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Abstract

Early and accurate diagnosis of vertebral body anomalies is crucial for effectively treat-
ing spinal disorders, but the manual interpretation of CT scans can be time-consuming
and error-prone. While deep learning has shown promise in automating vertebral fracture
detection, improving the interpretability of existing methods is crucial for building trust
and ensuring reliable clinical application. Vision Transformers (ViTs) offer inherent in-
terpretability through attention visualizations but are limited in their application to 3D
medical images due to reliance on 2D image pretraining. To address this challenge, we
propose a novel approach combining the benefits of transfer learning from video-pretrained
models and domain adaptation with self-supervised pretraining on a task-specific but un-
labeled dataset. Compared to näıve transfer learning from Video MAE, our method shows
improved downstream task performance by 8.3 in F1 and a training speedup of factor 2.
This closes the gap between videos and medical images, allowing a ViT to learn relevant
anatomical features while adapting to the task domain. We demonstrate that our frame-
work enables ViTs to effectively detect vertebral fractures in a low data regime, outper-
forming CNN-based state-of-the-art methods while providing inherent interpretability. Our
task adaptation approach and dataset not only improve the performance of our proposed
method but also enhance existing self-supervised pretraining approaches, highlighting the
benefits of task-specific self-supervised pretraining for domain adaptation. The code is
publicly available at https://github.com/lbuess/Video-CT_MAE.
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1. Introduction

Spinal health is a critical aspect of overall well-being and quality of life. Early and accurate
diagnosis of vertebral body anomalies is essential for appropriately treating spinal disorders.
Osteoporotic fractures, for instance, affect up to 12% of men and women aged 50-79 years
across Europe (Harvey et al., 2010). CT has become an indispensable tool for diagnosing
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vertebral fractures. However, manual interpretation of CT scans can be time-consuming and
subjective, potentially leading to errors and delays in diagnosis and treatment (Carberry
et al., 2013). Deep learning has already demonstrated promising results in automating the
detection of vertebral fractures (Husseini et al., 2020; Engstler et al., 2022; Keicher et al.,
2023). However, these studies have also highlighted the need for interpretable methods,
as understanding the decision-making process of the models is crucial for building trust
and ensuring reliable clinical application. Vision Transformers (ViTs) (Dosovitskiy et al.,
2020) have shown promise for this due to their inherent interpretability through attention
visualizations. However, their application has been primarily limited to 2D medical images
(Ch lad and Ogiela, 2023), as they are data-hungry and often rely on initialization from
models pretrained on large-scale 2D image datasets like ImageNet (Deng et al., 2009). This
limits their effectiveness in tasks involving volumetric data, such as vertebral fracture de-
tection in CT images. A potential solution is using models pretrained on videos, which
are also 3D data with spatial and temporal dimensions (Ke et al., 2023). Video-pretrained
models offer a promising solution for initializing ViTs for 3D medical image analysis, but
the domain shift between videos and medical images is substantial. An alternative approach
is to use self-supervised pretraining of ViTs with in-domain data, which has been shown to
improve anatomical image understanding and enhance downstream task performance (Tang
et al., 2022). Surprisingly, we find that published self-supervised ViT pretraining models
significantly underperform on our task compared to CNN models, which show similar per-
formance whether randomly initialized or pretrained on CT patches using Models Genesis
(Zhou et al., 2021). While there are many publicly available CT datasets containing spine
images, vertebral fractures are rare, and datasets including these annotations are few, with
a high imbalance of classes. We argue that pretraining on a task-specific unlabeled dataset
with self-supervised methods, even though it contains mainly healthy vertebrae, can help
the model to understand the anatomy and improve performance in detecting pathologies.
Therefore, we curate a task-specific pretraining dataset and propose a novel approach that
combines the benefits of transfer learning and self-supervised pretraining for vertebral frac-
ture detection in CT scans. Our main contributions are:

• We propose a framework that allows Vision Transformers to effectively detect vertebral
fractures in 3D CT images despite a low data regime, outperforming CNN-based
methods while providing inherent interpretability through attention visualizations.

• We introduce a self-supervised domain adaptation method and a new task-specific
pretraining dataset to bridge the gap between video-pretrained models and medical
images, enabling the learning of relevant anatomical features in the target domain.

• Our thorough experimental evaluation demonstrates the effectiveness of the proposed
task-specific pretraining in improving downstream task performance for both existing
pretraining methods and our novel adaptation of video-based transfer learning.

2. Related Work

Vertebral Fracture Detection Deep learning-based vertebral body classification meth-
ods can be divided into 2D and 3D approaches. 2D methods analyze a single sagittal slice
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from the 3D vertebra volume (Husseini et al., 2020), which is efficient and allows initial-
ization with ImageNet weights but fails to capture important 3D structural features. More
advanced 2.5D approaches aggregate information from multiple 2D slices using RNNs (Bar
et al., 2017) or LSTM networks (Tomita et al., 2018) but still do not fully exploit the 3D
spatial context of CT data. Recent studies predominantly utilize 3D models to leverage
the comprehensive volume data (Engstler et al., 2022; Keicher et al., 2023; Chettrit et al.,
2020), with the initial application of 3D convolutions in vertebral fracture detection pio-
neered by Nicolaes et al. (2020). However, these models cannot use pretrained ImageNet
weights and must be trained from scratch, which is challenging given the limited labeled
medical datasets.

Recent studies are concentrating more on applying transformer-based techniques to
classify vertebrae. Ch lad and Ogiela (2023) explored the effectiveness of transformers in
identifying cervical spine fractures from single 2D slices. Similarly, Windsor et al. (2022)
employed a hybrid approach, combining a CNN for 2D feature extraction from sagittal slices
with transformers for feature aggregation within and across scans. However, these methods
have limitations in capturing 3D structural features due to their reliance on 2D inputs.

Self-supervised Learning In recent years self-supervised learning has emerged as a
popular approach for pretraining deep learning models. A recent trend in computer vision
is transformer-based masked image modeling approaches, which have been inspired by the
success of masked language modeling in NLP as demonstrated by BERT (Devlin et al.,
2018). Masked image modeling has already been well-established in computer vision for
2D images (He et al., 2022), videos (Feichtenhofer et al., 2022) and multimodal models
(Girdhar et al., 2023). More recent methods like MSN (Assran et al., 2022) and I-JEPA
(Assran et al., 2023) improve efficiency by using joint-embedding architectures, avoiding
pixel reconstruction unlike traditional approaches.

Most famous self-supervised learning methods were initially designed for natural images,
but there have been significant advancements in the medical field as well. One noteworthy
contribution is Models Genesis, an approach that involves pretraining a CNN-based model
(Zhou et al., 2021). Two other prominent methods, both rooted in transformer-based tech-
niques, leverage the fusion of multiple pretext tasks such as image restoration, contrastive
learning, and image rotation prediction (Tang et al., 2022).

Current self-supervised pretraining methods face two key challenges: Using non-medical
data offers less domain-specificity for tasks like CT-based vertebral fracture detection, while
medical-specific self-supervised learning is limited by smaller datasets compared to the
natural image and video domains.

Video Pretraining for CT Analysis Addressing the issue of deep learning’s reliance
on large labeled datasets like ImageNet (Deng et al., 2009) in medical applications, recent
research has underscored the benefits of leveraging extensive video datasets for pretraining
3D medical models (Zunair et al., 2021). Ke et al. (2023) and Rajpurkar et al. (2020) both
found that pretraining 3D medical models on large-scale, out-of-domain video datasets
yields better performance than training from scratch or using conventional in-domain CT
datasets. These models, pretrained in a different domain, encounter drawbacks when applied
to medical CT data without appropriate domain adaptation.
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3. Method

Our study involved creating a dataset comprising 27,776 unlabeled vertebra crops (refer to
section Experimental Setup 4 for more details). However, it’s noteworthy that our dataset’s
volume is still small when compared to extensive datasets like ImageNet (Deng et al., 2009)
and Kinetics-700 (Carreira et al., 2019). Transformer-based models typically necessitate
training on expansive datasets (Li et al., 2023), prompting our approach to leverage transfer
learning already in the pretraining stage. Specifically, we explore using pretrained weights
from data-rich domains to boost self-supervised pretraining for our vertebra CT data. Ini-
tializing CT models with ImageNet weights appears suboptimal, as they lack the capacity
to capture crucial 3D details present in CT volumes but absent in 2D images. Therefore,
we are focusing on using weights pretrained in the video domain. Videos, embodying 3D
spatiotemporal data, present a closer alignment with the characteristics of CT volumes,
potentially offering a more effective foundation for our research.

Our video-CT domain adaptation method comprises three steps (see Figure 1). First,
we employ weights from self-supervised pretraining on the Kinetics-700 video dataset, using
video MAE pretraining (Feichtenhofer et al., 2022), to establish our foundation model. The
second, domain adaptation step, involves adapting these weights for vertebra CT data by
pretraining on an unlabeled vertebra dataset, enhancing model alignment with the CT do-
main. Finally, we apply these adapted weights to vertebra fracture classification, finetuning
the encoder with a labeled dataset.

Figure 1: Overview Self-supervised Video-CT Domain Adaptation: 1) video MAE pretrain-
ing on the Kinetics-700 dataset 1)-2) positional encoding cropping to initialize
domain-specific vertebra CT pretraining 2) domain-specific vertebra MAE pre-
training on unlabeled vertebra CT dataset 3) downstream task finetuning
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Video MAE for CT Vertebra Data Our approach features two self-supervised pre-
training stages, both leveraging the video MAE method (Feichtenhofer et al., 2022). To
align the original 96 × 96 × 96 dimensions of vertebra CT volumes with the 16 × 224 × 224
video format from the Kinetics-700 dataset, we select 16 equidistant sagittal slices from the
vertebra volume. We use sagittal slices due to their diagnostic relevance in vertebral fracture
detection, as they provide crucial information for accurate assessments in this context.

Positional Encoding Cropping After matching the temporal dimension of the video
format, the 3D convolutional patch embedding layer (2×16×16) from video pretraining can
be reused in the vertebra CT pretraining stage. However, with different input sizes (224×224
frames for video and 96 × 96 slices for CT), input token counts differ (video: 8 × 14 × 14
tokens, CT: 8×6×6 tokens), which results in a shape mismatch of the positional encodings.
To address this, we introduce ”positional encoding cropping”, preserving only central 96×96
pixel positional encodings from videos, and discarding outer encodings (Figure 1 red). This
allows for the direct initialization of positional encoding weights in domain-specific vertebra
CT pretraining using video weights, similar to the approach presented by Kim et al. (2023).

Slice Sampling During vertebra pretraining and downstream task finetuning, we employ
different sampling strategies for training and evaluation phases. In the training phase, we
sample 16 uniformly distributed sagittal slices. Each training step involves applying a con-
sistent random shift to the chosen slice indices, thereby increasing diversity and effectively
serving as an augmentation technique. During the evaluation phase, we maintain our initial
sampling strategy but do not shift the selected slice indices. Instead, we use all six possible
16 × 96 × 96 samples covering the entire vertebral volume for prediction. This approach
allows aggregation of the prediction by averaging over all sampled subvolumes, ensuring a
more robust and representative result. This approach draws inspiration from multi-view
testing in the video domain (Feichtenhofer et al., 2019).

4. Experimental Setup

Preprocessing Pipeline We developed a preprocessing pipeline designed for vertebra-
level classification tasks in CT scans. Initially, a spine segmentation model is applied to
identify individual vertebrae. Utilizing the segmentation mask, we then extract 96×96×96
crops centered on the vertebra of interest.1 The preprocessing pipeline is illustrated in
greater detail in Figure 2 and Figure 3.

Unlabeled Vertebra Pretraining Dataset In our research, we do task-specific self-
supervised domain adaptation pretraining by utilizing a big unlabeled vertebra dataset.
This dataset was created by collecting seven publicly available CT datasets, each containing
spine segments, inspired by the dataset selection in the CTSpine1K dataset (Deng et al.,
2021). We subsequently employed the preprocessing pipeline to process these datasets. This
approach resulted in a dataset comprising 27,776 individual unlabeled vertebrae extracted
from 3,446 different CT volumes. It’s essential to note that this preprocessing step relies on
a segmentation model, making the process unsupervised. Detailed information about the
unlabeled pretraining dataset is summarized in Table 1.

1. Segmentation model is provided by the ImFusion GmbH (approach similar to Bürgin et al. (2023))
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Dataset Patients Vertebrae

CT COLONOGRAPHY (Smith et al., 2015) 784 6,515
COVID-19 (An et al., 2020) 650 8,425

MSD-Liver (Simpson et al., 2019) 201 2,297
HNSCC-3DCT-RT (Bejarano et al., 2018) 31 296

DeepLesion (Yan et al., 2018) 1,107 2,820
KiTS21 (Heller et al., 2021) 300 2,727

VerSe (Sekuboyina et al., 2021) 373 4,696
TOTAL 3,446 27,776

Table 1: Unlabeled Vertebra Pretraining Dataset

Labeled Vertebra Downstream Task Dataset To avoid test-leakage between pre-
training and downstream classification task finetuning, we strictly separated patients be-
tween labeled and unlabeled datasets. For the labeled vertebra dataset we use an in-house
dataset from Klinikum Rechts der Isar (Munich) (Foreman et al., 2024) consisting of 6,245
vertebrae (940 of which are fractured) from 457 different patients. More details about the
labeled dataset are provided in Table 5.

5. Results and Discussion

5.1. Ablation Study

This section details our ablation study results, analyzing video transfer learning and self-
supervised domain adaptation’s impact on the vertebra classification downstream task.
Table 2 outlines the performance of the key components in our method.

Ablated component F1 (%) ACC (%) AUC (%) AP (%) FT Min/Ep2

1) − Video Pretraining 74.6 92.1 93.1 82.6 9
2) − Vertebra Pretraining 85.7 95.5 98.0 92.5 9
3) − Multi-View Sampling 83.7 94.6 96.5 90.1 9
4) − Positional Encoding Cropping 87.1 96.2 97.7 93.3 9
5) − Vertebra Format Adaptation 87.5 96.0 97.5 90.7 18
6) − 2) and 4) 69.1 90.9 91.8 76.5 9

Video-CT MAE 88.4 96.4 98.2 93.2 9

Table 2: Ablation Study: 1) no video pretraining 2) no domain-specific vertebra CT pre-
training 3) no multi-view sampling during inference 4) no positional encoding
cropping - randomly initialized positional encodings for vertebra CT pretraining
5) original 16 × 224 × 224 video format by adding padding to the 96 × 96 slices

Video Pretraining The removal of video domain transfer learning significantly reduces
performance. This emphasizes the importance of using video domain pretrained weights
for our domain-specific vertebra CT pretraining, ensuring a solid foundation and enabling
effective transfer of learned features from the video domain to the CT domain.

2. Finetuning Minutes/Epoch

6



Video-CT MAE

Vertebra Pretraining The results demonstrate that video pretraining can be effectively
adapted to the CT domain with proper format adjustments, even without domain adapta-
tion. Video pretraining alone outperforms vertebra-only pretraining, aligning with the find-
ings of Ke et al. (2023) and Rajpurkar et al. (2020). However, skipping vertebra pretraining
domain adaptation leads to lower performance than the full Video-CT MAE pipeline.

Multi-View Sampling Additionally, multi-view sampling boosts prediction robustness.
Combining different views of the vertebra leads to a more reliable final prediction.

Positional Encoding Cropping One can see that by randomly initializing the positional
encodings, the performance closely aligns with that of our full Video-CT MAE method.
Yet, a closer analysis of the pretraining loss curves offers a significant insight. Employing
positional encoding cropping enables a reduction in training epochs (see Figure 4). Another
finding is that the direct use of video weights for the downstream task significantly benefits
from the positional encoding cropping, as demonstrated in ablation experiment 6.

Vertebra Format Adaptation Using the video model with its original 224× 224 frame
size from pretraining yields performance comparable to our full Video-CT MAE method.
However, this approach results in increased training time for pretraining and finetuning.

5.2. Self-supervised Domain Adaptation

In this section, we conduct a comparative analysis between our Video-CT MAE approach
and established self-supervised pretraining methods. Our focus centers on the application of
these methods to our vertebra data setup, namely: Models Genesis (Zhou et al., 2021), ViT
UNETR (Tang et al., 2022), Swin UNETR (Tang et al., 2022), and MAE (He et al., 2022).
We study the importance of task-specific pretraining by: First, random initialization for
downstream task finetuning; second, finetuning with publicly available weights; and finally,
task-specific self-supervised pretraining using the public weights for initialization.

Method Pretraining Data F1 (%) ACC (%) AUC (%) AP (%)

Models Genesis 3D - 85.8 95.6 97.8 92.1
Models Genesis 3D 623 CT images3 (public) 85.9 95.7 98.1 92.3

Models Genesis 3D public → vertebrae 87.1 96.1 97.8 92.9

ViT UNETR - 34.2 56.4 65.2 22.2
ViT UNETR 771 CT images4 (public) 55.9 86.8 83.7 64.3
ViT UNETR public → vertebrae 73.6 91.6 94.0 84.1

Swin UNETR - 36.2 61.7 69.6 26.9
Swin UNETR 5.050 CT images5 (public) 57.0 86.9 83.3 65.9
Swin UNETR public → vertebrae 71.3 91.6 89.0 76.0

3D MAE - 35.1 58.8 70.3 30.2
3D MAE vertebrae 75.2 92.9 92.5 82.0

Video MAE - 33.3 84.5 65.5 23.7
Video MAE 650.000 video clips6 (public) 80.1 93.9 96.5 89.1
Video MAE public → vertebrae 84.1 95.3 96.8 90.4

Video-CT MAE - 34.8 68.1 67.6 28.3
Video-CT MAE 650.000 video clips (public) 85.7 95.5 98.0 92.5

Video-CT MAE (ours) public → vertebrae 88.4 96.4 98.2 93.2

Table 3: Comparison with other self-supervised pretraining methods
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Models leveraging both public and task-specific pretraining consistently surpassed those
limited to public data pretraining or no pretraining at all. This was particularly evident in
transformer-based models (ViT UNETR, Swin UNETR, MAE, and our Video-CT MAE),
underscoring the critical role of pretraining in these architectures. Models Genesis demon-
strated strong performance without pretraining, suggesting that CNN-based models may
be less reliant on extensive pretraining for smaller datasets. Our Video-CT MAE method
proved to be the most effective, surpassing all other evaluated methods across all metrics.

5.3. Vertebra Fracture Detection

We evaluate our method for vertebral fracture detection by comparing it with an existing
technique and common 3D classification architectures in medical settings. In addition, we
show the challenges of training 3D ViTs from scratch, which inspired our proposed approach.

Method F1 (%) ACC (%) AUC (%) AP (%)

DenseNet121 (Huang et al., 2017) 73.7 92.1 92.1 81.1
DenseNet169 (Huang et al., 2017) 72.9 91.7 93.3 83.9

ResNet18 (He et al., 2016) 81.8 94.6 95.4 89.6
ResNet50 (He et al., 2016) 79.5 93.7 94.6 85.0

ViT-B (Dosovitskiy et al., 2020) 32.2 61.2 63.0 19.7
ViT-L (Dosovitskiy et al., 2020) 33.5 55.0 64.7 22.0

Engstler et al. (2022) 85.1 95.4 96.2 89.1
Video-CT MAE (ours) 88.4 96.4 98.2 93.2

Table 4: Comparison with state-of-the-art vertebra fracture detection

Our approach significantly outperforms conventional classification architectures and
shows superior results to the vertebral fracture classification method of Engstler et al.
(2022). Our presented method successfully implements 3D ViTs in a challenging 3D medi-
cal context, characterized by the scarce and imbalanced labeled data.

6. Conclusion

Our novel approach adapts video-based transfer learning through task-specific self-supervised
domain adaptation, successfully enabling Vision Transformers to address vertebral fracture
detection in 3D CT scans. This study not only advances the state-of-the-art in vertebral
fracture detection but also showcases the potential of task-specific pretraining for other
medical image analysis tasks. Future research could explore the creation of task-specific
pretraining datasets for various applications and evaluate the generalizability of our ap-
proach. By addressing the challenge of limited data in medical image analysis, our work
offers a promising solution for improving patient care through accurate, interpretable, yet
resource-efficient methods for advancing clinical decision-making support.

3. Models Genesis 3D pretraining dataset: LUNA16 (Setio et al., 2017)
4. ViT UNETR pretraining dataset: TCIA-Covid19 (An et al., 2020)
5. Swin UNETR pretraining datasets: TCIA-Covid19 (An et al., 2020), LUNA16 (Setio et al., 2017),

HNSCC (Grossberg et al., 2020), LiDC (Armato III et al., 2011), TCIA Colon (Johnson et al., 2008)
6. Video MAE pretraining dataset: Kinetics-700 (Carreira et al., 2019)
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Appendix A. Experimental Setup

A.1. Hardware Specifications

All trainings conducted in this paper were performed using a single Nvidia A40 GPU.

A.2. Preprocessing Pipeline

Figure 2 presents an overview of the preprocessing pipeline, while Figure 3 provides a
detailed view of a single vertebra crop produced by the pipeline.

Figure 2: Overview Preprocessing Pipeline: 1) input CT scan 2) segmentation mask output
of segmentation model 3) cropping of 96 × 96 × 96 vertebra crop based on spline
running through spine (orange)

Figure 3: Visualization of Centered 96 × 96 × 96 Vertebra Crop: 1) 3D visualization 2)
mid-sagittal slice 3) mid-axial slice 4) mid-coronal slice

A.3. Unlabeled Vertebra Pretraining Dataset

This appendix lists additional references related to the public datasets used in our study.
These works, while not cited directly in the main text, provide important background and
context for the datasets. Their inclusion here acknowledges their contribution to the field
and offers readers further resources on the topic. (Clark et al., 2013) (Johnson et al., 2008)
(Bejarano et al., 2019) (Liebl et al., 2021) (Löffler et al., 2020)
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A.4. Labeled Vertebra Downstream Task Dataset

Table 5 provides a detailed summary of the labeled dataset from Klinikum Rechts der Isar
(Munich) (Foreman et al., 2024). This dataset was used for the downstream task trainings.

classes
split no fracture fracture

training 3,336 556

validation 947 211

test 1,022 173

TOTAL 5,305 940

Table 5: Labeled Vertebra Downstream Task Dataset

A.5. Implementation Details

Self-supervised Domain Adaptation Pretraining In our experimental setup, we em-
ploy the video MAE pretraining method by Feichtenhofer et al. (2022) for both video and
domain-specific vertebra CT pretraining. For the MAE model we use the ViT-Large ver-
sion (Dosovitskiy et al., 2020) as encoder and a decoder depth of 4. We use convolutional
patch embeddings of size 2 × 16 × 16. A masking ratio of 0.8 is applied. We initialize
domain-specific vertebra CT pretraining with weights from Kinetics-700 pretraining, utiliz-
ing positional encoding cropping. Training consists of 100 epochs with a batch size of 8,
using the AdamW optimizer and a cosine learning rate scheduler (base learning rate 1e-3).
Data preprocessing involves clipping HU values to the range -1000 to 1000 and then scaling
them to 0-1. To match the RGB video format, we replicate the HU values. The input
volumes have a shape of 16 × 96 × 96, following the described sampling technique.

Downstream Task Finetuning The MAE pretraining architecture is adapted for the
subsequent classification task, exclusively utilizing the ViT-Large encoder. Global average
pooling is applied to the output tokens, followed by a linear classification layer for binary
classification. Finetuning is done for 50 epochs, employing a batch size of 64, Adam opti-
mizer, and a cosine learning rate scheduler with warmup (base learning rate 1e-5). Class
weighting is introduced to the cross entropy loss to handle data class imbalance. Data
preprocessing remains consistent with pretraining. The labeled vertebra dataset is split
into training, validation, and testing sets at a 60%/20%/20% ratio, ensuring patient-level
separation to prevent test-leakage.
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Appendix B. Results and Discussion

B.1. Ablation Study - Positional Encoding Cropping

Figure 4: Ablation Study - Positional Endocing Cropping: Pretraining Loss Comparison

B.2. Method Comparison - Implementation Details Baseline Methods

This appendix details the implementation of the pretraining methods in our study, adapted
to our dataset setup. Following our Video-CT MAE method’s dataset setup (see Experi-
mental Setup 4), we first pretrain on the unlabeled vertebra dataset, then finetune on the
labeled dataset, using 96 × 96 × 96 vertebra crops.

B.2.1. Models Genesis

Pretraining (Zhou et al., 2021) To better align with our vertebra crops, we increased
the input size from the original 64 × 64 × 32 to 96 × 96 × 96, while maintaining all other
original settings. Pretraining was initialized with publicly available pretrained weights.7

Finetuning We modified the pretrained model by utilizing solely its encoder and append-
ing a binary classification head consisting of two layers.

B.2.2. ViT UNETR

Pretraining We followed the official public implementation and initialized pretraining
with publicly available pretrained weights.8

Finetuning We used the pretrained ViT-Base encoder for the downstream task by ap-
pending a classification token and integrating a classification head on top of this token.

7. https://github.com/MrGiovanni/ModelsGenesis/tree/master
8. https://github.com/Project-MONAI/tutorials/tree/main/self_supervised_pretraining

16

https://github.com/MrGiovanni/ModelsGenesis/tree/master
https://github.com/Project-MONAI/tutorials/tree/main/self_supervised_pretraining


Video-CT MAE

B.2.3. Swin UNETR

Pretraining (Tang et al., 2022) We followed the official implementation and initialized
pretraining with publicly available weights. The Swin encoder was initialized with public
weights, but the decoder was randomly initialized due to a shape mismatch.9

Finetuning We exclusively utilized the Swin ViT encoder. Global average pooling was
applied to the output tokens, followed by a binary classification head.

B.2.4. MAE

Pretraining (He et al., 2022) We adapted this method for our 3D CT data with
minimal changes, such as transitioning from 2D to 3D convolutions in the patch embedding
layer and modifying positional encoding to 3D. Apart from these adaptions, we maintained
the original settings, choosing ViT-Base encoder and a masking ratio of 0.75.10

Finetuning In the finetuning phase, we exclusively utilized the ViT-Base encoder, com-
plementing it with a binary classification head attached to the classification token.

9. https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/Pretrain
10. https://github.com/facebookresearch/mae
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