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Figure 1: Existing MoCap-based action recognition methods first converted body markers into a
human body mesh and then predicted 3D skeletons from mesh vertices. Skeleton-based action
recognition models were used to recognize human actions (Punnakkal et al., 2021) (dotted line). We
propose a method that directly models the dynamics of raw mesh sequences.

ABSTRACT

We study the problem of human action recognition using motion capture (MoCap)
sequences. Existing methods for MoCap-based action recognition take skeletons
as input, which requires an extra manual mapping step and loses body shape in-
formation. We propose a novel method that directly models raw mesh sequences
which can benefit from the body prior and surface motion. We propose a new hier-
archical transformer with intra- and inter-frame attention to learn effective spatial-
temporal representations. Moreover, our model defines two self-supervised learn-
ing tasks, namely masked vertex modeling and future frame prediction, to further
learn the global context for appearance and motion. Our model achieves state-of-
the-art performance compared to skeleton-based and point-cloud-based models.
We will release our code and models.

1 INTRODUCTION

Motion Capture (MoCap) is the process of digitally recording human motion. With the emergence
of marker-based motion capture systems (i.e. Vicon MX), MoCap datasets enable the fine-grained
capture and analysis of human motions in 3D space (Mahmood et al., 2019; Punnakkal et al., 2021).
They serves as key elements for various research fields, such as action recognition (OSU, 2018; SFU;
MocapClub, 2009; EyesJapan, 2018; Punnakkal et al., 2021; Müller et al., 2007), tracking (Müller
et al., 2007), pose estimation (Achilles et al., 2016; Kocabas et al., 2020), imitation learning (Zhao
et al., 2012), and motion synthesis (Müller et al., 2007). MoCap is also the fundamental technology
for content creation and user interaction in Metaverse. Understanding human behaviors from MoCap
data allows the Metaverse system to properly interact with users and non-player characters (NPCs)
(Huynh-The et al., 2022). Skeleton representations are commonly used to model MoCap sequences.
Some early works (Barnachon et al., 2014; Li et al., 2010) directly used body markers and their
connectivity relations to form a skeleton graph. However, the marker positions depend on each
subject (person), which brings sample variances within each dataset. Moreover, different MoCap
datasets usually have different numbers of body markers. For example, ACCAD (OSU, 2018),
BioMotion(Troje, 2002), Eyes Japan (EyesJapan, 2018), and KIT (Mandery et al., 2015) have 82,
41, 37 and 50 body markers respectively. This prevents the model to be trained and tested on a
unified framework. To use standard skeleton representations such as NTU RGB+D (Shahroudy
et al., 2016), Punnakkal et al. (Punnakkal et al., 2021) first used Mosh++ to fit body markers into
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meshes, and then predicted a 25-joint skeleton (Liu et al., 2020a) from the vertices of the SMPL-
H meshes (Romero et al., 2017). Finally, a skeleton-based model (Shi et al., 2019c) was used to
perform action recognition. Although those methods achieved advanced performance, they have the
following disadvantages: First, they require an extra manual step to map the vertices from mesh to
skeleton. Second, skeleton representations lose the information provided by original MoCap data
(i.e. surface motion and body shape knowledge). To overcome those disadvantages, we propose a
mesh-based action recognition method to directly model dynamic changes in raw mesh sequences,
as illustrated in Figure 1.

Though mesh representations provide fine-grained body information, it is challenging to classify
temporal mesh sequences for action recognition. First, unlike structured 3D skeletons which have
joint correspondence across frames, there is no vertex-level correspondence in meshes (i.e. the
vertices are unordered). Therefore, the local connectivity of every single mesh can not be directly
aggregated in the temporal dimension. Second, mesh representations encode local connectivity
information, while action recognition requires global understanding in the whole spatial-temporal
domain.

To overcome the aforementioned challenges, we propose a novel Spatial-Temporal Mesh
Transformer (STMT). We consider the flexibility of a transformer architecture which allows the
self-attention mechanism to freely attend to any two vertices, making it possible to learn non-local
relationships among vertex patches in the same frame (spatial domains) or across frames (temporal
domains). We expect the model to learn spatial-temporal correlation across the entire sequence to
alleviate the requirement of explicit vertex correspondence. Specifically, we first build mesh vertex
patches by learning local connectivity information. Then we propose a hierarchical transformer,
which performs intra- and inter-frame attention on those patches. We define two self-supervised
learning tasks, namely masked vertex modeling and future frame prediction to enable the model to
learn from the global context. To reconstruct masked vertices of different body parts, the model
needs to learn prior information of human body in spatial dimension. To predict future frames, the
model needs to understand meaningful surface movement in the temporal dimension. To this end,
our hierarchical transformer pre-trained with those two objectives can further learn spatial-temporal
context across entire frames, which improves the downstream action recognition task.

We evaluate our model on common MoCap benchmarks. Our proposed STMT achieves state-of-
the-art performance compared to skeleton-based and point-cloud-based models. The contributions
of this paper are three-fold:

• We introduce a new hierarchical transformer architecture, which jointly encodes intrin-
sic and extrinsic representations, along with intra- and inter-frame attention, for spatial-
temporal mesh modeling.

• We design effective and efficient pretext tasks, namely masked vertex modeling and future
frame prediction, to enable the model to learn from the spatial-temporal global context.

• Our model achieves superior performance compared to state-of-the-art point-cloud and
skeleton models on common MoCap benchmarks.

2 RELATED WORK

Action Recognition from Depth and Point Cloud. 3D action recognition models have achieved
promising performance with depth (Wang et al., 2018; Sanchez-Caballero et al., 2020a; Xiao et al.,
2019; Sanchez-Caballero et al., 2020b; Liu et al., 2020b) and point clouds (Qi et al., 2017; Liu
et al., 2019; Wang et al., 2020; Fan et al., 2021d). Depth-maps provide reliable 3D structural and
geometric information which characterizes informative human actions. In MVDI (Xiao et al., 2019),
dynamic images (Bilen et al., 2016) were extracted through multi-view projections from depth
videos for 3D action recognition. 3D-FCNN (Sanchez-Caballero et al., 2020a) directly exploited a
3D-CNN to model depth videos. Another popular category of 3D human action recognition is based
on 3D point clouds. PointNet (Qi et al., 2016) and PointNet++ (Qi et al., 2017) are the pioneering
works contributing towards permutation invariance of 3D point sets for representing 3D geometric
structure. Along this avenue, MeteorNet (Liu et al., 2019) stacked multi-frame point clouds and
aggregates local features for action recognition. 3DV (Wang et al., 2020) transferred point cloud
sequences into regular voxel sets to characterize 3D motion compactly via temporal rank pooling.
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PSTNet (Fan et al., 2021d) disentangled space and time to alleviate point-wise spatial variance
across time. Action recognition has shown promising results with 3D skeletons and point clouds.
Meshes, which are commonly used in representing human bodies and creating action sequences,
have not been explored for the action recognition task. In this work, we propose the first mesh-based
action recognition model.

MoCap-Based Action Recognition. Motion-capture (MoCap) datasets (OSU, 2018; SFU;
MocapClub, 2009; EyesJapan, 2018; Punnakkal et al., 2021; Müller et al., 2007) serve as key
elements for various research fields, such as action recognition (OSU, 2018; SFU; MocapClub,
2009; EyesJapan, 2018; Punnakkal et al., 2021; Müller et al., 2007), tracking (Müller et al., 2007),
pose estimation (Achilles et al., 2016; Kocabas et al., 2020), imitation learning (Zhao et al., 2012),
and motion synthesis (Müller et al., 2007). MoCap-based action recognition was formulated as
a skeleton-based action recognition problem (Punnakkal et al., 2021). Various architectures have
been investigated to incorporate skeleton sequences. In (Du et al., 2015; Zhang et al., 2017; Liu
et al., 2017), skeleton sequences were treated as time-series inputs to RNNs. (Hou et al., 2018;
Wang et al., 2016) respectively transformed skeleton sequences into spectral images and trajectory
maps then adopted CNNs for feature learning. In (Yan et al., 2018), Yan et al. leveraged GCN to
model joint dependencies that can be naturally represented with a graph. In this paper, we propose
a novel method to directly model the dynamics of raw mesh sequences which can benefit from prior
body information and surface motion.

Masked Autoencoder. Masked autoencoder has gained attention in Natural Language Processing
and Computer Vision to learn effective representations using auto-encoding. Among masked vision
autoencoders, one of the early works is (Vincent et al., 2010), which treated the masking as a noise
type and proposed denoising autoencoders which were trained locally to denoise corrupted versions
of their inputs. (Vincent et al., 2008) used CNN to inpaint missing regions and learn context infor-
mation. ViT (Dosovitskiy et al., 2021) proposed a self-supervised pre-training task to reconstruct
masked tokens. More recently, BEiT (Bao et al., 2021) proposed to learn visual representations by
predicting the discrete tokens (Ramesh et al., 2021). MAE (He et al., 2021) proposed a simple yet
effective asymmetric framework for masked image modeling. In 3D point cloud analysis, Wang et
al. (Wang et al., 2021) chose to first generate partial point clouds by calculating occlusion from
random camera viewpoints, and then completed occluded point clouds using autoencoding. Point-
BERT (Yu et al., 2022) followed the success of BERT (Devlin et al., 2019) to predict the masked
tokens learned from points. Self-supervised learning models for temporal 3D sequences (i.e. point
cloud, 3D skeleton) have not been fully explored. One of the probable reasons is that applying self-
supervised learning on high-dimensional 3D temporal sequences is computationally expensive. In
this work, we propose an effective and efficient self-supervised learning method based on masked
vertex modeling and future frame prediction.

3 METHOD

3.1 OVERVIEW

In this section, we describe our model for mesh-based action recognition, which we call STMT.
The input of our model are temporal mesh sequences: M = ((P1,A1), (P2,A2), · · · , (Pt,At)),
where t is the frame number, and Pi ∈ RN×3 represents the position of the N vertices of the body
mesh in Cartesian coordinates. Ai ∈ RN×N represents the adjacency matrix of the mesh. Element
Amn

i ∈ Ai is one when there is an edge from vertex Vm to vertex Vn, and zero when there is no
edge. The mesh representation with vertices and their adjacent matrix is a unified format for various
body models such as SMPL (Loper et al., 2015), SMPL-H (Romero et al., 2017), and SMPL-X
(Pavlakos et al., 2019). In this work, we use SMPL-H body models from AMASS (Mahmood et al.,
2019) to obtain the mesh sequences, but our method can be easily adopted to other body models.

Mesh’s local connectivity provides fine-grained information. Previous methods (Hanocka et al.,
2019; Sharp et al., 2022) in mesh classification prove that explicitly using surface (e.g., mesh)
connectivity can achieve higher accuracy. However, unlike structured 3D skeletons, there is no
vertex-level correspondence across frames for mesh sequences, which prevents graph-based models
from directly aggregating vertex features in the temporal dimension. Therefore, we propose to first
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Figure 2: Overview of the proposed framework. (a) Overview of STMT. Given a mesh sequence, we
first develop vertex patches by extracting both intrinsic (geodesic) and extrinsic (euclidean) features
using surface field convolution. The intrinsic and extrinsic features are denoted by yellow and blue
blocks respectively. Those patches are used as input to the intra-frame offset-attention network
to learn appearance features. Then we concatenate intrinsic patches and extrinsic patches of the
same position. The concatenated vertex patches (green blocks) are fed into the inter-frame self-
attention network to learn spatial-temporal correlations. Finally, the local and global features are
mapped into action predictions by MLP layers. (b) Overview of Pre-Training Stage. We design
two pretext tasks: masked vertex modeling and future frame prediction for global context learning.
Bidirectional attention is used for the reconstruction of masked vertices. Auto-regressive attention
is used for the future frame prediction task.

leverage mesh connectivity information to build patches at the frame level, then use a hierarchical
transformer which can freely attend to any intra- and inter-frame patches to learn spatial-temporal
associations. In summary, it has the following key components:

• Surface Field Convolution to form local vertex patches by considering both intrinsic and
extrinsic mesh representations.

• Hierarchical Spatial-Temporal Transformer to learn spatial-temporal correlations of
vertex patches.

• Self-Supervised Pre-Training to learn the global context in terms of appearance and mo-
tion.

See Figure 2 for a high-level summary of the model, and the sections below for more details.

3.2 SURFACE FIELD CONVOLUTION

Because displacements in grid data are regular, traditional convolutions can directly learn a kernel
for elements within a region. However, mesh vertices are unordered and irregular. Considering
the special mesh representations, we represent each vertex by encoding features from its neighbor
vertices inspired by (Qi et al., 2016; 2017). To fully utilize meshes’ local connectivity information,
we consider the mesh properties of extrinsic curvature of submanifolds and intrinsic curvature of the
manifold itself. Extrinsic curvature between two vertices is approximated using Euclidean distance.
Intrinsic curvature is approximated using Geodesic distance, which is defined as the shortest path
between two vertices. We propose a light-weighted surface field convolution to build local patches,
which can be denoted as:

F
′(x,y,z)
V G =

∑
(δx,δy,δz)∈G(x,y,z)

W (δx,δy,δz) · F (x+δx,y+δy,z+δz) (1)

F
′(x,y,z)
V E =

∑
(ζx,ζy,ζz)∈E(x,y,z)

W (ζx,ζy,ζz) · F (x+ζx,y+ζy,z+ζz) (2)

G and E is the local region around vertex (x, y, z). In this paper, we use k-nearest-neighbor to
sample local vertices. (δx, δy, δz) and (ζx, ζy, ζz) represent the spatial displacement in geodesic and
euclidean space, respectively. F (x,y,z) denotes the feature of the vertex at position (x, y, z).

4



Under review as a conference paper at ICLR 2023

3.3 HIERARCHICAL SPATIAL-TEMPORAL TRANSFORMER

We propose a hierarchical transformer which consists of intra-frame and inter-frame attention. The
basic idea behind our transformer is three-fold: (1) Intra-frame attention can encode connectivity
information from the adjacency matrix, while such information can not be directly aggregated in
the temporal domain because vertices are unordered. (2) Frame-level offset-attention can be used
to mimic Laplacian operator to learn effective spatial representations. (3) Inter-frame self-attention
can learn feature correlations in the spatial-temporal domain.

3.3.1 INTRA-FRAME OFFSET-ATTENTION

Graph convolution networks (Bruna et al., 2014) show the benefits of using a Laplacian matrix L =
D− E to replace the adjacency matrix E, where D is the diagonal degree matrix. Inspired by this,
offset-attention has been proposed and achieved superior performance in point-cloud classification
and segmentation tasks (Guo et al., 2021). We adapt offset-attention to attend to vertex patches.
Specifically, the offset-attention layer calculates the offset (difference) between the self-attention
(SA) features and the input features by element-wise subtraction. Offset-attention is denoted as:

Fout = OA(Fin) =ϕ(Fin − Fsa) + Fin. (3)

where ϕ denotes a non-linear operator. Fin − Fsa is proved to be analogous to discrete Laplacian
operator, i.e. Fin − Fsa ≈ LFin. As Laplacian operators in geodesic and euclidean space are
expected to be different, we propose to use separate transformers to model intrinsic patches and
extrinsic patches. Specifically, the aggregated feature for vertex V is denoted as:

F
′(x,y,z)
V = OAG(F

′(x,y,z)
V G )⊕OAE(F

′(x,y,z)
V E ) (4)

Here F
′(x,y,z)
V G ∈ RN×dg and F

′(x,y,z)
V E ∈ RN×de are local patches learned using Equ. 1 and Equ. 2.

F
′(x,y,z)
V ∈ RN×d denotes the local patch for position (x, y, z), where d = dg + de. The weights of

OAG and OAE are not shared. We show that the separate transformers can learn diverse attentions
in Section 4.4.

3.3.2 INTER-FRAME SELF-ATTENTION

Given F ′
V which encodes local connectivity information, we use self-attention (SA) (Vaswani et al.,

2017) to learn semantic affinities between different vertex patches across frames. Specifically, let
Q,K,V be the query, key and value, which are generated by applying linear transformations to the
input features F ′

V ∈ RN×d as follows:

(Q,K,V ) = F ′
V · (Wq,Wk,Wv)

Q,K ∈ RN×da , V ∈ RN×d

Wq,Wk ∈ Rd×da , Wv ∈ Rd×d (5)

where Wq , Wk and Wv are the shared learnable linear transformation, and da is the dimension of
the query and key vectors. Then we can use the query and key matrices to calculate the attention
weights via the matrix dot-product:

Ã = (α̃)i,j = softmax(
Q ·KT

√
da

). (6)

Fsa = A · V (7)

The self-attention output features Fsa are the weighted sums of the value vector using the cor-
responding attention weights. Specifically, for a vertex patch in position (x, y, z), its aggregated
feature after inter-frame self-attention can be computed as: F

(x,y,z)
sa =

∑
A(x,y,z),(x′,y′,z′) ×

V (x′,y′,z′), where (x′, y′, z′) belongs to the Cartesian coordinates of F ′
V .

3.4 SELF-SUPERVISED PRE-TRAINING

Self-supervised learning has achieved remarkable results on large-scale image datasets (He et al.,
2021). However, self-supervised learning for temporal 3D sequences (i.e. point cloud, 3D skele-
ton) remains to be challenging and has not been fully explored. There are two possible reasons:
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(1) self-supervised learning methods rely on large-scale datasets to learn meaningful patterns (Cole
et al., 2022). However, existing MoCap benchmarks are relatively small compared to 2D datasets
like ImageNet (Deng et al., 2009). (2) Self-supervised learning for 3D data sequences is computa-
tionally expensive in terms of both memory and speed. In this work, we first propose a simple and
effective method to augment existing MoCap sequences, and then define two effective and efficient
self-supervised learning tasks, namely masked vertex modeling and future frame prediction, which
enable the model to learn global context.

3.4.1 DATA AUGMENTATION THROUGH JOINT SHUFFLE

Considering the flexibility of SMPL-H representations, we propose a simple yet effective ap-
proach to augment SMPL-H sequences by shuffling body pose parameters. Specifically, we split
SMPL-H pose parameters into five body parts: bone, left/right arm, and left/right leg. We use
Ibone, I

left
leg , Irightleg , I leftarm, Irightarm to denote the SMPL-H pose indexes of the five body parts. Then

we synthesize new sequences by randomly selecting body-parts from five different sequences. We
keep the temporal order for each part such that the merged action sequences have meaningful mo-
tion trajectories. Pseudo-code for the joint shuffle is provided in Algorithm 1. The input to Joint
Shuffle are SMPL-H pose parameters θ ∈ Rb×t×n×3, where b is the sequence number, t is the frame
number, and n is the joint number. We randomly select the shape β and dynamic parameters ϕ
from one of the five SMPL-H sequences to compose a new SMPL-H body model. Given b SMPL-H
sequences, we can synthesize

b

C5 = b!
5!(b−5)! number of new sequences. We prove that the model

can benefit from large-scale pre-training in Section 4.6.

Algorithm 1: Pseudocode of STMT Joint Shuffle

1: function STMT JOINT SHUFFLE(θ ∈ Rb×t×n×3, Ibone, I
left
leg , Irightleg , I leftarm, Irightarm )

2: θs← random sample(θ, 5) ▷ θs ∈ R5×t×n×3, randomly sample five SMPL-H sequences
3: tmax ← get max length(θs) ▷ compute the maximum sequence length in θs
4: θnew ← Initialize(tmax, n, 3)

5: P ← {Ibone, I leftleg , Irightleg , I leftarm, Irightarm }
6: for i in 0, 1, 2, 3, 4 do
7: θs← repeat(θs[i], (tmax, n, 3)) ▷ pad each sequence to the max length using repeating
8: θnew[P [i]]← θs[i][P [i]] ▷ assign the body-part sequence
9: return θnew

3.4.2 MASKED VERTEX MODELING WITH BI-DIRECTIONAL ATTENTION

To fully activate the inter-frame bi-directional attention in the transformer, we design a self-
supervised pretext task named Masked Vertex Modeling (MVM). The model can learn human prior
information in the spatial dimension by reconstructing masked vertices of different body parts. We
randomly mask r percentages of the input vertex patches, and force the model to reconstruct the full
sequences. Moreover, we use bi-directional attention to learn correlations among all remaining local
patches. Each patch will attend to all patches in the entire sequence. It models the joint distribu-
tion of vertex patches over the whole temporal sequences x as the following product of conditional
distributions, where xi is a single vertex patch:

p(x) =

N∏
i=1

p(xi|x1, .., xi, ..., xN ). (8)

Where N is the number of patches in the entire sequence x after masking. Every patch will attend
to all patches in the entire sequence. In this way, bi-directional attention is fully-activated to learn
spatial-temporal features that can accurately reconstruct completed mesh sequences.

3.4.3 FUTURE FRAME PREDICTION WITH AUTO-REGRESSIVE ATTENTION

The masked vertex modeling task is to reconstruct masked vertices in different body parts. The
model can reconstruct completed mesh sequences if it captures the human body prior or can make
a movement inference from nearby frames. As action recognition requires the model to understand
the global context, we propose the future frame prediction (FFP) task. Specifically, we mask out all
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the future frames and force the transformer to predict the masked frames. Moreover, we propose to
use auto-regressive attention for the future frame prediction task, inspired by language generation
models like GPT-3 (Brown et al., 2020). However, directly using RNN-based models (Cho et al.,
2014) in GPT-3 to predict future frames one-by-one is inefficient, as 3D mesh sequences are denser
compared to language sequences. Therefore, we propose to reconstruct all future frames in a single
forward pass. For auto-regressive attention, we model the joint distribution of vertex patches over a
mesh sequence x as the following product of conditional distributions, where xi is a single patch at
frame ti:

p(x) =

N∏
i=1

p(xi|x1, x2, ..., xM ). (9)

Where N is the number of patches in the entire sequence x after masking. M = (ti− 1)×n, where
n is the number of patches in a single frame. Each vertex patch depends on all patches that are
temporally before it. The unidirectional attention helps the model to understand movement patterns
and trajectories, which is beneficial for the downstream action recognition task.

3.5 TRAINING

In the pre-training stage, we use PCN (Yuan et al., 2018) as the decoder to reconstruct masked
vertices and predict future frames. The decoder is shared for the two pre-text tasks. Since mesh
vertices are unordered, the reconstruction loss and future prediction loss should be permutation-
invariant. Therefore, we use Chamfer Distance (CD) as the loss function to measure the difference
between the model predictions and ground truth mesh sequences.

CD(Mpred,Mgt) =
1

|Mpred|
∑

x∈Mpred

min
y∈Mgt

∥x− y∥2 +
1

|Mgt|
∑

y∈Mgt

min
x∈Mpred

∥y − x∥2 (10)

CD (10) calculates the average closest euclidean distance between the predicted mesh sequences
Mpred and the ground truth sequences Mgt. The overall loss is a weighted sum of masked vertex
reconstruction loss and future frame prediction loss:

L = λ1CD(MMVM
pred ,Mgt) + λ2CD(MFFP

pred ,Mgt) (11)

In the fine-tuning stage, we replace the PCN decoder with an MLP head. Cross-entropy loss is used
for model training.

4 EXPERIMENT

4.1 DATASETS

Following previous MoCap-based action recognition methods (Punnakkal et al., 2021; Sun et al.,
2022), we evaluate our model on two common benchmarks: KIT(Mandery et al., 2015) and BABEL
(Punnakkal et al., 2021). KIT is one of the largest MoCap datasets. It has 56 classes with 6,570
sequences in total. (2) BABEL is the largest 3D dataset of dense action labels that are precisely
aligned with their corresponding movement. It leverages the large-scale AMASS dataset (Mahmood
et al., 2019) for MoCap sequences, and has 43 hours of MoCap data performed by over 346 subjects.
We use the 60-class subset from BABEL, which contains 21,653 sequences with single-class labels.
We randomly split each dataset into training, test, and validation set, with ratios of 70%, 15%,
and 15%, respectively. Note that existing skeleton-based action recognition datasets (e.g. NTU
RGB+D (Shahroudy et al., 2016)), are not suitable for our experiments, as they do not provide full
3D surfaces or SMPL parameters.

Motion Representation. Both KIT and BABEL’s MoCap sequences are obtained from AMASS
dataset in SMPL-H format. A MoCap sequence is an array of pose parameters over time, along with
the shape and dynamic parameters. For skeleton-based action recognition, we follow previous work
(Punnakkal et al., 2021) which predicted the 25-joint skeleton from the vertices of the SMPL-H
mesh. The movement sequence is represented as X = (x1, · · · ,xL), where xi ∈ RJ×3 represents
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Method Input KIT BABEL-60
Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

2s-AGCN-FL (Shi et al., 2019b) (CVPR’19) 3D Skeleton 42.44 75.60 49.62 79.12
2s-AGCN-CE (Shi et al., 2019b) (CVPR’19) 3D Skeleton 57.46 81.54 63.57 86.77
CTR-GCN (Chen et al., 2021a) (ICCV’21) 3D Skeleton 64.65 87.90 67.30 88.50
MS-G3D (Liu et al., 2020c) (CVPR’20) 3D Skeleton 65.38 87.90 67.43 87.99
PSTNet(Fan et al., 2021d) (ICLR’21) Point Cloud 56.93 88.21 61.94 84.11
SequentialPointNet(Li et al., 2021b) (arXiv’21) Point Cloud 59.75 88.01 62.92 84.58
P4Transformer(Fan et al., 2021a) (CVPR’21) Point Cloud 62.15 88.01 63.54 86.55
STMT(Ours) Mesh 65.59 90.09 67.65 88.68

Table 1: Experimental Results on KIT and BABEL Dataset.

the position of the J joints in the skeleton, in Cartesian co-ordinates, (x, y, z). For point-cloud-
based action recognition, we directly use the vertices of SMPL-H model as the model input. The
point-cloud sequence is represented as P = (p1, · · · ,pL), where pi ∈ RV×3, and V is the number
of vertices. For mesh-based action recognition, we represent the motion as a series of mesh vertices
and their adjacent matrix over time, as introduced in Section 3.1. See Sup. Mat. for more details
about datasets and pre-processing.

4.2 BASELINE METHODS

We compare our model with state-of-the-art 3D skeleton-based and point cloud-based action recog-
nition models, as there is no existing literature on mesh-based action recognition. 2s-AGCN (Shi
et al., 2019b), CTR-GCN (Chen et al., 2021a), and MS-G3D (Liu et al., 2020c) are used as skeleton-
based baselines. Among those methods, 2s-AGCN trained with focal loss and cross-entropy loss
are used as benchmark methods in the BABEL dataset (Punnakkal et al., 2021). For the compari-
son with point-cloud baselines, we choose PSTNet (Fan et al., 2021d), SequentialPointNet(Li et al.,
2021b), and P4Transformer (Fan et al., 2021a). Those methods achieved top performance on com-
mon point-cloud-based action recognition benchmarks.

4.3 IMPLEMENTATION DETAILS

For skeleton-based baselines, we use the official implementations of 2s-ACGN, CTR-GCN, and
MS-G3D from (Shi et al., 2019a), (Chen et al., 2021b), and (Liu et al., 2020d), respectively. We
train models for 250 epochs with a batch size of 64. For point-cloud-based baselines, we use the
official implementations of PSTNet, SequentialPointNet, P4Transformer from (Fan et al., 2021c),
(Li et al., 2021a), and (Fan et al., 2021b). All models use Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 0.0001. We train models for 200 epochs with a batch size of 32. Our STMT
model is pre-trained using the Adam optimizer with a learning rate of 0.0001. The model is pre-
trained for 120 epochs with batch size 128. The hyper-parameters for fine-tuning are the same as
the point-cloud baselines for a fair comparison.

4.4 MAIN RESULTS

Comparison with State-of-the-Art Methods. As indicated in Table 1, STMT outperforms all
other state-of-the-art models. Our model can outperform point-cloud-based models by 3.44% and
4.11% on KIT and BABEL datasets in terms of top-1 accuracy. Moreover, compared to skeleton-
based methods which involve manual efforts to convert mesh vertices to skeleton representations,
our model achieves better performance by directly modeling the dynamics of raw mesh sequences.

4.5 ABLATION STUDY

Ablation Study of STMT. We test various ablations of our model on the KIT dataset to substan-
tiate our design decisions. We report the results in Table 2. Note that Joint Shuffle is used in all of
the self-supervised learning experiments (last three rows). We observe that each component of our
model gains consistent improvements. The comparison of the first two rows proves the effective-
ness of encoding both intrinsic and extrinsic features in vertex patches. Comparing the last three
rows with the second row, we observe that there is a consistent improvement using self-supervised
pre-training. Moreover, the downstream task can achieve better performance with MVM compared
to FFP. One probable reason is that the single task for future frame prediction is more challenging
than masked vertex modeling, as the model can only attend to frames in the past and no movement
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information is available from nearby frames. The model can achieve the best performance with both
MVM and FFP.

Intrinsic Extrinsic MVM FFP Top-1 (%)

✓ 63.40
✓ ✓ 64.03
✓ ✓ ✓ 64.96
✓ ✓ ✓ 64.13
✓ ✓ ✓ ✓ 65.59

Table 2: Performance of ablated versions of our model.

Method Top-1 (%)

w/o pre-training 64.03
pre-training w/o JS 64.13
pre-training w/ JS 65.59

Table 3: Comparison of Different
Pre-Training Strategies. JS stands
for Joint Shuffle.

r Pretrain Loss (× 104) Finetune Accuracy (%)

0.1 0.39 64.44
0.3 0.41 64.55
0.5 0.40 65.59
0.7 0.43 64.19
0.9 0.48 65.07

Rand 0.43 64.75

Table 4: Effectiveness of Different Masking Ratios.
Figure 3: Effectiveness of Different
Number of Mesh Sequences.

4.6 ANALYSIS

Different Pre-Training Strategies We pre-trained our model with different datasets and summa-
rize the results in Table 3. The first row shows the case without pre-training. The second shows the
result for the model pre-trained on the KIT dataset (without Joint Shuffle). The third shows the result
for the model pre-trained on KIT dataset (with Joint Shuffle augmentation). We observe our model
can achieve better performance with Joint Shuffle, as it can synthesize large-scale mesh sequences.

Different Masking Ratios. We investigate the impact of different masking ratios. We report the
converged pre-training loss and the fine-tuning top-1 classification accuracy on the test set in Table 4.
We also experiment on the random masking ratio in the last row. For each forward pass, we randomly
select one masking ratio from 0.1 to 0.9 with step 0.1 to mimic flexible masked token length. The
model with a random masking ratio does not outperform the best model that is pre-trained using a
single ratio (i.e. 0.5). We observe that with the masking ratio increases, the pre-training loss mostly
increases as the task becomes more challenging. However, a challenging self-supervised learning
task does not necessarily lead to better performance. The model with a masking ratio of 0.7 and 0.9
have high pre-training loss, while the fine-tuning accuracy is not higher than the model with a 0.5
masking ratio. The conclusion is similar to the comparison of MVM and FFP training objectives,
where a more challenging self-supervised learning task may not be optimal.

Different Number of Mesh Sequences for Pre-Training. We test the effectiveness of different
numbers of mesh sequences used in pre-training. We report the fine-tuning top-1 classification
accuracy in Figure 3. We observe that a large number of pre-training data can bring substantial
performance improvement. The proposed Joint Shuffle method can greatly enlarge the dataset size
without any manual cost, and has the potential to further improve model performance.

5 CONCLUSION

In this work, we propose a novel approach for mocap-based action recognition. Unlike existing
methods that rely on skeleton representation, our proposed STMT directly models the raw mesh
sequences. Our method encodes both intrinsic and extrinsic features in vertex patches, and uses
a hierarchical transformer to freely attend to any two vertex patches in the spatial and temporal
domain. Moreover, two self-supervised learning tasks, namely Masked Vertex Modeling and Future
Frame Prediction are proposed to enforce the model to learn global context. Our experiments show
that STMT can outperform state-of-the-art skeleton-based and point-cloud-based models.
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