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Abstract

DINO and DINOv2 are two model families be-
ing widely used to learn representations from
unlabeled imagery data at large scales. Their
learned representations often enable state-of-the-
art performance for downstream tasks, such as
image classification and segmentation. However,
they employ many empirically motivated design
choices and their training pipelines are highly
complex and unstable — many hyperparameters
need to be carefully tuned to ensure that the rep-
resentations do not collapse — which poses con-
siderable difficulty to improving them or adapting
them to new domains. In this work, we posit
that we can remove most such-motivated idiosyn-
crasies in the pre-training pipelines, and only need
to add an explicit coding rate term in the loss func-
tion to avoid collapse of the representations. As
a result, we obtain highly simplified variants of
the DINO and DINOv2 which we call SimDINO
and SimDINOv2, respectively. Remarkably, these
simplified models are more robust to different de-
sign choices, such as network architecture and
hyperparameters, and they learn even higher-
quality representations, measured by performance
on downstream tasks, offering a Pareto improve-
ment over the corresponding DINO and DINOv2
models. This work highlights the potential of
using simplifying design principles to improve
the empirical practice of deep learning. Code
and model checkpoints are available at https:
//github.com/RobinWu218/SimDINO.

1. Introduction
Self-supervised learning (SSL) is the toolkit of choice to
learn representations for large datasets of unlabeled images

1UC Berkeley 2TranscEngram 3Microsoft Research 4HKU.
Correspondence to: Ziyang Wu <zywu@berkeley.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(Hadsell et al., 2006; Oord et al., 2018; Wu et al., 2018;
Grill et al., 2020; He et al., 2020; Bardes et al., 2021; Chen
& He, 2021; Caron et al., 2021; Zhou et al., 2021; He et al.,
2022; Assran et al., 2023; Oquab et al., 2023), captioned
images (Radford et al., 2021), videos (Feichtenhofer et al.,
2022), and text (Radford et al., 2018; Devlin, 2018; Radford
et al., 2019; Brown et al., 2020), among other modalities. In
the context of image SSL, there are two main approaches:
reconstructive (He et al., 2022), where the goal is to recon-
struct some function of the true image data from a “view”,
i.e., corruption or augmentation, and contrastive (Hadsell
et al., 2006), where the goal is, for each image, to have the
features of different views of the image all be close, and
features of views of different images be far.

Within contrastive SSL, a key challenge lies in preventing
representation collapse, where models learn trivial solu-
tions that map all inputs to the same output. One common
approach to address this is through the use of negative sam-
ples, which explicitly encourages representations of differ-
ent images to be dissimilar. Thus far, the success of using
negative samples depends on having a large batch size (Wu
et al., 2018; He et al., 2020), which poses computational
challenges at scale. Methods which attempt to avoid this
bottleneck by using negative samples in more implicit and
indirect ways to avoid collapse (Caron et al., 2021) can cope
with smaller batch sizes, but often require training pipelines
with many components and hyperparameters carefully tuned
to avoid collapse, making them difficult to train.

The state-of-the-art for image SSL is generally considered
to be the DINOv2 model family (Oquab et al., 2023). It is
built on the DINO model family (Caron et al., 2021). Both
classes of models are trained using contrastive SSL and thus
run into the representation collapse issue. While DINOv2
explicitly and directly uses negative samples to avoid col-
lapse, it inherits much of its training pipeline from DINO,
which uses negative samples more indirectly. As such, both
model families’ training pipelines are highly complex and
unstable, requiring many tweaks and careful hyperparame-
ter selection in order for the training to converge for a given
architecture. Despite this capriciousness, the trained models’
representations are highly useful for downstream tasks, and
are widely used (Baharoon et al., 2023; Wei et al., 2024).

1

https://github.com/RobinWu218/SimDINO
https://github.com/RobinWu218/SimDINO


Simplifying DINO via Coding Rate Regularization

(a): DINO

...

...

teacher

student

teacher DINO head

student DINO head

centering
(e.m.a.)

softmax

softmax

stop-grad

crop + tokenize

crop +
 token

ize

e.m.a. e.m.a.

(b): SimDINO

...

...

teacher

student

stop-grad

crop + tokenize

crop +
 token

ize

e.m.a.

(c): DINOv2

...

...

teacher

student

teacher DINO head

student DINO head

centering softmax

softmax

...

... student iBOT head
...
... softmax

...

...

...
teacher iBOT head centering softmax...

...

...

crop + tokenize + mask (if global)

crop +
 token

ize

e.m.a.

stop-grad

stop-grad

e.m.a. e.m.a.

(d): SimDINOv2

...

...

teacher

student

...

...

...

...

crop + tokenize + mask (if global)

crop +
 token

ize

e.m.a.

stop-grad

stop-grad

Figure 1. The DINO and DINOv2 pipelines are substantially simplified to the respective SimDINO and SimDINOv2 pipelines. (a)
In the DINO pipeline, an input image is turned into patches. Then a global view vg and a local view vc are randomly sampled. The global
view is pushed through the teacher encoder, while the other view is through the student encoder. (b) The SimDINO pipeline removes
the need for expensive post-processing operations present in DINO, such as a dimension-increasing linear layer and a high-dimensional
softmax. (c) The DINOv2 pipeline adds masking (here masked patches are denoted by ×) and an additional loss on image patch features
to the DINO pipeline. (d) The SimDINOv2 training operates directly on the learned representations, simplifying the pipeline.

Our contributions. In this work, we remove many tweaks
and hyperparameters from the DINO and DINOv2 training
pipelines, replacing them with a term in the objective which
explicitly uses negative samples. We show empirically that
this term, which involves the total coding rate regularizer
(Ma et al., 2007; Yu et al., 2020; Li et al., 2022), enables
much more simple, robust, and computationally efficient
training pipelines, as shown in Figure 1. We show that
the resulting models, named SimDINO and SimDINOv2,
learn representations that achieve even higher state-of-the-
art performance as those learned by DINO and DINOv2
across a variety of downstream tasks. Our work underscores
the value of understanding and simplifying pipelines to
improve performance in vision SSL.

Notation. Let C,H,W,D,N, d ≥ 1 be positive integers.
For a set A, let the space of finite sequences of elements of
A be denoted as A∗ =

⋃∞
t=1 A

t. Our data will be images
X ∈ RC×H×W . We consider different augmentations, or
views, of the input data X , such as rotations or crops; we
can represent a view as a function v : RC×H×W → RD×Nv

where Nv is the number of tokens in the view. By an abuse
of vocabulary we also call v(X) ∈ RD×Nv a view.

Let Sd−1 ⊆ Rd be the (d − 1)-dimensional ℓ2-sphere.
For the purpose of representation learning, we will con-
sider an encoder neural network parameterized by weights
θ ∈ Θ (i.e., the weight space), as a function fθ : (RD)∗ →
Sd−1 × S∗

d−1. We factor fθ = (f cls
θ , fpatch

θ ) where
f cls
θ : RD×∗ → Sd−1 outputs the so-called class token fea-

ture (i.e., an aggregate representation of the input patches)
and fpatch

θ : (RD)∗ → S∗
d−1 outputs the patch tokens’ fea-

tures (i.e., a representation for each input patch). The net-
work is a Vision Transformer (Dosovitskiy, 2020; Touvron
et al., 2021) with appended multi-layer perceptrons (MLPs)
to post-process each feature followed by ℓ2-normalizations.

2. Methods: Simplifying DINO and DINOv2
2.1. Recap of the Original DINO Pipeline

The goal of DINO is to learn an aggregate representation
of the input image which contains information about large-
scale semantics of the input (e.g., the locations and proper-
ties of different objects in the image). They do this via a
pre-training pipeline (Caron et al., 2021) which is depicted
in Figure 1(a), and we also describe it throughout this sec-
tion. The main idea is to take multiple views (i.e., different
crops) of the data, and ensure that the features generated
by these views are consistent with each other (in a sense
which will be made precise shortly) as much as possible. If
the views each contain a salient part of the input such as a
central object, the feature corresponding to any view would
then contain information about this central object. The end
goal is that the feature of any large-enough view contains
information about all relevant objects in the input image,
which can then be extracted for use in downstream tasks
such as image classification or image segmentation.

In the rest of the section, we will discuss the pre-training
pipeline. As is common in contrastive SSL, the DINO
framework uses two networks: a so-called teacher network
parameterized by θt ∈ Θ, and a so-called student network
parameterized by θs ∈ Θ. During pre-training, the loss
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will encourage the student’s representation to align with the
teacher’s representation, even as the teacher is simultane-
ously updated using student weights; this is self-distillation,
and can be viewed as an optimization strategy or even im-
plicitly regularizing the objective (Chen & He, 2021).

In the pipeline, we process each image X in the following
way. First, we sample at random a view, or crop, vc, inde-
pendently of X; the view can either be a “global view” (i.e.,
a large crop) or a “local view” (i.e., small crop). We denote
Xc := vc(X) ∈ (RD×Nloc ∪ RD×Nglo). We also sample
a global view vg, and denote Xg := vg(X) ∈ RD×Nglo .1

Views are implemented in the same way as in DINO; they
are formally described in Appendix A for completeness.

The (local or global) view Xc is fed to the student network2

f cls
θs

to get zcls
s (Xc) ∈ Rd, while the global view Xg is fed

to the teacher network f cls
θt

to get zcls
t (Xg) ∈ Rd, i.e.:

zcls
s (Xc) := f cls

θs (Xc), zcls
t (Xg) := f cls

θt (Xg). (1)

Now, it is certainly possible to directly compare and evaluate
these features. However, DINO adds post-processing steps,
arguing that they improve performance and prevent collapse:

• They add weight-normalized linear layers (Salimans
& Kingma, 2016) hηDINO

s
, hηDINO

t
: Rd → Rm where

m≫ d, called the “DINO heads” and parameterized
by ηDINO

s , ηDINO
t , appended to the end of the student

and teacher networks respectively.

• They center the teacher-computed features using a
learned vector µ ∈ Rm.

• They take a temperature-weighted softmax of both fea-
tures to compute probability vectors in Rm, sometimes
called prototype scores, which they then can compare
using cross-entropy.

Mathematically, the post-processing steps to get probability
vectors for each view are as follows:

pcls
s (Xc) := softmax(hηDINO

s
(zcls

s (Xc))/τs) (2)

pcls
t (Xg) := softmax([hηDINO

t
(zcls

t (Xg))− µ]/τt) (3)

where τs, τt > 0 are temperature parameters for the student
and teacher respectively. Finally, the loss (to be minimized)
encourages pcls

s (Xc) and pcls
t (Xg) to be close using a cross-

entropy functional dCE, which effectively distills the teacher
into the student by aligning the predicted outputs:

LDINO := E[dCE(p
cls
t (Xg),p

cls
s (Xc))] (4)

1More precisely, let c be a random vector containing the bound-
aries of the crop, so that vc crops exactly the region supplied by c.
Analogous notation can be defined for g and vg .

2Note that the parameters θs and θt each contain a positional
encoding over all patches; when a view is fed through the network,
it receives an interpolated positional encoding of the view’s crop.

where the expectation is over X , the (local or global) view
vc, and the global view vg , and the function dCE is defined
via the cross-entropy as

dCE(p, q) := −
m∑
i=1

pi log qi. (5)

When training, DINO estimates the expectation in (4) by a
stratified plug-in estimator over a batch of sample images.
That is, to estimate the expectation, we condition on X then
estimate the conditional expectation E[dCE(·, ·) | X] via
plug-in using several different global views (usually two
global views, which play the role of the arbitrary view vc
and the global view vg) and several different local views,
and finally average over X to obtain the estimate. The
optimization of this estimated loss, too, is done in an ad-hoc
way; while all five parameters θs, θt, ηDINO

s , ηDINO
t ,µ are

updated at each iteration, they update in different ways:

• The student parameters θs and ηDINO
s are updated via

an iteration of a stochastic gradient descent (SGD)-type
algorithm, such as Adam, on the loss (4). The back-
propagation for the loss gradient is computed assuming
the teacher parameters θt, ηDINO

t , and µ are “frozen”
or constants (i.e., “stop-gradient”).

• The teacher parameters θt, ηDINO
t , and µ are updated

via exponentially moving averages (EMAs) of the
student weights θs, the student DINO head ηDINO

s ,
and the average output of teacher the DINO head
E[hηDINO

t
(zcls

t (Xg))] (in practice estimated over a
minibatch), respectively. Formally, for decay parame-
ters λ, ν ∈ [0, 1], at each iteration we compute θt ←
λθt + (1− λ)θs, ηDINO

t ← ληDINO
t + (1− λ)ηDINO

s ,
and µ← νµ+ (1− ν)E[hηDINO

t
(zcls

t (Xg))].

The decay parameters λ, ν and the temperature parameter τ
change along the optimization trajectory, and their schedules
are design decisions which impact convergence.

As previously mentioned, many of the ad-hoc methods and
choices described above are due to a tension: a trivial solu-
tion to optimizing (4) is to enforce that fθs and fθt collapse,
i.e., become or approximate the constant function, which
map each local and global view to the same feature z or
even to the same probability vector p. To explain why DINO
does not collapse, we wish to highlight the centering opera-
tion in (3), which computes batch statistics during its EMA
update, hence using negative samples and implicitly pushing
different samples’ features apart, even though the precise
conceptual mechanism by which this occurs is not clear
and involves a careful interaction between the centering
vector and temperature scaling (Caron et al., 2021). In-
deed, Caron et al. (2021) shows that collapsed solutions are
common without very carefully tuning the EMA schedule
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and temperature schedule, and arguing that the remaining
hyperparameters and choices would severely degrade the
performance if perturbed. A more in-depth discussion of the
tension, and the added complexity required to train a model
in spite of it, is in Appendix B. As we will see, if this tension
is alleviated in an alternative way, many hyperparameters
can be removed and the rest can be changed robustly.

2.2. From DINO to SimDINO

To go from DINO to SimDINO, we ask the question:

Can we just compare zcls
s (Xc) and zcls

t (Xg)?

If we could do this, then we could avoid the large DINO
head, the centering operation, the softmaxes, and the cross-
entropy based loss. However, the mechanism in DINO for
avoiding representation collapse via negative samples would
therefore be removed. Thus, we have a second question:

Can we efficiently use the negative samples’
features explicitly to enforce non-collapse?

For the first question, we argue that the most simple squared
Euclidean distance, namely

dℓ2(x,y) :=
1

2
∥x− y∥22 (6)

works at least as well as the cross-entropy-based functional
(5) applied to an affine transformation of the features, as in
(4). For the second question, we argue that we may directly
penalize the covariance of the features in order to avoid
collapse, as follows. For a hyperparameter ε > 0, the (total)
coding rate (Ma et al., 2007; Yu et al., 2020; Li et al., 2022)
of a symmetric positive semidefinite matrix Γ ∈ Rd×d is

Rε(Γ) :=
1

2
logdet

(
I +

d

ε2
Γ

)
, (7)

In words, Rε is an approximation to the rate distortion
with quantization error ε of a Gaussian random variable
with covariance Γ (and this approximation is perfect in the
limit ε → 0). More concretely, it is a measure of size of
the covariance, even if the underlying variables are non-
Gaussian. Thus one way to ensure non-collapse is to add
−Rε(Cov[z

cls
s (Xc) | vc ∈ Vglo]) as a regularizer (where

vc ∈ Vglo means that vc is a global view),3 yielding the loss

LSimDINO :=E[dℓ2(z
cls
t (Xg), z

cls
s (Xc))] (8)

− γRε(Cov[z
cls
s (Xc) | vc ∈ Vglo]).

3We only use global views’ features for the sake of efficiency. If
dℓ2 in (8) is small, then the local and global views’ student features
are close since they are both close to the global views’ teacher
features, so Cov[zcls

s (Xc)] ≈ Cov[zcls
s (Xc) | vc ∈ Vglo].

where γ > 0 is a hyperparameter. Note that
dℓ2(z

cls
t , zcls

s ) = 1− (zcls
s )⊤zcls

t since zcls
s , zcls

t ∈ Sd−1.

When training, similar to DINO, we estimate the expecta-
tion and covariance in (8) by a type of plug-in estimator.
Namely, the expectation is estimated similar to DINO, just
using dℓ2 instead of dCE. To estimate the coding rate, we
sub-sample several zcls

s (Xc) over both X and vc, estimate
Cov[zcls

s (Xc) | vc ∈ Vglo] on that sub-sample via plug-in,
estimate Rε of the population covariance by calculating it
on the sample covariance, then average the estimates over
all sub-samples. We conjecture that the latter estimator
has lower variance compared to the naive plug-in estimator
for Cov[zcls

s (Xc) | vc ∈ Vglo] as it is similar to variance-
reduction methods in statistics (Kahn & Marshall, 1953),
which we hypothesize might be a factor as to why SimDINO
can handle a smaller batch size than other contrastive SSL
methods that explicitly use negative samples but avoid col-
lapse using higher-variance or more implicit regularizers.

The overall pipeline is shown in Figure 1(b). Note that it is
much simpler than DINO. We provide pseudocode for the
training pipeline in Algorithm 1 in Appendix D.

After training, we use the teacher network for evaluation.

2.3. From DINOv2 to SimDINOv2

The pipeline of the DINOv2 framework (Oquab et al., 2023),
as shown in Figure 1(c), is built upon the DINO pipeline, and
has two main goals: first, learn an aggregate representation
which contains large-scale semantics of the input (i.e., the
goal of DINO); second, learn patch-based representations
which have fine-grained semantic information about each
patch and its local neighborhood. The main new ideas to
achieve this, drawn from the iBOT pipeline (Zhou et al.,
2021), are that the input to the student has some masked
patches, and that the loss also computes similarity of the
patch-based features. To see why this works, consider if
some patches are masked, and the model is able to predict
masked patches using their unmasked neighbors, then from
each patch the model can extract strong information about
the semantics of nearby patches, which is an idea similar
in spirit to masked autoencoding (He et al., 2022). Thus,
these two ideas from iBOT would furnish our model with
informative patch-based representations.

We now discuss the DINOv2 pipeline, before discussing our
modifications. While we have the same (“base”) views vc
and vg as before, we also consider a masked view vmc, which
computes vc but, if vc ∈ Vglo, subsequently replaces a frac-
tion α ∈ [0, 1] of the tokens in the view output with a learn-
able mask token xmask (as in (He et al., 2022), the mask
token is shared across all views). Similarly to previous nota-
tion, we denote Xmc := vmc(X) ∈ (RD×Nloc ∪RD×Nglo).

Now that we have this setup, we do similar operations to
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DINO pipeline, with some changes:

• There are additional “iBOT heads” for the student and
teacher, processing the patch-based features column-
wise (i.e., patch-wise), with weights ηiBOT

s , ηiBOT
t (cf

the “DINO head” with weights ηDINO
s , ηDINO

t ).

• The centering operation on teacher-output features is
performed on both the aggregate features and (column-
wise) on the patch-wise features.

• The centering operation uses three iterations of the
Sinkhorn-Knopp algorithm (Cuturi, 2013; Caron et al.,
2020), denoted below by SKC, instead of an EMA,
and is parameter-free but more expensive than simple
subtraction. Note that the Sinkhorn-Knopp algorithm
uses features from all images in each minibatch.

Let Zpatch and P patch be the patch-wise representations
and prototype scores respectively, and let zi ∈ Rd be the
ith column of Zpatch (and similar for pi → P patch). Then
we have (where 1 ≤ i ≤ Nglo):

(zcls
s (Xmc),Z

patch
s (Xmc)) := fθs(Xmc) (9)

(zcls
t (Xg),Z

patch
t (Xg)) := fθt(Xg) (10)

pcls
s (Xmc) := softmax(hηDINO

s
(zcls

s (Xmc))/τs) (11)

pi
s(Xmc) := softmax(hηiBOT

s
(zi

s(Xmc))/τs) (12)

pcls
t (Xg) := softmax(SKC[hηDINO

t
(zcls

t (Xg))]/τt) (13)

pi
t(Xg) := softmax(SKC[hηiBOT

t
(zi

t(Xg))]/τt). (14)

We then compute the loss using all such probability vectors:

LDINOv2 :=
1

2
E[dCE(p

cls
t (Xg),p

cls
s (Xmc))] (15)

+
1

2
E

[
1

Nglo

Nglo∑
i=1

dCE(p
i
t(Xg),p

i
s(Xmc))1i,mc

∣∣∣∣∣ vc = vg

]
− γ Entropy(zcls

s (Xmc) | vc ∈ Vglo),

where 1i,mc is 1 if patch i of Xc is masked by vmc and
0 otherwise, and the Entropy functional is the differen-
tial entropy; it plays a similar role as the coding rate Rε

in SimDINO (and shortly SimDINOv2) in ensuring non-
collapse. It is estimated by Oquab et al. (2023) using the
KoLeo estimator (Delattre & Fournier, 2017)) which explic-
itly uses negative samples. However, the KoLeo estimator is
a non-parametric estimator of the expectation of a function
of a high-dimensional probability density (Beirlant et al.,
1997), and so it has relatively poor sample efficiency (i.e.,
the required batch size to converge in practice is large).

We now greatly simplify the above pipeline using the same
ideas as introduced in SimDINO. Namely, we dispense with
the DINO/iBOT heads, the Sinkhorn-Knopp centering, and

the softmaxes, and compute the Euclidean distance-based
loss directly on normalized features. We obtain the loss

LSimDINOv2 :=
1

2
E[dℓ2(z

cls
t (Xg), z

cls
s (Xmc))] (16)

+
1

2
E

[
1

Nglo

Nglo∑
i=1

dℓ2(z
i
t(Xg), z

i
s(Xmc))1i,mc

∣∣∣∣∣ vc = vg

]
− γRε(Cov[z

cls
s (Xmc) | vc ∈ Vglo])

The same caveats as in SimDINO apply with respect to
how the expectations and covariances are estimated, and
the optimization and evaluation procedures carry over. We
provide pseudocode for the training pipeline in Algorithm 2
in Appendix D. In the sequel, we will show that these greatly
simplified designs actually help the model performance.

Optimal value for γ. In both the SimDINO loss (8) and
the SimDINOv2 loss (16), in order to aid learning while
making sure neither the distance term nor the regularizer
term dominates, we choose γ up to an absolute constant fac-
tor so that it balances the asymptotic order of the gradient
(Frobenius) norms of both terms. By the Cauchy-Schwarz
inequality, it suffices to equalize the norms of the gradients
of each term w.r.t. the features Z. Since the features are nor-
malized on the sphere, the gradient (Frobenius) norm of the
distance term is O(1). For the second term, assuming that
we use a batch size B, the gradient norm of the second term
is O(

√
dmin{d,B}/B). To make these equivalent, we

take γ = Θ(
√
B/(dmin{d,B})). The same rate holds for

SimDINOv2. While this choice of γ is ultimately a heuristic,
and the constant factor needs to be tuned, it helps to scale
SimDINO and SimDINOv2 in practice. Formal calculations,
including prescriptive choice for γ taking all parameters into
account, are provided in Theorems C.1 and C.2.

3. Experimental Verification
In this section, we empirically investigate and evaluate our
proposed SimDINO and SimDINOv2 models and compare
them to the original DINO and DINOv2 model families. In
particular, we examine their differences in training dynamics
and learned representation both quantitatively and qualita-
tively. Overall, our experiments show that our proposed
SimDINO model families can achieve better performance
and learn representations of higher quality than the original
DINO families while being significantly simpler and more
robust to variations in hyperparameters and architecture.

3.1. Experimental Setup

Model architecture. Since our method is directly built
upon DINO and DINOv2, we adopt settings as close as pos-
sible to the original method for fair comparison. Specifically,
for all inputs we set patch size to be 16; we use the small,
base, and large models of the ViT (Dosovitskiy, 2020) archi-
tecture as the backbone, which is connected to a projector
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composed of three MLP layers with a hidden size of 2048
and an output dimension of 256. The output features after
the projector are ℓ2 normalized. Specifically for original
(i.e., unsimplified) DINO models, these normalized features
are then fed to a weight-normalized linear layer that outputs
a high-dimensional (e.g., 65536) vector, before computing
the softmax and then the cross-entropy loss.

Datasets and optimization. For pretraining, we use the
ImageNet-1K dataset across all methods. For fair compari-
son, we closely follow the original works (Caron et al., 2021;
Oquab et al., 2023). We choose AdamW (Loshchilov, 2017)
as the optimizer and adopt the same optimization strategies
(e.g., learning rates, warm-up schedules). For multicrop
augmentation, we use 10 local views of resolution 96× 96
and 2 global views of resolution 224 × 224 for all experi-
ments. We provide more details on hyperparameter choices
in Appendix E. We also consider several downstream tasks.
Specifically, we evaluate our pretrained models on 1) un-
supervised object detection and segmentation on COCO
val2017 (Lin et al., 2014), 2) semantic segmentation on
ADE20K (Zhou et al., 2017), and 3) video object segmenta-
tion on DAVIS-2017 (Pont-Tuset et al., 2017).

3.2. Experimental Results

ImageNet Classification. We report the classification ac-
curacies on ImageNet-1k in Table 1. Following (Caron
et al., 2021), we evaluate both k-NN and linear accuracy
on the ViT backbones pretrained by the DINO model fam-
ilies and our simplified variants. We observe that under
both DINO and DINOv2 paradigms, our simplified methods
are able to outperform the original pipelines. Furthermore,
we observe that applying identical hyperparameter settings
from ViT-B to ViT-L results in instability and divergence in
DINO, while the same setup yields a steady improvement for
SimDINO. To better understand the optimization dynamics
of SimDINO, we visualize the evolution of accuracy during
training in Figure 2. It can be observed that performance of
SimDINO steadily improves as training progresses, while
optimization of DINO noticeably slows down, with even a
slight performance drop near the end of training. Together,
these results demonstrate our simplified pipelines’ stability
and ease of optimization compared to the originals.

Object Detection and Segmentation. To better under-
stand the learned representation, we evaluate the pretrained
models on segmentation and object detection tasks. Specif-
ically, we adopt MaskCut (Wang et al., 2023), an effec-
tive unsupervised approach of extracting features from a
frozen vision backbone for object detection and instance
segmentation. In Figure 3, we present qualitative segmen-
tation results by applying MaskCut on models trained with
both DINO and SimDINO. Both methods are observed to
produce meaningful segmentation results, confirming the
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Figure 2. Evolution of k-NN accuracy of ViT-B trained for 100
epochs using DINO and SimDINO paradigms on ImageNet-1K.
We omit earlier epochs of similar metrics for better visual clarity.

Table 1. Performance comparison on ImageNet-1K. SimDINO
and SimDINOv2 consistently outperform the original DINO and
DINOv2 model families. They are also more stable, while training
of DINO on ViT-L diverged (row 3).

Method Model Epochs k-NN Linear

DINO ViT-B 100 72.9 76.3
SimDINO ViT-B 100 74.9 77.3
DINO ViT-L 100 – –
SimDINO ViT-L 100 75.6 77.4

DINOv2 ViT-B 100 76.0 77.2
SimDINOv2 ViT-B 100 78.1 79.7
DINOv2 ViT-L 100 80.8 82.0
SimDINOv2 ViT-L 100 81.1 82.4

SwAV ViT-S 800 66.3 73.5
MoCov3 ViT-B 300 – 76.7

emerging properties similar to the original DINO when us-
ing our simplified algorithm. More qualitative results are
available in Appendix F.6. To quantitatively evaluate these
representation, we perform MaskCut on the COCO val2017
dataset and report our results in Table 2. These results show
SimDINO achieves much stronger performance on segmen-
tation and detection tasks than DINO when trained on the
same network (row 2 vs 3), and overall even outperforms
DINO trained on a smaller patch size4 (row 2 vs 4).

Semantic Segmentation on ADE20K. We evaluate our
proposed methods on the ADE20K semantic segmentation
task and report the results in Table 3 (column 3 & 4). Specif-
ically, we follow the linear evaluation protocol of (Zhou
et al., 2021), where we fix the pretrained backbone and
only finetune a linear layer on top of it. From the results,
we observe that our proposed SimDINO consistently out-
performs the original algorithms. In particular, on ViT-B,
SimDINOv2 is able to improve DINOv2 by 4.4@mIoU.

4When trained using DINO, ViT models with smaller patch
sizes tend to outperform those with larger ones on various tasks
including segmentation (Wang et al., 2023; Caron et al., 2021).
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Table 2. Unsupervised object detection and segmentation via
MaskCut evaluated on COCO val2017 under COCO’s official
evaluation protocol. SimDINO conclusively performs better than
the DINO at detection and segmentation metrics, comparable with
DINO with smaller path size (16 vs 8).

Detection ↑ Segmentation ↑
Method Model AP50 AP75 AP AP50 AP75 AP

SimDINO ViT-L/16 5.4 1.9 2.4 4.5 1.4 1.9
SimDINO ViT-B/16 5.2 2.0 2.5 4.7 1.5 2.0
DINO ViT-B/16 3.9 1.5 1.8 3.1 1.0 1.4

DINO ViT-B/8 5.1 2.3 2.5 4.1 1.3 1.8

These results suggest that our simplified methods lead to
representations favorable to dense prediction tasks.

DAVIS Video Object Segmentation. In Table 3, we also
provide evaluation results on DAVIS-2017 video instance
segmentation benchmark. We follow the same evaluation
protocol as in (Caron et al., 2021) and segment scenes be-
tween consecutive video frames with nearest neighbor. We
observe that our proposed SimDINO(v2) outperforms the
original methods on this task. One interesting observation
is that despite achieving much better k−NN accuracy, DI-
NOv2 generally underperforms the original DINO in this
task (and similarly for the simplified variants). A similar
phenomenon is noted in (Zhou et al., 2021), where this
discrepancy is found to be caused by the sensitivity of the
evaluation protocol itself (e.g., image resolution). In our
evaluation, we do not tune these individual factors and sim-
ply adopt the same setting across all models we consider.

More on Stability and Robustness. Apart from the ob-
served divergence on ViT-L in Table 1, we note that DINO
is sensitive to its pipeline-specific hyperparameters, as ev-
idenced in Table 6 (in Appendix F). To further verify the
stability of SimDINO, we experiment with training both
algorithms on a different dataset than ImageNet-1k. Speci-
ficlly, we train them on COCO train2017 (roughly 1/10-th
the size of ImageNet-1k), and report the results in Figure 4.
Under this setting, SimDINO vastly outperforms DINO. We
provide additional ablations on other factors (e.g. batch
sizes) in Appendix F. Together, these results demonstrate
the superior stability and robustness of SimDINO.

4. Related Work
In this section, we identify several previous works which
the SimDINO and SimDINOv2 methodologies are similar
to or build on. We have already discussed similarities to
DINO and DINOv2 in depth so we omit this comparison.

Siamese contrastive SSL. Siamese contrastive learning,
archetyped by SimCLR (Chen et al., 2020) and SimSiam
(Chen & He, 2021) among others, uses the same network

Table 3. Semantic segmentation on ADE20K and video object
segmentation on DAVIS-2017. For semantic segmentation, we
train a linear layer on the frozen pretrained backbone. On DAVIS,
we segment scenes between video frames using nearest neighbor
search. On both tasks, SimDINO(v2) consistently outperforms
their original counterparts.

Lin. Seg. ↑ Vid. Seg. ↑
Method Model mIoU mAcc (J&F)m Jm Fm

DINO ViT-B/16 33.1 41.9 63.0 61.5 64.4
SimDINO ViT-B/16 33.7 42.8 63.0 61.6 64.4
DINOv2 ViT-B/16 32.5 41.4 53.2 52.7 53.7
SimDINOv2 ViT-B/16 36.9 46.5 60.9 60.4 61.4
DINOv2 ViT-L/16 41.0 50.8 62.0 61.7 62.3
SimDINOv2 ViT-L/16 41.8 52.2 62.6 61.9 63.3

to encode different augmentations (i.e., views) of the same
input, and pushes the features of these augmentations to-
gether, similar to SimDINO. SimCLR uses explicit negative
samples in the loss, while SimSiam manipulates the loss gra-
dient structure using stop-gradients to avoid collapse. Both
methods’ losses measure alignment or difference via the
squared Euclidean distance (equivalently the dot product)
of the features. In contrast, SimDINO uses two separate
networks — the teacher and student — that update via self-
distillation. Furthermore, SimDINO uses the inner product
of features in the loss, but it also uses a coding rate regu-
larizer instead of implicitly contrasting negative samples or
using the more bespoke contrastive loss in SimCLR.

Explicit covariance regularization in SSL. There have
also been works that use explicit penalization of the first-
and second-order statistics of the features, such as VICReg
(Bardes et al., 2021). VICReg uses completely separate
networks to encode two augmentations of the same input
batch, and then explicitly penalizes the alignment of those
features (via Euclidean distance) as well as the features’
variance and covariance within the batch, aiming to whiten
the features as much as possible. In spirit, this is similar
to SimDINO, which also penalizes the alignment and the
features’ covariance, albeit using a different covariance reg-
ularizer and not penalizing the features’ variance. Also,
SimDINO uses self-distillation to train the teacher network,
while VICReg uses two separate networks.

Self-distillation in SSL. Several works such as MoCo
(He et al., 2020) and BYOL (Grill et al., 2020) train two
networks, a teacher and a student, via self-distillation by
setting the teacher weights to be an exponential moving
average of the student weights. While MoCo uses explicit
negative samples from previous batches in its InfoNCE loss
computed on a given batch, BYOL does not use negative
samples but instead manipulates the gradient structure (akin
to SimSiam) in order to prevent collapse, and it uses an extra
(“prediction”) module appended to the student network,
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Figure 3. Visualization of MaskCut segmentation results from DINO ViT-B/16 (row 1), SimDINO ViT-B/16 (row 2) and SimDINO
ViT-L/16 (row 3) on selected images.
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Figure 4. k-NN accuracy on ImageNet-1K of ViT-B trained on
COCO train2017 using DINO and SimDINO paradigms.

making the teacher and student asymmetric. SimDINO uses
self-distillation with the same architecture for teacher and
student, explicitly uses the simple Euclidean distance in the
loss, and explicitly uses the coding rate to prevent collapse.

Patch feature prediction in SSL. While most contrastive
SSL methods pick a single feature vector (say, of the cls
token) as the representation, recent contrastive learning ap-
proaches such as DINOv2, I-JEPA (Assran et al., 2023),
and C-JEPA (Mo & Tong, 2024) compute losses on the
features corresponding to each patch. In I-JEPA, there is
one local and one global view, whose crops are nested, and
the (Euclidean distance) loss is only computed on the patch
features. C-JEPA adds a VICReg-esque variance and co-
variance penalty to the objective of I-JEPA. In contrast, in
SimDINOv2, there are multiple local and global views, the
loss incorporates both patch-based and aggregate features,
and collapse is prevented by using a coding rate term.

Coding rate, and related regularizers. Several works
have used coding rate-related terms in the objective (Ma
et al., 2007; Yu et al., 2020; Dai et al., 2022; Tong et al.,
2022) as well as a way to evaluate quality of representations
(Yu et al., 2023; Pai et al., 2023; Wu et al., 2024; Yang et al.,
2024). The coding rate has thus been shown to provide a

powerful measure for non-collapse or expansion of the fea-
tures from a given batch. Other regularizers to accomplish
this include the VICReg-type regularizers and the MMCR
regularizer (Yerxa et al., 2023; Schaeffer et al., 2024).

5. Conclusion
In this work, we identify that the reasons for many empir-
ically motivated design choices in the original DINO and
DINOv2 are to avoid collapse of the learned representa-
tion. We show that these complicated design choices can be
significantly reduced or simplified by adding a coding-rate-
related regularization term. The resulting simplified models,
called SimDINO and SimDINOv2, are even better in terms
of performance for downstream tasks, and their pretraining
pipelines are much more robust to different settings and
hyperparameters, offering a Pareto improvement against the
DINO and DINOv2 model families. Our work demonstrates
the value of simplifying deep learning pipelines as well as
making tradeoffs as explicit as possible when designing
high-performance vision SSL models.

In light of these overarching contributions, there are several
possible opportunities for future work. On the theoreti-
cal side, our simplified framework provides an entry point
for studying the geometric properties of the global optima
of self-supervised learning losses. Further study in Ap-
pendix F.4 shows that in the framework of the paper, it is
possible to set up a self-supervised objective that does not
require self-distillation to optimize, making a theoretical
analysis much easier, while the resulting model is still quite
powerful and practically usable. On the empirical side, one
can apply the paradigm of making implicit design choices
more explicitly present in the loss to more self-supervised
learning frameworks, making existing pipelines more stable
and the resulting models of better performance.
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A. Formal Description of Local and Global Views
Each local view, say vℓ acts as follows, given an input image X of shape (C,H,W ). First, for a hyperparameter ploc ∈ [0, 1]
it crops a rectangular component from X of shape (C,Hℓ,Wℓ), where Hℓ and Wℓ are chosen such that HℓWℓ = plocHW ,
i.e., the crop is a fraction ploc of the whole image. Then the component is resized to shape (C, Sloc, Sloc), where Sloc is
a hyperparameter, and then divided into Nloc := S2

loc/P
2 square patches of shape (C,P, P ), where the patch size P is

a hyperparameter. Each patch is unrolled into a vector of length D := CP 2, and the Nloc unrolled vectors are placed in
raster order as columns to get the output Xℓ ∈ RD×Nloc . Each global view vg acts the same as a local view, except that the
corresponding hyperparameters pglo, Sglo are larger than their local counterparts ploc, Sloc (hence also Nglo vs. Nloc), while
the patch size P (hence dimension D) remains the same.5

We use these local and global views for training. For evaluation or inference, we do a similar procedure: given X of shape
(C,H,W ), we resize X proportionally so that its shorter edge is length Leval, then take a square crop from the center of
shape (C, Seval, Seval). This sequence is divided into Neval := S2

eval/P
2 square patches of length (C,P, P ); each patch is

unrolled into a vector of length D := CP 2, and the Neval unrolled vectors are placed in raster order as columns to get the
output Xe ∈ RD×Neval .

B. Complex Interactions in DINO and Their Removal
We wish to showcase a finer point about why the DINO pipeline is so unstable. Notice that

dCE(p, q) = −
m∑
i=1

pi log qi (17)

=

m∑
i=1

pi log(pi/qi)−
m∑
i=1

pi log pi (18)

= dKL(p, q) +H(p) (19)

where dKL is the KL divergence, and H is the entropy of a probability distribution. In other words, this objective is
minimized whenever p = q and both are one-hot vectors. Now consider the DINO objective:

LDINO = E[dCE(p
cls
t (Xg),p

cls
s (Xc))] = E[dKL(p

cls
t (Xg),p

cls
s (Xc)) +H(pcls

t (Xg))]. (20)

Suppose that, for example, hηDINO
s

and hηDINO
t

had ranges as a multiple of the all-ones vector, and µ were a constant
multiple of the ones vector. Then the first term in the loss would be minimized, but the second term would become as large
as possible (since both pcls would be just 1

m1m, i.e., probability vectors corresponding to the uniform distribution), so this
would not be the optimal solution in general. This implies that the learned hηDINO

s
and hηDINO

t
in general would not both be

degenerate. This enables the tradeoff between the EMA parameter λ and the temperature parameters τs, τt which enables
non-collapse. If the objective just involved the KL divergence and not the entropy term, or else had hηDINO

s
be degenerate

(manually set and frozen, for instance), or else didn’t have a carefully set tradeoff between λ, τs, τt, then the model would
collapse. However, SimDINO removes all of this complexity and replaces it with an explicit coding-rate-type term.

C. Theory for Hyperparameter Scaling
To develop estimates for how different terms in the loss scale with different batch sizes, we first introduce an empirical
version of the SimDINO loss. For a given optimization step, we:

• Sample a minibatch {X1, . . . ,XB}.

• For each sample Xb, draw Mglo global views viglo and Mloc local views vjloc. Define Xi
b,glo := viglo(Xb) and

Xj
b,loc := vjloc(Xb).

• Compute the features zcls
s (Xi

b,glo), z
cls
s (Xj

b,loc), and zcls
t (Xi

b,glo).

5Of course, we also need the patch size P to divide both the image sizes Sloc and Sglo.
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• Form the tensors Zcls
s ∈ RB×M×d,Zcls

t ∈ RB×Mglo×d where M := Mglo +Mloc, by

(Zcls
s )bi =

{
zcls
s (Xi

b,glo), if 1 ≤ i ≤Mglo,

zcls
s (X

i−Mglo

b,loc ), otherwise
, (Zcls

t )bi = zcls
t (Xi

b,glo) (21)

• Compute the loss

L̂SimDINO =
1

2BMMglo

B∑
b=1

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22 +
γ

Mglo

Mglo∑
i=1

Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)
, (22)

where for 1 ≤ i ≤Mglo we have (Zcls
s ):,i = [(Zcls

s )1,i, . . . , (Z
cls
s )B,i]

⊤ ∈ RB×d.

Our main theorem for SimDINO is the following.

Theorem C.1. The (Frobenius) gradient norm of (22) is

∥∇Zcls
s
L̂SimDINO∥F ≤

1√
M

+ γ ·
√
dmin{d,B}/B

2ε
. (23)

Proof. For the first term, we call upon Lemma C.4 which says that∥∥∥∥∥∥∇(Zcls
s )b

1

2

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
F

≤Mglo

√
M. (24)

This allows us to compute the gradient norm of the first term in (22) as∥∥∥∥∥∥∇Zcls
s

 1

2BMMglo

B∑
b=1

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
F

(25)

=
1

BMMglo

∥∥∥∥∥∥∇Zcls
s

1

2

B∑
b=1

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
F

(26)

≤ 1

BMMglo

B∑
b=1

∥∥∥∥∥∥∇Zcls
s

1

2

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
F

(27)

=
1

BMMglo

B∑
b=1

√√√√√ B∑
b′=1

∥∥∥∥∥∥∇(Zcls
s )b′

1

2

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
2

F

(28)

=
1

BMMglo

B∑
b=1

∥∥∥∥∥∥∇(Zcls
s )b

1

2

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22


∥∥∥∥∥∥
F

(29)

≤ 1

BMMglo

B∑
b=1

Mglo

√
M (30)

=
1√
M

. (31)

For the second term, we call upon Lemma C.6 which says that∥∥∥∥∥∇(Zcls
s ):,iRε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)∥∥∥∥∥
F

≤
√

dmin{d,B}/B
4ε

. (32)
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This allows us to compute the gradient norm of the second term in (22) as∥∥∥∥∥∥∇Zcls
s

 γ

Mglo

Mglo∑
i=1

Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)
∥∥∥∥∥∥
F

=
γ

Mglo

∥∥∥∥∥∥∇Zcls
s


Mglo∑
i=1

Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)
∥∥∥∥∥∥
F

(33)

≤ γ

Mglo

Mglo∑
i=1

∥∥∥∥∥∇Zcls
s
Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)∥∥∥∥∥
F

(34)

=
γ

Mglo

Mglo∑
i=1

√√√√Mglo∑
i′=1

∥∥∥∥∥∇(Zcls
s ):,i′

Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)∥∥∥∥∥
2

F

(35)

=
γ

Mglo

Mglo∑
i=1

∥∥∥∥∥∇(Zcls
s ):,iRε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)∥∥∥∥∥
F

(36)

≤ γ

Mglo

Mglo∑
i=1

1

2ε

√
dmin{d,B}

B
(37)

=
γ

2ε

√
dmin{d,B}

B
. (38)

Putting these two terms together via triangle inequality, we have that

∥∇Zcls
s
L̂SimDINO∥F ≤

1√
M

+
γ

2ε

√
dmin{d,B}

B
, (39)

as desired.

We can also come up with another result for SimDINOv2. This requires a slightly revised pipeline, as well as a different
loss. For a given optimization step, we:

• Sample a minibatch {X1, . . . ,XB}.

• For each sample Xb, draw Mglo global views viglo and Mloc local views vjloc. Define Xi
b,glo := viglo(Xb) and

Xj
b,loc := vjloc(Xb).

• For each sample Xb, draw Mglo masks mi
b and apply them to each global view. Define Xi

b,glo,mask := mi
b(X

i
b,glo),

and define 1i
b,k be the indicator variable of whether patch k is masked by mi

b.

• Compute the features zcls
s (Xi

b,glo,mask), Z
patch
s (Xi

b,glo,mask), z
cls
s (Xi

b,loc), z
cls
t (Xi

b,glo), and Zpatch
t (Xi

b,glo).

• Form the tensors Zcls
s ∈ RB×M×d,Zcls

t ∈ RB×Mglo×d, Zpatch
s,glo ∈ RB×Mglo×Nglo×d, Zpatch

t ∈ RB×Mglo×Nglo×d,
where M := Mglo +Mloc, by

(Zcls
s )bi =

{
zcls
s (Xi

b,glo,mask), if 1 ≤ i ≤Mglo,

zcls
s (X

i−Mglo

b,loc ), otherwise
, (Zcls

t )bi = zcls
t (Xi

b,glo) (40)

(Zpatch
s,glo )bi = Zpatch

s (Xi
b,glo,mask), (Zpatch

t )bi = Zpatch
t (Xi

b,glo). (41)

• Compute the loss

L̂SimDINOv2 =
1

2

{
1

2BMMglo

B∑
b=1

Mglo∑
i=1

M∑
j=1

∥(Zcls
t )bi − (Zcls

s )bj∥22 (42)

+
1

2BMgloNglo

B∑
b=1

Mglo∑
i=1

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n

}

14
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+
γ

Mglo

Mglo∑
i=1

Rε

(
(Zcls

s )⊤:,i(Z
cls
s ):,i

B

)
,

where for 1 ≤ i ≤Mglo we have (Zcls
s ):,i = [(Zcls

s )1,i, . . . , (Z
cls
s )B,i]

⊤ ∈ RB×d.

Our main theorem for SimDINOv2 is the following:
Theorem C.2. The (Frobenius) gradient norm of (42) is

∥∇Zcls
s
L̂SimDINOv2∥F ≤

1

2

(
1√
M

+

√
1− α

Nglo

)
+

γ

2ε

√
dmin{d,B}

B
. (43)

where (recall) α ∈ [0, 1] is the fraction of patches of the input global view which is masked out.

Proof. By the proof of Theorem C.1, the gradient norm of the first and third terms are known. So we study the second term.
We can invoke Lemma C.5, which tells us that for every b and i we have∥∥∥∥∥∥∇(Zpatch

s,glo )bi

1

2

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
F

=
√

(1− α)Nglo (44)

using the identity that for each (i, b) pair that

Nglo∑
n=1

1i
b,n = (1− α)Nglo. (45)

Then, it holds overall that∥∥∥∥∥∥∇Zs

 1

2BMgloNglo

B∑
b=1

Mglo∑
i=1

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
F

(46)

=
1

BMgloNglo

∥∥∥∥∥∥∇Zs

1

2

B∑
b=1

Mglo∑
i=1

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
F

(47)

≤ 1

BMgloNglo

B∑
b=1

Mglo∑
i=1

∥∥∥∥∥∥∇Zs

1

2

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
F

(48)

=
1

BMgloNglo

B∑
b=1

Mglo∑
i=1

√√√√√ B∑
b′=1

Mglo∑
i′=1

∥∥∥∥∥∥∇(Zpatch
s )b′i′

1

2

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
2

F

(49)

=
1

BMgloNglo

B∑
b=1

Mglo∑
i=1

∥∥∥∥∥∥∇(Zpatch
s )bi

1

2

Nglo∑
n=1

∥(Zpatch
t )bin − (Zpatch

s,glo )bin∥221i
b,n


∥∥∥∥∥∥
F

(50)

=
1

BMgloNglo

B∑
b=1

Mglo∑
i=1

√
(1− α)Nglo (51)

=

√
1− α√
Nglo

. (52)

Using the gradients computed in Theorem C.1 and the triangle inequality, it holds that

∥∇Zs
L̂SimDINOv2∥F ≤

1

2

(
1√
M

+

√
1− α

Nglo

)
+

γ

2ε

√
dmin{d,B}

B
(53)

as desired.
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Remark C.3. In the main body, in order to obtain a prescription for how to scale γ with the batch size B, we choose γ to
make the different terms in (22) and (42) have equal magnitude. Given the explicit rate in Theorem C.1, the value of γ
chosen in SimDINO is

γSimDINO = 2ε

√
B

dM min{d,B}
. (54)

Meanwhile using Theorem C.2, the value of γ chosen in SimDINOv2 is

γSimDINOv2 = ε

(
1√
M

+

√
1− α

Nglo

)√
B

dmin{d,B}
. (55)

If, for instance, we are just interested in scaling γ with the batch size B (so that ε, α,M,Nglo, d are held constant),
then γSimDINO and γSimDINOv2 have the same asymptotic order. In practice, we take these prescriptions for γ up to a
multiplicative constant, which is tuned on a single setting and can then be transferred to different settings.

C.1. Auxiliary Lemmas

Lemma C.4 (Scale of Gradient of Pairwise Distance Term). Let d,m, n be positive integers. Let A ∈ Rm×d and B ∈ Rn×d

have rows ai and bj which are unit-ℓ2-norm, i.e., ∥ai∥2 = ∥bj∥2 = 1 for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Then∥∥∥∥∥∥∇B

1

2

m∑
i=1

n∑
j=1

∥ai − bj∥22


∥∥∥∥∥∥
F

≤ m
√
n. (56)

Proof. Since all rows are normalized,

1

2

m∑
i=1

n∑
j=1

∥ai − bj∥22 = −
m∑
i=1

n∑
j=1

a⊤
i bj = −

[
m∑
i=1

ai

]⊤  n∑
j=1

bj

 (57)

= −(1⊤
mA)(1⊤

nB)⊤ (58)

= −1⊤
mAB⊤1n. (59)

A matrix calculus computation shows that

∇B

[
−1⊤

mAB⊤1n

]
= −1n1

⊤
mA. (60)

To bound the norm of this term, we have

∥ − 1n1
⊤
mA∥F = ∥1n1

⊤
mA∥F ≤ ∥1n1

⊤
m∥op∥A∥F . (61)

It is easy to show by matrix algebra that
∥1n1

⊤
m∥op =

√
mn, (62)

and that, since the rows of A are normalized,

∥A∥F =

√√√√ m∑
i=1

∥ai∥22 =
√
m · 1 =

√
m. (63)

Putting these together it holds that ∥∥∥∥∥∥∇B

1

2

m∑
i=1

n∑
j=1

∥ai − bj∥22


∥∥∥∥∥∥
F

≤ m
√
n (64)

as desired.
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Lemma C.5 (Scale of Gradient of Patchwise Distance Term). Let d, n be positive integers. Let A,B ∈ Rn×d have rows ai

and bj which are unit-ℓ2-norm, i.e., ∥ai∥2 = ∥bj∥2 = 1 for i, j ∈ {1, . . . , n}. Then∥∥∥∥∥∇B

{
1

2

n∑
i=1

∥ai − bi∥22

}∥∥∥∥∥
F

=
√
n. (65)

Proof. Since all rows are normalized,

1

2

n∑
i=1

∥ai − bi∥22 = −
n∑

i=1

a⊤
i bi = −

n∑
i=1

d∑
j=1

(A)ij(B)ij = − tr(AB⊤). (66)

A matrix calculus computation shows that
∇B[− tr(AB⊤)] = A. (67)

The Frobenius norm of this term can be explicitly calculated as

∥A∥F =

√√√√ n∑
i=1

∥ai∥22 =
√
n · 1 =

√
n. (68)

Putting this together, we obtain ∥∥∥∥∥∇B

{
1

2

n∑
i=1

∥ai − bi∥22

}∥∥∥∥∥
F

=
√
n, (69)

as desired.

Lemma C.6 (Scale of Gradient of Coding Rate Term). Let d, n be positive integers. We have

max
Z∈Rn×d

∥zi∥2=1 ∀i

∥∥∥∥∇ZRε

(
Z⊤Z

n

)∥∥∥∥
F

≤ 1

2ε

√
dmin{d, n}

n
(70)

where zi is the ith row of Z.

Proof. Let α := d/(nε2) and let f : Rn×d → R be defined by

f(Z) :=
1

2
logdet(I + αZ⊤Z), (71)

i.e., f(Z) = Rε(Z
⊤Z/n). Now, let r := min{d, n}. For any matrix M , let σi(M) be its ith largest singular value, for

i = 1, . . . , d. First, note that since ∥zi∥2 = 1 for all i, it holds

r∑
i=1

σi(Z)2 =

d∑
i=1

σi(Z)2 =

d∑
i=1

σi(Z
⊤Z) = tr(Z⊤Z) =

d∑
i=1

(Z⊤Z)ii =

d∑
i=1

∥zi∥2︸ ︷︷ ︸
=1

= d. (72)

Now, we can simplify the gradient. It holds

∇f(Z) = αZ(I + αZ⊤Z)−1. (73)

Thus, it holds that

∥∇f(Z)∥2F = tr([∇f(Z)][∇f(Z)]⊤) (74)

= α2 tr(Z(I + αZ⊤Z)−2Z⊤). (75)
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Using that the trace is the sum of singular values, it holds by taking the SVD of Z that

tr(Z(I + αZ⊤Z)−2Z⊤) =

r∑
i=1

σi(Z(I + αZ⊤Z)−2Z⊤) (76)

=

r∑
i=1

σi(Z)2

[1 + ασi(Z)2]2
. (77)

In this case we directly optimize over the singular values, obtaining the problem

max
Z∈Rn×d

∥zi∥2=1 ∀i

∥∇f(Z)∥F ≤ max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
. (78)

The function t 7→ t
(1+αt)2 on [0,∞) has a global maximum at t = 1

α , and the value is 1
4α . Therefore it follows that

max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
≤ max

x∈Rr

xi≥0 ∀i

r∑
i=1

xi

(1 + αxi)2
=

r

4α
. (79)

Unpacking this notation, we obtain

∥∇f(Z)∥2F ≤ α2 · r

4α
=

αr

4
=

dmin{d, n}
4nε2

. (80)

Taking square roots, it holds

∥∇f(Z)∥F ≤
1

2ε

√
dmin{d, n}

n
. (81)

Therefore, ∥∥∥∥∇ZRε

(
Z⊤Z

n

)∥∥∥∥
F

= ∥∇f(Z)∥F ≤
1

2ε

√
dmin{d, n}

n
(82)

as desired.

Remark C.7. It is possible that the inequality

max
Z∈Rn×d

∥zi∥2=1 ∀i

∥∇f(Z)∥F ≤ max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
. (83)

is met with equality; proving this would require exhibiting a Z fulfilling the constraints of the first problem such that it has
the prescribed singular values which solve the second problem. We do not need to do so here for the purposes of using the
bound (e.g., for learning rate scaling).
Remark C.8. While the quick-and-dirty bound

max
x∈Rr

xi≥0 ∀i∑r
i=1 xi=d

r∑
i=1

xi

(1 + αxi)2
≤ r

4α
, (84)

by way of ignoring the constraint
∑r

i=1 xi = d seems like it could significantly loosen the bound, we do not believe this is
the case. In particular, when 1/α ≤ d/r, note that setting x1 = · · · = xr−1 = 1/α and xr = d− (r− 1)/α sandwiches the
objective between (r − 1)/(4α) and r/(4α), so the maximum is at least the same asymptotic order, in the very reasonable
case that ε is small enough that 1/α ≤ d/r, i.e., using the definition of α, such that

1

α
≤ d

r
⇐⇒ ε2 ≤ d2

nmin{d, n}
⇐⇒ ε2 ≤ max

{
d

n
,
d2

n2

}
. (85)

Similar strategies should hold if we allow for an absolute constant c ≥ 1 such that 1/α ≤ cd/r, etc, relaxing the requirement
while preserving the asymptotic order of the LHS of (84).
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D. Training Pipeline Pseudocode
In this section we provide pseudocode for the training pipelines of SimDINO and SimDINOv2.

Algorithm 1 SimDINO training pipeline.

# fs, ft: student and teacher networks, this time outputting ONLY the cls token feature
# eps: coding rate regularization quantization hyperparameter
# gamma: coding rate regularization strength hyperparameter
# lam: teacher network EMA rate
ft.params = fs.params
for x in loader: # load a minibatch x of B samples

xg, xl = global_views(x), local_views(x) # (B, M_glo, N_glo, D), (B, M_loc, N_loc, D)

zsg, zsl = fs(xg), fs(xl) # student output (B, M_glo, d), (B, M_loc, d)
ztg = ft(xg) # teacher output (B, M_glo, d)

zs = cat([zsg, zsl], dim=1) # (B, M, d) where M = M_loc + M_glo

sq_dists = sum((zs.view(B,M,1,d) - ztg.view(B,1,M_glo,d)) ** 2, dim=3) # (B, M, M_glo)

zsg_bdim = zsg.transpose(0, 1) # (M_glo, B, d)
covs = zsg_bdim.transpose(1, 2) @ zsg_bdim / B # (M_glo, d, d)
R_eps = batch_logdet(I_d.unsqueeze(0) + d/(eps**2) * covs) # (M_glo)

loss = mean(sq_dists) - gamma * mean(R_eps)
loss.backward() # back-propagate

# student and teacher updates
update(fs) # SGD or Adam
ft.params = lam * ft.params + (1 - lam) * fs.params

E. Implementation Details
The training codes and hyperparameters for SimDINO and SimDINOv2 are derived from the released official settings in
DINO and DINOv2 separately, see Table 4 for detailed comparison. Notes that for SimDINOv2, we choose to use bfloat16
dtype in student backbone parameters and reductions for better numerical stability while other modules uses the same FSDP
mixed precision settings from DINOv2.

F. Additional Experiments
F.1. Ablations on Stability of DINO Training

In Table 6, we study the optimization behavior and stability of DINO by varying hyperparameters that are specific to
its pipeline. Specifically, we select teacher momentum, whether to apply normalization for the last layer, and teacher
temperature. We vary each of them and study their impact on DINO training. As shown in Table 6, moderate adjustments
for each component leads to divergence (during early training stages). These results suggest DINO training can be highly
unstable and requires careful tuning efforts.

F.2. Ablation Studies on Batch Sizes

We vary the batch sizes when training ViT-S using SimDINO and report the results in Table 7. We observe that SimDINO is
robust to the choice of batch sizes and can converge to reasonably good performance with a smaller batch size of 256.

F.3. Experiments on Longer Training

More training epochs in SSL typically lead to better performance. We provide the performance of SimDINO when doubling
the number of epochs in Table 8. Clearly, these results show the efficacy of longer training for SimDINO.
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Algorithm 2 SimDINOv2 training pipeline.

# fs, ft: student and teacher networks, this time outputting BOTH the cls token feature
and patch token features

# eps: coding rate regularization quantization hyperparameter
# gamma: coding rate regularization strength hyperparameter
# lam: teacher network EMA rate
# alpha: proportion of patches that get masked
ft.params = fs.params
for x in loader: # load a minibatch x of B samples

m = generate_mask(x, alpha) # boolean mask (B, M_glo, N_glo)

xg, xl = global_views(x), local_views(x) # (B, M_glo, N_glo, D), (B, M_loc, N_loc, D)

xmg = apply_mask(xg, m) # (B, M_glo, N_glo, D)

zsg, Zsg = fs(xmg)# student on masked global views (B, M_glo, d), (B, M_glo, N_glo, d)
zsl, Zsl = fs(xl) # student output on local views (B, M_loc, d), (B, M_loc, N_loc, d)

ztg, Ztg = ft(xg) # teacher output on global views (B, M_glo, d), (B, M_glo, N_glo, d)

zs = cat([zsg, zsl], dim=1) # (B, M, d), M = M_loc + M_glo

sq_dists = sum((zs.view(B,M,1,d) - ztg.view(B,1,M_glo,d)) ** 2, dim=3) # (B, M, M_glo)
patch_sq_dists = mean(sum((Zsg - Ztg) ** 2, dim=3) * m, dim=2) # (B, M_glo)

zsg_bdim = zsg.transpose(0, 1) # (M_glo, B, d)
covs = zsg_bdim.transpose(-2, -1) @ zsg_bdim / B # (M_glo, d, d)
R_eps = batch_logdet(I_d.unsqueeze(0) + d/(eps**2) * covs) # (M_glo)

loss = (mean(sq_dists) + mean(patch_sq_dists))/2 - gamma * mean(R_eps)
loss.backward() # back-propagate

# student and teacher updates
update(fs) # SGD or Adam
ft.params = lam * ft.params + (1 - lam) * fs.params
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F.4. DINO without Self-Distillation

Due to the explicit coding rate regularization, it is possible to train SimDINO without self-distillation. To validate this, we
train ViT-S models on ImageNet-1k by setting the teacher network to be the student network at each iteration, effectively
removing the EMA operation. Results are presented in Table 9. We can see that the original DINO collapses under this
setup for reasons discussed in Appendix B, while SimDINO is able to yield non-trivial performance. It is worth noting that
compared to training with full self-distillation, this variant primarily lags behind in terms of k-NN performance while the
gap in linear probe is significantly smaller.

F.5. Ablations on Loss Functions

To prevent representation collapse, we adopt the coding rate objective Rε in SimDINO and SimDINOv2. In this part,
we examine the effectiveness of the coding rate formulation and compare it with other loss functions that aim to prevent
collapse. Specifically, we swap the coding rate function with the following three widely-used objectives: (1) the vanilla
contrastive loss ℓcontrastive based on InfoNCE as in SimCLR (Chen et al., 2020), (2) the uniform loss ℓuniform proposed in
(Wang & Isola, 2020) that encourages the representations to be uniform on the unit sphere, (3) the Barlow Twins loss ℓbt
proposed in (Zbontar et al., 2021) that penalizes off-diagonal terms while promoting the on-diagonal terms on the covariance
matrix of learned representations. Results are presented in Table 5. We observe that the coding rate objective consistently
performs better than the other choices considered, validating our design.

F.6. Visualization of Attention Maps

Following (Oquab et al., 2023; Caron et al., 2021), we provide visualizations of self-attention maps of different models
for qualitative comparison. We use test images that do not appear during pretraining. More concretely, we compute and
visualize the average of self-attention maps across all attention heads from the last layer in Figure 5. It is clear from the
attention maps that all methods studied in our paper lead to prominent segmentation properties that emerge from vision
self-supervised learning.
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Image

DINO ViT-B/16

SimDINO ViT-B/16

DINOv2 ViT-B/16

SimDINOv2 ViT-B/16

SimDINO ViT-L/16

DINOv2 ViT-L/16

SimDINOv2 ViT-L/16

Figure 5. Visualization of average self-attention maps obtained from both DINO(v2) and SimDINO(v2) algorithms.
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Hyperparameter SimDINOv2 DINOv2 SimDINO DINO

Model

Patch size 16
Register tokens 4 0
Pos-embedding anti-alias True False
Init layer scale 0.1 1e-5 -
Drop path rate 0.3 0.1
Weight normalize last layer removed True removed True
Output prototypes K removed 65536 removed 65536

Pipeline

Init EMA momentum 0.9 0.992 0.996
Centering temperature removed 0.07 removed 0.07
Warm-up temperature removed 0.04 removed 0.04
Warm-up temperature epochs removed 30 removed 30
iBOT sample prob. 0.5 -
iBOT mask ratio 0.1-0.5 -
iBOT head untying False -
Koleo loss weight removed 0.1 -

Data

Global crops scale 0.4 - 1
Local crops scale 0.05 - 0.4
Local crops number 10
Global crops size 224
Local crops size 96

Optim.

Batch size 128x8 64x8
Epochs 100
Warm-up epochs 10
Freeze last layer epochs removed 1 removed 1
Learning rate 0.004 0.002
Layerwise lr decay 0.9 -
Weight decay 0.04
Weight decay end 0.4
Gradient clip 3.0 0.3

Table 4. Training hyperparameters used in the experiments

Objectives to prevent collapse k-NN Linear

contrastive loss ℓcontrastive 79.4 81.0
uniform loss ℓuniform 77.2 82.1
Barlow Twins loss ℓbt - -
coding rate loss Rε (ours) 81.1 82.4

Table 5. Ablations on Loss Functions. We evaluate ViT-L pretrained on ImageNet-1k for 100 epochs by swapping the coding rate
function in SimDINOv2 with other choices of collapse-prevention objectives. Barlow Twins loss causes representation collapse in our
experiments.
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Table 6. Sensitivity of DINO on selected hyperparameters. We pick three DINO-specific hyperparameters (i.e. teacher momentum,
last-layer head normalization, teacher temperature) of the official configuration in (Caron et al., 2021) to study their impact. Varying each
one leads to divergence in early training.

Config Mom. Norm. Temp. k-NN

official (400ep) 0.996 ✓ 0.04→ 0.07 76.1
0.90 ✓ 0.04→ 0.07 NaN
0.996 × 0.04→ 0.07 NaN
0.996 ✓ 0.07 NaN

Batch size 256 512 1024

k-NN 68.3 69.7 69.6

Table 7. Effect of batch sizes. We evaluate k-NN accuracy of ViT-S pretrained on ImageNet-1k for 100 epochs.

Method Epochs k-NN Linear

DINO 100 72.9 76.3
SimDINO 100 74.9 77.3

DINO 200 73.6 77.1
SimDINO 200 76.0 77.7

DINO* 400 76.1 78.0

Table 8. Effect of training epochs. We evaluate ViT-B pretrained on ImageNet-1k for 100, 200, and 400 epochs. (DINO* 400 epochs
evaluated on provided checkpoint )

Method Model self-distillation Epochs k-NN Linear

DINO ViT-S × 100 – –
SimDINO ViT-S × 100 58.6 68.0

SimDINO ViT-S ✓ 100 69.7 73.6

Table 9. Performance on ImageNet-1K without self-distillation.
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