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ABSTRACT

Geometric disentanglement, the separation of latent codes for intrinsic (i.e. iden-
tity) and extrinsic (i.e. pose) geometry, is a prominent task for generative models
of non-Euclidean data such as 3D deformable models. It provides greater in-
terpretability of the latent space, and leads to more control in generation. This
work introduces a mesh feature, the conformal factor and normal feature (CFAN),
for use in mesh convolutional autoencoders. We further propose CFAN-VAE, a
novel architecture that disentangles identity and pose using the CFAN feature. Re-
quiring no label information on the identity or pose during training, CFAN-VAE
achieves geometric disentanglement in an unsupervised way. Our comprehensive
experiments, including reconstruction, interpolation, generation, and identity/pose
transfer, demonstrate CFAN-VAE achieves state-of-the-art performance on unsu-
pervised geometric disentanglement.

1 INTRODUCTION

With the recent popularity of geometric deep learning (Bronstein et al., 2017), mesh based con-
volutional autoencoders (MeshVAEs) are now a popular tool for surface generation in the surface
processing community (Cheng et al., 2019; Litany et al., 2018; Ma et al., 2019; Ranjan et al., 2018).
With these VAEs achieving state-of-the-art performance on tasks such as reconstruction, more at-
tention is being given towards tasks such as latent space interpretability. Geometric disentangle-
ment, where the latent variables controlling intrinsic (properties independent of surface embedding)
and extrinsic (properties dependent on surface embedding) geometry are separated (Aumentado-
Armstrong et al., 2019), is an important open problem related to such interpretability. A typical
application of a disentangled latent space is the separation of identity and pose in the case of human
body generation (Jiang et al., 2019a; Tan et al., 2018). This is useful in fields such as graphics where
we may be interested in the procedural generation of certain assets.

We are interested in creating an architecture that explicitly leads to geometric disentanglement in
an unsupervised setting. Namely, we do not require labels for mesh identity and pose, allowing the
architecture to be applied more broadly. In this work, we:

1. introduce a feature, the conformal factor and normal feature (CFAN), that decouples intrinsic and
extrinsic geometry for use in mesh convolutional autoencoders.

2. propose a novel architecture, CFAN-VAE, for unsupervised geometric disentanglement. For a
given mesh, we compute the CFAN feature, and encode its components separately into latent
vectors representing intrinsic and extrinsic geometry.
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Figure 1: Geometric disentangled interpolations between two meshes from DFAUST, SURREAL,
and SMAL datasets. Meshes are generated by CFAN-VAEs. The horizontal/vertical axis display
linear interpolation in the normal/conformal latent codes, zn/zc. Color denotes the conformal factor
feature of each reconstructed mesh.

Figure 2: Diagram of the CFAN-VAE architecture. 3D mesh coordinates are transformed to the
CFAN feature and separately encoded to promote disentanglement.

Related Work Geometric disentanglement is an important feature leading to a more interpretable
latent space and thus more control in generation. For instance, (Jiang et al., 2019a;b; Tan et al.,
2018) learn a latent space separating identity and pose, advocating for the use of the as-consistent-
as-possible deformation representation (ACAPDR). These works require a reference pose for all
identities during training. Recently, several works proposed networks using non-Euclidean convo-
lution for this task (Cosmo et al., 2020; Levinson et al., 2019; Zhou et al., 2020). These networks
either utilize supervision or loss functions that require identification of isometric pairs in training
data. In practice, the latter needs supervised identity to scale on large datasets. Training datasets
lacking isometries may be desireable in applications such as differential privacy (Abadi et al., 2016).

There is limited work to achieve unsupervised geometric disentanglement that completely eliminates
reliance on both identity and pose labeling. To our knowledge, the only previous work concerning
unsupervised disentanglement for 3D data is (Aumentado-Armstrong et al., 2019), in which the au-
thors introduce GDVAE, a VAE built on a PointNet (Charles et al., 2017). This network requires the
computation of Laplace-Beltrami eigenvalues on each surface of the training set. We compare our
results to this work as it is the state-of-the-art in unsupervised geometric disentanglement. Later, we
will find advantages of our approach include the use of a signal, unlike Laplace-Beltrami eigenval-
ues, that is not globally sensitive to local deformation. Additionally, as our model is not trained on
PointNet embeddings, we are able to use significantly less parameters (on the order of millions), for
our architecture.
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2 CFAN-VAE

Our novel method for geometric disentanglement is motivated by the Fundamental Theorem of Sur-
faces (Do Carmo, 2016). We describe surfaces using conformal factors and surface normal vectors.
This CFAN feature is easily leveraged by our introduced CFAN-VAE for geometric disentanglement.

CFAN Feature The Fundamental Theorem of Surfaces states that a surface can be uniquely re-
constructed up to rigid motion given feasible metric tensor and surface normals (Do Carmo, 2016).
Then we can use metric tensors and normal vector fields to characterize surfaces. In this work, we
consider genus zero surfaces. It is well known that all genus zero surfaces are conformally equiv-
alent (Jost & Jost, 2008). Namely, given two genus-zero surfaces, (M1, g1) and (M2, g2), there
exists a diffeomorphism, φ : (M1, g1)→ (M2, g2) where φ∗(g2) = exp(λ)g1.

Here the function, λ, is known as the conformal factor and defines a conformal deformation from
M1 toM2. Then any pair of conformally equivalent surfaces can be deformed into one another (up
to isomorphism) by choosing the correct conformal factor. The surface embedding is defined up to
translation by the normal field. These two components define the CFAN feature, with the conformal
factor and normal field representing intrinsic and extrinsic geometry respectively.

Given a triangle mesh (P ,T ), where P ∈ Rn×3 is the set of vertices and T ∈ Rk×3 is the corre-
sponding set of faces, we define the discretized CFAN feature. Each face τ in T has a corresponding
exterior face normal nτ . We compute the weighted average of these face normals around the first
ring structure of each vertex to define a pointwise normal. In the continuous setting, the local area
on the surface is given by

√
det g2, so it follows that the logarithm of local area is an affine function

of the conformal factor, λ+ 1
2 log det g1. We have equivalence if g1 is taken to be the trivial metric.

With this in mind, we approximate a discrete conformal factor by taking the logarithm of a third of
the area of the first ring structure about each point. Formally we define the CFAN feature, (ci,ni)
as:

ci = log
∑
τ∈T ;
i∈τ

Area(τ)
3

, ni =

∑
τ∈T ;
i∈τ

Area(τ)nτ

||
∑
τ∈T ;
i∈τ

Area(τ)||
(1)

Network Architecture Based on the CFAN feature, we propose a simple architecture, CFAN-
VAE, as shown in Figure 2 to achieve unsupervised geometric disentanglement. The intuition is to
encode the conformal factor and the normal features separately. The 3D coordinates p of an input
mesh under a fixed triangulation are first converted to the CFAN feature by transformations φc and
φn provided by equation 1, yielding c = φc(p) and n = φn(p).

Then, the feature components are separately encoded by Ec and En to create two different latent
variables, the conformal latent variable zc and the normal latent variable zn in the disentangled
latent space Zc,n = Zc ×Zn. That is, zc = Ec(c), zn = En(n), and p̂ = D(zc, zn).

As a result, zc corresponds to intrinsic geometry, controlling surface identity, and zn corresponds to
extrinsic geometry, controlling surface pose. After that, the CFAN latent variable zc,n = [zc, zn] ∈
Zc,n is decoded by D to obtain the reconstructed 3D coordinates p̂,

Our model is built on geometric convolutions given by PTC layers (Schonsheck et al., 2018). The
mesh signal is decimated during encoding and refined during decoding by a factor of four. Sampling
is precomputed by the geodesic Farthest Point Sampling (FPS) method (Moenning & Dodgson,
2003). After the final mesh convolution in the encoder, dense layers map the signal to the variational
statistics, µ := [µc, µn] and σ := [σc, σn]. A dense layer also maps zc,n to the first mesh signal in
the decoder. Details on the loss function used for training can be found in Section A.1.

3 EXPERIMENTS AND RESULTS

We consider three datasets in our experiments. This includes DFAUST, a real-world motion-capture
dataset of 10 people performing several poses (Bogo et al., 2017). We randomly split the dataset
into a training/validation/test set of 35,720/500/5,000 meshes respectively. In addition, we gener-
ated a synthetic dataset of animals referred to as SMAL following (Zuffi et al., 2017), based on
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Figure 3: Reconstructions from the CFAN-VAE models in Figure 1. The mesh color represents the
pointwise Euclidean error after translation. The top row are the ground truth meshes, and the bottom
row are the reconstructions.

Figure 4: Surfaces generated by sampling the CFAN-VAE latent space. Horizontal and vertical axes
correspond to zn and zc respectively. CFAN-VAE reliably generates meshes in a specific pose or
with nearly the same identity, showing geometric disentanglement. Color denotes conformal factor.

the SMPL model introduced in (Loper et al., 2015). Similary, we formed a synthetic dataset of
humans referred to as SURREAL from (Varol et al., 2017). These datasets are created following
(Aumentado-Armstrong et al., 2019). For SURREAL, we add small normal noise with σ = 0.2 to
the intrinsic shape parameters β to eliminate any isometry in the dataset. These two datasets provide
challenging environments where identity-supervised methods fail.

Details on the network and training hyperparameters are provided in Section A.2. For compar-
isons to GDVAE, we use the available dataset-specific pretrained models available in (Aumentado-
Armstrong et al., 2019). We verify that CFAN-VAE is able to accurately reconstruct surfaces.
Figure 3 displays high quality reconstructions for each dataset using CFAN-VAEs for DFAUST,
SURREAL, and SMAL.

Surface Interpolation Figure 1 displays examples of disentangled interpolations for each dataset
using CFAN-VAE. In this figure, the vertical and horizontal axis represents conformal and normal
interpolations respectively. The color map denotes the pointwise normalized conformal factor of the
reconstructions. These results verify that CFAN-VAE produces meaningful geometric disentangle-
ment between intrinsic and extrinsic information. Thus, it enjoys flexibility to generate high quality
meshes preserving either identity or pose. Notice, the colormaps and position are almost identical
for fixed zc and zn respectively. We include additional examples in Figure 5 in the appendix.

We compare the performance of CFAN-VAE to GDVAE on transfer tasks. For SURREAL and
SMAL, we can create ground-truth mesh solutions to the transfer task by exchanging the appropriate
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Table 1: Chamfer distance of the mesh generated in pose and identity transfer tasks to the tar-
get mesh. The generated mesh is decoded from swapping the latent codes of the source meshes,
(z

(1)
c , z

(1)
n ) and (z

(2)
c , z

(2)
n ). This distance is the mean over 256 transfer pairs with standard error.

SURREAL SMAL

Networks Error(mm) #Param.(M) Error(mm) #Param.(M)

Distance between sources 76.0± 1.8 — 313.9± 9.7 —
GDVAE 1 31.6± 0.6 21.30 96.3± 1.9 21.30
CFAN-VAE 26.8± 0.8 1.75 35.5± 0.8 2.15

SMPL parameters of the source meshes. Then we compare the Chamfer distance of the network
generated mesh, with appropriate latent code exchanged, to the SMPL generated ground truth. These
results are summarized in Table 1. It is clear that CFAN-VAE outperforms GDVAE, particularly on
the SMAL dataset. This nice property of the CFAN-VAE latent space enables flexible control of
the geometry of generated surfaces. We stress that these two datasets lack isometric pairs, so other
methods (Cosmo et al., 2020; Zhou et al., 2020) are not of use for comparison. Further analysis of
the learned latent space is available in Section A.3.

Surface Generation Figure 4 plots random generations where latent codes are sampled from a
multivariate Gaussian. This Gaussian, N (µ,Σ), is a product of marginals fit to the embedding of
the test set for each latent variable. We sample from N (µ, 0.8Σ). Here the normal latent code and
conformal code is fixed along the vertical axis and horizontal axis respectively. Clearly, pose and
identity are successfully fixed. The generated meshes are of comparable visual quality to the recon-
structions from the test set. Then the latent space of CFAE-VAE allows for high-quality generation
while providing interpretability of geometric features.

4 CONCLUSION

We propose a novel architecture, CFAN-VAE, for unsupervised geometric disentanglement in mesh
convolutional autoencoders. This is accomplished by utilizing the conformal factor and normal
(CFAN) feature to separate intrinsic and extrinsic geometry. There is clearly strong geometric dis-
entanglement in CFAN-VAEs. We achieve state-of-the-art performance on transfer tasks and dis-
entanglement compared to prior work. The continued integration of geometric theory into neural
network architectures can only lead to more interesting results in the future.
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Figure 5: Additional geometrically disentangled interpolations using CFAN-VAE as in Figure 1.

Table 2: Disentanglement metrics on the learned latent spaces. For each mesh embedding, we
find its nearest neighbor in either the intrinsic or extrinsic space, zc / zn. We report the norm of
the difference in the identity and pose SMPL parameters, β and θ, of the embedded mesh and its
neighbor. We report mean distance with standard error on the test set.

Desired SURREAL SMAL

Networks Param. Magnitude zc zn zc zn

GDVAE 2 β ↓ ↑ 4.42± 0.03 4.44± 0.03 2.40± 0.02 3.48± 0.02
θ ↑ ↓ 4.21± 0.04 4.11± 0.04 2.72± 0.01 2.71± 0.01

CFAN-VAE β 4.05± 0.02 4.38± 0.02 1.73± 0.01 3.73± 0.02
θ 3.69± 0.03 2.81± 0.04 2.74± 0.01 2.63± 0.01

A APPENDIX

A.1 LOSS FUNCTION

The training loss for our model is given by:

L := ||P − P̂ ||1 +
∑

µ(0),µ(1)∈µ

(
λDLD(µ(0), µ(1)) + λMLM (µ(0), µ(1))

)
+ (2)

λKL||σ2 + µ2 − 1− log(σ2)||1.

The first term is simply the L1 error of the reconstruction which promotes robustness to vertex
outliers. LD and LM are disentanglement and metric penalties that we define shortly. The fourth
term of the loss function is the KL-divergence of the latent representation from the unit normal
distribution, given by the Bayesian prior assumption (Kingma & Welling, 2013).

In CFAN-VAE, geometric disentanglement is a result of separately encoding intrinsic and extrinsic
geometric information. We stress that structural conditions prevent guaranteeing complete inde-
pendence of the separate latent vectors. This is intuitive, considering motion can be restricted by
intrinsic properties such as body mass distribution.

To promote independence, we consider a pair of encoded meshes. We create a latent variable with
the conformal latent code of the first mesh, while the normal code is a random convex combination
of the two normal codes. We decode and re-encode this new latent variable. We then have an L2

penalty on the resulting change in the conformal code upon re-encoding as it should not be affected
by this change in the normal code. We penalize a change in the normal code analogously. This
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disentanglement penalty, LD, is formalized below,

LD :=E
∑
i,j in
{c,n}

||µ(0)
i − Ei

(
D(µ(0)

c + δj,cεc, µ
(0)
n + δj,nεn)

)
||22, (3)

εk := α(µ
(1)
k − µ

(0)
k ), α ∈ U [0, 1]. (4)

Inspired by the metric regularization introduced in (Cosmo et al., 2020), we add a metric penalty,
LM , to the loss function,

LM :=Eα||lα(φc ◦D(µ(0)), φc ◦D(µ(0)))− φc ◦D
(
lα(µ

(0), µ(1))
)
||1, α ∈ U [0, 1], (5)

where lα is the α convex combination of its entries. This promotes smoothness in the metric of
reconstructions.

A.2 NETWORK HYPERPARAMETERS

Each VAE contains 5 layer encoders and decoder. For the PTC kernels, we use a 13 point stencil
with the support of the kernel about a point being its 9 nearest geodesic neighbors. The size of
the conformal/normal latent vectors are (32, 32) for DFAUST and (8, 32) for SMAL. For visualiza-
tion, we use models with a latent dimension of (32, 32). For corresponding xyz-VAEs, the latent
dimension is the sum of the two latent dimensions.

The latent dimension of the GDVAE models are (5, 15) and (5, 11) for SURREAL and SMAL
respectively. When comparing to CFAN-VAE models for SURREAL, we choose a corresponding
latent dimension of (5, 15).

We use batch normalization (BN) layers in the encoder. When training with the disentanglement
penalty LD, we freeze the BN layers during reencoding. The activation functions are ReLU and
ELU for the encoders and decoder. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with
a learning rate of 1E-3 and a weight decay of 5E-5. The value of λKL is set at 1E-4, while λD and
λM are 5E-2. Each model is trained for 300 epochs with a batch size of 32. We train two instances
of each network using different random seeds.

A.3 LATENT SPACE ANALYSIS

To better assess the geometric disentanglement in our networks, we analyze the latent spaces of the
CFAN-VAEs. We quantitatively measure the disentanglement in latent space in the manner of (Zhou
et al., 2020). First, we embed the test sets for SURREAL and SMAL in the latent space. Given a
mesh embedding, we find its nearest neighbor in either the intrinsic or extrinsic latent spaces, Zc
or Zn. As these meshes were created via SMPL shape and pose parameters, β and θ, we measure
the distance between these parameters of the embedded mesh and its neighbor. These distances are
summarized in Table 2. If the network latent spaces truly possess disentanglement, we expect the zc
neighbor to be closer in β distance and the zn neighbor to be closer in θ distance.
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