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Abstract

Despite extensive research, physics-informed neural networks (PINNs) are still
difficult to train, especially when the optimization relies heavily on the physics
loss term. Convergence problems frequently occur when simulating dynamical
systems with high-frequency components, chaotic or turbulent behavior. In this
work, we discuss whether the traditional PINN framework is able to predict chaotic
motion by conducting experiments on the undamped double pendulum. Our results
demonstrate that PINNs do not exhibit any sensitivity to perturbations in the initial
condition. Instead, the PINN optimization consistently converges to physically
correct solutions that violate the initial condition only marginally, but diverge
significantly from the desired solution due to the chaotic nature of the system. In
fact, the PINN predictions primarily exhibit low-frequency components with a
smaller magnitude of higher-order derivatives, which favors lower physics loss
values compared to the desired solution. We thus hypothesize that the PINNs
“cheat” by shifting the initial conditions to values that correspond to physically
correct solutions that are easier to learn. Initial experiments suggest that domain
decomposition combined with an appropriate loss weighting scheme mitigates this
effect and allows convergence to the desired solution.

1 Introduction

Physics-informed neural networks (PINNs) [[1}[2] are an emerging class of physics-enhanced machine
learning techniques that provide a mesh-free and time-continuous approach to solving forward and
inverse problems governed by differential equations. PINNs seamlessly integrate knowledge about
a physical system into a neural network model by incorporating the residuals of the governing
differential equations via an additional physics-based loss function. The physics loss acts as a
regularization term, penalizing solutions that violate the physical laws of the underlying system. This
approach has been proven successful in numerous applications [3} 4} 15} 6L [7, 18,19} (10,9} 11], including
the simulation of dynamical systems.

However, the prediction accuracy of PINNs relies on the optimization of the multi-objective cost
function consisting of the data and physics-based loss term which encode the initial conditions (ICs)
and governing differential equations, respectively. Several studies have identified these competing
loss terms as one cause of severe convergence problems [12} [13| [14], proposing various manual
or adaptive loss weighting schemes. Still, PINNs frequently struggle to solve problems for large
computational domains [[15 16} (14} [17]. Additionally, the spectral bias [18} (19} 20, 21] was shown
to cause neural networks to learn low-frequency functions faster and to impede the convergence
of PINNSs for large computational domains [22]. As the input variable of the network is typically
normalized to a fixed range in a preprocessing step, low frequencies on large computational domains
become high frequency components. At the same time, a large computational domain results in a more
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complicated landscape for PINN optimization, where nonphysical solutions may even correspond to
better optima of the multi-objective problem than the desired physical solutions [23].

Overall, the properties and limitations of PINNs are still poorly understood. Thus, the aim of this
work is to gain a deeper understanding of PINNs through experiments on a nonlinear dynamical
system, the undamped double pendulum. Our main contributions comprise the following:

* We empirically demonstrate the difficulty of predicting chaotic motions using the traditional
PINN framework on a double pendulum. We observe that the predicted trajectories violate
the ICs marginally, but deviate significantly from the reference.

We show that the PINN exhibits no sensitivity to perturbations of the given IC and prefers
convergence to the same undesired solution characterized by a significantly lower physics
loss compared to the reference trajectory.

We claim that the convergence to such incorrect attractive solutions is related to the spectral
power distribution and magnitude of higher-order derivatives. In other words, the PINN
“cheats” by choosing an IC that corresponds to a simpler solution.

We note that a reduced computational domain decreases the sensitivity to the IC with respect
to the aforementioned measures. In combination with a suitable loss weighting scheme, the
desired solution becomes the dominant one.

2 Methods

Double pendulum The planar double pendulum is a nonlinear dynamical system that exhibits
harmonic and chaotic behavior, based on its initial displacement and velocity. It consists of two
point mass pendulums with masses m, mo and rod length L, Lo attached to each other. The angle
between the two pendulum rods and the vertical axis (i.e., 01, 63) is governed by two nonlinear
second-order coupled ordinary differential equations (ODESs) of the form

T .
v =1h(yy), Ly,y)]  with y=[01, 6] (1)
For a detailed description, see Appendix[A.1]

Physics-informed neural networks The unknown solution y is approximated by a fully-connected
deep neural network y,, with w describing all trainable weights and biases of the network. The heart
of PINNs [1]] consists of combining data- and physics-based constraints into a single loss function
L(w) = aLjc(w) + (1 — a)Lr(w) via multi-objective optimization. The data loss term L;¢
reflects the deviation from the given initial condition, while the physical term L incorporates the
ODE residuals of the underlying physical system. Thus, the performance of PINNs depends strongly
on the ODE system itself. For a detailed description of each loss term, see Appendix

Analysis of solution trajectories We analyze two measures that describe properties of the predicted
solution trajectories compared to the desired one. The aim is to improve our understanding of the
difficulties in training PINNSs for the simulation of chaotic motion.

First, we compare the distribution of the solutions’ frequency components, namely, the amount of
low-frequency components. We compute this measure using the relative fraction of total signal power
above a certain frequency fy, given by
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where X, denotes the discrete Fourier transform (DFT) of a signal z(t,,) (in our experiments, 61, 63)
and ky, denotes the DFT index corresponding to the boundary frequency fj.

As a second measure, we consider the average magnitude of the second order derivatives, which are
approximated using the central finite difference method with a step size of h = 0.005.
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The derivatives 6, 0 are used in the computation of the physics loss, summarized in Appendix [A.2]
As we consider the absolute error for the physics loss, smaller values of the derivatives also contribute
to smaller values of the resulting physics loss.

3




3 Experiments

For all experiments, the system parameters of the double pendulum (my, mq, L1, L) are fixed to
one. The initial angles of the pendulums are set to 01 (to) = 02(tg) = 6y with zero initial velocities
07 (to) = 05(to) = 0. We use a fourth-order Runge-Kutta (RK45) scheme with step size h = 0.005
to obtain a reference solution.

All experiments are conducted with the following network specifications and hyperparameters:
network type (6x30 fully-connected neural network), network activation function (swish), output
activation function (linear), weight initialization (Glorot uniform [24]), optimizer (Adam [25]], default
settings of Tensorflow [26]]), learning rate (0.01), number of epochs (25000). Additionally, the input
of the network (time ¢) is normalized to a fixed domain of [—5, 5].

3.1 Results

First, the initial angles of the double pendulum are selected as 6y = 150° = 2.62rad, resulting
in chaotic motion. We train ten PINN instances with the same IC and network specifications, but
different seeds for the weight initialization. As the traditional PINN framework incorporates the
optimization of the IC as a soft constraint, deviations from the true value are allowed.

The predictions obtained by minimizing the unweighted loss function with o = 0.5 differ heavily
from the reference solution, as illustrated in (a). Despite this deviation, the predicted
trajectories can be shown to correspond to physically correct solutions. Indeed, repeating the RK
simulation with the shifted ICs that where chosen by the PINN instances from the previous experiment,
we observe that in the initial phase (¢t < 2), the RK solution follows the PINN predictions exactly
(green lines in[Figure T)). Due to the chaotic nature of the pendulum, the RK trajectories begin to
diverge for ¢ > 2 due to minor differences in the imposed ICs. Continuing the RK simulation at
a later time step, just before the trajectories begin to diverge, again yields an exact match between
PINN and RK (not shown here). Interestingly, looking at the physics loss averaged over the ten PINN
instances we obtain a value of Lg o,—05 = 1.79 - 1073, with a standard deviation of 6.44 - 10~4, that
is significantly lower compared to the reference solution with Lp rrx = 5.74 - 10~1. From these
results, we find that the PINNs achieve a solution with an overall lower physics loss by, first, shifting
the IC accordingly and, second, violating the physical constraints slightly in the initial phase.

A stronger emphasis on the IC (o« = 0.99) does not improve the prediction, as can be seen in [Figure 1|
(b). Although the IC is fulfilled more precisely, the shape of the trajectories still coincides well with
the results of the unweighted PINN (a = 0.5). This causes the RK solution for the shifted ICs to
deviate more from the PINN predictions. Instead of converging to the solution that matches the
shifted ICs, the PINNs choose to neglect the physical constraints in the initial phase and thus fail to
exhibit the sensitivity to ICs characteristic for chaotic systems. Compared to the unweighted case,
the results for o = 0.99 agree more accurately with the IC, but consequently need to violate the
physics more severely in order to reach this solution trajectory. Despite the violation of the physical
constraints, the average physics loss over the ten PINN instances is still in a similar range to the
reference with L 4—0.99 = 2.70 - 107! and a standard deviation of 4.7 - 1071

In a next step, we confirm that the convergence in the chaotic regime is strongly affected by the length
of the computational domain and an appropriate choice of .. Only after decreasing the computational
domain and increasing «, the PINN converges to the correct solution, shown in (c) and (d).

Lastly, the experiment is extended to initial angles of 8y = {141°,...,156°}, focusing on the
unweighted case (o = 0.5) and one PINN instance with a fixed seed for the initial weights. In the
previous experiment we observed that all PINNs equally shifted the IC to reach a solution with a
significantly lower physics loss. Now, we aim to assess why the shifted solution is more attractive
compared to the reference solution. To do so, we compare the spectral power ratio Py, above the
frequencies fo = 0.5 Hz, and the average magnitude of the derivatives [6|+ |64, shown in
Both measures are computed using RK. Indicated arrows point from the true IC 6 to the shifted
IC of the PINN (o = 0.5) prediction. From (a) we can observe that the PINN shifts the
IC to solutions with primarily low-frequency components. (b) indicates that the shifted
solutions also exhibit smaller magnitudes of the second-order derivatives, which lead to smaller
physics loss values. In particular, this effect is prominent for a computational domain of T' = 2,
where the PINN predictions lie in a valley of small values for both measures. This valley is also
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Figure 1: Results for the prediction of the solution trajectory given the IC of 8y = 150° ~ 2.62rad
and different lengths of the computational domain: T" = 5 (top), T' = 2 (bottom).
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Figure 2: Results for the spectral power ratio Py, above fy = 0.5 Hz (left) and magnitude of the
second order derivatives |07| + |04 (right), computed with RK. Arrows point from the true IC to the
predicted IC of the unweighted PINN (ar = 0.5).

visible for the computational domain of 7" = 5, although being more narrow. Moreover, for T' = 5
the chaotic property of the double pendulum becomes evident by the strong influence of the IC on the
values of the two measures we considered.

4 Discussion and limitations

Our experiments revealed that the traditional PINN framework is not suitable for simulating chaotic
motion. As the goal of the PINN optimization is solely to minimize the combined loss function
of data and physics loss term, it is able to “cheat” by either shifting the initial condition to reach a
simpler function or by violating the physics in a small domain to again reach the simpler function. In
both cases, the trajectories resulted in lower physics loss values compared to the reference solution.

We argue that these convergence problems stem, on the one hand, from the spectral bias that causes
PINNS to converge to low-frequency solutions first. On the other hand, we observed that those
solutions also exhibit lower magnitudes of the derivatives that comprise the calculation of the physics
loss and hence explain low physics loss values. We find that reducing the computational domain
combined with an appropriate loss weighting scheme allows convergence to the correct solution.
In future research, we intend to extend our experiments to additional ODE-systems in order to
substantiate our claims presented in this work.
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A Appendix

A.1 Double pendulum

The motion of the planar double pendulum (see [Figure 3) is described by the following nonlinear
initial-value problem with y = [01, 65]7

—2L1 (m1+ma2 sin? AQ) (4)
mngwg sin(2A0)+2(mq +m2)L1wf sin A0+2g(m1+ms) cos 01 sin Af
2L5(mq+my sin? Af)

:| [ mo Llwf sin(2A0)+2mo Lzo.)g sin A@+2gms cos 02 sin A6+2gm sin 6,

subject to the initial conditions o = [y(t0), ¥y (to)]” Q)

where 0] = wy, 05 =wq, A =01 — 05, and g = 9.81 is the gravitational acceleration.

Figure 3: Schematic of the double pendulum with point masses my, mo, and rod lengths Ly, Lo.

A.2 Physics-informed neural networks

The unknown solution y is approximated by a fully-connected deep neural network y,, with w
describing all trainable weights and biases of the network. For simulating the motion of the double
pendulum, the PINN [[]] is trained by minimizing the following combined loss function

L(w) = OLch(’lU) + (1 — Q)LF(W) (6)

with the data-based loss
2

Lic(w) = (81 (t0) ~ 01 (10) ) + (s (00) 02 (10) ) +

2 2 D
(010 (t0) = 05 (t0) ) + (B0 (t0) — 05 (t0) )

and the physics-based loss consisting of the ODE-residuals of the physical system

1 Neot ) 2
Lp (w) = N > |0a (tiifl) = [1(O,15 0w 2, 02 1 ':,072)’ (®)

ol i=1

1 Neot @ 2
Lriw) = = 3 [P (#0) = 1o (Ouw 1, Ouw 2. O 1 02 )| ©)
Lp(w) = L, (w) + L, (w) (10)

where {t,»}fV:“f‘ denotes the collocation points where the physics loss is evaluated. These collocation
points can be chosen arbitrarily within the computational domain, either by using fixed locations
or by adaptive resampling [27, 3| 28]. In this work, N., = 1024 collocation points are sampled
uniformly in each training epoch.

'The code needed to reproduce our results is available at https://github.com/stegsoph/
How-PINNs-Cheat
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