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Abstract

Multimodal large language models (MLLMs) have shown excellent performance
in tasks that combine natural language and visual information. However, they
still suffer from hallucinations, where they generate incorrect or false informa-
tion, especially in open-world environments. This study proposes a method that
combines reinforcement learning and contrastive learning to alleviate the hallucina-
tion problem in MLLMs. By introducing Hallucination-Augmented Contrastive
Learning (HSCL), we utilize false text as hard negative samples to strengthen
the alignment between visual and textual representations. Additionally, within a
reinforcement learning framework, we dynamically adjust the model in open-world
environments to further reduce hallucinations. Experimental results demonstrate
that the proposed method effectively reduces hallucination rates across multiple
benchmark datasets and significantly improves overall model performance.

1 Introduction

In recent years, multimodal large language models (MLLMs) have demonstrated exceptional capabili-
ties in understanding and generating across modalities by integrating visual and linguistic information.
However, MLLMs still face the challenge of generating hallucinations, where the content generated
does not align with the actual visual input or is entirely fabricated.[1] Hallucinations not only impact
the accuracy of these models but also undermine their reliability in practical applications. This prob-
lem is particularly pronounced in open-world environments, where models must deal with previously
unseen data and scenarios, greatly limiting the utility of MLLMs.[2]

Existing research has primarily focused on improving the alignment between visual and textual
representations. However, due to the significant semantic gap between modalities, these methods have
shown limited effectiveness in addressing hallucinations. On the other hand, reinforcement learning,
a method effective for adjusting model behavior in dynamic environments, has shown potential across
various fields but has been less explored for mitigating hallucinations in MLLMs.[3]

To address this issue, this study proposes a framework that combines Hallucination-Augmented
Contrastive Learning (HSCL) and reinforcement learning, aiming to reduce the hallucination rate
of MLLMs in open-world environments. Specifically, HSCL optimizes the alignment between
visual and textual representations by using hallucinated text as hard negative samples, while the
reinforcement learning framework dynamically adjusts the model’s generation behavior, further
reducing the occurrence of hallucinations.[4, 5, 6]

Contributions of this paper are as follows:
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• We introduce a method that uses hallucinated text as negative samples to strengthen the
alignment between visual and textual representations, thereby reducing the risk of generating
false information.

• We apply reinforcement learning in open-world environments, dynamically adjusting the
model’s behavior to further reduce the occurrence of hallucinations.

• The proposed method is validated across multiple benchmark datasets, demonstrating
significant improvements in the model’s adaptability and overall performance.
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Figure 1: This diagram depicts a reinforcement learning framework where an agent is fine-tuned
through adaptive prompts and guidance, utilizing both an Adapter LM and a Decision LLM, with
contrastive learning in a dynamic environment.

2 Related Work

The hallucination problem in multimodal large language models has garnered significant attention in
recent research. Previous solutions have typically been based on representation alignment and model
structure optimization. For example, Li et al. (2021) proposed a method to reduce hallucinations
through a vision-language alignment model, which enhances cross-modal consistency by contrastive
learning of visual and textual representations during training, thereby reducing the probability of
generating false information. Wang et al. (2022) adopted a self-supervised learning-based model
that incorporates noise adversarial training to enhance model robustness and reduce the frequency of
hallucinations. Zhang et al. (2023) proposed a multi-level visual feature extractor combined with text
generation tasks, enabling the model to better understand multimodal information in complex scenes,
thereby lowering the risk of hallucinations. Liu et al. (2023) introduced a knowledge graph-based
multimodal model that integrates external knowledge into the generation process, improving the
authenticity and accuracy of the generated content. [7, 8, 9, 10, 11]

Although previous methods have addressed the hallucination problem in MLLMs to some extent,
they have overlooked the dynamic adaptability of models in open-world environments. Therefore,
we propose a framework combining Hallucination-Augmented Contrastive Learning (HSCL) and
reinforcement learning, aiming to mitigate the hallucination problem in open-world environments by
dynamically adjusting model behavior and enhancing the alignment of visual-text representations,
achieving promising results.[12, 13, 14, 15, 16, 17]
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3 Methodology

This section provides a comprehensive and detailed description of our proposed framework, which is
designed to address the challenge of hallucination in multimodal large language models (MLLMs),
particularly in open-world environments. The framework integrates Hallucination Suppression
Contrastive Learning (HSCL) with a reinforcement learning approach, forming a robust method to
mitigate hallucination issues and enhance the reliability and accuracy of MLLMs. The methodology
is structured into two key components: Hallucination Suppression Contrastive Learning (HSCL) and
Reinforcement Learning Optimization. Each component is designed to tackle specific aspects of
the hallucination problem, ensuring that the model remains accurate and consistent across various
contexts.(From Fig.1)

Algorithm 1 HSCL-RL Algorithm
Input: Visual input I , Textual input T , Hallucinated Text Th

Output: Optimal Policy π∗ that minimizes hallucinations
1: Initialize visual encoder Vθ, language model Lβ , projection head Fα, policy network πθ, and

replay buffer D
2: Encode visual input: v ← Vθ(I)
3: Encode textual input: t← Lβ(T )
4: Encode hallucinated text: th ← Lβ(Th)
5: Project visual representation: v′ ← Fα(v)
6: Compute cosine similarities:

sim(v′, t)← v′ · t
∥v′∥∥t∥

sim(v′, th)←
v′ · th
∥v′∥∥th∥

7: Compute HSCL loss:

LHSCL ← − log

(
exp(sim(v′, t)/τ)

exp(sim(v′, t)/τ) + exp(sim(v′, th)/τ)

)
8: Initialize state s0 ← {v, t}, action a0 ← initial action
9: for each episode do

10: for each time step t do
11: Select action at ∼ πθ(at|st)
12: Execute action at, observe next state st+1 and reward rt ← −LHSCL

13: Store transition (st, at, rt, st+1) in replay buffer D
14: Update policy πθ using policy gradient:

θ ← θ + α∇θEπ

[
T∑

t=0

γtrt

]
15: Update state: st ← st+1

16: end for
17: end for
18: return Optimal policy π∗

3.1 Hallucination Suppression Contrastive Learning (HSCL)

In the realm of multimodal large language models, one of the fundamental challenges is the significant
modality gap that often exists between visual and textual representations. This gap can lead to
discrepancies during text generation, manifesting as hallucinations—where the generated text does
not accurately reflect the visual input. To mitigate this issue, we introduce Hallucination Suppression
Contrastive Learning (HSCL). The core idea behind HSCL is to enhance the alignment between
visual and textual representations by incorporating false textual descriptions, known as hard negatives,
into the learning process. These hard negatives act as challenging examples that force the model
to learn more discriminative features, thus improving its ability to distinguish between correct and
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incorrect textual descriptions. This approach is crucial for reducing the occurrence of hallucinations
and ensuring that the generated text is both accurate and reliable, especially in complex, open-world
scenarios where the model may encounter novel and unexpected inputs.

3.1.1 Modality Gap in Representation Space

Consider an image-text pair (I, T ), where I represents the image, and T denotes the corresponding
textual description. The image I is processed by a visual encoder Vθ, which converts it into a
visual representation v = Vθ(I). Similarly, the textual description T is processed by a language
model Lβ , resulting in a textual representation t = Lβ(T ). However, these representations—v and
t—often reside in different regions of the embedding space, leading to a modality gap. This gap is
characterized by a lack of semantic alignment between the visual and textual modalities, making it
difficult for the model to generate text that accurately reflects the visual content. Addressing this gap
is critical for improving the performance of MLLMs in tasks that require precise integration of visual
and textual information.

To bridge this modality gap, we introduce a projection head Fα. This projection head maps the visual
representation v into the textual representation space, producing a transformed visual representation
v′ = Fα(v). The transformed representation v′ is expected to be more semantically aligned with the
textual representation t. The similarity between these representations is then measured using a cosine
similarity function:

sim(v′, t) =
v′ · t
∥v′∥∥t∥

This similarity measure plays a crucial role in determining how well the visual and textual repre-
sentations are aligned. By optimizing this similarity, the model is encouraged to produce visual
representations that are more compatible with the corresponding textual descriptions, thereby re-
ducing the likelihood of hallucinations. This approach is essential for improving the robustness of
MLLMs, particularly in scenarios where the visual content is complex or ambiguous.

3.1.2 Loss Function for Hallucination Suppression Contrastive Learning

To further enhance the alignment between visual and textual representations, we employ contrastive
learning, a powerful technique that has been widely used in various machine learning tasks. In the
context of HSCL, contrastive learning is specifically adapted to address the challenge of hallucination
suppression. The key idea is to use hallucinated text as a hard negative sample. These hallucinated
descriptions are intentionally designed to be incorrect or misleading, forcing the model to learn more
robust features that can distinguish between accurate and inaccurate textual descriptions.

Given an image I and its corresponding textual description T , we generate a hallucinated textual
description Th that does not match the image I . The representation of this hallucinated text is denoted
as th = Lβ(Th). The contrastive learning loss function is then defined as:

LHSCL = − log
exp(sim(v′, t)/τ)

exp(sim(v′, t)/τ) + exp(sim(v′, th)/τ)

Here, τ is a temperature parameter that controls the separation between the positive and negative
samples. This loss function is designed to maximize the similarity between the visual representation
v′ and the correct textual representation t, while simultaneously minimizing the similarity between the
visual representation v‘and the hallucinated textual representation th. By doing so, the model learns
to associate the correct textual descriptions more strongly with the visual inputs, thereby reducing the
likelihood of generating hallucinations. This approach is particularly effective in scenarios where the
model is exposed to diverse and challenging inputs, as it encourages the model to focus on the most
relevant features for accurate text generation.

3.2 Reinforcement Learning Framework

In open-world environments, the complexity of the data and the unpredictability of the scenes present
significant challenges for multimodal models. Hallucination issues are particularly exacerbated in
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such settings, as the model is likely to encounter inputs that differ significantly from those seen during
training. To address this challenge, we integrate a reinforcement learning (RL) framework into our
methodology. This framework allows the model to dynamically adjust its generation behavior based
on the context, thereby reducing the occurrence of hallucinations. The RL framework is designed to
complement the HSCL component by providing an additional mechanism for refining the model’s
behavior in real-time, ensuring that the generated text remains accurate and consistent with the visual
input.

3.2.1 Markov Decision Process Modeling

We model the text generation process of MLLMs as a Markov Decision Process (MDP), a mathemati-
cal framework commonly used in reinforcement learning. In this framework, the state st represents
the contextual information available at time step t, which includes both the visual and textual inputs
up to that point. The action at corresponds to the next fragment of text to be generated by the
model. The reward rt is a scalar value that reflects the correctness and relevance of the generated
text fragment. The objective of the model is to learn a policy π(at|st) that maximizes the expected
cumulative reward, defined as:

J(π) = Eπ

[
T∑

t=0

γtrt

]

Here, γ is a discount factor that balances the trade-off between short-term and long-term rewards.
This formulation allows the model to take into account not only the immediate consequences of its
actions but also their long-term impact on the overall text generation process. By optimizing this
objective, the model learns to generate text that is both accurate and coherent, reducing the likelihood
of hallucinations even in complex and unfamiliar scenarios.

3.2.2 Hallucination Reward Signal

A critical component of the RL framework is the reward signal, which guides the model towards
generating accurate and reliable text. To specifically address the issue of hallucinations, we design a
hallucination reward signal rt based on the HSCL loss function. The intuition behind this reward
signal is straightforward: if the text fragment generated by the model at time step t has high similarity
to the correct text (i.e., it minimizes the HSCL loss), it receives a higher reward; conversely, if the
generated text is more similar to the hallucinated text (i.e., it has a higher HSCL loss), it receives a
lower reward. The reward is formally defined as:

rt = −LHSCL

This negative HSCL loss as a reward signal incentivizes the model to minimize the HSCL loss
throughout the text generation process, thereby reducing the chances of generating hallucinations. By
incorporating this reward into the RL framework, the model is continuously encouraged to focus on
generating text that is both accurate and contextually appropriate, even when faced with challenging
and novel inputs. This approach ensures that the model remains robust across a wide range of
scenarios, making it well-suited for deployment in open-world environments.

3.2.3 Policy Optimization via Reinforcement Learning

To optimize the text generation policy, we employ the policy gradient method, a widely used technique
in reinforcement learning. The policy gradient theorem provides a mechanism for updating the policy
parameters θ to maximize the expected cumulative reward. Specifically, the gradient of the objective
function with respect to the policy parameters is given by:

∇θJ(π) = Eπ

[
T∑

t=0

∇θ log π(at|st; θ) ·Rt

]

where Rt is the cumulative reward starting from time step t. This gradient is used to update the
policy parameters in the direction that maximizes the expected cumulative reward. By iteratively
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Table 1: Comparison of MLLMs on MMHal-Bench.

Kosmos-2 LLaVA1.57B-
HACL

miniGPT-
47B-HACL

Ours
(HSCL-RL)

Overall Score ↑ 1.71 2.14 (↑ 0.05) 1.81 (↑ 0.31) 2.15 (↑ 0.07)
Hallucination Rate ↓ 0.68 0.50 (↓ 0.02) 0.64 (↓ 0.06) 0.48 (↓ 0.04)
Attribute 2.00 2.95 1.22 3.00
Adversarial 0.24 2.15 1.85 2.20
Comparison 1.42 2.29 2.23 2.35
Counting 1.67 1.97 1.74 2.00
Relation 1.66 1.53 2.13 1.55
Environment 2.67 1.98 2.48 2.00
Holistic 2.50 2.02 1.02 2.05
Other 1.35 2.19 1.58 2.25

applying this update, the model learns to generate text that maximizes the reward, which corresponds
to minimizing the HSCL loss and thus reducing the likelihood of hallucinations. This optimization
process is critical for ensuring that the model can adapt its behavior in real-time, making it capable
of handling the dynamic and unpredictable nature of open-world environments. Through this
combination of HSCL and reinforcement learning, our proposed framework effectively mitigates
hallucination issues while maintaining high performance across a variety of multimodal tasks.

4 Experiments

In this section, we evaluate the performance of the proposed HSCL-RL method across different
settings. We begin by describing the experimental setup, including the datasets, baseline models,
and evaluation metrics. We then present the results on multimodal hallucination mitigation using the
MMHal-Bench dataset and learning efficiency in the Crafter environment [1, 2, 3, 4].

4.1 Experimental Setup

Datasets and Environment: We use the MMHal-Bench dataset, which is specifically designed
for evaluating multimodal large language models (MLLMs) in open-world scenarios. This dataset
includes diverse tasks that require models to align visual and textual inputs accurately. Additionally,
we conduct experiments in the Crafter environment, a challenging reinforcement learning environment
where agents must complete a series of tasks with varying difficulty, emphasizing both learning
efficiency and task completion.[38, 29, 40, 41]

Baselines: For comparison, we select the following baselines: Kosmos-2, a robust multimodal model
known for its performance but prone to hallucinations in complex scenarios; LLaVA1.57B-HACL,
which integrates hallucination-augmented contrastive learning (HACL) with a large vision-and-
language model to reduce hallucinations; and miniGPT-47B-HACL, a smaller, computationally
efficient GPT-based model also augmented with HACL, balancing performance with reduced compu-
tational costs.[42, 43, 44, 45, 46, 47]

Evaluation Metrics: We evaluate the models using three primary metrics: Overall Score, which
assesses the model’s performance across all tasks; Hallucination Rate, specifically for MMHal-
Bench, measuring the frequency of incorrect or fabricated outputs; and Task-Specific Metrics such
as accuracy and precision, which provide insights into performance on specific tasks like attribute
alignment and adversarial scenarios.[48, 49]

4.2 Multimodal Hallucination Mitigation on MMHal-Bench

To assess the hallucination mitigation capabilities of HSCL-RL, we conduct experiments on the
MMHal-Bench dataset, a challenging benchmark designed to evaluate the performance of multimodal
large language models (MLLMs) in open-world scenarios. Table 1 presents a comparative analysis of
HSCL-RL against three baseline models: Kosmos-2, LLaVA1.57B-HACL, and miniGPT-47B-HACL.
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Table 2: Performance comparison between HSCL-RL and baselines in terms of score and reward
metrics.

Method Type Method Score (%) Reward
HSCL-RL HSCL-RL (@5M) 30.5 ± 1.5 13.5 ± 1.0

HSCL-RL (@1M) 17.2 ± 1.3 13.0 ± 1.2
LLM-based methods Reflexion (GPT-4) 11.7 ± 1.4 9.1 ± 0.8

ReAct (GPT-4) 8.4 ± 1.2 7.4 ± 0.9
Vanilla GPT-4 3.5 ± 1.5 2.6 ± 1.6

RL methods DreamerV3 14.5 ± 1.6 11.8 ± 1.9
PPO 4.8 ± 0.3 4.1 ± 1.2

Rainbow 4.4 ± 0.2 5.0 ± 1.5
Plan2Explore 2.1 ± 0.1 2.1 ± 1.5

RND 2.2 ± 0.3 0.7 ± 1.3

Additional references Human Experts 50.5 ± 6.8 14.3 ± 2.3
SPRING (+prior) 27.3 ± 1.4 12.3 ± 0.9

Reflexion (GPT-4-Vision) 12.8 ± 1.0 10.3 ± 1.3
Random 1.8 ± 0.0 2.1 ± 1.5

HSCL-RL achieves the highest overall score of 2.15 (↑ 0.07), outperforming all baselines. This
indicates a superior ability to handle multimodal tasks effectively. More importantly, HSCL-RL
exhibits the lowest hallucination rate at 0.48 (↓ 0.04), demonstrating its ability to significantly
reduce the generation of incorrect or false information. This improvement is particularly noteworthy
when compared to the previous best-performing model, LLaVA1.57B-HACL, which achieved a
hallucination rate of 0.50. The detailed performance metrics across various categories, such as
attribute alignment and adversarial robustness, further highlight HSCL-RL’s capability to maintain
high accuracy while minimizing hallucinations.

4.3 Learning Performance in the Crafter Environment

We further evaluate the learning performance of HSCL-RL in the Crafter environment, a complex
reinforcement learning setting introduced by hafner. The experiments involve training the models
for both 5 million and 1 million steps, with results derived from 500 inference episodes. Table 2
shows the performance comparison of HSCL-RL with several LLM-based methods, RL methods,
and additional references.[5]

HSCL-RL outperforms all baselines, achieving a score of 30.5% ± 1.5% with a reward of 13.5 ±
1.0 after 5 million steps, which is significantly higher than the best LLM-based method, Reflexion
(GPT-4), which scored 11.7% ± 1.4%. Even after only 1 million steps, HSCL-RL maintains a
competitive edge with a score of 17.2% ± 1.3% and a reward of 13.0 ± 1.2. These results demonstrate
the efficiency of HSCL-RL in learning from fewer iterations while still achieving higher rewards,
underscoring its effectiveness in reinforcement learning tasks.

4.4 Achievement Completion Analysis

Table 3 provides an analysis of the number and depth of achievements completed by HSCL-RL
compared to other methods in the Crafter environment. HSCL-RL successfully completes all 22
achievements, reaching the maximum achievement depth of 8. This full completion not only surpasses
other methods such as DreamerV3 and Reflexion but also highlights HSCL-RL’s capability to deeply
explore and effectively navigate the task environment.

5 Conclusion

This study proposes an innovative approach that combines Hallucination Suppression Contrastive
Learning (HSCL) with reinforcement learning to effectively mitigate the common issue of hallucina-
tions in open-world multimodal large language models (MLLMs). Hallucinations, where the text
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Table 3: Numbers and depths of achievements that can be completed by different methods.

Method Achievements (out of 22) Achievement Depth (max 8)
HSCL-RL 22 8
DreamerV3 19 6
Reflexion 17 5

generated by the model does not correspond to the actual visual input or is entirely fabricated, not
only affect the accuracy of MLLMs but also undermine their reliability in real-world applications.
This problem is particularly severe in open-world scenarios, where models face challenges from
unseen data and environments. By introducing HSCL, the study treats hallucinatory text as hard
negative samples to reinforce the alignment between visual and textual representations, thereby effec-
tively reducing the occurrence of hallucinations. Additionally, the reinforcement learning framework
dynamically adjusts the model’s generation strategy, enabling it to better adapt to the complex and
variable open-world environment, further lowering the likelihood of hallucinations. We conducted
systematic experiments on several benchmark datasets to validate the proposed approach, and the
results demonstrate that the combination of HSCL and reinforcement learning significantly reduces
the incidence of hallucinations. Furthermore, the experiments show that this method also achieves
notable improvements in overall model performance.
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