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ABSTRACT

Collaborative (federated) learning enables multiple parties to train a global model
without sharing their private data, notably through repeated sharing of the parame-
ters of their local models. Despite its advantages, this approach has many known
security and privacy weaknesses, and is limited to models with the same architec-
tures. We argue that the core reason for such security and privacy issues is the naive
exchange of high-dimensional model parameters in federated learning algorithms.
This increases the malleability of the trained global model to poisoning attacks
and exposes the sensitive local datasets of parties to inference attacks. We propose
Cronus, a robust collaborative learning framework that supports heterogeneous
model architectures. The simple yet effective idea behind designing Cronus is to
significantly reduce the dimensions of the exchanged information between parties.
This allows us to impose a very tight bound over the error of the aggregation
algorithm in presence of adversarial updates from malicious parties. We implement
this through a robust knowledge transfer protocol between the local models. We
evaluate prior federated learning algorithms against poisoning attacks, and we show
that Cronus is the only secure method that withstands the parameter poisoning
attacks. Furthermore, treating local models as black-boxes significantly reduces
the information leakage about their sensitive training data. We show this using
membership inference attacks.

1 INTRODUCTION

Collaborative machine learning has recently emerged as a promising approach for building machine
learning models using distributed training data held by multiple parties. The training is distributed,
and participants repeatedly exchange information about their local models, through an aggregation
server. The objective is to enable all the participants to converge to a global model, while keeping
their data private. This is very attractive to parties who own sensitive data, and agree on performing a
common machine learning task, yet are unwilling to pool their data together for centralized training.
Various applications can substantially benefit from collaborative learning. Examples include medical
and financial applications, intelligent virtual assistants, speech recognition, keyboard input prediction,
and mobile vision (Brendan et al., 2018; McMahan et al., 2017).

A popular approach for collaborative deep learning, known as federated learning, assumes homoge-
neous local models, i.e., with the same architecture (Shokri & Shmatikov, 2015; McMahan et al.,
2017). Every participant shares its model parameters (or gradients) with a parameter server, after
each round of training on its local data. The server aggregates the parameter vectors by computing
their element-wise mean and shares the aggregate with the participants. Each party updates its local
model with the latest global aggregate, and continues with the next round of local training.

There are major obstacles hindering the scalable deployment of secure and truly privacy-preserving
federated learning for sensitive applications. Existing federated learning algorithms are not robust to
adversarial updates (Bhagoji et al., 2019; Blanchard et al., 2017) and backdoor attacks (Bhagoji et al.,
2019; Bagdasaryan et al., 2020), and can leak a significant amount of sensitive information about
local datasets (Nasr et al., 2019; Melis et al., 2019). Besides, federated learning cannot be used for
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aggregating heterogeneous models, for participants that use different models as they have different
memory and computing power.

In this paper, our main focus is on securing collaborative machine learning against poisoning attacks.
There exist a long chain of recent poisoning attacks and defenses for federated learning (Mhamdi
et al., 2018; Xie et al., 2018; Yin et al., 2018; Blanchard et al., 2017; Wagner, 2004; Li et al., 2014;
Nasr et al., 2019; Bhagoji et al., 2019; Bagdasaryan et al., 2020). Most existing defenses focus only
on replacing the vulnerable aggregation in federated learning with a robust mean function, leaving
the rest of the framework intact. However, those defenses are susceptible to some form of poisoning
attack (Shejwalkar et al., 2021). The core reason for the susceptibility is the high-dimensionality of
the parties’ model updates: the theoretical error bound of the existing robust aggregation algorithms
(Blanchard et al., 2017; Mhamdi et al., 2018; Diakonikolas et al., 2016; 2017; 2019; Li, 2018)
depend on the dimensionality of their inputs, i.e., the size of model in federated learning. The
models in modern federated learning generally have very high dimensionality, which makes the
error bounds of robust aggregation algorithm prohibitively high. Although, in the literature of robust
statistics, there are robust mean estimation algorithms that achieve the dimension-independent error
bounds (Diakonikolas et al., 2016; 2017; Li, 2018), the sample complexity 1 of these algorithms
is dependent on the dimensionality of the inputs. The high dimensionality of the models makes it
impractical to directly use these robust mean estimation algorithms in federated learning.

Furthermore, by sharing the model parameters, federated learning completely opens the local models
to the (potentially malicious) server and untrusted participants. This is a serious privacy vulnerability
as the model parameters leak all the information that the model has about its training data (Nasr et al.,
2019; Melis et al., 2019). The problem is significantly worse for large models, with a huge number of
parameters. This high dimensionality not only magnifies the problem, but also makes it harder to
design a defense mechanism with tight (robustness and privacy) guarantees. We refer to this as the
curse of dimensionality for privacy and security in federated learning.

Thus, sharing model parameters to transfer the knowledge of local models is not a secure design
choice in federated learning, especially considering that this is not the only way of exchanging
knowledge between models.

Our contributions. In this paper, we design Cronus, a practical, robust collaborative learning
approach to address the security issues of federated learning. Instead of sharing parameters with
the server and updating them by overwriting them with the aggregated parameters, we extract,
aggregate, and transfer the knowledge of models in a black-box fashion using the knowledge transfer
paradigm (Geoffrey & amd Dean Jeff, 2014; Ba & Caruana, 2014). Knowledge transfer algorithms are
commonly used for various compression and regularization purposes in machine learning (Geoffrey
& amd Dean Jeff, 2014; Ba & Caruana, 2014; Wang et al., 2018; Anil et al., 2018), or as part of a
low-sensitivity algorithm to train a model in a centralized setting with differential privacy (i.e., PATE
frameworks) (Papernot et al., 2017; 2018).

Cronus supports heterogeneous model architectures, because the parties share knowledge of their
local models via knowledge transfer, and therefore, they are only required to agree on the same ML
task. Following the previous works that use knowledge transfer in collaborative ML (Guha et al.,
2019; Lin et al., 2020), we assume that an unlabeled public dataset is available for the knowledge
transfer. After a few rounds of local training on their private data, the Cronus parties share their
predictions on the public data.

Local models are fine-tuned using the aggregated predictions (instead of directly overwriting their
parameters), which significantly reduces the potential of harmful updates on local models. Besides,
by sharing the prediction on the public data, Cronus reduces the number of dimensions of the update
vectors to the size of the model’s output, which is orders of magnitude smaller than the size of the
model’s parameters. Cronus uses the state-of-the-art robust mean estimation algorithm (Diakonikolas
et al., 2017), which has a significantly small sample complexity for low dimensional updates.
Benefiting from the low sample complexity, Cronus enjoys the tight robustness guarantee of robust
mean estimation algorithms (Diakonikolas et al., 2017) on the aggregated updates even for small
networks with a dozen participants (e.g., a network of hospitals).

1Sample complexity, in the context of federated learning, is the number of parties required to achieve the
theoretical error bound.
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Table 1: Theoretical error rates of various aggregation algorithms. Error rate is the L2 distance between the
outputs of robust aggregation algorithms in benign setting (all benign clients) and under attack (some clients
malicious). n is the number of clients, ε is the breaking point, d is the dimensionality of aggregation algorithms’
input, and σ2 is the variance of each of the dimensions.

Aggregation rule (AGR)
Breaking

point
Statistical
error rate

Computational
cost

Mean (McMahan et al., 2017) 1/n Unbounded O(nd)

Median (Li, 2018) 1/2 O(σε
√
d) O(nd logn)

Krum (Blanchard et al., 2017) (n− 2)/2n O(σn
√
d) O(n2d)

Bulyan (Mhamdi et al., 2018) (n− 3)/4n O(σ
√
d) O(n2d)

RobustFilter (Our work) (Diakonikolas et al., 2017) 1/2 O(σ
√
ε) O(d3 + n)

The distillation process, using disjoint data to the models’ training set, is used as a regularization
technique (Ba & Caruana, 2014), and can reduce information leakage about the training data (Shokri
et al., 2017). More importantly, Cronus is compatible with existing privacy-preserving mechanisms.
That is to say that the black-box nature of our algorithm allows for using privacy-preserving mecha-
nisms by the parties that are tailored to specifically protect the privacy of local training data in the
black-box setting (Nasr et al., 2018; Dwork & Feldman, 2018).

We comprehensively evaluate the security and privacy of Cronus. We use state-of-the-art attacks to
compare security due to Cronus and existing robust federated learning algorithms; we also design
new attacks to break a class of aggregation algorithms based on multiplicative weights updates (Arora
et al., 2012; Li et al., 2014)). We show that, in parameter sharing based federated learning, one or
more poisoning attacks reduce the accuracy of the global model to random guessing for all of the
considered robust aggregation algorithms. However, under any attack, the reduction in average
of accuracies of party models in Cronus is negligible and is less than 2%; for the strongest attack
on Cronus (of all considered attacks), the reduction on average accuracy of party models is 1.6%
for Purchase, 1.3% for SVHN, 1.5% for MNIST, and 2.1% for CIFAR10. We also empirically
show that, the parties in Cronus enjoy significantly higher privacy compared to existing FL
algorithms; we measure the privacy as the risk of active and passive membership inference attacks.
Finally, we show that Cronus is highly effective even when the parties have heterogeneous model
architectures.

2 BACKGROUND

We consider the synchronous federated learning (McMahan et al., 2017; Shokri & Shmatikov, 2015).
In each epoch, the server broadcasts the global model, then each party shares an update (model
parameters or gradients), computed using the global model and her local training data, with the server,
and finally, the server aggregates the updates of all parties using an aggregation rule and updates the
global model.

Threat Models. We consider untargeted poisoning attacks (Baruch et al., 2019; Bhagoji et al., 2019;
Mhamdi et al., 2018), which aim to destroy the accuracy of the global model on all the inputs at test
time. To achieve this, the adversary sends malicious updates through the εn malicious parties that
she controls. We assume that the adversary also has access to data with the same distribution as that
of the local training data of the (1− ε)n benign parties. Therefore, the adversary can use them to
craft effective malicious updates. Each aggregation rule has a breaking point with respect to ε, i.e., it
cannot provide any robustness guarantee if ε is larger than the breaking point.

We also evaluate the risk of membership inference attacks (Shokri et al., 2017) by the server. The
adversary, i.e., the server, aims to distinguish between the members and non-members of the private
training data of collaborating parties via observing the party updates. We consider passive and active
membership inference: in the passive inference, the server only observes and infers from the updates,
while in the active inference, the server modifies the aggregated updates to facilitate membership
inference (Nasr et al., 2019).

Aggregation Rules. The most basic, yet effective, aggregation rule is the weighted average that
FedAvg (McMahan et al., 2017) uses, where the weight of the ith party is proportional to the size
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of her local training data. Weighted-average is widely used in non-adversarial settings (McMahan
et al., 2017). However, it is not robust against even a single malicious party (Blanchard et al., 2017).
Multiple robust aggregation rules are proposed in the literature to improve the resilience of federated
learning to poisoning attacks (Mhamdi et al., 2018; Xie et al., 2018; Yin et al., 2018; Blanchard
et al., 2017). In this paper, we extensively compare with existing robust aggregation rules, including
element-wise median (Huber, 2011; Wagner, 2004; Yin et al., 2018), Krum (Blanchard et al., 2017)
and Bulyan (Mhamdi et al., 2018). We defer the reader to Appendix A for further details about those
aggregation rules.

Little is enough attack (LIE). Existing aggregation rules, e.g., Krum and Bulyan, assume that in
order to mount an effective attack, the malicious updates should lie far from the benign updates.
However, Baruch et al. (2019) challenge this assumption and propose an attack called little is enough
(LIE). LIE crafts its malicious updates by adding small amounts of noises to each of the dimensions
of a benign update; a benign update can be an average of the updates from benign clients. LIE mounts
successful attacks on the state-of-the-art robust aggregation algorithms, including Bulyan, Krum,
and Median aggregation algorithms. From Table 1, we note that the error rates of all of these robust
aggregation algorithms depend on the dimensionality of their inputs, which is very large in federated
learning due to the extremely large number of parameters of modern neural networks. Hence, we
argue that this curse of dimensionality makes existing robust aggregation algorithms more susceptible
to untargeted poisoning.

High-Dimensional Robust Mean Estimation. The robust aggregation rules in the federated learning
try to recover the mean of the benign updates from the malicious updates. This is the main objective
of robust mean estimation problem from robust statistics. Diakonikolas et al. (2017) propose a
filter-based algorithm RobustFilter, described in Algorithm 6 in Appendix C. It achieves optimal
error guarantee (O(σ

√
ε)) and optimal sample complexity (Θ((d/ε) log d)). From Table 1, it is clear

that RobustFilter has tighter error guarantees than the existing robust aggregation rules, and therefore,
is more robust against poisoning attacks. However, note that it is impractical to use this robust mean
estimation in federated learning due to its dimension-dependent sample complexity Θ((d/ε) log d),
where d is the size of the model. For example, for training a DenseNet model with ε = 0.1, millions
of parties are required. We address this impracticality issue in our work.

Multiplicative Weight Update (MWU). In this work, we also evaluate the aggregation rules based
on multiplicative weight update (MWU) technique (Arora et al., 2012; Freund & Schapire, 1997;
Plotkin et al., 1991; Garg & Koenemann, 2007; Li et al., 2014). These techniques assume that,
compared to benign updates, malicious updates lie farther away from the average of all input updates.
Hence, for an update, they assign weight that is inversely proportional to the distance of the update
from the average of all updates. We evaluate two aggregation algorithms: MWU with averaging
(MWUAvg) (Arora et al., 2012) and MWU with optimization (MWUOpt) (Li et al., 2014). In
Section 5, we empirically show that MWU based robust aggregation algorithms are robust to existing
poisoning attacks, but can be broken using our improved poisoning attack that we will describe in
Section 3.

3 POISONING ATTACK AGAINST MWU-BASED AGGREGATIONS (OFOM)
MWU-based aggregations are resilient to the existing poisoning attacks but are not robust. We show
this by proposing an attack targeting these aggregations. We can see that MWU-based aggregations
treat the updates near the empirical weighted mean as the benign updates. However, the weighted
mean is not robust. Our attack exploits this fact. Specifically, the adversary crafts two malicious
updates: The first update is arbitrarily far away from the mean of the benign updates. The second
malicious update is set to the empirical mean of benign updates and the first malicious update. In this
way, the MWU-based aggregations assign higher weights to the malicious parties with the second
malicious update, as it is close to the average of all the updates. We emphasize that the second
malicious update, by construction, is also far from the mean of benign updates. Hence, the model is
jeopardized by the second malicious update. We defer the reader to Appendix B for further details.

4 CRONUS COLLABORATIVE LEARNING

In the existing federated learning algorithms, the server repeatedly collects the parameters of the local
models, aggregates them by computing their mean, and sends the aggregate parameter vector back to
the parties. This way of sharing knowledge between the participants has the following shortcomings:
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Robustness: As shown in Table 1, the upper bound on the error of existing aggregation algorithms (in
the adversarial setting) in federated learning depends on the dimensionality of the model parameters.
This makes the aggregated models highly error-prone for large models. Thus, they are very susceptible
to poisoning attacks, as described in Section 2.

Privacy: Sharing the model parameters facilitates strong white-box inference attacks, as it opens up
the model to the adversary (Melis et al., 2019; Nasr et al., 2019). The larger the models are, the more
significant their leakage about their local training data is.

Heterogeneity: Parameter aggregation is restricted to homogeneous architectures, i.e., all parties
need to have the same model architecture.

To remedy the above shortcomings, the parties would need to share the knowledge that they have
learned from their training data in a succinct way. This is the main objective of knowledge transfer
(Geoffrey & amd Dean Jeff, 2014; Ba & Caruana, 2014; Papernot et al., 2017; 2018; Wang et al.,
2018; Anil et al., 2018). In Cronus, we utilize the knowledge distillation (Geoffrey & amd Dean Jeff,
2014), a knowledge transfer technique introduced as a means of compressing large models into
smaller ones while retaining their accuracy. It efficiently transfers the represented function by a
model (or an ensemble of models) to a student model (Geoffrey & amd Dean Jeff, 2014). It makes
learning very effective for the student model by placing equal weight on the relationships learned
by the teachers across all the classes and significantly improves the convergence of student models
(as compared to training directly on hard-labeled data) (Geoffrey & amd Dean Jeff, 2014; Ba &
Caruana, 2014; Anil et al., 2018). Furthermore, knowledge transfer is an effective regularization
method (Geoffrey & amd Dean Jeff, 2014).

What makes this approach, in particular, suitable for collaborative learning, is three-fold. First,
it significantly reduces the dimensions of the updates, from the size of the model parameters to
its output size. This sets up the stage for using state-of-the-art robust mean estimation algorithm
RobustFilter (Diakonikolas et al., 2017). Second, the knowledge transfer through the predictions on
a dataset, that does not overlap with the model’s training set, itself reduces the information leakage of
a model about its training data (Shokri et al., 2017; Shejwalkar & Houmansadr, 2021). In addition,
the black-box setting allows us to make use of existing privacy-preserving algorithms to make the
knowledge transfer privacy-preserving (Nasr et al., 2018; Dwork & Feldman, 2018). Third, all the
models agree on a particular learning task, so they are homogeneous on their output vectors. Yet,
they can be of heterogeneous architectures or even different families of machine learning algorithms.

In this paper, we leverage knowledge transfer and propose the Cronus collaborative learning
algorithm, where the server extracts the knowledge of local models and aggregates them in a robust
manner. The parties update their models using the aggregated knowledge as well as their local data.
Then, each party shares their knowledge through predictions of their local models on a public dataset.
This repeats in every round of federated learning.

4.1 OVERVIEW OF CRONUS

To extract and exchange the knowledge of local models, Cronus uses a set of unlabeled public data,
Xp, which is essentially a set of feature vectors. Algorithm 1 describes the Cronus collaborative
learning algorithm. Cronus has two training phases: In the first phase, called the initialization
phase, every party i updates its local model parameters θi on its local training data Di for T1 times
without any collaboration. In the second phase, called the collaboration phase, the parties share the
knowledge of their local models via their predictions on the public dataset, Xp. Specifically, each
epoch of this phase includes:

• Each party computes soft labels forXp, using its local model parameters θi to get prediction vectors
Yi and shares them with the server.

• The server aggregates the predictions (separately for each public data), i.e., computes Ȳ =
fCronus(Yi, .., Yn), and sends Ȳ to all parties; we use the robust mean estimation algorithm
RobustFilter as fCronus, which we describe in Section 2.

• Each party updates its local model parameters θi using their private data Di and the soft-labeled
public data (Xp, Ȳ ).
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Algorithm 1 Cronus algorithm. Initialization phase does not involve collaboration. Di and θi are local dataset
and model parameters from i-th party. Y ti are predictions from i-th party on public dataset Xp in epoch t and
Y ti [k] is the prediction on k-th public data in Dp.

1: Initialization phase
2: Each party i ∈ [n] updates parameters in parallel:
3: for t ∈ [T1] epochs do . Training without collaboration
4: Update θi ← TRAIN (θi, Di)
5: end for
6: Y 0

i = PREDICT(θi;Xp) . Compute initial predictions on Xp
7: Send Y 0

i to the server

8: Collaboration phase
9: Ȳ 0 = fCronus({Y 0

i∈[n]}) . Initial aggregation at the server
10: for t ∈ [T2] epochs do
11: for i ∈ [n] parties do . Each party updates parameter in parallel
12: Dp = {Xp, Ȳ t}
13: θi ← TRAIN (θi, Di ∪Dp) . Update local model parameter θi
14: Y ti = PREDICT(θi;Xp)
15: Send Y ti to the server
16: end for
17: Ȳ t+1 = fCronus({Y ti∈[n]}) . Aggregation at the server
18: end for

Recall that the size of the updates determines the error rate of the existing robust aggregation
algorithms. Hence, just by reducing the dimensionality of the updates (from the size of the model to
the size of the prediction vector), Cronus already reduces the error rate guaranteed by any aggregation
algorithms, including that of Bulyan and Median. However, when the size of the prediction vector
is larger, these aggregation algorithms might still be highly susceptible to untargeted poisoning.
To address this issue, Cronus uses RobustFilter (Diakonikolas et al., 2017), which achieves the
dimension independent error rate guarantees. Furthermore, its sample and computational complexities
have the least dependence on the dimensionality of updates among existing robust mean estimation
algorithms. Nevertheless, we note that, Cronus is compatible with any robust aggregation algorithms.

The sample complexity of RobustFilter is Θ(d log d), which is the number of parties required
to achieve the theoretical error bound. This dimension-dependent sample complexity makes
RobustFilter (Diakonikolas et al., 2017) impractical to use in parameter sharing based federated
learning. In contrast, the low dimensional updates in Cronus significantly reduce the number of
parties required for RobustFilter to achieve desired error rate. For instance, Cronus reduces sample
complexity by an order of 105 when training DenseNet on Cifar10 dataset. Therefore, unlike any
existing federated learning, Cronus can enjoy the strong theoretical error guarantees of RobustFilter,
even with a small number of parties in the network.

Unlike the parameter sharing based federated learning algorithms, Cronus does not force a single
global model onto local models. Instead, each local model is updated separately by improving its
accuracy and resilience to inference attacks. This further improves the utility of local models. Note
that, such fine-tuning has significant fairness advantages (Li et al., 2021; Yu et al., 2020). Furthermore,
Cronus completely eliminates the risk of white-box inference attacks, as no client releases their
model’s parameters. While training on their local sensitive data, parties can anticipate the privacy
risks of information leakage through their predictions and TRAIN their models with, for example, a
membership privacy mechanism (Nasr et al., 2018). Parties can also make use of prediction privacy
mechanisms before sharing their predictions with the server (Dwork & Feldman, 2018).

In conclusion, by combining knowledge transfer and state-of-the-art robust mean estimation
RobustFilter, Cronus is a robust and practical collaborative learning framework. We show that
Cronus considerably reduces membership privacy risk compared with federated learning and is com-
patible with existing privacy-preserving mechanisms through comprehensive evaluations. Besides,
Cronus supports heterogeneous models among parties.
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Table 2: Experimental setup: The number of malicious clients used for robustness assessment of different
AGRs based on their breaking points. The number of benign parties are shown on top of each column.

fAGG

Number of malicious parties
Breaking SVHN MNIST Purchase/CIFAR10

point 32 benign 28 benign 16 benign
Mean 1/n 1 1 1
Median 1/2 31 27 15
MWU 1/2 31 27 15
Krum (n− 2)/2n 29 25 13
Bulyan (n− 3)/4n 9 8 4
Cronus 1/2 31 27 15

Table 3: Comparison of the robustness of Cronus and of the parameter sharing based FL with various AGRs.
Robustness is measured as the ratio of worst accuracy and benign accuracy: worst accuracy is the accuracy of
the global model (for Cronus, this is the average accuracy of client models) under the strongest of all attacks
(Section 5); shown in "Strongest attack" row. While the benign accuracy is the accuracy without any attack.
Table 2 gives the numbers of benign and malicious clients. We highlight the best accuracy for each setting.
Table 5 in Appendix D.2.1 shows all the results.

Dataset
Parameter sharing based FL with various aggregation rules (AGRs)

Cronus
Mean Median MwuAvg MwuOpt Bulyan Krum

SVHN

Benign accuracy 95.9 94.8 93.9 94.4 94.5 89.6 91.1
Worst accuracy 0.9 14.5 0.9 0.7 15.5 16.2 89.8
Strongest attack (OFOM) (LIE) (OFOM) (OFOM) (LIE) (LIE) (LF)
Robustness 0.01 0.15 0.01 0.01 0.16 0.18 0.99

MNIST

Benign accuracy 96.7 96.5 97.2 97.4 96.9 93.3 95.2
Worst accuracy 9.6 91.5 25.3 12.7 94.1 89.9 93.7
Strongest attack (PAF) (PAF) (OFOM) (PAF) (LIE) (LF) (LF)
Robustness 0.09 0.95 0.26 0.13 0.97 0.96 0.99

Purchase

Benign accuracy 93.3 93.0 93.6 92.5 92.8 72.1 89.6
Worst accuracy 1.1 12.5 1.8 1.1 81.8 49.6 88.0
Strongest attack (PAF) (PAF) (OFOM) (OFOM) (LIE) (LIE) (LF)
Robustness 0.01 0.75 0.02 0.01 0.87 0.69 0.98

CIFAR10

Benign accuracy 88.4 89.1 86.2 87.6 89.0 84.5 80.1
Worst accuracy 11.3 15.1 14.2 12.8 75.6 18.0 78.0
Strongest attack (PAF) (PAF) (OFOM) (OFOM) (LIE) (LIE) (LIE)
Robustness 0.13 0.17 0.16 0.15 0.85 0.21 0.97

5 EXPERIMENTS

Experimental Setup. We use four datasets, Purchase Shokri et al. (2017), CIFAR10 Krizhevsky &
Hinton (2009), SVHN Netzer et al. (2011), and MNIST LeCun et al. (1998), to evaluate efficacy of
Cronus. We use PyTorch pyt (2019) for our evaluations. We defer the details of the dataset splits,
model architectures, and hyper-parameters to Appendix D.1.

Baseline attacks. We evaluate federated learning and Cronus under LIE attack (Section 2) and
our poisoning attacks (Section 3), as well as with Label flip poisoning attack (Label flip) and Naive
poisoning attack (PAF). In label flip poisoning attack, the adversary flips the labels of malicious
clients’ local training data in the same way and shares the updates computed on these poisoned
datasets. In naive poisoning attack (PAF), the adversary crafts malicious updates that are arbitrarily
far from the average of the benign updates.

5.1 EMPIRICAL RESULTS

We compare the classification accuracy of the models trained using Cronus, stand-alone, central,
and FedAvg settings in the benign setting. In the stand-alone setting, each party trains its model
only on its local data, without any collaboration. In centralized learning, a single model is trained
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on the union of the participants’ data. For stand-alone and Cronus settings, the accuracy of models
for different parties is different; therefore, we report the average classification accuracy of all the
party models. The accuracies of stand-alone, centralized, and Cronus settings for Purchase are 76.3%,
94.3%, and 89.6%, respectively, while for CIFAR10 they are 66.8%, 90.2%, and 80.1%, respectively.
Cronus uses unlabeled data for knowledge transfer, which any party can use to improve its model’s
accuracy via semi-supervised learning (Tarvainen & Valpola, 2017; Sohn et al., 2020; Chen et al.,
2020; Berthelot et al., 2019). However, a CIFAR10 model trained in a semi-supervised manner using
Mean-Teacher method (Tarvainen & Valpola, 2017) with 2,500 labeled and 10,000 unlabeled data
achieves 69.75% accuracy while Cronus achieves 80.1% accuracy. That is, local models can achieve
better accuracy via Cronus compared to the state-of-the-art semi-supervised learning methods.

Robustness. We compare the robustness of federated learning, using different aggregation algorithms
(Section 2), against an adversary who mounts the strong poisoning attacks. To assess the worst-case
robustness, we evaluate algorithms against the largest fraction of malicious parties, which is smaller
than the breaking point. The number of benign and malicious parties are given in Table 2. The
robustness assessment results are shown in Table 3. Each column corresponds to one aggregation
algorithm, and the Worst accuracy row shows the accuracy of the final models when the attack in the
Strongest attack row is mounted. We also show the convergence of Cronus and federated learning in
adversarial and benign settings in Figures 2 and 1 respectively in Appendix D.2. From those results, it
is clear that the federated learning algorithm works well in the absence of malicious parties; however,
all of the existing aggregation schemes in federated learning are significantly vulnerable to at
least one poisoning attack. The weighted average aggregation, i.e., FedAvg (McMahan et al., 2017),
is susceptible to all of the attacks: The accuracy of FedAvg reduces close to random guess accuracy
for all the datasets. Median aggregation is susceptible to PAF attack because the attack shifts the final
aggregate along all the dimensions by a small amount to remain undetected, yet it can considerably
damage the utility of the aggregated model. Although Bulyan and Krum are robust aggregations,
they are susceptible to the LIE attack. As explained in Section 2, LIE attack exploits the sensitivity
of the parameters of neural networks to small perturbations. The attack completely jeopardizes the
accuracy of Krum aggregation because the attack successfully forces Krum aggregation to select the
malicious update as the aggregate in most of the epochs. Note that the attack is not effective against
MNIST classification task due to its simplicity, which allows the corresponding models to withstand
the small perturbations. MwuAvg and MwuOpt withstand all the attacks, but are susceptible to our
OFOM attack, which we propose in Section 3. For all the datasets, the OFOM attack reduces the
accuracy of the aggregations close to the random guess accuracy.

On the other hand, the robustness of Cronus remains almost 1.0 as the classification accuracy of
its models remains unaffected by any of the tested poisoning attacks. For the strongest attack on
Cronus, the maximum reduction in accuracy is 0.4% for Purchase, 1.3% for SVHN, 1.5% for MNIST,
and 4.8% for CIFAR10 models. The reason for the high resilience of Cronus to the poisoning attacks
is two-fold. First, as detailed in Section 4.1, reduced dimensionality of updates enables to use robust
aggregation algorithm RobustFilter (Diakonikolas et al., 2017). It guarantees that the aggregate
prediction is robust even when the dimensionality of the prediction vector is high. For example,
Cronus is still robust on the Purchase dataset when the dimensionality of the prediction vector is
100. Second, benign models have a stronger agreement on their predictions than on their parameter
values. Thus, the variance of the prediction vector is smaller than that of gradient, which makes the
error guarantee for aggregation algorithm RobustFilter even smaller. Thus, Cronus enjoys the tight
robustness grantees of RobustFilter providing a practical, robust collaborative learning protocol.

Privacy. We show that Cronus considerably reduces the privacy risk compared with federated
learning by measuring the privacy risk using the state-of-the-art membership inference attack. We
also demonstrate the compatibility of Cronus with existing privacy-preserving mechanisms (Shokri,
2015; Abadi et al., 2016). The key discoveries from our experimental results are: (1) The updates
in FedAvg are highly susceptible to membership inference, unlike the updates in Cronus. For the
Purchase dataset, attack accuracy against the individual and aggregated updates in FedAvg is 78.1%
and 80.1%, respectively, whereas in Cronus they are 51.7% and 51.9%. (2) The active membership
inference attacks Nasr et al. (2019) significantly increase the privacy risk of the target data in the case
of FedAvg. For Purchase dataset, the risk due to individual updates increases by 7.8% (77.1% to
84.9%), while due to aggregated update increases by 8% (74.7% to 82.7%). (3) In the case of Cronus,
the active membership inference attacks are ineffective, and the increase in privacy risk is negligible.
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On Purchase dataset, the risk increases by 0.3% for individual updates while 1.1% for aggregated
updates. See experimental results and discussion in Appendix D.2.2.

Cronus with heterogeneous model architectures. Due to the use of prediction based updates,
Cronus allows parties with heterogeneous model architectures to participate in the collaboration. The
key findings of our experimental evaluations are: (1) the heterogeneous collaboration between models
of equivalent capacities does not reduce the accuracy of client models compared to its homogeneous
counterparts, (2) the presence of a few bad models does not affect the accuracy of the good models in
the heterogeneous collaboration, while significantly benefits the bad models, and (3) heterogeneity
allows for more knowledge sharing via collaboration and always improves the utility of collaborations.
Due to space restrictions, we defer the details of experiments and discussion to Appendix D.2.6.

6 RELATED WORK

Existing federated learning algorithms are susceptible to various poisoning attacks, which deter
data holders from trusting the algorithm Bhagoji et al. (2019); Bagdasaryan et al. (2020); Melis
et al. (2019). Various robust aggregation schemes have been proposed in the literature, as shown in
Section 2. However, as discussed in Section 2, the high dimensional updates in federated learning
significantly reduce the effectiveness of these algorithms. On the other hand, although federated
learning prevents its parties from sharing their private data, recent works Nasr et al. (2019); Orekondy
et al. (2018); Melis et al. (2019) demonstrate passive and active inference attacks against this setting
and successfully infer sensitive information about the parties’ private data. Such inference attacks can
be defended by using differentially private (DP) learning Abadi et al. (2016); Brendan et al. (2018);
Dwork & Feldman (2018). By trusting the aggregator, McMahan et al. Brendan et al. (2018) consider
the differential privacy in the federated setting; however, their algorithm can achieve acceptable
accuracy only with a large number of parties. Cronus is robust to existing poisoning attacks and
reduces the privacy risk, which alleviates the robustness and privacy issue of federated learning.

Knowledge of ensemble of teacher models has been used to train a student model in a few previous
works Jihun et al. (2016); Papernot et al. (2017; 2018); Anil et al. (2018); Jeong et al. (2018). Papernot
et al. Papernot et al. (2017) propose PATE, a centralized learning approach that uses knowledge
transfer to achieve differential privacy with high accuracy. PATE’s setting is fundamentally different
from that of Cronus in that all the teacher models and the noise generation mechanisms in PATE are
performed by a trusted entity that owns all the data. The co-distillation approach is a method to use
distillation on private training data with other parties Anil et al. (2018); Jeong et al. (2018), however,
without defending against data poisoning and membership inference attacks Shokri et al. (2017);
Hayes et al. (2019). Personalized federated learning has drawn a lot of attention recentlyFallah et al.
(2020); Zhang et al. (2020); T Dinh et al. (2020). In Cronus, parties train their local model and
collaborate with others in a black-box manner. In the end, parties have their own model. Thus, our
Cronus can also be used as a way to achieve personalization.

7 CONCLUSIONS

We propose Cronus, a robust collaborative learning framework, to mitigate the three deficiencies of
existing federated learning: susceptibility to poisoning attacks and membership inference attacks and
the inability to support heterogeneous architectures. Our main idea is to let parties share predictions
of their local models on an unlabeled public dataset instead of the model parameters. Together with
the observation that the dimension of predictions is often smaller than that of the model parameters
by orders of magnitude (e.g., DenseNet), Cronus sets up the stage for using the state-of-the-art robust
aggregation algorithm, which incurs a prohibitively high sample complexity for high dimensional
statistics. Benefiting from the low sample complexity, Cronus enjoys a tight robustness guarantee on
the aggregated predictions even when a small number of parties participate in the training process.

Through comprehensive evaluations, we show that Cronus is the only robust framework against
existing data poisoning attacks. We also empirically show that Cronus is less prone to membership
inference attacks compared with existing federated learning frameworks. This is because Cronus uses
prediction sharing (black-box) instead of parameter sharing (white-box) among participants. At last,
Cronus also supports heterogeneous model architectures, which enables participants with different
computation power to collaborate.
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Algorithm 2 Federated learning algorithm (McMahan et al., 2017; Shokri & Shmatikov, 2015)

1: Initialize global model θ0a
2: for t ∈ [T ] do
3: for i ∈ [n] do . Party i’s local update
4: θti ← θta −∇θL(Di; θ

t
a)

5: Return θti to server
6: end for
7: θt+1

a = fAGG(θti∈[n]) . Aggregation of updates at server
8: Return θt+1

a to all the parties
9: end for

A AGGREGATION ALGORITHMS

In this section, we describe the setting of federated learning and, various aggregation algorithms used
to combine the updates of the collaborating parties.

A.1 FEDERATED LEARNING SETTING

Federated learning (McMahan et al., 2017; Shokri & Shmatikov, 2015) enables multiple data holders
to train a global model without sharing their data, and through sharing of their training gradients/pa-
rameters (Blanchard et al., 2017; Alistarh et al., 2017; Mhamdi et al., 2018; Xie et al., 2018; Yin et al.,
2018). For concreteness, below we describe Federated Average (FedAvg) algorithm (McMahan et al.,
2017) and its setting, and use it in the rest of our work. In FedAvg, multiple parties collaborate over
multiple epochs to learn a global machine learning model with a classification performance superior
to the models learned individually. FedAvg assumes that there are n parties with their local training
datasets, Di’s, and a central server which aggregates the party updates and broadcasts the aggregate
to all of the parties. In the tth epoch of FedAvg, parties train the aggregate θta, broadcast by the server
at the end of tth epoch, on their local training data, Di. Parties use stochastic gradient descent for
updating, i.e., θti = θta −∇θL(Di; θ

t
a), where L(D; θ) is loss of θ on data D. Each party then sends

the parameters of the locally updated model, θti , to the server for aggregation. The central server
collects all the θti updates and computes their aggregate θta = fAGG(θti∈[n]). Specifically, FedAvg uses
the weighted average as its fAGG, where the weight of the ith party is determined based on the size
of her local training data, i.e., wi = |Di|

|D| ; |D| denotes size of dataset D. The weighted average is
formally given by:

fMean : θt+1
a =

n∑
i=1

|Di|∑n
j=1 |Dj |

θti (1)

The server then broadcasts the aggregate θta to all n parties. This process repeats for T epochs or
until sufficient accuracy is achieved by the aggregated global model. The procedure is described in
Algorithm 2. This algorithm is not robust against poisoning attack and even a single party can destroy
the global model.

A.2 KRUM

Weighted average aggregation cannot tolerate even a single malicious party (Blanchard et al., 2017;
Wagner, 2004). To solve this problem, Blanchard et al. (Blanchard et al., 2017) proposed Krum
aggregation, which is based on geometric median of vectors (Su, 2017; Mhamdi et al., 2018). The
intuition behind Krum is as follows: Krum assumes that party updates have a normal distribution and
that the benign updates lie close to each other in the parameter space. Hence, instead of computing the
average of the updates, Krum selects as aggregate the update that is closest to its (1− ε)n neighbor
updates. The details of the aggregation are as follows. Let θ1, ..., θn be the updates received by the
server. For i 6= j, i → j denotes that θj belongs to the (1 − ε)n − 2 updates closest to θi. Let
s(θi) =

∑
i→j ||θi − θj ||2 be the score of θi. Then, Krum selects the θk with the lowest score. The
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Krum aggregation algorithm is formalized in (2).

fKrum : θt+1
a = argmin

θt
i∈[n]

∑
i→j
||θti − θtj ||2 (2)

A.3 BULYAN

The breaking point of Krum is ε = (n−22n ), i.e., it can tolerate up to (n−22 ) malicious parties, while
maintaining high utility of the final model (Blanchard et al., 2017). However, Mhamdi et al. (2018)
proposed an attack on Krum assuming an omniscient adversary who has access to all the benign
updates. The attack exploits the fact that, in a vector space of dimension d� 1, small disagreements
on each coordinate translate into a distance ‖x− y‖p = O( p

√
d). Therefore, the adversary crafts a

malicious update with a single dimension set to a large value, and the other dimensions set to the
average of the benign updates. Such malicious update pushes the parameter vector to a sub–optimal
parameter space and destroys the global model’s accuracy. Essentially, Krum filters outliers based
on the entire update vector, but does not filter coordinate-wise outliers. To address this, (Mhamdi
et al., 2018) proposes a meta-aggregation rule Bulyan, which performs vector-wise, e.g. Krum,
and coordinate-wise, e.g. TrimmedMean (Yin et al., 2018), filtering in two steps. At first, Bulyan
uses some Byzantine resilient aggregation A, e.g., Krum in Algorithm 3, to filter outliers based
on the distances between the update vectors, and then aggregates these updates using a variant of
TrimmedMean. Algorithm 3 describes the Bulyan aggregation.

Algorithm 3 Bulyan aggregation: fBulyan (Mhamdi et al., 2018)

1: Input: A = fKrum, P = (θt1, ..., θ
t
n), n, ε

2: S ← ∅
3: while |S| < (1− 2ε)n do
4: p← A(P\S)
5: S ← S ∪ {p}
6: end while
7: Output: θt+1

a = TrimmedMean(S)

Among the different variants of TrimmedMean (Xie et al., 2018; Mhamdi et al., 2018; Yin et al.,
2018), we follow the one used in the original work (Mhamdi et al., 2018) given in (3). Here, Uj is
defined as the set of indices of the top-(1− 2ε)n values in (θj1, ..., θ

j
n) nearest to their median µj .

TrimmedMean(θ1, ..., θN ) =

{
θja =

1

|Uj |
∑
i∈Uj

θji ∀j ∈ [d]

}
(3)

A.4 MULTIPLICATIVE WEIGHT UPDATE (MWU)

Multiplicative weight update (MWU) technique lies at the core of many learning algorithms (Arora
et al., 2012; Freund & Schapire, 1997; Plotkin et al., 1991; Garg & Koenemann, 2007; Li et al.,
2014). The general framework of MWU is given in Algorithm 4. The intuition behind MWU-based
aggregations is to reduce the weights of malicious parties using the distance between their malicious
updates and the aggregated update. This is based on two assumptions: malicious updates lie farther
away from the mean compared with the benign updates, and the number of malicious updates is
smaller than that of the benign updates. Therefore, MWU-based aggregation schemes have the
breaking point of bn−12 c malicious parties.

There are different variants of MWU that use different functions for WeightUpdate and fAGG in
Algorithm 4. We detail two of them next.

A.4.1 MWU WITH MEAN AGGREGATION

In MWU, if the weighted mean is used as the aggregation algorithm, fAGG in Algorithm 4, it is called
MwuAvg. Here, the weight of the ith party is updated based on the distance between the weighted
average, θta, of all the updates and θi; this is given by (4). The weights of all the parties are equal at
the beginning.
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Algorithm 4 Multiplicative weights update: fMWU

1: Input: P = (θt1, ..., θ
t
n)

2: Initialize parties’ weight vector w0 ← 1 and θ0a ← fAGG(w0,P) at t = 0
3: repeat
4: wt+1 ←WeightUpdate (wt, θta,P)
5: θt+1

a ← fAGG(wt+1,P)
6: t← t+ 1
7: until Convergence criterion is satisfied
8: Output: final θa

wt+1
i = wti exp(−||θta − θi||p) (4)

θt+1
a =

∑n
i=1 w

t+1
i θi∑n

i=1 w
t+1
i

(5)

A.4.2 MWU WITH OPTIMIZATION

Li et al. (Li et al., 2014) propose a truth discovery framework CRH, to aggregate the responses in a
crowd-sourcing setting. In each epoch, the framework updates the weights of parties based on the
solution of an optimization problem. Essentially, the weight update algorithm considers the distance
of parties’ updates from the aggregate of all the updates in each epoch. The weight update and
aggregate computation are given by (6) and (7), respectively. For further details of the aggregation,
please refer to (Li et al., 2014).

wt+1
i = −log

(
||θt − θi||p∑n
i=1 ||θt − θi||p

)
(6)

θt+1 =

n∑
i=1

wt+1
i θi (7)

B ATTACKS ON AGGREGATION ALGORITHMS

In this section, we detail the poisoning and membership inference attacks used in our work to evaluate
the robustness and privacy in federated learning. The poisoning attacks are of two types: availability
and targeted attacks. The earlier attacks aim to jeopardize the overall accuracy of the final model/s
(Baruch et al., 2019; Hayes & Ohrimenko, 2018; Steinhardt et al., 2017), while the latter attacks aim
to mis-classify only a specific set of samples of the attacker’s choice at the test time (Bagdasaryan
et al., 2020; Bhagoji et al., 2019). We focus on the poisoning availability attacks and below introduce
such attacks from the literature, and also introduce a new poisoning attack targeting the MwuAvg and
MwuOpt aggregations.

B.1 LABEL FLIP POISONING (LABEL FLIP)

We consider a type of data poisoning attacks (Jagielski et al., 2018; Muñoz-González et al., 2017;
Hayes & Ohrimenko, 2018), where the adversary flips the labels of her local training data in a
particular fashion to poison it. We call this attack label flip poisoning attack. The label flipping
strategy is performed consistently across all of the εn malicious parties that the adversary controls,
i.e., all the malicious parties flip labels in the exact same way. Then, the εn malicious parties (also
called as Byzantine workers in the literature) use this poisoned data to train their local models and
then share corresponding updates with the central server.

B.2 NAIVE POISONING (PAF)

Our threat model considers an omniscient adversary who knows the distribution of benign updates,
i.e., the mean and standard deviation of each dimension of benign updates. The adversary can estimate
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this distribution as she possesses data drawn from the distribution same as that of benign parties.
Given this, the adversary crafts the malicious update θm to be arbitrarily far from the mean of the
benign updates:

θm =

∑(1−ε)n
i=1 θi

(1− ε)n
+ θ′ (8)

This malicious update, θm, is then shared by each malicious party with the central server. In (8), θ′ is
a vector of size |θi| with arbitrarily large (or small) coordinate values. This attack can jeopardize the
weighted averaging, and interestingly, weighted median aggregations based federated learning.

B.3 LITTLE IS ENOUGH ATTACK (LIE)

Baruch et al. (Baruch et al., 2019) propose an attack called little is enough (LIE). The attack
successfully circumvents state-of-the-art robust aggregation algorithms, including Bulyan and Krum.
These aggregations are vulnerable to the attack, because they are tailored to an adversary that crafts
a malicious update with at least one arbitrarily large dimension. However, in practice, a malicious
update, θm, obtained by small perturbations in a large number of dimensions of a benign update
suffice to affect model’s convergence and also circumvent the defenses. Therefore, note that, the root
cause of the success of the LIE attack is also the high dimensionality of the updates. The attack is
described in Algorithm. 5. The s in the Algorithm. 5 is the number of non-corrupted parties, whose
deviation from mean is more than malicious parties, needed in order to bypass the detection. Assume
the distributions of different parameters from all parties can be expressed by a normal distribution, z
will set the range in which the adversary updates can deviate from the mean without being detected.
µ̄, σ̄ are the mean and variance of the distribution of the parameters from benign updates.

B.4 OUR POISONING ATTACK (OFOM)

In this section, we propose an attack which targets aggregation schemes that perform weighted
aggregation of data by assigning the weights based on the distance of the data points from an
aggregate of the data. These aggregations are robust to all the above attacks, as we show in our
evaluation. We discussed two such aggregation schemes: MWU with averaging (Arora et al., 2012)
and MWU with optimization (Li et al., 2014) in Section A.4. In any given epoch, the aforementioned
aggregation schemes start with equal weights to all parties and update a party’s weight based on the
distance of the party’s update from weighted average of all party updates. The attack exploits the
fact that, all parties are given equal weights to start with. The OFOM attack craft two malicious
updates: The first update, θm1 , is arbitrarily far away from the true mean, and is obtained by adding
an arbitrarily large (or small) vector θ′ to the mean of benign updates. The second malicious update,
θm2 , is at the empirical mean of benign updates and θm1 . The malicious updates are formalized in (9).

θm1 =

∑(1−ε)n
i=1 θi

(1− ε)n
+ θ′, θm2 =

∑(1−ε)n
i=1 θi + θm1
(1− ε)n+ 1

(9)

This way, at the end of the first epoch of the MWU aggregation, the adversary manages to assign a
weight close to 1 to the parties with update θm2 . In the case of MWUAvg and MWUOpt, all the benign

Algorithm 5 Little is enough attack (LIE) (Baruch et al., 2019)

1: Input: n, ε, mean and variance vectors of benign updates µ̄, σ̄
2: Number of workers required for majority:

s = bn
2

+ 1c − εn

3: Using z-table, set z = max
z

(
φ(z) < (1−ε)n−s

(1−ε)n

)
4: for j ∈ [d] do
5: θjm ← µ̄j + zσ̄j
6: end for
7: Output: malicious update θm
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parties are assigned negligible weights, which completely jeopardizes the accuracy of aggregation.
To be effective, the adversary needs just two malicious parties who share the two malicious updates.

B.5 MEMBERSHIP INFERENCE ATTACKS

Recent research has shown the susceptibility of the federated learning to active and passive inference
attacks (Melis et al., 2019; Nasr et al., 2019). In the passive case, the attacker, either the server or
some of the parties, simply observes the updated model parameters to mount membership inference
attacks. In the active case, however, the attacker tampers with the training of the victim model/s in
order to infer membership of target data in any of the benign party’s data. Specifically, the attacker
shares malicious updates and forces the victim model/s to share more information about the members
of their training data that are of the attacker’s interest. This attack, called gradient ascent attack
(Nasr et al., 2019), exploits that the SGD optimization updates model parameters in the opposite
direction of the gradient of the loss over the private training data. Let x be a record of attacker’s
interest and θa be the current global model. The attacker crafts the malicious update θm by updating
parameters of θa in the same direction of the gradient of the loss on x, i.e., performs gradient ascent
as: θm = θa + γ ∂Lx

∂θa
. Such θm, when combined with the benign updates, increases the loss of the

resulting global model, θ′a, on x. If x is in the training data of some party, SGD on θ′a by this party
will sharply reduce the loss of x. On the other hand, if x is not in any party’s training data, the loss of
x will remain almost unchanged. Therefore, this attack increases the gap between the losses of θa on
members and non-members and facilitates membership inference.

C ROBUST MEAN ESTIMATION

Cronus uses the robust mean estimation algorithm proposed by Diakonikolas et al. (Diakonikolas et al.,
2017), which achieves the optimal error bound. The original algorithm is described in Algorithm 6.
fCronus applies RobustFilter on the prediction of each public data. Recall that the intuition of this
robust mean estimation (Diakonikolas et al., 2017) is that the empirical mean of the uncorrupted
points should be concentrate nicely to the true mean µ of the distribution. Thus, if the empirical mean
is µ̂ far from the true mean of the distribution, then along the direction µ̂− µ, the outliers must be
the source of the deviation and the variance is much larger than it should be. As a result, corrupted
direction µ̂ − µ can be detected as a large eigenvector of the empirical covariance. Hence, in the
Algorithm 6 finds the direction v∗, which has the largest variance and projects the deviation of all the
inputs from the empirical mean in this direction. Then filter out a randomized fraction of the data
which are farthest from the mean, Ȳ , along this direction. Repeat the process until the variance is not
large in every direction and then output the sample mean on the subsets. For further details of the
robust mean estimation, please refer to (Diakonikolas et al., 2017; Li, 2018).

Algorithm 6 RobustFilter [Algorithm 3 (Diakonikolas et al., 2017)]

1: Input: S, ε, k=0
2: while True do:
3: Compute Ȳ ,Σ, the mean and covariance matrix of S.
4: Find the eigenvector v∗ with highest eigenvalue λ∗ of Σ
5: if λ∗ ≤ 9 then
6: Let Ȳ = Ȳ
7: break
8: else
9: Draw Z from the distribution on [0,1] with probability density function 2x

10: Let T = Z max{|v∗ · (Y − Ȳ )| : Y ∈ S}.
11: Set S = {Y ∈ S : |v∗ · (Y − Ȳ )| < T}
12: end if
13: end while
14: Output: Ȳ

The sample complexity of the Algorithm 6 is Θ(d/ε log d), where d is the dimensionality of the inputs.
In the federated learning, d is the size of the model and in Cronus, d is the size of prediction. Table 4
shows the sample complexities for training different ML benchmark models with federated learning
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versus Cronus, using RobustFilter’s algorithm RobustFilter. We note that Cronus significantly
reduces sample complexity (by an order of 105), and therefore, unlike any existing federated learning,
can achieve strong theoretical error guarantees even with a small number of parties in the network.

Table 4: Sample complexity, Θ((d/ε) log d), of Cronus aggregation, using (Diakonikolas et al., 2017), for
parameters and predictions updates. For parameters, d is size of model; for predictions, d is the number of
classes in the classification task. The ratio shows that Cronus learning can achieve the same error guarantee as in
federated learning, but with a network which is 5 orders of magnitude smaller, for benchmark ML tasks.

Dataset Sample complexity ratio of Federated learning over Cronus
SVHN 1.2× 105

MNIST 3.3× 105

Purchase 2.75× 105

CIFAR10 10.4× 105

For the theoretical analysis, Algorithm 6 uses randomized filtering (step 9) and repeats until the stop
condition is satisfied (step 5). The follow-up works from the same authors (Li, 2018; Diakonikolas
et al., 2019) suggest a simpler algorithm to obtain a better performance in practice: (1) in each
iteration, remove a deterministic fraction of the data instead of a random fraction. (2) repeat the
filter for constant iterations in total. In the evaluation, we filter out ε/2 fraction of the inputs in each
iteration (step 12) and repeat the filter process 2 times (step 7) and to obtain a good performance.

D MISSING EXPERIMENTAL DETAILS

D.1 DETAILS OF DATASETS AND MODEL ARCHITECTURES

We use four datasets in our evaluation, whose details follow.

SVHN. SVHN (Netzer et al., 2011) dataset contains Google’s street view images of house numbers.
The images are 32x32, with 3 floating point numbers containing the RGB color information of each
pixel. We use the extended SVHN dataset with 630,420 samples to train 32 party models each with
5,000 training samples; the public data size is 10,000. We use validation and test data of sizes 2,500
each. The reference data required for adversarial regularization is of the same size as that of training
data for the cases of all the datasets.

MNIST. MNIST (LeCun et al., 1998) dataset contains 28x28 images of handwritten digits and is
composed of 60,000 training samples and 10,000 test samples. The dataset contains 10 classes each
with 60,000 training and 1,000 test samples. We use validation and test data of sizes 1,000 each. We
use 28 parties each with 2,000 training and reference samples, and public data size is 10,000.

Purchase. Purchase (pur, 2019) dataset contains the shopping records of several thousand online
customers, extracted during Kaggle’s Acquire Valued Shopper challenge (pur, 2019). The dataset
contains 197,324 data records with feature vectors of 600 dimensions and corresponding class label
from one of total 100 classes. We use validation and test data of sizes 2,500 each. We use 16 parties
each with 10,000 training and reference data, and public data size is 10,000.

CIFAR10. CIFAR10 (Krizhevsky & Hinton, 2009) has 60,000 color (RGB) images (50,000 for
training and 10,000 for testing), each of 32 × 32 pixels. The images are clustered into 10 classes
based on the objects in the images and each class has 5,000 training and 1,000 test images. We use
validation and test data of sizes 2,500 each. We use 16 parties each with 2,500 training data, and
public data size is 10,000.

Model architectures. For SVHN, we use a neural network with three convolution layers and one
fully connected layer, and Relu activations. For the MNIST dataset, we use a fully connected neural
network with layer sizes {784, 256, 64, 10} and Relu activations. For the Purchase dataset, we
use fully connected neural networks with layer sizes {600, 1024, 100} and Tanh activations. For
CIFAR10 dataset, we use DenseNet architecture (Huang et al., 2017) with 100 layers and growth rate
of 12. For the heterogeneity experiments with Purchase dataset, we use 5 fully connected networks
with hidden layer sizes [{},{1024},{512, 256},{1024, 256}, {1024, 512, 256}]; here {} implies that
the corresponding model has no hidden layers.
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Table 5: Evaluation of the conventional federated learning with various aggregation schemes with Cronus
learning using the strong poisoning attacks described in Section 5. Robustness in Table 3 is measured as the
ratio of the accuracy of the final model/s when the strongest attack is mounted and the accuracy in the benign
setting; the strongest attack is determined empirically as the one that maximally reduces the accuracy of the
corresponding federated learning aggregation.

Dataset
Federated learning with various aggregation algorithms

Cronus
Mean Median MwuAvg MwuOpt Bulyan Krum

SVHN

Accuracy (Benign) 95.9 94.8 93.9 94.4 94.5 89.6 91.1
Label flip 92.9 90.1 91.2 89.3 93.9 88.6 89.8

LIE 14.8 14.5 91.6 92.0 15.5 16.2 91.5
OFOM 0.9 94.5 0.9 0.7 94.4 89.0 91.0

PAF 12.8 16.4 95.1 93.1 93.4 87.5 91.1

MNIST

Accuracy (Benign) 96.7 96.5 97.2 97.4 96.9 93.3 95.2
Label flip 96.3 94.4 94.7 93.6 96.8 89.9 95.0

LIE 95.1 93.1 95.6 96.7 94.1 94.3 95.9
OFOM 22.1 97.3 25.3 36.0 97.1 94.4 96.1

PAF 9.6 91.5 96.9 12.7 97.1 94.0 96.2

Purchase

Accuracy (Benign) 93.3 93.0 93.6 92.5 92.8 72.1 89.6
Label flip 88.9 89.9 63.4 67.6 91.7 74.8 88.0

LIE 2.5 69.3 92.2 85.6 81.8 49.6 89.2
OFOM 1.4 92.8 1.8 1.1 92.6 74.5 89.4

PAF 1.1 12.5 93.0 88.0 91.0 76.6 89.4

CIFAR10

Accuracy (Benign) 88.4 89.1 86.2 87.6 89.0 84.5 80.1
Label flip – – – – – – 79.8

LIE 18.9 61.2 86.0 84.3 75.6 18.0 78.0
OFOM 12.9 89.5 14.2 12.8 89.1 85.0 78.5

PAF 11.3 15.1 86.4 85.0 89.0 839 79.0

Training hyper-parameters. The initialization and collaboration phases of SVHN, MNIST, and
Purchase trained models are of 50 epochs each. In both the phases, we train party models on their
local training data using Adam optimizer at 0.0005 learning rate. Additionally, in collaboration
phase, i.e., for epochs 50-100, we train party models on public data, (Xp, Ȳ ), using SGD optimizer
at a learning rate of 0.001. For CIFAR10, we train models for 200 epochs using SGD optimizer
with 0.1 learning rate, 0.9 momentum, and 10−4 weight decay in both the phases. Additionally, in
collaboration phase, we train the models on public data using SGD optimizer at 0.01 learning rate,
0.99 momentum, and 10−6 weight decay.

For experiments of membership privacy assessment, we use state-of-the-art whitebox inference model
proposed in (Nasr et al., 2019), and use the gradients and outputs of its last layer, in addition to
the blackbox access features including prediction of input and its cross-entropy loss. We train the
inference model using Adam optimizer at a learning rate of 0.0001 for 100 epochs.

D.2 MISSING EMPIRICAL RESULTS

In this section, we provide the experimental details omitted in Section 5.

D.2.1 ROBUSTNESS

Here, we give the complete robustness assessment of Cronus and FedAvg. In Table 3 of Section
5.1, for each dataset and each aggregation algorithm, we showed the accuracy of the attack that
is strongest among all the attacks discussed in Section 5. We compute empirical robustness of
aggregation algorithms using this strongest attack as described in Section 5. In Table 5, we give the
complete evaluation of all the attacks on all of the aggregation algorithms and datasets we consider in
this work. The ‘Accuracy (Benign)’ row of each dataset shows the results in the absence of adversary.
The worst accuracy for a combination of aggregation algorithm and dataset is highlighted in the
corresponding column; the corresponding strongest attack can be found from the label of the row of
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Figure 1: Convergence of Cronus and existing federated learning algorithms in benign setting. Cronus incurs
only a slight degragation in accuracy compared to existing algorithms, while improves significantly over
stand-alone training.
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Figure 2: Convergence of Cronus and existing federated learning algorithms in adversarial setting. Accuracy
of Cronus in adversarial setting is almost the same as in benign setting (shown in Figure 1) due to its high
robustness. Except for CIFAR10, for which only collaboration phase is shown, both the Cronus training phases
are shown in figure and the collaboration phase starts at epoch 50.

22



Under review as a conference paper at ICLR 2022

the highlighted cell. Observe that, label flip attack seems to have lower effect on mean aggregation
than the other aggregations; this is because, unlike other aggregations, in case of mean, there is only
single malicious client. Note that, MWUAvg and MWUOpt aggregations are robust against all the
existing attacks in the literature, but are completely ineffective against the attack we introduced in
Section B.4. Also, note that, Bulyan aggregation is empirically the most robust aggregation after
Cronus, but it allows only 25 - 33% malicious clients compared to other aggregation algorithms such
as Krum, in other words, Bulyan has a very low breaking point. The numbers of malicious parties
used in each of our experiments are given in Table 2.

Convergence plots. Figure 1 shows the convergence of Cronus and various aggregation algorithms
in federated learning for the benign setting. In Figure 2, However, all of the existing aggregation
schemes in federated learning fail to converge under at least one poisoning attack. Cronus incurs only
a slight reduction in accuracy at a significantly higher gain in robustness and privacy as shown in
Sections 5.1 and 5.1.

D.2.2 PRIVACY

In this section, by measuring the privacy risk using state-of-the-art membership inference attack, we
show that Cronus considerably reduces the privacy risk compared with federated learning. We also
show the compatibility of Cronus with existing privacy-preserving mechanisms. We evaluate the risk
of membership inference attacks on the participants’ private training data during collaboration, and
the effect of privacy preserving mechanisms (Abadi et al., 2016; Nasr et al., 2018). As described
in the threat model in Section 2, we assume the central server and other participants to run passive
and active membership inference attacks (Nasr et al., 2019) on individual party updates and their
aggregates. We use Purchase, SVHN, and CIFAR10 datasets for our evaluation when 4 parties
collaborate.

D.2.3 Passive membership inference attacks

In the case of passive membership inference attacks, the server isolates the parties and mounts the
attack separately on each of the collected updates, i.e., in case of FedAvg, attack is mounted on the
parameter updates of each party and in case of Cronus, attack is mounted on the model obtained by
training on the predictions shared by each party. We also evaluate the privacy risk when the attack is
mounted on the aggregate of these updates.

The results are shown in Table 6. The updates in FedAvg are highly susceptible to membership
inference unlike the updates in Cronus. For the Purchase dataset, attack accuracy against the
individual and aggregated updates in FedAvg is 78.1% and 80.1%, respectively, whereas in Cronus
they are 51.7% and 51.9%. Unlike the prediction updates in Cronus, the high dimensional parameter
updates in FedAvg encode a significantly higher amount of information about the party’s local data.
Furthermore, knowledge transfer acts as a strong regularization method and mitigates the risk of
membership inference attacks (Geoffrey & amd Dean Jeff, 2014; Song & Chai, 2018). It’s important
to note that knowledge transfer through predictions, on a dataset other than the training data, makes
the behavior of the student model more indistinguishable on its training versus unseen data. This
happens as the distillation process does not carry the exceptionally distinguishable characteristics of
the model on its training data, and results in smooth decision boundaries of the student model around
the teacher’s training data. We observe similar results for SVHN and CIFAR10 datasets.

We also evaluate Cronus and FedAvg, when models use adversarial regularization (Nasr et al., 2018)
during local training to improve membership privacy. We note that, adversarial regularization
improves membership privacy of both FedAvg and Cronus, but the increase is smaller for Cronus
due to its inherent resilience to membership inference. For Purchase dataset with FedAvg, the risk to
individual and aggregated updates reduces by 9.9% and 12.7%, respectively, while for Purchase with
Cronus, the risk to individual and aggregated updates is already very small, and it further reduces by
0.6% and 1.1%, respectively. Similarly for CIFAR10, privacy improvement in FedAvg is significantly
more than in Cronus. However, the privacy improvement for SVHN is very small even in case of
FedAvg, due to large gaps in train and test accuracies at stronger adversarial regularization.
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Table 6: Accuracy of passive and active membership inference attacks with central server as adversary. We also
evaluate effect of adversarial regularization (with parameter λ) used to preserve membership privacy. We use 4
parties and data per party as in Table ??.

Dataset
Federated Attack on party update Attack on aggregated update
learning Passive Active Passive Active

algorithm attack acc. attack acc. attack acc. attack acc.

Purchase FedAvg 77.1 84.9 74.7 82.7
(without privacy) Cronus 54.6 54.9 53.6 54.7

Purchase FedAvg 70.8 77.3 69.9 77.0
(with membership privacy, λ = 3) Cronus 54.1 51.5 53.7 54.6

SVHN FedAvg 64.8 67.3 59.9 64.3
(without privacy) Cronus 55.6 53.1 56.5 55.7

SVHN FedAvg 64.9 67.0 60.0 64.2
(with membership privacy, λ = 0.5) Cronus 54.1 56.9 55.6 55.0

CIFAR10 FedAvg 79.9 80.5 76.8 77.1
(without privacy) Cronus 57.0 57.8 55.5 56.7

CVIFAR10 FedAvg 59.9 64.1 59.6 62.2
(with membership privacy, λ = 1) Cronus 52.9 54.4 52.6 57.0
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Figure 3: Difference in the gradient-norms, ∇L(D), of the last layer of aggregated model on the target and
non-target data (Purchase100 data). In the context of active membership inference attacks, D, Dt, D̄, and D̄t
denote non-target members, target members, non-target non-members, and target non-members, respectively.

D.2.4 Active membership inference attacks

In each epoch, the server manipulates the aggregate update that it broadcasts to parties by performing
gradient ascent on the aggregated update for a set of target data (Nasr et al., 2019). In FedAvg,
gradient ascent is performed directly on the aggregated parameters. In Cronus, for running such
attack, the server needs to train a model on the aggregated predictions while performing gradient
ascent on the target data, and then, shares predictions of this model with the parties; we ensure that
such model has accuracy close to the accuracy of party models in given epoch.

Table 6 shows the results. The active attacks significantly increase the privacy risk of the target
data in case of FedAvg: for Purchase dataset, the risk due to individual update increases by 7.8%
(77.1% to 84.9%), while due to aggregated update increases by 8% (74.7% to 82.7%). But, in
case of Cronus, the active attacks are ineffective and the increase in risk is negligible: 0.3% for
individual update while 1.1% for aggregated update. In Figure 3, we show the effect of gradient
ascent on the difference in gradient-norms of target and non-target data for aggregated model for
the Purchase dataset. This directly correlates with the success of membership inference (Nasr et al.,
2019). We observe that, for FedAvg on SVHN dataset, the active attacks increase the risk to individual
and aggregate updates by 2.5% and 4.4%, respectively, but, the increased risk negligible for Cronus.

D.2.5 Differential privacy

We compare the performance of Cronus and the conventional federated learning with user-level (Bren-
dan et al., 2018) (the server applies differentially private mechanism) or record-level (Abadi et al.,
2016) (each party applies differentially private mechanism) differential privacy. For both of these
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Table 7: Accuracy and robustness of models for record level DP (Abadi et al., 2016) with ε = 15.4 on the SVHN
dataset. The baseline stand-alone accuracy is 87%.

# of Accuracy (Benign) Worst accuracy Robustness
parties FedAvg Cronus FedAvg Cronus FedAvg Cronus

32 65.7 85.8 4.5 83.1 0.07 0.97
16 74.3 84.8 8.1 84.0 0.11 0.99
8 77.9 84.2 0.9 82.2 0.01 0.98
4 81.6 81.5 1.7 81.2 0.02 0.98

comparisons, we use SVHN dataset with 32 benign parties and the model architecture as described
in Table 2, and use the moments accountant method (and the code) (Abadi et al., 2016; tf, 2019)
to bound the total privacy risk. Note that we train the whole model using differential privacy, as
opposed to only training the last layer (Abadi et al., 2016). Our results show that robustness property
of Cronus , as expected, is preserved with differential privacy.

User-level DP (Brendan et al., 2018). The user-level DP (UDP-FedAvg) algorithm proposed by
McMahan et al. (Brendan et al., 2018) cannot lead to training good accuracy models, when the
number of parties in each epoch is small. Even for large privacy budgets, i.e., ε = 100, the parties
do not benefit from collaboration, and with the user-level DP, the global model in FedAvg achieves
close to random-guess accuracy. We observed similar results for running user-level DP on Cronus
with small number of participants. This result is expected as the sensitivity of the element-wise mean
aggregation algorithm is inversely proportional to the number of parties, and a very large number of
parties is required to reduce the noise, e.g., (Brendan et al., 2018) uses 5000 parties in each epoch
which is not realistic in cases where a few data holder (hospital) collaborate.

Record-level DP (Abadi et al., 2016). We empirically show that the conventional parameter aggrega-
tion in FedAvg is not suitable to provide the record-level DP, and is also susceptible to poisoning
attacks. The results are shown in Table 7 for SVHN dataset. The accuracy of the models for federated
learning or Cronus, with DP-SGD, cannot reach the accuracy of stand-alone training, which makes
the collaboration useless. The results of the strongest poisoning attacks show that DP-SGD FedAvg
has no robustness against the attacks.

D.2.6 CRONUS WITH HETEROGENEOUS MODEL ARCHITECTURES

Due to the use of predictions based updates, Cronus allows parties with heterogeneous model
architectures to participate in collaboration. Below, we compare different aspects of the homogeneous
and heterogeneous collaborations. We use Purchase data and 5 fully connected models, which we call
A1, A2, A3, A4, and A5, with hidden layer sizes {}, {1024}, {512, 256}, {1024, 256}, and {1024,
512, 256} respectively. Note that, A1 models, called bad models, have lower capacity and accuracy
than A2-5 models, which we call good models. We denote by Pj:k the model architectures of parties
∈ [j, k]. We denote the entire collaboration in curly brackets, e.g., we denote the collaboration of
3 sets of 4 models, i.e. 12 models in total, each with either of A3, A3, or A4 models by {P1:4 =
A2, P5:8 = A3, P9:12 = A4}. In tables, accuracy of an architecture is the average accuracy of all the
models with that architecture, e.g., in Table 9 accuracy of A2 is average of accuracies of all models
with A2 architecture in the two collaborations.

First, we show that the heterogeneous collaboration between models of equivalent capacities does not
reduce the accuracy of party models compared to its homogeneous counterparts. We consider four
homogeneous collaborations each of 16 parties such that {P1:16 = A2}, {P1:16 = A3}, {P1:16 = A4},
and {P1:16 = A5}, and compare it with a heterogeneous collaboration: {P1:4 = A2, P5:8 = A3, P9:12

= A4, P13:16 = A5}. The results are shown in Table 8.

Next, we show that the presence of a few bad models does not affect the accuracy of the good
models in the heterogeneous collaboration, while significantly benefits the bad models. Specif-
ically, we show that accuracy of the collaboration of 12 good models, i.e., {P1:4 = A2, P5:8 = A3,
P9:12 = A4} remains unaffected even if 4 bad models are added to it, i.e., P13:16 = A2, as shown in
Table 9.
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Finally, we show that heterogeneity allows for more knowledge sharing via collaboration and
always improves the utility of collaborations. We consider 4 homogeneous collaborations: {P1:4

= A1}, {P1:4 = A2}, {P1:4 = A3}, and {P1:4 = A4} and compare them with a heterogeneous
collaboration that includes all these 16 parties, i.e., {P1:4 = A1, P5:8 = A2, P9:12 = A3, P13:16 = A4}.
Table 10 shows that including more participants clearly benefits all types of models, although the bad
models benefit more than the good ones. For instance, A1 models improve by 8% from 70.1% to
78.1% due to heterogeneous collaboration, while A2, A3, and A4 models improve by 3.2%, 2.2%,
and 1.4%, respectively.

Table 8: Comparison between heterogeneous and homogeneous collaborations in Cronus.

Homogeneous Heterogeneous

P1:16 → A2 A3 A4 A5
{P1:4 = A2, P5:8 = A3
P9:12 = A4, P13:16 = A5}

89.6 89.3 88.4 88.6 89.3

Table 9: Effect of the presence of low accuracy bad models on the performance of higher accuracy good models.
n is the number of collaborating parties.

Models
Heterogeneous Heterogeneous

{P1:4 = A2, P5:8 = A3, {P1:4 = A2, P5:8 = A3,
P9:12 = A4} P9:12 = A4, P13:16 = A1}

A1 - 78.1
A2 88.5 88.7
A3 88.6 88.1
A4 88.7 88.1

Table 10: More participation due to heterogeneity always improves the overall utility of the collaboration.

Models
Homogeneous Heterogeneous

4 small collaborations {P1:4 = A2, P5:8 = A3,
P1:4 = A1/A2/A3/A4 P9:12 = A4, P13:16 = A1}

A1 70.1 78.1
A2 85.5 88.7
A3 85.9 88.1
A4 86.7 88.1
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