model with differ-
ent clustering methods to predict the vocab id of
each token. All the models are trained on clean
100h and use the best checkpoint to evaluate. The
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Figure 3: A case of W2P and W2U clustered vocabs.

results are shown in Table 3. The results of “Ran-
dom” and “Frequency” show that the models fail
to classify the vocab accurately if there is no vo-
cal feature as cluster guidance. For the number of
vocabs IV, we find that it is crucial for W2U. This
is because the cluster center is randomly produced
and N can easily affect the performance of cluster.
However, the W2P is not sensitive and this proves
that applying pronunciation as the cluster center is
reasonable for ASR tasks.

We draw the word distribution of W2P and W2U
methods in Figure 3. Besides the overlapped part,
the unit part not only counts on prefix pronouncing
but middle pronouncing as well. Thus the unit
can also represent phonetic characteristics. This
phenomenon explains why unit-based clustering
behaves better and reveals a deeper comprehension
of speech units from the perspective of a phone.

6 Related Work

Joulin et al., 2017 have proposed similar methods
for splitting decoder output, yet they only con-
sidered the words frequency factor towards texts
without inherent characteristics. Utilizing pho-
netic features to energize ASR is also mentioned
by Qiu et al., 2023. Ji et al., 2022 find that all
speech pre-trained models, which are trained by
self-supervised learning, capture more articulatory
features than conventional speech representation
MFCC. Xu et al., 2023 validate the possibility of
deploying Conformer on edge-computing devices.

7 Conclusion

In this work, we investigate the effect of main-
stream accelerating methods on E2E ASR tasks
and find that a large vocabulary still occupies a
lot of computing time. We then adopt an intuitive
method called ADD, which is to cluster vocabs
depending on pronunciation to decrease the multi-
plication consumption. The result shows a speed
boost with a little degradation in performance.



Limitations

There are some limitations we have to face. We
only conduct our experiments on LibreSpeech
dataset which is an English ASR dataset. Mul-
tiple language datasets may optimize our results.
We did not apply more speedup methods in our
experiments either. Furthermore, we spend much
time discussing the improvement of the decoder
part. However, regarding the long sequence in the
encoder part, we do not pay much attention to that.
This imbalance in length may cause an impact on
inference speed.
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Appendix
A Data Details

We conducted our experiments on LibriSpeech.
LibriSpeech is an English ASR dataset as the train-
ing data. The training data is divided into three
parts: 100 hours, 360 hours, and 500 hours. The
dev and test data are split into ’clean’ and ’other’
categories based on speech clarity and complex-
ity. We use all the training data to train models.
The CMU Pronouncing Dictionary! is maintained
by Carnegie Mellon University, to transfer words.
This dictionary covers over 134,000 words and
their pronunciations about North American English.
In Table 2, we list models using beam size 1. Mod-
els using beam size 5 are listed in Table 4. Zhang
et al. (2022) use beam size 10 in Wenet w/ LM.

Also, we list the decoder FLOPs calculating
formula in Table 5 according to the work of Ka-
plan et al. (2020). For detailed parameters, we set
n; = 25, which denotes text length, and d = 144 in
small models while d = 256 in base models, which
denotes dimension of models, dy; = d * 8, which
denotes feedforward dimension, n, = 178, which
denotes phonetic features length, 1,004 = 10000,
which denotes vocabulary size, n, = 10, which
denotes cluster numbers.

We trained the models for 100 epochs on eight
NVIDIA 3090 GPUs. For the speed test, we restrict
10 cores of CPU to make a fair comparison.

About KD models, to make fair comparison, we
choose the same base model as the teacher to help
small models learn. For frequency clustering, we
first count the most frequent phonetic prefix ap-
pearing in the corpus and array them up to down.
Inside the same phonetic prefix, we sort them by
frequency once again. For W2P clustering, we
merge the same phonetic prefix together. To make
clusters balance, we merge close clusters. What
have to mention is we set a single cluster to contain
the words without pronunciation. It is individually
a special cluster.

B Approach Transfer

Transducer(Jaitly et al., 2015), which allows incre-
mental output predictions as input data is received,
is a popular method in ASR. Burchi and Vielzeuf,
2021 have proposed an efficient conformer, which
contains a transducer decoder and achieves a SOTA

'The source can be obtained at http://www.speech.cs.cmu.
edu/cgi-bin/cmudict.

result. We transfer our approach to this model. To
make a fair comparison, we used a small version
and trained it for 100 epochs with our methods. We
choose a 1000-size vocab and a 10000-size to seg-
ment into 10 clusters separately since the original
vocab of their result is 1000. We list the results in
Table 6. All parameters and settings are provided
in their link®.

C Phonetic Distribution

For quick validation, we make it a probe task in
Table 3. We just use 100 hours of training data
of LibriSpeech to compare which cutoff method
is relatively better. Besides, we randomly sample
and count the centers of clusters and corresponding
quantities in Table 7. With our entropy comput-
ing method, we can figure that more smoothing
distribution of quantity means a higher entropy.

D HuBert Usage

We utilize HuBert(Hsu et al., 2021) to transfer
words without pronunciation. As we mentioned
in the main body, we train a HuBert model to pre-
dict the vocab id of each token. We transfer every
token in the 100-hour text corpus of LibriSpeech
to the id of the clusters it belongs to. All the tools®
can be found. and checkpoints* can be found.

The code can be obtained at https://github.com/burchim/
EfficientConformer.

3The tools can be obtained at https://github.com/
facebookresearch/fairseq/tree/main/examples/hubert

*The checkpoints can be obtained at https://dl.fbai
publicfiles.com/hubert/hubert_base_1s960.pt
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Param. Test (WER) Speed FLOPs Rate of

Method (M) Clean Other Avg. (tokens/s) (M) Acceleration
Wenet w/ LM (Zhang et al., 2022) 34.76  3.09 7.40 5.25 - 394.97 -

Base 4542 3.11 7.34 5.23  60.00 426.97 100.00%
Base+Random 3.27(4 0.16) 8.23({ 0.89) 5.75

Base+W2P 4798 3.52(10.41) 7.76( 0.42) 5.64  65.00 369.37 108.33%
Base+W2U 2.96(1 0.15) 7.76({ 0.42) 5.36

Small* 17.52 3.59 8.57 6.08 103.67 91.82 172.77%
Small*+Random 3.66({ 0.07) 9.08({ 0.51) 6.37

Small*+W2P 18.92 3.62(J 0.03) 8.86() 0.29) 6.24 118.33 25.67 197.22%
Small*+W2U 3.70(4 0.11) 8.74(4 0.17) 6.22

Table 4: The clustering effect on real performance. small* denotes the small model with KD and AAN methods.

Operation Base Small Small(w.attn) Small(w.attn.our)
Self-Attention: Q K V 3xmp*xdxd 3xngxdxd ngxd*d ngxdx*d
Self-Attention: Weight Ny x Ny x d ng k ng xd

Self-Attention: Attn-Mul Ny x Ny * d ng k ng xd ng *d ng x d
Self-Attention: Project ng xd*d ngxdx*d ng*d*d ng*xd*d
Cross-Attention: QKV ngxdxd+2*«ngxdxd ngxdsxd+2%«ngxdxd ngxdxd+2*«ngxdxd ngxdxd+2*n,*xd*d
Cross-Attention: Weight Ny * Ng * d Ny * Ng * d g *Ng * d Ny *Ng * d
Cross-Attention: Attn-Mul Ny * Ng * d ng *x Mg *d g *Ng * d Ny * Ng * d
Cross-Attention: Project ngxdx*d ngxdx*d ngxdxd ngxd*d
Feedforward 2xngxdxdyy nx2xdxdysy nx2xdxdyss n*2xdx*dysy
Output ng * d * Nyocad ng % d * Nyocab ng * d * Nyocab N % d * Nyocab/Nyg
All 426973696 95460048 91820448 256739040
Rate of detracted Flops - 0.0% 3.9% 41.7%

Table 5: Acceleration and performance comparison

Dev (WER) Test (WER) FLOPs

Model Beam Clean Other Clean Other (M)

Transducer Small 1 4.11 1076 435 10.63 101.53
(Burchi and Vielzeuf, 2021) 5 398 10.37 421 10.05 ’

1 432 11.16 4.58 1091
Transducer Small+ADD 5 411 1069 434 1042 75.90

Table 6: The performance of Conformer + Transducer using our method.

Center N Quantity Entropy
built, scientific, affection, resolution, philammon 5 6145, 313, 893, 480, 2169 -10.86
plate, prescribe, johnson, adverse, occasion 5 1708, 2513, 2278, 1513, 1988 -8.11
sprawl, 1, terrestrial, though, clavering 10 2188, 1411, 659, 243, 1167, 199.16
ue, subscription, adverse, penrod, marchioness 0, 340, 396, 2703, 893 '
phil, vulgar, od, dense, tempest, 10 1045, 1242, 1163, 924, 924, 9363
changes, mum, anger, signor, dealing 416, 898, 901, 1891, 596 )

Table 7: The distribution and cluster center of W2U
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