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Fine-Grained Promote Learning for Face Anti-Spoofing
Anonymous Authors

ABSTRACT
There has been an increasing focus from researchers on Domain-
Generalized (DG) Face Anti-Spoofing (FAS). However, existing
methods aim to project a shared visual space through adversar-
ial training, making it difficult to explore the space without losing
semantic information. We investigate the inadequacies of DG that
result from classifier overfitting to a significantly different domain
distribution. To address this issue, we propose a novel Fine-Grained
Prompt Learning (FGPL) based on Vision-Language Models (VLMs),
such as CLIP, which can adaptively adjust weights for classifiers
with text features to mitigate overfitting. Specifically, FGPL first mo-
tivates the prompts to learn content and domain semantic informa-
tion by capturing Domain-Agnostic and Domain-Specific features.
Furthermore, our prompts are designed to be category-generalized
by diversifying the Domain-Specific prompts. Additionally, we de-
sign an Adaptive Convolutional Adapter (AC-adapter), which is
implemented through an adaptive combination of Vanilla Convo-
lution and Central Difference Convolution, to be inserted into the
image encoder for quickly bridging the gap between general image
recognition and FAS task. Extensive experiments demonstrate that
the proposed FGPL is effective and outperforms state-of-the-art
methods on several cross-domain datasets.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Face Anti-Spoofing, CLIP, Prompt Learning, AC-adapter, Domain
Generalization

1 INTRODUCTION
Face Recognition systems (FRs) are widely used in daily life due
to their unique advantages, such as intuitive, real-time, and non-
contact. However, these systems also face significant security risks
as criminals may use Presentation Attacks (PAs), such as printed
photographs, replayed videos, and 3D masks [28], to compromise
the FRs to steal user information. Therefore, Face Anti-Spoofing
(FAS) has become a crucial component in enhancing the security
of FR systems against such malicious attacks with the growing
importance in applications like face unlocking, face payments, and
access control systems.

The existing Presentation Attack Detection (PAD) algorithms can
usually be summarized as appearance-based and temporal-based
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Figure 1: (a): Existing methods only encode the visual image
features to find the shared space through domain alignment.
However, they miss semantic information due to direct edit-
ing of visual features through adversarial training. (b): The
CLIP uses a fixed template text to describe "a photo of", which
cannot accurately describe the subtle security features of FAS.
(c): We employ Fine-Grained prompt learning (FGPL) based
on the CLIP framework that treats domain generalizations-
based FAS as high-quality textual feature learning and solves
domain-generalized.

methods. The goal of appearance-based techniques is to differen-
tiate between genuine and artificial faces by utilizing various ap-
pearance cues, such as deep features [63], color textures [5, 6], and
picture distortion cues [62]. On the contrary, a variety of temporal
cues, including facial gestures [48, 49], rPPG [37, 38], and optical
flow, may be extracted using temporal-based techniques. Shown
as Fig. 1 (a), While these techniques have shown promising results
in tests conducted within the same dataset, their effectiveness sig-
nificantly declines when the training and testing data are obtained
from different datasets. The chief reason for this deterioration is
that these techniques, tailored solely to the training data, fail to
bridge the gap between source and target domains, resulting in
inadequate generalization.

Domain Generalization (DG) [58] is a commonly used tech-
nique in cross-domain contexts to address this issue by learning
domain invariant representations. Recently, some DG-based algo-
rithms [10, 16, 36] aim to improve the performance of models on
unknown datasets. Great generalization performances have been
achieved by works that make use of meta-learning [35, 75], while
others make use of adversarial learning [29, 47, 61]. These tech-
niques are dedicated to acquiring a generalized feature space, as-
suming that the extracted unknown faces can be mapped into the
generalization space, and improving the model’s generalization by

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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removing Domain-Specific (DS) information. However, attempt-
ing to generate a shared feature space for FAS through adversarial
training may result in the following issues: (1) Significant dispari-
ties in the distribution of different data domains can easily lead to
classifiers overfitting DS information. (2) Forcing the removal of
DS information through adversarial training can lead to the loss of
semantic information or the destruction of semantic structures in
visual features.

For the first issue, our analysis shows that the leading cause is
that the static weights of the classifier cannot dynamically adapt
to the changing DS information. Thus, assigning different weights
to samples from various domains during training can significantly
mitigate the problem. For the second issue, direct editing of vi-
sual features via adversarial training or decoupling learning causes
loss of semantic information and structural damage. By using an
adapter to modulate visual features towards generalization instead
of directly editing them, we can avoid this problem. Inspired by
Vision-Language Models (VLMs), such as CLIP [43], which can per-
form zero-shot inference with a set of weight vectors by embedding
the names or descriptions of the target dataset’s classes as depicted
in Fig. 1 (b), we can adaptively adjust weights for the classifier
with text features. Furthermore, we design a lightweight adapter to
transfer CLIP knowledge to FAS tasks, improving the model’s gen-
eralization ability with minimal learnable parameters and avoiding
the loss of feature information. Therefore, in this work, we treat
DG-based FAS as a high-quality text feature learning procedure
with an effective adapter.

To avoid time-consuming and performance-unstable prompt en-
gineering for text feature learning, CoOp [73] models a prompt’s
context words with learnable vectors while putting the [𝐶𝐿𝐴𝑆𝑆]
(i.e., the names or descriptions of the target dataset’s classes) token
in the end or middle position. Furthermore, CoCoOp [72] alleviates
overfitting in the base classes by learning a lightweight Meta-Net to
generate an input-conditional token (vector) for each image. How-
ever, they generally learn a set of prompts as inputs to the text
encoder to generate text features and cannot selectively suppress
domain-related information. In this work, we propose a novel Fine-
Grained Prompt Learning (FGPL), which first motivates prompts to
learn semantic information of both content and domain by captur-
ing Domain-Agnostic (DA) and Domain-Specific (DS) features. As
is shown in Fig. 1 (c), the model’s generalization ability is improved
by reducing the correlation between DA and DS prompts. Finally,
the joint prompts are further designed to be category-generalized
by diversifying the DS prompts. Additionally, we design an Adap-
tive Convolutional Adapter (AC-adapter), which is implemented
through an adaptive combination of Vanilla Convolution and Cen-
tral Difference Convolution, to be inserted into the image encoder
for quickly bridging the gap between general image recognition
and FAS task. To sum up, the main contributions of this paper are
summarized as follows:

• Wepropose a new strategy called Fine-Grained Prompt Learn-
ing (FGPL), which enhances the model’s generalization abil-
ity by reducing the correlation between Domain-Agnostic
and Domain-Specific prompts.
• We use Domain-Specific context in the prompt and diver-
sification of Domain-Specific prompts, further design of

category-generalized joint prompts. The ultimate implemen-
tation of adaptive adjustment of classifier weights with text
features.
• We design a lightweight Adaptive Convolutional Adapter
(AC-adapter) that adaptively combines the Vanilla Convo-
lution and the Central Difference Convolution. It enables
the rapid integration of general image recognition and FAS
tasks.
• Extensive experiments show that the proposed FGPL is effec-
tive and outperforms the state-of-the-art methods on several
cross-domain datasets.

2 RELATEDWORK
2.1 Face Anti-Spoofing
During the initial phases, researchers have presented handcrafted
feature-based presentation attack detection (PAD) methods [13, 31,
33, 40]. The majority of conventional algorithms are developed us-
ingmanually crafted features that rely on abundant texture and tem-
poral appearance cues. These cues include LBP [17, 39], HOG [21],
SURF [31], SIFT [41], facial and head movements [3, 17], such as
smiling and nodding, eye-blinking [26, 32, 40], gaze tracking [2, 4],
and remote physiological signals, for example rPPG [21, 33]. While
the aforementioned approaches have yielded noteworthy outcomes,
their applicability is restricted to test data originating from the
same domain. When the training and testing data are sourced from
distinct domains, the performance of these methods significantly
deteriorates.

2.2 Domain Generalization Methods
In order to cope with the identification of unseen domains, Do-
main Generalization (DG) becomes a more effective approach to
address the unseen domain for FAS. The initial proposition by Shao
et al. [47] involves the acquisition of a generalized feature space that
is shared among many source domains through the utilization of a
multi-adversarial discriminative domain generalization framework.
Wang et al. [56] proposed a method for distinguishing between
generic Facial Attribute Synthesis features from subject discrimina-
tive features, as well as domain-dependent features. Jia et al. [29]
proposed a method for obtaining a discriminative and generalized
feature space. The study [16] utilizes adversarial domain adapta-
tion as a method to acquire knowledge in a shared embedding
space. The paper [36] employs several domain discriminators to
acquire knowledge in a comprehensive feature space. The authors
in [16, 67] employ disentangled representation learning to separate
the features associated with liveness for categorization purposes.
To acquire comprehensive knowledge, numerous meta-learning-
based approaches [11, 42, 50] have been developed and improved
for the purpose of regular optimization. Despite the achievements
in pursuing a mutually shared feature space, inherent constraints
and drawbacks still need to be acknowledged and addressed, such
as the loss of semantic information, which can further weaken
category discrimination. Unlike existing strategies [29, 47, 56] for
seeking common spaces in the field of FAS, we propose a novel
approach using fine-grained prompt learning and taking advantage
of the Vision-Language Models (VLMs) model to transform DG-FAS
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problem into a high-quality text feature learning procedure with
an effective adapter.

2.3 Vision-Language Models (VLMs)
Advances in computer vision [27, 70] have shown that the use of
extensive pre-training with paired image-text data can be a viable
alternative to achieving superior learning of visual representations
without relying exclusively on natural language guidance. Since the
Contrastive Language-Image Pretraining (CLIP) [43] was proposed,
it has stimulated research into VLMs. Now, CLIP has been success-
fully applied in many fields, such as [22], image generation [45],
visual question answering [1] and Domain Adaptation [19]. With
further research [8], the construction of VLMs using independently
pre-trained Large-Language Models (LLMs) and visual backbone
models allows VLMs to understand both text and images with only
a few parameters in the training phase. Inspired by the simultane-
ous comprehension of image-text in VLMs, we have delved further
into the potential use of CLIP to enhance the FAS task.

2.4 Prompt Learning
The concept of prompt learning has roots in Natural Language
Processing (NLP), a procedure that includes instructions at the be-
ginning of the input sequence. Prompt learning aims to leverage
these instructions to execute downstream tasks without necessi-
tating fine-tuning. Many existing studies have used prompt learn-
ing [46, 51]. For instance, the CoOp [73] transforms pre-trained
VLMs into data-efficient visual learners that outperform the origi-
nal CLIP’s hand-designed prompt learning templates. Subsequent
research [14, 23, 60] has further advanced the development of CLIP,
addressing a variety of aspects, particularly in terms of generaliza-
tion capabilities. For example, by ensuring that prompts are relevant
to the input image, the CoCoOp [72] demonstrates adaptation to
new target domains, while the ProGrad model [76] achieves the
same objective through gradient correction techniques. In recent
times, there have been proposals such as the CLIP-adaptor [18]
and the TIP-adaptor [68] that aim to enhance the transfer-ability
of CLIP on downstream tasks by training a more efficient network.
The DenseCLIP framework [44] utilizes the CLIP model to address
dense prediction tasks through language-guided fine-tuning. Kg-
CoOp [64] introduces a new knowledge-guided context optimiza-
tion to enhance the generalization of learnable prompts to unseen
classes. MaPLe [30] proposes multi-modal prompt learning for the
Vision and Language branches. FLIP [52] is based on the Vision
Transformer (ViT) visual model for fine-tuning, which aligns image
representations with textual prompt Learning to achieve recogni-
tion of FAS tasks. However, these prompt learning described above
are mostly applied in multi-category recognition tasks and require
the category center to be learned using all the category names be-
fore the text encoding. In contrast, for the task of fine-grained FAS,
simplistic and inflexible prompt learning may lead to overfitting
of Domain-Specific information. To this end, we explored a Fine-
Grained Promote Learning (FGPL) strategy, which dynamically
adjusts the classifier weights through prompt learning, improv-
ing the generalization ability of FAS model while simultaneously
allowing better application of VLMs to FAS tasks.

3 METHOD
3.1 Overall Framework
The architecture of the FGPL is shown in Fig. 2, which is built
on CLIP. Unlike the standard CLIP [43], we design a fine-grained
promote learning instead of fixed templates. Additionally, we add
a lightweight AC-adapter to the image branch. In the following
section, we explain our proposed approach in detail: Section 3.2
first reviews the CLIP approach and previous methods such as the
CoOp. Then, we present our FGPL approach in section 3.3.

3.2 Revisiting CLIP
CLIP [43] comprises two encoders, one for image and one for text,
which can jointly train an image encoder and a text encoder to
predict the correct pairings of a set of <image, text> training exam-
ples. The contrastive learning objective aligns the image and text
representation in the same feature space. CLIP encodes the input
image 𝐼 ∈ R𝐻×𝑊 ×3 and the corresponding text description 𝑡 into a
shared embedding space. A specific description is explained below.

Image encoding: The image encoder is responsible for convert-
ing an image into a feature vector, which can be implemented using
either a ResNet [24] or a ViT [15]. Suppose the training set contains
M samples, which denotes 𝑆 = {𝐼𝑖 ,𝑇𝑖 }𝑀−1𝑖=0 , where 𝐼𝑖 ∈ R𝐻×𝑊 ×3
and 𝑇𝑖 is the textual description corresponding to the image 𝐼𝑖 . 𝜈 (·)
is the visual encoder that encodes 𝐼𝑖 into a visual feature: 𝑣𝑖 = 𝜈 (𝐼𝑖 ),
𝑣𝑖 ∈ R𝑑 , Where 𝑑 is the hidden dimension of the CLIP.

Text encoding: The text encoder accepts a series of word to-
kens as its input and generates a vectorized representation, which
is implemented using a transformer [54]. The CLIP text encoder
provides feature representations for text descriptions by tokenizing
words and projecting them to word embeddings. 𝜏 (·) is the textual
encoder that encodes 𝑇𝑖 into textual feature: 𝑡𝑖 = 𝜏 (𝑇𝑖 ), 𝑡𝑖 ∈ R𝑑 ,
Where 𝑑 is the hidden dimension of the CLIP.

Zero-shot inference: Using the classification problem as an
example, CLIP can achieve zero-shot classification by correctly
generating the text input. CLIP utilizes a fixed template prompt
to form the text input, for example, "a photo of [𝐶𝐿𝐴𝑆𝑆]". The
[𝐶𝐿𝐴𝑆𝑆] in the fixed template can be replaced with the actual class
name. For fixed template 𝑇 ′

𝑖
= {A photo of [CLASSi]}, here 𝑖 is

the 𝐾 − 𝑡ℎ categories, 𝑖 = {0, 1, 2 . . . , 𝐾}. Fixed samples are fed
into the encoder to get text features {𝑡 ′

𝑖
|𝑡 ′
𝑖
= T (𝑇 ′

𝑖
)}𝐾
𝑖=0, therefore,

the predicted probability of CLIP is as follows Eq. 1. where sin(·)
denotes the similarity calculation and 𝜏 is a temperature parameter.

𝑝 (𝑦 = 𝑖 |𝐼 ) =
exp(sin(𝒕′𝒊 , 𝒗)/𝜏)∑𝐾
𝑖=1 exp(sin(𝒕′𝒊 , 𝒗)/𝜏)

(1)

However, CLIP fixed template prompts depend on manual set-
tings and require word matching using a reserved validation set,
which can be time-consuming. Therefore, CoOp [73] proposes
prompt learning, which uses continuous 𝑡𝑘 representations to more
accurately describe semantic features, as in Eq. 2. The v𝑚1 is a
vector of the same dimension as the word embedding, and𝑚1 ∈
{1, 2, . . . , 𝑀1}.

t𝑘 = [v]1 [v]2 . . . [v]𝑀1 [CLASS]𝑘 (2)
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Figure 2: Overview of the proposed FGPL framework. FGPL first motivates cue learning content and domain semantic informa-
tion by capturing domain-independent and Domain-Specific features. Then, category-generalized common cues are further
designed by diversifying the DS cues. The AC-adapter is implemented through an adaptive combination of Vanilla Convolution
and Central Difference Convolution.

3.3 Domain Generalization via Fine-Grain
Prompt Learning

Due to the variations in Domain-Specific (DS) factors like illumi-
nation, background, and camera type, former methods using fixed
text templates for domain descriptions often fail to capture com-
plex domain information. This leads to misclassifications driven by
spurious correlations among features from different domains. The
existing CoOp [73] model, although innovative in employing con-
tinuous text sequences through prompt learning, does not integrate
domain-specific information and lacks granularity in its prompts.

Initialize Vectors. To address these challenges, we introduce
the concept of Fine-Grain Prompt Learning (FGPL).

FGPL incorporates learnable Domain-Agnostic (DA) andDomain-
Specific (DS) contexts into the prompts to further guide the FAS
task. The DA context is universal across all domains, while the
DS context is tailored to individual domains, embedding pertinent
domain information into the prompts. We define the DA and DS
vectors as two learnable variables, i.e.,V𝐷𝐴 andV𝐷𝑆 , with a length
of 𝐿, where 𝐿 = 16 in our case. At first,V𝐷𝐴 is initialized inR16×512,
while V𝐷𝑆 is defined in R𝐷×16×512, containing domain informa-
tion. Then, to further process and unify the prompts, we expand
V𝐷𝐴 ∈ R𝐷×𝑐𝑙𝑠×16×512 to obtain the domain and class information.
Also,V𝐷𝑆 has been expanded to include classification information.
The architecture ofV𝐷𝐴 andV𝐷𝑆 prompts are structured as Eq. 3
and 4:

V𝐷𝐴 = [𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝐿] (3)
V𝐷𝑆 = [𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝐿] (4)

Where 𝐿 is defined as 16 in our case.
Construct Prompts.We construct these vectors as Mix-Prompt

P𝑚𝑖𝑥 , Class-Prompt P𝑐𝑙𝑠 , and Domain-Prompts P𝑑𝑜𝑚 .
First, we construct a mix prompt 𝑝𝑚𝑖𝑥 containing all information

in the sequence {[𝑠𝑜𝑠] [𝑣𝐷𝐴] [𝑣𝐷𝑆 ] [𝑐𝑙𝑠] [𝑑𝑜𝑚] [𝑒𝑜𝑠]} and [𝑣𝐷𝐴] and
[𝑣𝐷𝑆 ] in 𝑝𝑚𝑖𝑥 is first filled with some [𝑥] placeholder. Also, the pre-
fix, which is {[𝑠𝑜𝑠]}, is extracted for all three prompts, and the suffix
𝑆𝐹𝑋𝑚𝑖𝑥 = {[𝑐𝑙𝑠] [𝑑𝑜𝑚] [𝑒𝑜𝑠]}, 𝑆𝐹𝑋𝑐𝑙𝑠 = {[𝑐𝑙𝑠] [𝑒𝑜𝑠]}, 𝑆𝐹𝑋𝑑𝑜𝑚 =

{[𝑑𝑜𝑚] [𝑒𝑜𝑠]} is extracted separately. Then, class prompt 𝑝𝑐𝑙𝑠 and
domain prompt 𝑝𝑑𝑜𝑚 is structured by combining the prefix and suf-
fix with 𝑣𝐷𝐴 and 𝑣𝐷𝑆 separately, where 𝑣𝐷𝐴 and 𝑣𝐷𝑆 here refer to
the [𝑣𝐷𝐴] and [𝑣𝐷𝑆 ] in the mix prompt 𝑝𝑚𝑖𝑥 . Then, three prompts
𝑝𝑚𝑖𝑥 , 𝑝𝑐𝑙𝑠 , and 𝑝𝑑𝑜𝑚 are tokenized for text feature extraction and
further fed to the CLIP’s embedding layer 𝐸𝑚𝑏 to generate each’s
embeddings.

Second, in order to obtain the final prompts for the classification,
we adopt the prompt in the first stage and replace the [𝑣𝐷𝐴] and
[𝑣𝐷𝑆 ] parts with the learnable DA and DS vectors. The structure
of the Prompts is shown as follows:

P𝑚𝑖𝑥 = {[𝑃𝐹𝑋𝑚𝑖𝑥 ] [V𝐷𝐴] [V𝐷𝑆 ] [𝑆𝐹𝑋𝑚𝑖𝑥 ]} (5)
P𝑐𝑙𝑠 = {[𝑃𝐹𝑋𝑐𝑙𝑠 ] [V𝐷𝐴] [𝑆𝐹𝑋𝑐𝑙𝑠 ]} (6)
P𝑑𝑜𝑚 = {[𝑃𝐹𝑋𝑑𝑜𝑚] [V𝐷𝑆 ] [𝑆𝐹𝑋𝑑𝑜𝑚]} (7)

Where 𝑃𝐹𝑋 refers to the prefix, and 𝑆𝐹𝑋 refers to the suffix of
each prompt. 𝑉𝐷𝐴 and 𝑉𝐷𝑆 here represent the learnable DA and
DS vectors.

For the Mix-Prompt P𝑚𝑖𝑥 , we randomly shuffle the [V𝐷𝑆 ] re-
lated to each domain, which makes the model less concentrated
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on the domain-specific information. For Class-Prompt P𝑐𝑙𝑠 and
Domain-Prompt P𝑑𝑜𝑚 , we insert learnable DA and DS vectors,
respectively, to focus on different aspects of the image.

Finally, the CLIP’s text encoder further processes three prompts,
with each tokenized prompt in the first stage, to obtain the text
features of the images and calculate the cosine similarity of the
image and text features. This refined approach to prompt learning
improves the adaptability and effectiveness of face anti-spoofing
models across varied domains. It sets a new standard for integrating
domain-specific information into deep learning frameworks.

3.4 Adaptive Convolutional Adapter
The pivotal component of the FAS task is the precise identification
and analysis of information that discriminates between live and
fake representations. Initially, processing visual features through
Vanilla Convolution can lead to semantic information loss and
structural degradation. Furthermore, utilizing the image encoding
capabilities of CLIP may hinder the learning of fine-grained details
critical for FAS. This paper introduces a lightweight visual adapter,
Adaptive Convolutional Adapter (AC-Adpater), which integrates
into CLIP’s visual encoding framework to address these issues. This
adapter innovatively merges Vanilla Convolution with central dif-
ference convolution [66]. By incorporating the latter, the adapter
enhances its capability to detect subtle, deceptive patterns by ef-
fectively combining luminance and gradient data, thus improving
its effectiveness in distinguishing authentic from spoofed images.
The adapter module is placed in parallel with the Multi-Head Self-
Attention (MHSA) and Multi-Layer Perceptron (MLP) block, given
an input 𝐼 ∈ R𝑁×𝑑 :

𝐼 ′ ← 𝐼 +MHSA/MLP(𝐿𝑁 (𝐼 )) + 𝑣 · 𝑎𝑑𝑎𝑝𝑡𝑒𝑟 (𝐿𝑁 (𝐼 )) (8)

As shown in the bottom of Fig. 2, the visual adapter module
consists of four convolution layers: SElayer, which implements the
Squeeze-and-Excitation (SE) procedure to adjust features across
channels dynamically, is employed to enhance the network’s capa-
bility for feature representation; Central Difference Convolution
layer to compute the difference output; 1×1 standard convolution
layer and 1×1 linear convolution to perform dimension change
operations.

At first, the input 𝐼 ∈ R𝑁×𝑑 , where N represents the length of the
sequence and d represents the feature level (768), is reconstructed
and downed to 𝑑𝑖𝑚 = 8 dimensions and further add non-linear
features using GELU. Then, the last procedure’s output 𝐼𝑑𝑖𝑚 is fed
to the SElayer, which contains two stages: Squeeze and Excitation.
During the squeeze stage, 𝐼𝑑𝑖𝑚 ∈ R𝐵×𝑑𝑖𝑚×14×14, where B and N
represent the batch size and length of sequence respectively, are
compressed through an adaptive average pooling operation, which
outputs the global average for each channel, i.e., 𝐼𝑑𝑖𝑚

𝑆𝐸
∈ R𝐵×𝑑𝑖𝑚 .

This procedure aggregates spatial information, compressing each
channel’s features into a single numerical value. Then, the SElayer,
through a fully connected layer, reduces the dimensions of chan-
nels, followed by the introduction of non-linearity through a ReLU
activation function, which also aids in mitigating the issue of van-
ishing gradients. Subsequently, the original dimensions are restored
through another fully connected layer. Finally, a Sigmoid activation
function outputs weights ranging from 0 to 1. These weights are

utilized to scale the features in each channel of the original feature
map, completing the "Excitation" phase and dynamically adjusting
the inter-channel feature responses.

Furthermore, the weights𝑊 𝑑𝑖𝑚
𝑆𝐸
∈ R𝐵×𝑑𝑖𝑚×14×14 of the SElayer

outputs are passed into the Central Difference Convolution layer
along with the production of a Vanilla Convolutional layer. The
Central Difference Convolution layer first calculates the sum of
the Vanilla Convolution weights across the last two dimensions
to form a new kernel difference for computing a new convolution
𝐼𝑑𝑖𝑚
𝑐𝑑

∈ R𝐵×𝑁×14×14. Then, by multiplying the output weights
from the SElayer, the central difference convolution of the input is
obtained, which is less than that which samples the local receptive
field region R and will simultaneously capture the central gradient
along with it. After the processing with this layer, the difference
in results from the Vanilla Convolutional layer and itself has been
calculated to extract differentiated features, shown as Eq. 9:

𝐼 ′𝑑𝑖𝑚 = 𝑐𝑜𝑛𝑣_𝑐𝑑 (𝐼 ) − 𝑐𝑜𝑛𝑣 (𝐼 ) (9)

Where 𝐼 ′𝑑𝑖𝑚 denotes the total output, 𝑐𝑜𝑛𝑣_𝑐𝑑 (𝐼 ) represents the
output of the Central Difference Convolution layer, which is the
combination of the feature 𝐼𝑑𝑖𝑚

𝑐𝑑
and the weight𝑊 𝑑𝑖𝑚

𝑆𝐸
.

Besides, the class token is obtained, convolved, and combined
with the 𝐼 ′𝑑𝑖𝑚 feature. Finally, the feature dimensions are restored
to their original size of R𝑁×𝐵×768.

In the FAS task, capturing semantic information at the intensity
level and detailed information at the gradient level is essential for
differentiating between live and spoofed faces. Therefore, employ-
ing such a hybrid approach that adaptively combines Vanilla and
Central Difference Convolution is critical. The AC-adapter’s for-
ward propagation process includes dimensionality reduction via
linear convolution, integration of SElayer parameters to facilitate
both vanilla and center-difference convolution transformations and
utilization of center-difference convolution subtracted from Vanilla
Convolution to enhance the detection of forgery-specific features.
Also, obtained from the adapters’ structure, all trainable paths con-
tain adapter modules after freezing the MHSA/MLP so that the
whole fine-tuning process can benefit from the visual bias inherent
to CNNs. Additionally, the Central Difference Convolution layer
is implemented by transforming the receptive field from the orig-
inal 3x3 neighborhood into sub-neighborhoods corresponding to
horizontal-vertical or diagonal directions, making the visual adapter
more focused on capturing Anti-Spoofing detail information.

3.5 Loss Function.
The image and text encoders are unfrozen during training, while
fine-grained prompt learning and AC-adapter are added. After the
encoders, three fine-grained text features and the image feature
are then calculated for similarity and the predictions of the input
image using Eq. 1. We utilize the standard CrossEntropy loss during
training to obtain the fine-grained loss upon three kinds of features
and then sum it as the total loss as shown in Eq. 10:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑙𝑠 + L𝑑𝑜𝑚 + L𝑚𝑖𝑥 (10)

Specifically, the Class-Loss L𝑐𝑙𝑠 utilizes the Class-Prompt P𝑐𝑙𝑠 ,
the Domain-Loss L𝑑𝑜𝑚 uses the Domain-Prompt P𝑑𝑜𝑚 and the
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Table 1: The results (%) of Protocol 1 on MSU-MFSD (M), CASIA-FASD (C), ReplayAttack (I), and OULU-NPU (O) datasets.

Method OCI→M OMI→C OCM→I ICM→O avg.HTER↓ AUC HTER AUC HTER AUC HTER AUC
MADDG [47] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09
DR-MD-Net [57] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64
RFMeta [50] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.97
NAS-FAS [65] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43 16.09
D2AM [10] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87 16.09
SDA [59] 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30 19.65
DRDG [35] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75 15.66
ANRL [36] 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90 15.09
SSDG-R [29] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54 11.28
SSAN-R [61] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.81
PatchNet [55] 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07 10.91
SA-FAS [53] 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23 7.82
IADG [74] 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14 8.39
CLIP-V [43] 4.29 98.76 70.00 5.00 98.89 76.33 7.14 97.92 74.29
CLIP [43] 4.04 99.13 5.00 98.89 5.57 98.45 6.09 98.12 5.17
CoOp [73] 4.29 98.76 2.11 98.55 6.07 97.52 4.60 98.78 4.51
CoCoOp [72] 4.05 99.18 4.77 98.15 9.21 97.39 6.80 97.27 6.21
FGPL (Ours) 2.86 98.12 3.89 98.19 3.50 99.54 1.77 99.23 3.01

Mix-Loss adpots the Mix-Prompt P𝑚𝑖𝑥 which shuffles the [V𝐷𝑆 ]
component.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets and Protocols: We used two protocols to assess gen-
eralizability. For Protocol 1, we used benchmark datasets that are
publicly available to the FAS academic community, MUS-MFSD
(M) [62], CASIA-FAD (C) [71], Idiap Replay-Attack (I) [12] and
OULU-NPU (O) [7]. The four datasets differ for various reasons,
concerning material, lighting, background, and resolution differ-
ences. As a result, there is a significant bias in the domain between
these datasets. Following the established testing rules, each dataset
is treated as a domain, and the other three source domains are
combined. The leave-one-out test protocol is applied to assess the
cross-domain generalizability of the method. For example, OCI→M,
which uses OULU-NPU, CASIA-FAD, and Idiap Replay attacks as
training protocols, was tested on MSU-MFSD. For Protocol 2, we
use the large-scale FAS datasets CASIASRF (S) [69], CASIA CeFA
(C) [34], and WMCA (W) [20], which are FAS proprietary datasets,
as they encompass a broader range of topics, various types of at-
tacks, and diverse sampling environments.

Evaluation Metrics: In line with the evaluation principles, we
used three metrics, HTER, AUC, and TPR, to assess the model’s
performance. (1) HTER is a measure of the false rejection and false
acceptance error rates, and its value is taken as the average of the
false rejection rate (FRR) and the false acceptance rate (FAR). (2)
AUC measures the algorithm’s overall performance, and its value
represents the area under the ROC curve. This metric is used to
evaluate the performance of the classifier. (3) TPR (True Positive

Rate) measures the algorithm’s accuracy in recognizing spoofed
samples. It can select the appropriate threshold based on the specific
application requirements.

ImplementationDetails: For the FAS task, we use a pre-trained
CLIP [43] model with ViT-B/16 [15] as the image encoder. We
keep the parameters in the encoder unchanged, resize the image to
224×224 with a batch size of 50, and train all models for 500 epochs.
We use the Adam optimizer and set the learning rate to 1e-6 for
training. Additionally, we set the length of the DA token M1 and
the DS token M2 to 16 during the initialization of prompt learning.

4.2 Cross-domain FAS Performance
In Protocol 1, we present the results of the state-of-the-art (SOTA)
approach and our improved results using the CLIP model. The
following conclusions can be drawn from Tab. 1. FAS domain gen-
eralization can be effectively improved by using multiple variants
of Vision Transformer (ViT). From the HTER metrics, it can be seen
that the mean HTER values of CLIP [43] (5.17%), CoOp [73] (4.51%),
and CoCoOp (6.21%) are significantly higher than the MADDG [47]
(23.09%), D2AM [10] (16.09%), IADG [74] (8.39%), SA-FAS [53]
(7.82%). The latter searches the commonality space through adver-
sarial training, so the classifier weights do not adapt to dynamically
changing domain-specific information. However, former methods
conveying natural language semantic information have much more
satisfying results. Such methods are well-established [23, 43, 72]
that introducing natural language semantics enriches the visual
representation and improves its generalization, enabling models to
understand and reason about visual content more comprehensively
and accurately. The latest research FLIP [52] also utilizes image-text.
Still, it uses a fixed text template, which is sub-optimal for FAS tasks
and does not allow for dynamic adjustment of classifier weights.
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Method
CS→W SW→C CW→S avg.

HTER↓ AUC TPR@
FPR=1% HTER AUC TPR@

FPR=1% HTER AUC TPR@
FPR=1% HTER

ViT [25] 21.04 89.12 30.09 17.12 89.05 22.71 17.16 90.25 30.23 18.44
CLIP-V [43] 20.00 87.72 16.44 17.67 89.67 20.70 8.32 97.23 57.28 15.33
CLIP [43] 20.00 87.72 16.44 17.67 89.67 20.70 8.37 97.47 64.05 15.34
FGPL (Ours) 14.05 92.65 33.33 19.00 88.53 13.33 11.00 94.72 34.00 14.68

Table 2: The results (%) of Protocol 2 on CASIA-SURF (S), CASIA-SURF CeFA (C), and WMCA (W) datasets.

Figure 3: Example of mis-classificate in Protocol 1. Blue boxes indicate live faces that were misclassified as spoofed. Orange
boxes indicate faces that have been misclassified as live.

Compared to the other SOTA methods, our approach significantly
outperforms all baselines in terms of the mean value of HTER and
most of the DG tasks.

In Protocol 2, The results of the different methods are presented
in Tab. 2. Compared to ViT [15] and CLIP-V, which only involve
image-side processing, and CLIP [43], which only uses fixed tem-
plates, the HTER of our FGPL is significantly improved. Unlike the
baseline CLIP, FGPL incorporates fine-grained prompt learning and
lightweight AC-adapters. Among them, constructing three-stage
fine-grained textual cues achieves the precise localization of DA
and DS information in visual features, effectively mitigating the
overfitting problem of classifiers to domain-relevant information.
On the other hand, the AC-adapter captures detailed deception
features using an adaptive combination of Vanilla Convolutional
and Central Difference Convolution. Compared to CLIP, CLIP-V,
the HTER of FGPL is reduced by 0.66% on average on the MSU-
MFSD (M) [62], Idiap Replay Attack (I) [12] and OULU-NPU (O) [7]
datasets.

4.3 Ablation Study
To further validate the innovativeness of our approach, we first
removed our FGPL’s AC-adapter and replaced it with the original
visual encoder in CoOp. Additionally, we replaced our Fine-Grain
Prompt Learning with the original text prompts in CoOp. Through
these experiments, we can simultaneously and collaboratively ver-
ify the effectiveness of our FGPL and AC-adapter. Shown as Tab. 3,
the HTER score increased from 3.50% to 4.86%, and the TPR score
decreased from 87.14% to 65.00% by removing the AC-adapter. More-
over, by stipping our FGPL, the HTER increased 3.93%. The results

show that the two modules we designed complement each other
and are indispensable.

Table 3: Ablation of the structures for FGPL and AC-adapter
on OCM→I.

Method HTER(%) AUC(%) TPR(%)@FPR=1%
CoOp 6.07 97.52 70.00
CoOp-FGPL 4.86 98.71 65.00
CoOp-AC adapter 7.43 97.76 80.71
FGPL (Ours) 3.50 99.54 87.14

Where CoOp represents the original CoOp model without ad-
justments, CoOp-FGPL denotes the original CoOp’s image encoder
with FGPL, and CoOp-AC adapter means the CoOp model with our
AC-adapter, not including the FGPL.

Effectiveness of FGPL: Shown in Tab. 3, we conducted the
OCM→I experiment to confirm the impact of our FGPL. On the one
hand, by removing the FGPL, which refines the prompt learning
procedure to reduce the notice of DS information, the CoOp-AC
adapter’s HTER score increases 3.93% and the TPR drops 6.97%.
Moreover, its HTER score even increases by 1.36% compared to the
original CoOp model. On the other hand, by adding our FGPL into
the standard CoOpmodel, the HTER improves by 1.21%. The results
significantly demonstrate the importance of our FGPL. Even if we
use an AC-adapter in isolation, allowing us to extract more semantic
information from images; however, the absence of textual cues to
supervise the training process can lead the model to focus on DS
information overly, ultimately resulting in decreased performance.
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Figure 4: Attention maps in Protocol 1. The first and second lines show the results using the baseline CLIP, while the third and
fourth lines display the results of the FGPL.

Effectiveness of AC-adapter: In the OCM→I experiments
as Tab. 3, from one view, by removing the AC-adapter from our
FGPL method, the HTER performance drops 1.36% and the TPR
decreases 22.14%. From another view, by solely utilizing the AC-
adapter based on the CoOp model, the TPR score increases 10.71%.
Interestingly, the HTER score performance worsened if we used
the AC-adapter without guidance from FGPL. This is because more
fine-grained image features are dug, and DS information is also part
of them. Without our FGPL DG method, the model can overfit the
DS information and reduce the model’s generalization performance.
This verifies that our AC-adapter indeed captures more specific
features and also restates the importance of using both modules as
a whole.

4.4 Visualization
Mis-classified images: In Fig. 3, we present examples of mis-
classified images in Protocol 1. It is easy to notice that none of the
fake samples were misclassified in OCI→M and OCM→I. This can
be attributed to the fact that the attack types in the training dataset
contain the attack types in the test dataset. However, in OMI→C,
approximately 6% of the samples are misclassified as fake faces.
This issue may be attributed to the high resolution of the samples
trained in OULU. Still, the CASIA test dataset samples do not have
enough resolution, have low light conditions, or are overly bright.
In contrast, the probability of misclassifying a live face as a fake face
is extremely low at 2.1% in ICM→O. After all, the four benchmark
datasets, OULU-NPU, are the higher resolution database. When
the training samples are of low resolution, this can easily lead to
recognizing a higher-resolution fake face as a live face in the testing

phase. Similarly, the same analytical conclusions apply to Protocol
2.

Attention map: To further demonstrate the benefits of FGPL,
we used [9] to generate visual attention maps for the FGPL model
on the deception samples in Protocol 1 and Protocol 2, respectively.
As observed in Fig. 4, the dataset in Protocol 1 is primarily affected
by printing and replay attacks. The baseline CLIP emphasizes un-
trustworthy spoofing cues like paper texture, edges, and ripples,
resulting in the misclassification of samples. In contrast, our FGPL
adjusts the model’s focus on more subtle fake characteristics and
can efficiently locate the fake patterns in each fake domain to make
correct classification decisions. Likewise, the same analytical con-
clusions are applicable to Protocol 2.

5 CONCLUSION
In this paper, we consider DG-Based FAS as high-quality textual fea-
ture learning and effective adaptor design that improves the model’s
generalization capability with minimal loss of learnable parameters
and feature information. FGPL proposes an effective framework for
fine-grained prompt tuning. A refined prompt learner is used to
optimize prompts to adjust classifier weights dynamically. A light
Adaptive Convolutional Adapter (AC-adapter) quickly bridges the
gap between general image recognition and FAS tasks. We have
shown that visual language modules learned using pre-trained vi-
sual language models (e.g., CLIP) have excellent generalization
capabilities in FAS tasks compared to models that only use multiple
variants of ViT. Future work could explore more diverse prompt
learning in conjunction with FAS image features to further improve
the effectiveness of text monitoring in on-the-fly adaptation.
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