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Abstract

The latency and computational demand of001
End-to-end (E2E) automatic speech recogni-002
tion (ASR) models hinder their deployment on003
lightweight devices. We find that, although004
these models can be tuned for efficiency con-005
cerns, the computational burden of large vocab-006
ularies remains a challenge. In this paper, we007
propose an adaptive decoding method (ADD)008
to speed up E2E ASR systems. It segments009
the vocabulary based on the inherent charac-010
teristics of speech, enabling the models to pre-011
dict each word with a much smaller vocabulary.012
Our method significantly reduces the FLOPs013
required for calculations. We also find that the014
unit-based methods, developed through self-015
supervised learning, capture acoustic features016
well and achieve performance comparable to017
the phone-based methods.018

1 Introduction019

End-to-end (E2E) fashion based on neural networks020

has become the mainstream for automatic speech021

recognition (ASR) tasks (Dong et al., 2018; Li et al.,022

2022). Though E2E ASR achieves better perfor-023

mance and generalization, it still has high latency024

and requires a high-performance computing device.025

The latency can be much worse, especially on the026

mobile phone or embedded device that cannot em-027

ploy GPUs (Shangguan et al., 2021). This is caused028

by the advanced attention-based model always con-029

taining a multitude of parameters and requiring030

frequent matrix calculations (Vaswani et al., 2017).031

Many speedup methods have been proposed to032

solve this issue (Tay et al., 2022). Generally, there033

are two ways: 1) model compression, such as the034

knowledge distillation (KD) method (Hinton et al.,035

2015) and quantization (Gholami et al., 2021), and036

2) attention module acceleration, such as Average037

Attention (Zhang et al., 2018) and Flash Attention038

(Dao et al., 2022). However, most of the methods039

aim for a general domain or are tested under iso-040
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Figure 1: The FLOPs proportion of output layer in the
decoder. It rises sharply when the model is compressed.

lated circumstances. There is a lack of analysis 041

on the effect of these methods working together on 042

E2E ASR models deployed on on-device platforms. 043

We carried out an analysis to verify the effect of 044

mainstream methods on lightweight devices. How- 045

ever, the speedup for attention does not bring a 046

significant improvement after applying the model 047

compression method. Unlike the conventional con- 048

clusion, the output layer takes a considerable pro- 049

portion in the highly optimized system as Figure 050

1 shows. The reason is that the large size of the 051

vocabulary causes a multitude of softmax and mul- 052

tiplication costs (Joulin et al., 2017; Stevens et al., 053

2021; Banerjee et al., 2020). Thus, an intuitive 054

strategy is cutting off the size of the vocabulary. 055

We propose a novel adaptive decoding method 056

(called ADD), which is based on the inherent char- 057

acteristics of voice. We cluster all the words based 058

on the phone, then split the entire vocabulary into 059

small vocabularies from the perspective of pronun- 060

ciation. At inference time, the model first predicts 061

the most proper vocabulary with minimal cost, then 062

generates the token from the selected vocabular- 063

ies, which only contain hundreds of words. This 064

method finds the right answer from the most likely 065

candidates rather than a mass of irrelevant words, 066

thus speeding up the decoding process. The contri- 067

butions of this paper are as follows: 068

• We find that the output layer poses a compu- 069

tational challenge for ASR, while this issue has 070
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Figure 2: An overview of our method.

received relatively less attention in previous work.071

• We propose the ADD method, which adap-072

tively employs a smaller vocabulary to speed up073

ASR decoding.074

• Our analysis shows that the unit-based method075

captures acoustic features well, providing an alter-076

native to phonetic methods.077

2 Acceleration Analysis for E2E ASR078

We conducted experiments using two advanced079

strategies on the state-of-the-art (SOTA) E2E ASR080

model, Conformer (Gulati et al., 2020), to verify081

their on-device effects. We apply the KD method to082

compress the model size and reduce the computing083

cost. The classic KD method consists of online and084

offline approaches. The ASR task is prone to over-085

fitting (Park et al., 2019), thus the offline method086

cannot supply additional information. We choose087

the online method, which learns the distribution088

from the teacher model and sets the weight to 0.5089

to balance the losses. We find that the KD method090

still works well as Table 1 shown.091

Another attractive strategy is optimizing atten-092

tion modules. We selected the Average Attention093

(AAN) (Zhang et al., 2018), which has been widely094

verified in natural language processing tasks. The095

method replaces the self-attention with an aver-096

age distribution in the decoder to achieve decent097

speedup. Table 1 shows it only achieves a 3.9%098

improvement in FLOPs based on a small model.099

This proves that the attention module is not al-100

ways the key module when the model deploys on a101

lightweight device with small settings.102

Figure 1 shows that the output layer starts to103

play an important role if the model becomes small.104

Thus applying a smaller vocabulary can further105

speed up the inference. However, Table 1 shows a106

Method Param. (M) Test (WER) FLOPs (M)Clean Other

Base 45.42 3.11 7.34 426.97

Small 17.52 3.93 8.52 95.46
+KD 17.52 3.72 8.43 95.46
+KD+AAN 17.52 3.61 8.56 91.82

Small w/ 1k vocab 16.22 3.83 9.57 25.67

Table 1: The acceleration performance comparison

significant decrease in performance, indicating that 107

this method is not a proper solution. 108

3 Method 109

3.1 The Adaptive Decoding Strategy 110

We show an overview of adaptive decoding in Fig- 111

ure 2. For each step, the model first selects the 112

vocab that has been built by cluster method (refer 113

the Figure 2 right). The model predicts the word 114

based on the small vocab rather than the whole. 115

Training We first use the output feature o of 116

the decoder to select the corresponding vocabulary. 117

Since the next stage requires the argmax of this 118

prediction, we utilize the Gumbel softmax (Jang 119

et al., 2016). It enables choosing the discrete vo- 120

cabulary in a fully differentiable way and keeps 121

training and decoding consistent. We convert the 122

o with linear layer to classification logits c ∈ RN 123

and N is the number of prepared vocabs. We can 124

get the probability for n-th as following 125

pn =
exp(cn + gn)/τ∑N
i=1 exp(ci + gi)/τ

(1) 126

where τ is the temperature and we gradually de- 127

crease it to control distribution from smooth to 128

sharp. The noise g = −log(−log(u)) and u is 129

sampled from the uniform distribution U(0, 1). 130
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Method Param. Test (WER) Speed FLOPs Rate of
(M) Clean Other Avg. (tokens/s) (M) Acceleration

Wenet w/ LM (Zhang et al., 2022) 34.76 3.09 7.40 5.25 – 394.97 –
Base 45.42 3.18 7.54 5.36 60.00 426.97 100.00%
Base+Random

47.98
3.83(↓ 0.65) 8.37(↓ 0.83) 6.10

65.00 369.37 108.33%Base+W2P 3.36(↓ 0.18) 7.93(↓ 0.39) 5.65
Base+W2U 3.03(↑ 0.15) 7.93(↓ 0.39) 5.48
Small∗ 17.52 3.62 8.68 6.15 103.67 91.82 172.77%
Small∗+Random

18.92
3.82(↓ 0.20) 9.34(↓ 0.66) 6.58

118.33 25.67 197.22%Small∗+W2P 3.70(↓ 0.08) 9.12(↓ 0.44) 6.41
Small∗+W2U 3.71(↓ 0.09) 8.89(↓ 0.21) 6.30

Table 2: The clustering effect on real performance. small∗ denotes the small model with KD and AAN methods.

We calculate the possibility of all the words to131

train the model stably. For the n-th vocab, the132

corresponding output layer converts the o to the133

predicted logits l. Then we get the normalize l by134

the softmax with static temperature 1.0:135

pn,k =
exp(lk)∑Vn
i=1 exp(li)

(2)136

where Vn is the size of n-th vocab. The predicted137

probability of the model is pn× pn,k for k-th token138

in n-th vocab. Thus the final cross-entropy loss can139

be denoted as following for each word:140

L =

N∑
n

Vn∑
k

yn,k(log(pn) + log(pn,k)) (3)141

where yn,k is the gold value of k-th position in the142

n-th vocab.143

Inference During the forward pass, we take the144

i-th vocab which is chosen by i = argmax
i

pn.145

We then search for the best candidate from the146

selected vocab. We only use the selected vocab147

when applying the beam search and achieve a better148

speedup effect.149

3.2 Word Clustering150

The performance of adaptive decoding relies on the151

well-set vocab sets. We cluster words with the prior152

knowledge (e.g. phone) as the vocab according to153

the vocal feature of speech.154

Word2Phone cluster The Word2Phone (W2P)155

belongs to the Text analysis sub-task (Mehl, 2006)156

during text-to-speech processing. We convert all157

the words to phonetic level according to the dictio-158

nary. Then the phone can be viewed as a feature159

to cluster words. Due to the order of the phone160

also differing the word, we use the prefix match to161

select the cluster. We set the cluster rule that the162

word in one cluster should contain m same prefix 163

phones where m is a super-parameter. To control 164

the size of the vocabulary, we merge the clusters to 165

N vocabs. 166

Word2Unit cluster We turn to use the speech 167

unit to cluster words for languages with no pho- 168

netic information (called W2U). The speech unit 169

is obtained by the HuBert (Hsu et al., 2021) which 170

is pre-trained by a self-supervisor method. Then 171

we reverse the ASR dataset and replace the audio 172

with unit as the text-to-unit corpus. After train- 173

ing a text-to-unit model, we convert each word to 174

units. Differing from the phone, the unit for word 175

has a much longer length and it is hard to find the 176

proper cluster center. For the former problem, we 177

apply the metric to evaluate the similarity of two 178

sequences. For the latter problem, we sample N 179

words as the cluster center (called policy π). For 180

every other unit of words, we compute the similar- 181

ity with the cluster center by negative Levenshtein 182

distance and put the word into the cluster with max 183

similarity. To balance the size of vocabularies, the 184

score of π is computed by the Entropy as follows: 185

eπ =

N∑
n

(
log(

Vn + 10

V + 10N
)

Vn + 10

V + 10N

)
(4) 186

We repeat this process hundreds of times and use 187

the policy with the maximum Entropy. 188

4 Experiments 189

4.1 Data and Model Settings 190

We selected LibriSpeech (Panayotov et al., 2015) as 191

the training and evaluation dataset. The default vo- 192

cabulary size is 10, 000, which is generated by sen- 193

tencepiece (Kudo and Richardson, 2018). About 194

the phonetic dictionary for word2phone, we use 195

The CMU Pronouncing Dictionary. The N is set to 196

10 by default. The m for prefix match is set to 1. 197
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Method N Epoch Test (WER)
Clean Other

Random 10 100 19.37 34.80
Frequency 5 28 26.14 34.18
(Joulin et al., 2017) 10 89 14.38 24.84

W2P 6 100 10.53 22.68
11 79 10.22 22.62

W2U
5 100 19.23 38.47
10 96 12.99 26.17
20 100 15.69 30.04

Table 3: The comparison of clustering approaches

The base model is a 12-layer Conformer as198

the encoder and a 6-layer vanilla Transformer199

(Vaswani et al., 2017) decoder to reproduce the sub-200

sampling method to establish a baseline (Zhang201

et al., 2023), with a hidden layer dimension of 256.202

For the small model, we used a 16-layer Conformer203

as the Encoder and a 3-layer Transformer Decoder,204

with a hidden layer dimension of 144. All models205

are implemented in Fairseq toolkit (Ott et al., 2019;206

Wang et al., 2020). Data augmentation (Park et al.,207

2019) is adopted in our training. During inference,208

we average the last 10 checkpoints. We test with209

beam 1 on a 10-core Processor. More details can210

be found in the Appendix.211

4.2 Results212

The results of our method on different model pa-213

rameters are shown in Table 2. We find our method214

achieves real speed increases and FLOPs descend215

on both base and small models. Especially on the216

small model which aims to deploy on lightweight217

devices, our method reduces 39.34% FLOPs com-218

putation compared with the small model, which219

is very effective. Differing from directly applying220

a small vocab that suffers a significant degrada-221

tion, our ADD method obtains a comparable per-222

formance. Specifically, our W2U method causes223

a slight loss with 0.15 WER on average compared224

with small models.225

Diverse vocabulary clustering reveals a similar226

trend, which is that from random to phone-based227

method, then to unit-based method. This proves228

that clustering is more acceptable to models.229

5 Analysis230

We compare the classification accuracy of several231

clustering methods. We use the model with differ-232

ent clustering methods to predict the vocab id of233

each token. All the models are trained on clean234

100h and use the best checkpoint to evaluate. The235
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Figure 3: A case of W2P and W2U clustered vocabs.

results are shown in Table 3. The results of “Ran- 236

dom” and “Frequency” show that the models fail 237

to classify the vocab accurately if there is no vo- 238

cal feature as cluster guidance. For the number of 239

vocabs N , we find that it is crucial for W2U. This 240

is because the cluster center is randomly produced 241

and N can easily affect the performance of cluster. 242

However, the W2P is not sensitive and this proves 243

that applying pronunciation as the cluster center is 244

reasonable for ASR tasks. 245

We draw the word distribution of W2P and W2U 246

methods in Figure 3. Besides the overlapped part, 247

the unit part not only counts on prefix pronouncing 248

but middle pronouncing as well. Thus the unit 249

can also represent phonetic characteristics. This 250

phenomenon explains why unit-based clustering 251

behaves better and reveals a deeper comprehension 252

of speech units from the perspective of a phone. 253

6 Related Work 254

Joulin et al., 2017 have proposed similar methods 255

for splitting decoder output, yet they only con- 256

sidered the words frequency factor towards texts 257

without inherent characteristics. Utilizing pho- 258

netic features to energize ASR is also mentioned 259

by Qiu et al., 2023. Ji et al., 2022 find that all 260

speech pre-trained models, which are trained by 261

self-supervised learning, capture more articulatory 262

features than conventional speech representation 263

MFCC. Xu et al., 2023 validate the possibility of 264

deploying Conformer on edge-computing devices. 265

7 Conclusion 266

In this work, we investigate the effect of main- 267

stream accelerating methods on E2E ASR tasks 268

and find that a large vocabulary still occupies a 269

lot of computing time. We then adopt an intuitive 270

method called ADD, which is to cluster vocabs 271

depending on pronunciation to decrease the multi- 272

plication consumption. The result shows a speed 273

boost with a little degradation in performance. 274
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Limitations275

There are some limitations we have to face. We276

only conduct our experiments on LibreSpeech277

dataset which is an English ASR dataset. Mul-278

tiple language datasets may optimize our results.279

We did not apply more speedup methods in our280

experiments either. Furthermore, we spend much281

time discussing the improvement of the decoder282

part. However, regarding the long sequence in the283

encoder part, we do not pay much attention to that.284

This imbalance in length may cause an impact on285

inference speed.286
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Appendix426

A Data Details427

We conducted our experiments on LibriSpeech.428

LibriSpeech is an English ASR dataset as the train-429

ing data. The training data is divided into three430

parts: 100 hours, 360 hours, and 500 hours. The431

dev and test data are split into ’clean’ and ’other’432

categories based on speech clarity and complex-433

ity. We use all the training data to train models.434

The CMU Pronouncing Dictionary1 is maintained435

by Carnegie Mellon University, to transfer words.436

This dictionary covers over 134,000 words and437

their pronunciations about North American English.438

In Table 2, we list models using beam size 1. Mod-439

els using beam size 5 are listed in Table 4. Zhang440

et al. (2022) use beam size 10 in Wenet w/ LM.441

Also, we list the decoder FLOPs calculating442

formula in Table 5 according to the work of Ka-443

plan et al. (2020). For detailed parameters, we set444

nt = 25, which denotes text length, and d = 144 in445

small models while d = 256 in base models, which446

denotes dimension of models, dff = d ∗ 8, which447

denotes feedforward dimension, na = 178, which448

denotes phonetic features length, nvocab = 10000,449

which denotes vocabulary size, nq = 10, which450

denotes cluster numbers.451

We trained the models for 100 epochs on eight452

NVIDIA 3090 GPUs. For the speed test, we restrict453

10 cores of CPU to make a fair comparison.454

About KD models, to make fair comparison, we455

choose the same base model as the teacher to help456

small models learn. For frequency clustering, we457

first count the most frequent phonetic prefix ap-458

pearing in the corpus and array them up to down.459

Inside the same phonetic prefix, we sort them by460

frequency once again. For W2P clustering, we461

merge the same phonetic prefix together. To make462

clusters balance, we merge close clusters. What463

have to mention is we set a single cluster to contain464

the words without pronunciation. It is individually465

a special cluster.466

B Approach Transfer467

Transducer(Jaitly et al., 2015), which allows incre-468

mental output predictions as input data is received,469

is a popular method in ASR. Burchi and Vielzeuf,470

2021 have proposed an efficient conformer, which471

contains a transducer decoder and achieves a SOTA472

1The source can be obtained at http://www.speech.cs.cmu.
edu/cgi-bin/cmudict.

result. We transfer our approach to this model. To 473

make a fair comparison, we used a small version 474

and trained it for 100 epochs with our methods. We 475

choose a 1000-size vocab and a 10000-size to seg- 476

ment into 10 clusters separately since the original 477

vocab of their result is 1000. We list the results in 478

Table 6. All parameters and settings are provided 479

in their link2. 480

C Phonetic Distribution 481

For quick validation, we make it a probe task in 482

Table 3. We just use 100 hours of training data 483

of LibriSpeech to compare which cutoff method 484

is relatively better. Besides, we randomly sample 485

and count the centers of clusters and corresponding 486

quantities in Table 7. With our entropy comput- 487

ing method, we can figure that more smoothing 488

distribution of quantity means a higher entropy. 489

D HuBert Usage 490

We utilize HuBert(Hsu et al., 2021) to transfer 491

words without pronunciation. As we mentioned 492

in the main body, we train a HuBert model to pre- 493

dict the vocab id of each token. We transfer every 494

token in the 100-hour text corpus of LibriSpeech 495

to the id of the clusters it belongs to. All the tools3 496

can be found. and checkpoints4 can be found. 497

2The code can be obtained at https://github.com/burchim/
EfficientConformer.

3The tools can be obtained at https://github.com/
facebookresearch/fairseq/tree/main/examples/hubert

4The checkpoints can be obtained at https://dl.fbai
publicfiles.com/hubert/hubert_base_ls960.pt
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Method Param. Test (WER) Speed FLOPs Rate of
(M) Clean Other Avg. (tokens/s) (M) Acceleration

Wenet w/ LM (Zhang et al., 2022) 34.76 3.09 7.40 5.25 – 394.97 –

Base 45.42 3.11 7.34 5.23 60.00 426.97 100.00%

Base+Random
47.98

3.27(↓ 0.16) 8.23(↓ 0.89) 5.75
65.00 369.37 108.33%Base+W2P 3.52(↓ 0.41) 7.76(↓ 0.42) 5.64

Base+W2U 2.96(↑ 0.15) 7.76(↓ 0.42) 5.36

Small∗ 17.52 3.59 8.57 6.08 103.67 91.82 172.77%

Small∗+Random
18.92

3.66(↓ 0.07) 9.08(↓ 0.51) 6.37
118.33 25.67 197.22%Small∗+W2P 3.62(↓ 0.03) 8.86(↓ 0.29) 6.24

Small∗+W2U 3.70(↓ 0.11) 8.74(↓ 0.17) 6.22

Table 4: The clustering effect on real performance. small∗ denotes the small model with KD and AAN methods.

Operation Base Small Small(w.attn) Small(w.attn.our)

Self-Attention: Q K V 3 ∗ nt ∗ d ∗ d 3 ∗ nt ∗ d ∗ d nt ∗ d ∗ d nt ∗ d ∗ d
Self-Attention: Weight nt ∗ nt ∗ d nt ∗ nt ∗ d
Self-Attention: Attn-Mul nt ∗ nt ∗ d nt ∗ nt ∗ d nt ∗ d nt ∗ d
Self-Attention: Project nt ∗ d ∗ d nt ∗ d ∗ d nt ∗ d ∗ d nt ∗ d ∗ d
Cross-Attention: QKV nt ∗ d ∗ d+ 2 ∗ na ∗ d ∗ d nt ∗ d ∗ d+ 2 ∗ na ∗ d ∗ d nt ∗ d ∗ d+ 2 ∗ na ∗ d ∗ d nt ∗ d ∗ d+ 2 ∗ na ∗ d ∗ d
Cross-Attention: Weight nt ∗ na ∗ d nt ∗ na ∗ d nt ∗ na ∗ d nt ∗ na ∗ d
Cross-Attention: Attn-Mul nt ∗ na ∗ d nt ∗ na ∗ d nt ∗ na ∗ d nt ∗ na ∗ d
Cross-Attention: Project nt ∗ d ∗ d nt ∗ d ∗ d nt ∗ d ∗ d nt ∗ d ∗ d
Feedforward 2 ∗ nt ∗ d ∗ dff n ∗ 2 ∗ d ∗ dff n ∗ 2 ∗ d ∗ dff n ∗ 2 ∗ d ∗ dff
Output nt ∗ d ∗ nvocab nt ∗ d ∗ nvocab nt ∗ d ∗ nvocab nt ∗ d ∗ nvocab/nq

All 426973696 95460048 91820448 256739040
Rate of detracted Flops – 0.0% 3.9% 41.7%

Table 5: Acceleration and performance comparison

Model Beam Dev (WER) Test (WER) FLOPs
Clean Other Clean Other (M)

Transducer Small 1 4.11 10.76 4.35 10.63
101.53

(Burchi and Vielzeuf, 2021) 5 3.98 10.37 4.21 10.05

Transducer Small+ADD
1 4.32 11.16 4.58 10.91

75.90
5 4.11 10.69 4.34 10.42

Table 6: The performance of Conformer + Transducer using our method.

Center N Quantity Entropy

built, scientific, affection, resolution, philammon 5 6145, 313, 893, 480, 2169 -10.86

plate, prescribe, johnson, adverse, occasion 5 1708, 2513, 2278, 1513, 1988 -8.11

sprawl, r, terrestrial, though, clavering
10

2188, 1411, 659, 243, 1167,
-29.16

ue, subscription, adverse, penrod, marchioness 0, 340, 396, 2703, 893

phil, vulgar, od, dense, tempest,
10

1045, 1242, 1163, 924, 924,
-23.63

changes, mum, anger, signor, dealing 416, 898, 901, 1891, 596

Table 7: The distribution and cluster center of W2U
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