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Abstract
In this work, we study the training of diffusion
probabilistic models through a series of hypothe-
ses and carefully designed experiments. We call
our key finding the memorization-generalization
dichotomy, and it asserts that generalization and
memorization are mutually exclusive phenomena.
This contrasts with the modern wisdom of super-
vised learning that deep neural networks exhibit
“benign” overfitting and generalize well despite
overfitting the data.

1. Introduction
Since the advent of some seminal works (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020), diffu-
sion probabilistic models have quickly assumed a dominant
position within the generative model literature for its supe-
rior performance (Dhariwal & Nichol, 2021) and the ease of
controlled generation (Song et al., 2021; Dhariwal & Nichol,
2021; Ho & Salimans, 2021; Ramesh et al., 2021; Rombach
et al., 2022; Nichol et al., 2022). Recently, however, diffu-
sion models have been accused of the tendency to memorize
the training dataset (Somepalli et al., 2022; Carlini et al.,
2023). Although this memorizing behavior seems to have
significant implications on both practical (privacy issues)
and theoretical sides, unfortunately, there is no satisfactory
explanation on when and why diffusion models memorize
or not.

In this work, we investigate the data memorization of DPMs
through a series of hypotheses and controlled experiments.
Our central observation, which we call the “memorization-
generalization dichotomy”, is that for DPMs, generaliza-
tion and memorization are mutually exclusive phenomena,
which contrasts with the modern wisdom of supervised
learning that deep neural networks exhibit “benign” overfit-
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ting and generalize well despite overfitting the data. We ex-
perimentally demonstrate the memorization-generalization
dichotomy by showing that preventing memorization (by re-
ducing the model size or by injecting additional dummy data
that the model must expend some capacity to learn) induces
generalization. We furthermore show that the memorization-
generalization dichotomy can manifest at the level of classes,
where the model simultaneously memorizes some classes
of the data while generalizing with respect to other classes.

2. Related Works
Here we only provide a brief overview on diffuion proba-
bilistic models. The remaining list of prior works is pre-
sented in Appendix A.

At a high-level, diffusion probabilistic models progressively
destruct the input data distribution through a noising process,
train a model to learn essential information from the process,
and invert the process to regenerate the data distribution
from noise. Here we provide elegant continuous description
of the noising process established by Song et al. (2021).

Given d-dimensional X0 ∼ ptrue, consider the SDE

dXt = −βt

2
Xt dt+

√
βt dWt

where Wt is the Brownian motion in Rd. Then

Xt|X0 ∼ N
(√

ᾱtX0, (1− ᾱt)I
)
, ᾱt = e−

∫ t
0
βs ds.

Let pt denote the density of Xt for t ≥ 0. Then along
the following reverse SDE, derived using the Anderson’s
theorem (Anderson, 1982), the probability density flow co-
incides with the original forward SDE:

dXt =

(
−βt

2
−∇x log pt(Xt)

)
dt+

√
βtdW t

Therefore, by approximating the score ∇X log pt(·) with a
time-dependent neural network sθ(·, t), one can start with
XT ∼ N (0, I) (assuming T is large enough) and recover
X0 that is approximately distributed according to ptrue by
following the reverse SDE. In practice, one often considers
the error network εθ(x, t) = −√

1− ᾱtsθ(x, t) and use
a discretized version of the reverse SDE (Ho et al., 2020;
Dhariwal & Nichol, 2021). One can also perform condi-
tional generation by additionally conditioning the score or
the error network on labels (or tokens) y.
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Figure 1. Proportion of generated samples replicating the training
data from diffusion models of different scales, trained on different
sizes of CIFAR-10 subsets.

3. Memorization-generalization dichotomy
In this work, we define learning to include the following
two types: rote learning (i.e., memorization) and the concep-
tual learning (which enables generalization). A generative
model performs perfect rote learning when it learns to gen-
erate from 1

n

∑
X∈S δX , where S = {X1, . . . , XN} is the

training set. In this case, we say the model has perfectly
memorized the training set and say the generated samples
are replicates of the training data. A generative model per-
forms perfect conceptual learning when it learns to generate
from ptrue, where ptrue is the true underlying distribution
generating the data X1, . . . , XN ∼ ptrue. In this case, we
say the model generalizes, and this is the desired behavior
of a generative model.

In this work, we present the memorization-generalization
dichotomy of DPMs: the phenomenon that conceptual learn-
ing happens only when rote learning fails. Of course, train-
ing can entirely fail and achieve neither type of learning,
but the claim is that it is useful to view memorization as an
impediment to generalization.

On the one hand, this dichotomy runs counter to the mod-
ern view that in deep supervised learning, trained deep
neural networks generalize well despite memorizing (inter-
polating) training data (Zhang et al., 2017; Belkin et al.,
2019). This view, referred to as the “benign overfitting”
(Belkin, 2021), claims that overparameterization is not detri-
mental to the generalization performance. In contrast, our
memorization-generalization dichotomy implies that DPMs
generalize when they are underparameterized, which is con-
sistent with the classical statistical view that overfitting
should be avoided.

This observation is interesting as it indicates that the nature
of learning of DPMs (and perhaps for generative models
as well) is different from that of modern deep supervised
learning, and this distinction may be crucial in understand-

ing DPMs. In the following, we present a series of hy-
potheses and experiments that demonstrate the value of our
dichotomy in understanding the learning process of DPMs.

3.1. Hypothesis 1: Memorization capacity exists

In this section, we show how memorization (rote learning)
is affected by the complexity (size) of train data and model
capacity. We first define the model’s capacity, motivated by
prior works Nakkiran et al. (2021); Feng et al. (2021). Let
Gθ be a parametrized generative model (neural network)
that maps a noise (from the prior distribution pz) to a data
point in X . Let T denote a training algorithm, which takes
as input the train set S = {x1, . . . , xn} ⊂ X and outputs a
trained θT (S).
Definition 3.1. (Memorization Capacity) Define the mem-
orization capacity of Gθ with respect to the data distribution
D (with density pdata), a duplicate-detecting criterion (d, δ)
and ϵ ∈ (0, 1) as

MCD,δ,ϵ(Gθ; T )

= max

n

∣∣∣∣∣∣ ProbS∼Dn

z∼pz

[
min
x∈S

d(GθT (S)(z), x) ≤ δ

]
≥ 1− ϵ

 .

Denote MCD,δ,0(Gθ; T ) = infϵ∈(0,1) MCD,δ,ϵ(Gθ; T ).

For the sake of formal definition, we assume that there is
a bivariate function d : X × X → R≥0 such that d(x, x′)
being small (≤ δ) indicates that the sample pair (x, x′) is
indistinguishable under human perception. We discuss a
useful criterion for image data later within this section.

Now we present the main hypothesis of this section:
Hypothesis 1. For a diffusion model Gθ with non-trivial
architecture, MCD,δ,ϵ(Gθ; T ) is a positive number and in-
creases with the number of parameters (dim θ) for any ϵ ∈
(0, 1). When |S| ≤ MCD,δ,0(Gθ; T ), a diffusion model
memorizes the train set. As |S| grows past MCD,δ,0(Gθ; T ),
the probability of train set replication drops quickly.

Experiments. We verify Hypothesis 1 through an experi-
ment, of which result is summarized in Figure 1. We con-
sider 3 variations of neural network: UNet-64, UNet-128
and UNet-256, that share the same architecture (from Nichol
& Dhariwal (2021)) but have different width parameters.
(UNet-128 is 4 times larger than UNet-64, and UNet-256
is 4 times larger than UNet-128.) We train DDPM models
using each UNet model as the error network, on differently
sized train sets consisting of {0.5, 1, 2, 4, 8, 16, 32}k ran-
domly sampled CIFAR-10 images. We generate 10k sam-
ples from each trained model, and measure the proportion
of train set replicates therein.

Criterion for replicate detection. L2, L∞ norms and
their variants are, obviously, good candidate criteria for
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Figure 2. Examples of artificial data

detecting a train data replication, but we find that they are
either overly lenient or conservative compared to our visual
inspection. Inspired by a detection rule used in Carlini
et al. (2023), we use the following slightly simplified “ratio
criterion”, which aligns accurately with our perception of
duplication (Appendix D); given a generated sample W , find
X1, X2 ∈ S with smallest and second smallest L2 norm,
∥W −X∥2, and mark W as a replicate if ∥W−X1∥2

∥W−X2∥2
< 1

3 .

Implications of the result. The experiment result indi-
cates that each diffusion model performs rote learning up to
certain point, and then display an exponential decay trend in
replicating behavior with respect to increasing train set size.
Additionally, we observe approximately factor 2 difference
in the memorization capacity between models with factor 2
width difference. We speculate that a gigantic UNet model
(UNet-8192 by the back-of-the-envelope calculation) might
be capable of memorizing the entire CIFAR-10 dataset;
assuming that this is the case, we can link the successful
generalization of diffusion models displayed in recent works
(Ho et al., 2020; Nichol & Dhariwal, 2021) to the inability
to memorize (underparemetrization). However, the current
result on its own is insufficient as an evidence that gener-
alization is equivalent to the failure in memorization; we
corroborate this further in Section 3.2.

Connection to prior work. In the context of GANs, Feng
et al. (2021) makes an observation similar to Hypothesis 1.
However, they do not explicitly consider the model capacity
as a factor affecting memorization, and they focus primarily
on quantitative relationship between the data complexity and
replication probability rather than explaining generalization.

3.2. Hypothesis 2: Generalization requires both
sufficient data and insufficient capacity

In this section, we demonstrate that conceptual learning
indeed occurs due to the failure to retain rote learning by
testing the following hypothesis:

Hypothesis 2. A diffusion model Gθ performs rote learning
if n < MCD,δ,ϵ(Gθ; T ) (ϵ ≈ 0), even if |S| is large enough
to enable generalization with respect to D. In this case,
simply adding dummy samples drawn independently from
a disjointly supported distribution D′ to S can induce Gθ to

perform conceptual learning with respect to D.

Experiments on artificial data. For clear illustration of
conceptual learning, we design a simple procedurally gener-
ated data distribution whose defining visual pattern is clear
(Figure 2a). We refer to this distribution as Mondrian (abbv.
“MO”); it features a cross on which the pixels’ RGB values
are independent and uniform random, and each quadrant
shares a same color defined by independent and uniform
random RGB values.

(a) Generated samples (b) Nearest training images

Figure 3. (Left) Samples generated by a diffusion model trained
with only 2k MO images. (Right) The nearest train set images to
each sample in the L2 sense.

(a) Generated samples (b) Nearest training images

Figure 4. (Left) Samples generated by a diffusion model trained
with 2k MO images and 6k dummy images. (Right) The nearest
train set images to each sample in the L2 sense.

We first train a DDPM model (UNet-128) using 2k images
from the MO distribution as train set. We observe that about
92% of generated samples are replicates under the ratio
criterion. Indeed, Figure 3 illustrates that the generated
samples are even precisely mimicking the random pixels on
the cross from training images. Next, we add 6k dummy
images from a Gaussian mixture (Figure 2b) with 100 modes
(abbv. “GM”) to the same set of 2k MO images. Then, we
train a class-conditional DDPM model (this is for controlled
generation of MO images; the capacity is virtually the same
as the unconditional model) on the augmented train set.
We observe that only 0.2% of conditionally generated MO
images are replicates; Figure 4 shows that generic samples
are indeed original, faithfully obeys the MO rules, and are
not the replicates of train set images.

Implications of the result. We can summarize the results
as follows. 1) 2k MO images are already sufficient to enable
conceptual learning over the MO distribution. 2) However,
DDPM model using UNet-128 memorizes them, because it
is capable of doing so. 3) The model transitions to concep-
tual learning when supplied with additional dummy data,
which only plays the role of occupying the model’s capac-
ity without providing any meaningful information. This
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strongly supports the claim that conceptual learning is the
result of failing to brute-force-memorize, given that the train
set possesses enough complexity to enable generalization.

Experiments on CIFAR-10. In this section we demon-
strate experiment of the same spirit on CIFAR-10 “car” class.
We randomly choose and fix 2k “car” images, and augment
this image set with GM images until the total train set size
becomes {4, 8, 16}k. We train conditional DDPM models
on each augmented train set. We observe progressive reduc-
tion both in the proportion of train set replicates (Figure 5a)
and the number of train set images that have been repli-
cated at least once (Figure 5b). Figure 6 shows that original
images are generated from the model trained with total 8k
images. More sample images are shown in Appendix C.2.
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Figure 5. Using 10k samples generated from conditional diffusion
models trained on CIFAR-10 car images augmented with GM, we
measure (left) the proportion of replicates and (right) the number
of training images that have been at least once replicated.

(a) Generated samples (b) Nearest training images

Figure 6. (Left) Conditional samples from the model trained with
6k dummies. (Right) L2-nearest train set images to each sample.

3.3. Hypothesis 3: Memorization-generalization
dichotomy manifests at the level of classes

So far, we demonstrated the memorization-generalization
dichotomy determined by the size of the whole training
dataset. In this section, we investigate whether the di-
chotomy may apply class-wisely when the dataset is com-
posed of different classes. We hypothesize:

Hypothesis 3. When training a class-conditional diffu-
sion model on a train set containing multiple classes, the
memorization-generalization dichotomy may appear sepa-
rately over each class. In particular, if the train set consists
of a majority (large population) and a minority (small popu-
lation) class, the model memorizes the minority class while
generalizing with respect to the majority class.

5 8
Train set size (×1k samples)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

re
pl
ic
at
es Mondrian

Random Ink

(a) Proportion of replicates

5 8
Train set size (×1k samples)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

.o
ff
or
ge

d
tr
ai
n
im

gs Mondrian
Random Ink

(b) # of replication targets

Figure 7. For each class Mondrian (majority) and Random Ink (mi-
nority), we conditionally generate 5k samples from a conditional
diffusion model and measure (left) the proportion of samples repli-
cating the train set and (right) the proportion of training images
that have been replicated.

(a) Generated samples (b) Nearest training images

Figure 8. (Left) Conditional samples from the model trained with
4.9k MO and 100 RI images. (Right) L2-nearest train set images
to each sample. Best viewed digitally: zoom-in is recommended.

Experiments on artificial data. We train a conditional
DDPM model with total sample set size of 5k and 8k, where
100 images from each set are the Random Ink images (Fig-
ure 2c; abbv. “RI”), all of whose RGB values are indepen-
dent Bernoulli variables, and the rest are the MO images.
The setup makes intuitively clear that the RI images consti-
tute minority. We generate 5k samples conditioned on each
class, and measure 1) the proportion of train set replicates
within the samples, and 2) the proportion of at least once
replicated images within the train set, for each class.

Implications of the result. We observe that for the minor-
ity class RI, the learning pattern is closer to rote learning.
On the other hand, the same model tends to perform con-
ceptual learning with respect to the majority class MO. The
result supports Hypothesis 3, indicating that a model can
perform different types of (rote or conceptual) learning over
different classes. We conjecture that this insight can further
extend to the dichotomy at the level of abstract concepts,
explaining e.g., a text-conditioned diffusion model well-
generalizing with respect to concepts like “sky” or “woods”
while memorizing “Yann LeCun”.

4. Conclusion
We propose to view generalization of diffusion models as a
failure to memorize the training data. We speculate that the
memorizing trait of diffusion models is intimately related
to their impressive capability as generative models, and a
more in-depth study of their memorization will pave the
way toward understanding the source of their performance.
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A. Other Related Works
Memorization and generalization. In the supervised learning setup, the concept of memorization is commonly viewed as
equivalent of overfitting, i.e., achieving perfect accuracy on the train set. Zhang et al. (2017) shows that neural networks
successfully generalize even when they are overparameterized and thus are capable of memorizing the entire train set.
Feldman (2020) argues that memorization is actually a necessary component for generalization. Belkin et al. (2019) reports
the double descent phenomenon, explaining the relationship between model capacity and overfitting. Nakkiran et al. (2021)
proposes the concept of effective model complexity, and further generalizes the double descent phenomenon.

In the context of generative models, Wu et al. (2019) investigates generalization of GANs from the perspective of privacy
protection. Meehan et al. (2020) proposes a statistical test methodology on whether a generative model is overfitting the train
set in the sense of “data-copying”. For VAEs, den Burg & Williams (2021) provides an designed empirically memorization
score. Feng et al. (2021) probes the quantitative relationship between the dataset complexity and memorization for GANs.

A closely related concept to memorization is the membership inference attack (MIA), which aims to determine whether a
given sample originates from the training dataset or not (Shokri et al., 2017). MIA has been studied extensively both in
classification tasks (Shokri et al., 2017; Yeom et al., 2018; Long et al., 2018; Salem et al., 2019; Jia et al., 2019; Sablayrolles
et al., 2019; Melis et al., 2019; Nasr et al., 2019; Truex et al., 2021; Li & Zhang, 2021; Song & Mittal, 2021) and generation
tasks (Hayes et al., 2017; Hilprecht et al., 2019; Chen et al., 2020; Webster et al., 2021). However, the threat model for
MIA is concerned with a broader concept of attack whose possibility persists even when the trained neural network is not
responsible for direct reconstruction of the training data.

Memorization in DPMs While some prior works (Saharia et al., 2022) state that overfitting is not a significant issue for
training diffusion models, recent works report cases where diffusion models do memorize the training data and replicate
them during the sampling process (Somepalli et al., 2022; Carlini et al., 2023). Other works (Wu et al., 2022; Hu & Pang,
2023; Duan et al., 2023) show that diffusion models can be susceptible to the membership inference attacks. The prior works
listed above, however, are mainly concerned about privacy issues or detection of train set replication within large-scale
diffusion models. We a different viewpoint from them; our goal is to understand the generalization of diffusion models
based on the memorization-generalization dichotomy hypothesis and controlled experiments within relatively simple setups.

B. Experiment Details
All experiments use the official PyTorch implementation1 of IDDPM (Improved Denoising Diffusion Probabilistic Models)
(Nichol & Dhariwal, 2021). We use the same model hyperparameters and training configurations as the default setup for
the CIFAR-10 dataset provided by the official repository, except possibly for the width of residual blocks, batch size and
training iteration (Table 1).

UNet-64 UNet-128 UNet-256

num channels 64 128 256

num res blocks 3

learn sigma True

drop out 0.3

diffusion steps 4000

noise scheduler cosine

optimizer Adam

lr 0.0001

Table 1. Model hyperparameters and training configuration for experiments

1https://github.com/openai/improved-diffusion

https://github.com/openai/improved-diffusion
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B.1. Experiments of Section 3.1

For all models in this experiment, we use batch size 128 and train for 500k iterations.

B.2. Experiments of Section 3.2

All networks in this experiment are the UNet-128 models. We use batch size 256 and train for 100k iterations.

We generate the Gaussian Mixture (GM) dummy images according to the following rule: 1) We first fix a set of 100 images
with independent and uniform random pixel values (normalized within [0, 1]), then 2) randomly select one of the 100 fixed
images X and sample an image from the isotropic Gaussian distribution with mean X and standard deviation 0.5 for each
pixel, and finally 3) clip the sampled image to take values within [0, 1].

We use unconditional error network εθ(x, t) when training with 2k images (Mondrian and CIFAR-10 cars), which has
52.5M trainable parameters. We use conditional error network εθ(x, t, y) (which takes class label y as input and combines
the label embedding of y with the timestep embedding) when training with GM dummy images. The conditional network
has 53.0M trainable parameters.

B.3. Experiments of Section 3.3

All networks in this experiment are the class-conditional UNet-128 models. We use batch size 256 and train for 100k
iterations.

C. Additional Experiment Results for Section 3.2
C.1. Using unconditional networks for training on dummy-augmented data

Although conditional networks do not seem to have significantly different memorization capacity from unconditional
networks (considering that the difference in their number of parameters is less than 1%), for the sake of completeness, we
also train an unconditional UNet-128 DDPM model on the mixture of 2k MO and 6k GM images. We unconditionally
generate 10k images and find that 2,626 images out of them are MO, using a separately trained binary classifier discriminating
MO images from GM images. The ratio criterion detects 0 replicates within the 2,626 MO images, which is clearly consistent
with our previous experiments (Figure 9).

(a) MO samples from unconditional generation (b) Nearest training images

Figure 9. (Left) MO class samples extracted from unconditionally generated samples from a diffusion model trained with 2k MO images
and 6k dummy images. (Right) The nearest train set images to each sample in the L2 sense.
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C.2. Additional samples from the CIFAR-10 experiment

We display 100 “car” samples each from the unconditional model and the conditional models trained with dummies, and the
train set images that are nearest to each sample in the L2 sense.

(a) Generated samples (b) Nearest training images

Figure 10. (Left) Unconditional samples from the model trained without dummies. (Right) L2-nearest train set images to each sample.

(a) Generated samples (b) Nearest training images

Figure 11. (Left) Conditional samples from the model trained with 2k dummies. (Right) L2-nearest train set images to each sample.
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(a) Generated samples (b) Nearest training images

Figure 12. (Left) Conditional samples from the model trained with 6k dummies. (Right) L2-nearest train set images to each sample.

(a) Generated samples (b) Nearest training images

Figure 13. (Left) Conditional samples from the model trained with 14k dummies. (Right) L2-nearest train set images to each sample.
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D. Validation of the Ratio Criterion
We provide a simple visual justification for the ratio criterion we use for replicate detection in our experiments. Below, we
display multiple pairs of images from the setup of Section 3.1, each consisting of a generated sample image and train set
image nearest to it in the L2 sense. In the first set, we only gather samples that are marked as replicates according to the
ratio criterion (i.e., ∥W−X1∥2

∥W−X2∥2
< 1

3 ), while in the second set, we only gather samples that are marked as non-duplicates.

(a) Image pairs for samples marked as replicates

(b) Image pairs for samples makred as non-replicates

Figure 14. Image pairs consisting of a generated sample image and the L2-nearest train set image to it, for (top) samples makred as
replicates by the ratio criterion and (bottom) samples marked as non-duplicates.


