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ABSTRACT

Out-of-Domain (OOD) intent detection is vital for practical dialogue systems, and
it usually requires considering long dialogue histories. However, previous OOD
intent detection approaches are limited to single-turn contexts since it is non-trivial
to gather or synthesize high-quality OOD samples in multi-turn settings, and the
long distance obstacle exhibited in multi-turn contexts hinders us from obtaining
robust features for intent detection. In this paper, we introduce a context-aware
OOD intent detection (Caro) framework that aims to consider multi-turn contexts
in OOD intent detection tasks. Specifically, we follow the information bottleneck
principle to extract robust representations from multi-turn dialogue contexts by
eliminating superfluous information that is not related to intent detection tasks.
We also propose to synthesize pseudo OOD samples with the help of unlabeled
data under the constraint of dialogue contexts, i.e., candidate OOD samples are re-
trieved from unlabeled data based on their context similarities and representations
of these candidates are mixed-up to produce pseudo OOD samples. A three stage
training process is introduced in Caro to combine above approaches. Empirical
results validate the superiority of our method on benchmark datasets.

1 INTRODUCTION

Intent detection is vital for dialogue systems as it controls the pipelines of the entire system (Chen
et al., 2017). It is important to explicitly model multi-turn dialogue contexts in the intent detec-
tion process since conversations usually last several turns to complete (Qin et al., 2021). Recently,
promising results are reported for intent detection under the closed-world assumption (Shu et al.,
2017), i.e., the training and testing distributions are assumed to be identical and all intents involved
in testing are seen in the training process. However, this assumption may not be valid in practice
(Dietterich, 2017), where a deployed system usually confronts an open-world (Fei & Liu, 2016;
Scheirer et al., 2012), i.e., the testing distribution is subject to change and Out-of-Domain (OOD)
intents that are not seen in the training process may emerge in testing. It is important to equip intent
detection modules with OOD detection abilities so that they can accurately classify seen In-Domain
(IND) intents while rejecting unseen OOD intents (Yan et al., 2020a; Shen et al., 2021).

Numerous methods have been proposed to develop OOD intent detection models (Yang et al., 2021),
and among which the most straightforward and effective one is to build a (k+1)-way classifier (k is
the number of IND intents) (Larson et al., 2019). The (k+1)-th intent is regarded as a special OOD
intent (Fei & Liu, 2016). Various studies are carried out to improve this approach and state-of-the-art
results are reported on a wide range of benchmarks (Shu et al., 2021; Zhan et al., 2021). Generally,
the success of these attempts attributes to two key ingredients: 1. extracting robust features for intent
detection (Vaze et al., 2021); and 2. gathering representative OOD samples in training (Zhan et al.,
2021).

Most previous OOD intent detection approaches are limited to single-turn inputs (Yan et al., 2020a)
without considering multi-turn dialogue contexts. This downgrades the OOD intent detection perfor-
mance and prevents us from applying these approaches in real applications since multi-turn contexts
are generally critical for practical intent detection tasks (Weld et al., 2021). However, multi-turn
dialogues with OOD intent annotations are generally expensive to obtain, and it is non-trivial to
synthesize high-quality OOD samples in multi-turn settings (Lee & Shalyminov, 2019). Further,
the long distance obstacle (Qin et al., 2021) exhibited in multi-turn contexts also hinders us from
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directly migrating previous OOD intent detection approaches to multi-turn settings because long
dialogue histories may carry noises that are irrelevant for intent detection (Ohsugi et al., 2019).

To tackle above problems, we propose a novel context-aware OOD intent detection framework Caro
to explore OOD intent detection in multi-turn settings. Specifically, Caro introduces two approaches
to improve multi-turn OOD intent detection performance: 1. We follow the information bottleneck
principle (Tishby et al., 2000) to extract robust representations from multi-turn contexts by discard-
ing superfluous information that is not related to intent detection, i.e., different views of inputs are
generated and only information shared by these views are retained; 2. We synthesize pseudo OOD
samples that are coherent to the given contexts for the (k + 1)-th intent with the help of unlabeled
data, which can be collected almost for free from a deployed system in the open world (Katz-Samuels
et al., 2022). Specifically, a pool of candidate samples are first gathered based on their context simi-
larities and then a quality inspection scheme is implemented to filter out IND samples with the help
of an existing OOD detector. High-quality pseudo OOD samples are synthesized using a mix-up
scheme on these filtered candidates. Extensive empirical results validate the superiority of Caro in
building OOD intent detectors considering multi-turn dialogue contexts.

Caro provides several advantages compared to existing methods: 1. Caro is an effective learning
framework for OOD intent detection that considers multi-turn dialogue contexts, whereas previous
methods primarily focus on single-turn inputs. We bridge a critical research gap since leveraging
multi-turn contexts for OOD intent detection is yet under explored; 2. Caro captures robust represen-
tations for intent detection from multi-turn contexts, and we are the first to employ the information
bottleneck principle in multi-turn OOD intent detection tasks to migrate the long distance obsta-
cle; 3. Caro synthesizes high-quality OOD samples under the constraint of given dialogue contexts
with the help of “cheap” unlabeled data. This approach relieves the burden of collecting expensive
annotations for OOD samples.

We summarize our main contributions as follows.

1. We propose a novel framework Caro to build OOD intent detection models considering
multi-turn dialogue contexts. This setting is more practical in real applications and our
framework can classify IND intents and detect OOD intents simultaneously.

2. We follow the information bottleneck principle to learn robust representation for intent
detection and synthesize pseudo OOD samples under the constraint of multi-turn dialogue
contexts.

3. We conduct extensive experiments on two benchmark datasets to empirically demonstrate
the effectiveness of our proposed framework.

2 PROBLEM SETUP

The OOD intent detection task investigated in our study aims to reject OOD inputs while being able
to detect intents of IND inputs. Concretely, given k IND intent classes I = {Ii}ki=1, we denote all
samples that do not belong to these k classes as the (k+1)-th intent Ik+1. Our training data contain
a set of labeled IND samples DI = {(xi, yi)} and a set of unlabeled samples DU = {x̃i}, where
yi ∈ I is the label of input sample xi and the label of x̃i belongs to I∪Ik+1. Our testing data contain
a mixture of IND and OOD samples DT = {(x̃i, ỹi)}, where ỹi ∈ I∪{Ik+1}. Moreover, each input
sample x from DI , DU and DT consists of an utterance u and a dialogue history h = u1, u2, . . . , ut,
(t ≥ 0): x = ⟨h, u⟩. In this study, we follow the most widely applied OOD intent detection
approaches to build a (k + 1)-way classifier as our OOD intent detector.

3 METHOD

Our framework Caro attempts to extend previous two key ingredients for building OOD detectors in
multi-turn settings. Specifically, Caro mainly addresses the following two issues: (1) how to alle-
viate the long distance obstacle and learn robust representations from multi-turn dialogue histories;
(2) how to synthesize high-quality pseudo OOD samples that fit the constraints of given dialogue
contexts.
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Figure 1: Two key ingredients introduced in Caro: (a) Learn robust representations from multi-
turn dialogues based on two views of an input x using the information bottleneck principle; (b)
Synthesize pseudo OOD samples using the feature mixup approach under the constrain of a given
context.

3.1 ROBUST REPRESENTATION LEARNING

The major challenge for extracting robust representations from multi-turn dialogue histories is the
long distance obstacle, i.e., the dialogue history is too long so that it may yield superficial repre-
sentations that are irrelevant to intent detection tasks, and OOD intent detectors build upon these
representations are liable to break under distribution shift (Wang et al., 2018).

Our framework Caro tackles above issues with the help of the multi-view information bottleneck
principle (Tishby et al., 2000), which is built based on the basic assumption of the multi-view litera-
ture: each view provides the same task-relevant information (Zhao et al., 2017). Robust representa-
tions are obtained by only capturing information shared between these views so that more modeling
capacity is allocated to label-related information.

Specifically, for each input x, we produce two different views of x based on a label preserving data
augmentation scheme and use a feature extractor f to extract two feature vectors v1 and v2 from
these two views, respectively. To learn compact representation without superfluous information, we
assume there is a latent variable zj for the representation of each view vj(j = 1, 2). Formally, we
assume an encoder e(zj |vj) can predict the distribution of latent variable zj , i.e., zj ∼ e(zj |vj),
(j = 1, 2). To remove superfluous information from representations yielded by the encoder, we
follow the information bottleneck principle (Tishby et al., 2000) by optimizing the following unsu-
pervised representation learning loss (Federici et al., 2019) on unlabeled data DU :

LUR =
∑

x∈DU

−I(z1; z2) + (DKL[e(z
1|v1)||e(z2|v2)] +DKL[e(z

2|v2)||e(z1|v1)])/2, (1)

where z1 and z2 are random variables for these two views’ representations, I calculates mutual
information (MI) of two random variables, and DKL calculates the KL divergence between two
distributions. Eq. 1 ensures that the representation z1 for v1 is sufficient for v2 and it also helps
to increase the robustness of the representation by discarding irrelevant information (Federici et al.,
2019).

To facilitate the computation of Eq. 1, we model the distributions of z1 and z2 as factorized Gaussian
distributions zj ∼ N (µ(vj),Σ(vj)), (j = 1, 2), in which µ(vj) and Σ(vj) are two neural networks
that produces the mean and deviation, respectively. These two views v1 and v2 of x are obtained
through dropout operations on the feature extractor f . In this study, we implement f using the BERT
model (Devlin et al., 2018). f takes the concatenation of all utterances in x as the input.

3.2 PSEUDO OOD SYNTHESIS

When implementing OOD intent detectors with (k + 1)-way classifiers, we need annotated OOD
samples for the (k+1)-th intent. However, it is usually expensive to manually collect these annotated
data. Previous studies propose to tackle this issue by synthesizing pseudo OOD samples, for which
the most effective approach is the feature Mixup (Zhan et al., 2021), i.e., convex combinations of
IND features are used as pseudo OOD samples.

However, despite the reported feasibility, previous pseudo OOD sample synthesizing approaches
only model single-turn inputs. That means these synthesized pseudo OOD samples are uncon-
strained. In multi-turn settings, an ideal pseudo OOD sample x′ should be constrained by a dialogue
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history h, i.e., x′ should be coherent to h while carrying OOD intents. Utterances that are not coher-
ent to the current context h are highly unlikely to be seen in practice and can be easily determined.
In fact, we can regard OOD samples that are constrained by h as “hard” OOD samples, which are
reported to be more effective at improving the performance of OOD detectors (Zhan et al., 2021).

To tackle above issues, we propose to synthesize pseudo OOD samples by only mixing-up features
under the constraint of similar contexts. Specifically, for each sample x in DI , we retrieve M
samples from the unlabelled dataset DU that share similar contexts with x, and construct a candidate
pool C(x) that contains a mixture of IND and OOD samples. The feature v of the constructed pseudo
OOD sample is obtained by mixing-up features of candidates in C(x) by their distance to x:

v =
∑

xi∈C(x)

wif(xi), wi =
exp ||f(x), f(xi)||∑

xj∈C(x)
exp ||f(x), f(xj)||

, (2)

where ||·, ·|| calculates the L2 distance between two features. With these pseudo OOD samples, we
can train a (k + 1)-way classifier p(y|f(x)) as our OOD detector.

3.3 MULTI-STAGE TRAINING

For a synthesized pseudo OOD sample x′, we usually expect x′ does not carry any IND intents so
that it can be more effectively applied to optimize the (k + 1)-th intent. However, we observe that
pseudo OOD samples obtained through Eq. 2 may violate this expectation because samples from the
candidate pool C(x) may carry IND intents. Therefore it is a desiderata to filter these IND samples
from C(x) when building high-performance OOD detectors. In this study, we introduce a training
process that involves three stages to tackle this issue.

In the first stage, we aim to equip our detector with the basis OOD intent detection ability. Specif-
ically, a set of pseudo OOD samples are first constructed following the approach proposed by Zhan
et al. (2021) and a (k + 1)-way classifier p is trained with labeled IND samples from DI and these
pseudo OOD samples. This classifier assigns probability masses for the OOD intent on testing
samples.

In the second stage, we aim to enhance the robustness of extracted representations with the help of
unlabeled data in DU . Specifically, we infer pseudo-labels for samples in DU and collect samples
that are labeled with intent Ik+1 as a set of pseudo OOD samples DPL. A self-training scheme is
used in this stage to further optimize the classifier p using the cross-entropy loss on DI ∪ DPL and
the unsupervised representation learning loss (Eq. 1) on DU .

In the third stage, we use Eq. 2 to construct another set of pseudo OOD samples DDC and add
these samples in the optimization process of the cross-entropy loss on the basis of the second stage’s
training target. Specifically, before applying Eq. 2, the obtained classifier p is used to filter out
candidates in C(x) that lie close to IND intents to ensure the quality of synthesized pseudo OOD
samples, i.e., samples with high classification confidence scores are filtered out. The following loss
is optimized in this stage:

L =
∑

(x,y)∈DI∪DPL

CE[y, p(f(x))] +
∑

v∈DDC

CE[Ik+1, p(v)] + λLUR, (3)

where λ is a scalar hyper-parameter to control the weight of the representation learning loss.

The whole training process of Caro is summarized in Algorithm 1. In the inference phase, we use
the prediction of the classifier p to implement the OOD detector, i.e., p(y|f(x)).
Discussions. The two key components of Caro, i.e., robust representation learning (Section 3.1) and
pseudo OOD synthesis (Section 3.2) work collaboratively in the training process. First, learning
robust representation makes IND and OOD samples more separable and helps synthesize high-
quality representations for pseudo OOD samples. Second, synthesized pseudo OOD samples boost
the performance of the (k + 1)-way classifier. Third, an effective and evolving classifier helps to
more effectively filter out IND samples from the candidate pool.
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Algorithm 1: Caro: OOD Detection Considering Multi-turn Contexts
Input: IND data DI = {(xi, yi)}, unlabelled data DU = {x̃i}, classifier p, randomly

initialized model with parameter θ, weight for representation learning λ.
Output: model parameter θ⋆.
while train stage1 do

Construct a set of pseudo OOD samples DMix (Zhan et al., 2021).
Optimize the classifier p using the cross-entropy loss on DI ∪ DMix.

end
while train stage2 do

Calculate the unsupervised representation learning loss using Equation 1.
Construct a set of OOD samples DPL from DU by pseudo-labels.
Calculate the cross-entropy loss on DI ∪ DPL.
Update the parameters θ.

end
while train stage3 do

Calculate the unsupervised representation learning loss using Equation 1.
Construct a set of OOD samples DPL from DU by pseudo-labels.
Synthesize OOD samples DDC using Equation 2.
Calculate the cross-entropy loss on DI ∪ DPL ∪ DDC .
Update the parameters θ based on Equation 3.

end
while eval do

Predict the intent class using the classifier p.
end

STAR Intent IND train OOD train IND valid OOD valid IND test OOD test

Full 150 22,051 1,248 2,751 0 2,708 168
Small 150 11,000 621 2,751 0 2,708 168

Table 1: Dataset statistics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We perform experiments on two variants of a benchmark dataset STAR (Mosig et al.,
2020), i.e., STAR-Full and STAR-Small. STAR is a task-oriented dialog dataset, consisting of
5,820 dialogues in 13 domains with turn-level intents. The dataset is designed to be strong history
dependent and each dialogue contains 21.71 turns on average. We adopt the data as OOD samples
by selecting turns labeled as “out of scope”, “custom”, or “ambiguous”, suggested by the authors.
Following Chen & Yu (2021), we construct STAR-Full by filtering out generic utterances (e.g.,
greetings). We also make STAR-Small by down-sampling (50%) the training set of STAR-Full to
evaluate the performance in the low-resource scenario. Standard splits of above datasets are followed
(see Table 1).

To simulate the unlabelled data, we mix 30% of IND data and all of the OOD data in the training set.
The number of IND/OOD samples of unlabelled data is 6614/1248 in STAR-Full and 3302/621 in
STAR-Small, respectively. Note that in the training and validation process, we do not use the label
information of the unlabelled data and the labeled data only contains samples from the IND intents.

Metrics Following Zhang et al. (2021b); Zhan et al. (2021); Shu et al. (2021), we use macro F1-
score (F1-All) calculated over all intents (IND and OOD intents) to evaluate the OOD detection
performance. We also calculate macro F1-scores over IND intents (F1-IND) and OOD intent (F1-
OOD) to evaluate fine-grained performances. We do not use the metric of accuracy, because the test
set is unbalanced.
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Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Oracle K+1 50.1 64.46 50 46.54 58.23 46.46

DI

MSP w/o h 17.29 14.12 17.31 17.12 13.49 17.14
MSP 40.83 19.74 40.97 37.17 18.1 37.31
SEG w/o h 0.06 2.77 0.04 0.05 2.27 0.04
SEG 17.45 6.85 17.53 11.66 7.39 11.69
DOC w/o h 11.31 14.16 11.29 0.08 11.04 0
DOC 26.53 16.80 26.60 3.47 11.78 3.41
ADB w/o h 23.27 17.63 23.30 20.08 21.27 20.07
ADB 44.64 20.56 44.80 41.36 18.23 41.51
DA-ADB w/o h 17.87 15.15 17.88 16.34 17.03 16.33
DA-ADB 37.27 22.87 37.37 34.81 20.43 34.91
Outlier w/o h 23.35 16.75 23.39 19.56 15.42 19.59
Outlier 43.84 19.53 44.01 39.51 19.92 39.64
CDA 43.76 5.26 44.03 40.02 10.48 40.22

DI+DU

Pseudo-label 45.34 50.22 45.31 42.59 41.33 42.6
Caro w/o DDC 46.14 52.58 46.10 43.24 44.66 43.23
Caro (ours) 48.18± 0.9 54.26± 3.1 48.13± 0.9 44.09± 1.9 47.51± 2.7 44.06± 1.9

Table 2: Main results. Comparison between our method and baselines. All values are percentages.
Bold numbers are superior results. We report standard deviations estimated across 3 runs.

Training Details Our feature extractor f is implemented using BERT Devlin et al. (2018) with
a mean-pooling layer. The classification head in p is implemented as two-layer MLPs with the
LeakyReLU activation Xu et al. (2020), while the projection heads in µ(vj) and Σ(vj) are imple-
mented as three-layer MLPs. The optimizer AdamW and Adam Kingma & Ba (2014) is used to
finetune BERT and all the heads with a learning rate of 1e-5 and 1e-4, respectively. Jensen-Shannon
mutual information estimator (Hjelm et al., 2018) is used to maximize the MI between two latent
variables. We use λ = 2 in all experiments. All results reported in our paper are averages of 3
runs with different random seeds. Hyper-parameters are searched based on IND intent classification
performances on validation sets. See Appendix A for more implementation details.

4.2 MAIN RESULTS

We compare Caro with two types of OOD detection methods. The first type uses only labeled
IND data in training, while the second type trains models on both IND and unlabelled data. We
compare with competitive baselines of the first type: MSP: (Hendrycks & Gimpel, 2017) utilizes
the maximum Softmax probability of a k-way classifier to detect OOD inputs; SEG: (Yan et al.,
2020b) proposes a semantic-enhanced Gaussian mixture model; DOC: (Shu et al., 2017) employs
k 1-vs-rest Sigmoid classifiers and use the maximum predictions to detect OOD intents; ADB:
(Zhang et al., 2021b) learns an adaptive decision boundaries for OOD detection; DA-ADB: (Zhang
et al.) learns distance-aware intent representations and adaptive decision boundaries for open intent
detection; Outlier: (Zhan et al., 2021) mixes convex interpolated outliers and open-domain outliers
to train a (k + 1)-way classifier; CDA: (Lee & Shalyminov, 2019) performs detection by using
counterfeit OOD turns. We also implement their variants which ignore dialogue contexts (w/o h).
Note that CDA is designed for multi-turn contexts, hence we do not implement its single-turn variant.
For fair comparisons, all baselines are implemented with codes released by their authors, and use
BERT as the backbone. See Appendix B for more details about baselines.

We compare with variants of Caro, which belong to the second type of method: Pseudo-label: (Lee
et al., 2013) learns a (k + 1)-way classifier which constructs a set of OOD samples DPL from DU

by pseudo-labels and optimizes the cross-entropy loss on DI ∪ DPL; Caro w/o DDC: removes the
synthesized OOD samples under the constraint of dialogue contexts, i.e., the model is only trained
by two stages; We further report the performance of a (k + 1)-way classifier (K+1) trained on DI

and DU , in which the label information of DU is leveraged. Note that the performance of K+1 is
generally regarded as the upper bound.
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Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

IND+Unlabelled
InfoMax 44.71 50.5 44.67 42.13 41.07 42.14

MV-InfoMax 44.77 51.43 44.73 42.95 43.20 42.95
Contrastive Learning 44.68 51.94 44.63 42.72 42.78 42.72

Caro w/o DDC 46.14 52.58 46.10 43.24 44.66 43.23

Table 3: Ablation study on the representation learning loss.

Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

IND+Unlabelled
FM 41.20 22.67 41.33 33.72 19.60 33.81
LG 46.67 50.57 46.65 43.03 44.76 43.01
OS 46.4 49.02 46.38 43.19 44.90 43.17

Caro w/o Q 42.39 27.17 42.50 34.38 19.17 34.48
Caro (ours) 48.18 54.26 48.13 44.09 47.51 44.06

Table 4: Ablation study on OOD synthesis approaches.

Table 2 shows the OOD detection performance of all baselines and our method. We can observe
that: 1. Methods (e.g., MSP, SEG, DOC, ADB, DA-ADB, and Outlier) using dialogue contexts, in
general, show strong OOD detection performance over the counterparts (i.e., w/o h). 2. Our method
Caro significantly outperforms all baselines in terms of IND and OOD effectiveness on all the two
datasets, by making better use of the dialogue contexts on IND and unlabelled data; 3. Our method
outperforms Pseudo-label and Caro w/o DDC . This proves the importance of robust representation
learning for dialogue contexts and shows the effectiveness of pseudo OOD samples synthesized by
Caro.

4.3 ABLATION STUDIES

This section provides comprehensive ablation studies to understand the effectiveness of Caro.

Ablation on the representation learning loss. We perform ablation on three alternatives for LUR:
1. InfoMax (Poole et al., 2019) maximizes mutual information between input and its latent variable
I(v; z); 2. MV-InfoMax (Bachman et al., 2019) maximizes mutual information between latent vari-
ables of an input’s two views I(z1; z2); 3. Contrastive Learning (Caron et al., 2020) formulates the
contrastive loss for two views of an input. Here, we focus on studying the efficacy of representation
learning, and do not use the synthesized OOD samples DDC produced by Caro. Table 3 indicates
that our method outperforms all ablation models. We can observe that: 1. representation learned by
other losses degenerates the model performance by a large margin. This shows the effectiveness of
the robust representation learned by Caro. 2. InfoMax achieves the lowest performance compared
to other models. This further proves the importance of eliminating superfluous information.

Ablation on OOD synthesis approaches. We compare Caro with four pseudo OOD synthesis
approaches: 1. Feature Mixup (FM): follows Zhan et al. (2021) to produce OOD features using
convex combinations of IND features; 2. Latent Generation (LG): follows Zheng et al. (2020) to
decode pseudo OOD samples from a latent space; 3. Open-domain Sampling (OS): follows Zhan
et al. (2021) to use sentences from other corpora as OOD samples; 4. Caro w/o Q: a variant of
Caro which synthesize OOD samples without a quality inspection scheme to filter out IND samples.
Table 4 shows that Caro outperforms all alternative approaches. We can further observe that: 1.
synthesized OOD samples without a quality inspection scheme would significantly hurt the perfor-
mance, because the candidate samples in the pool might contain IND samples which would make the
produced OOD samples overlap with IND samples in the feature space. 2. FM achieves the lowest
performance compared to other models. The produced OOD samples by mixing IND features might
also overlap with IND samples.

Ablation on the weight of representation learning loss. Tabel 5 reports the OOD detection results
as we vary the weight λ for LUR. The model is evaluated on STAR-small dataset. The results
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1.8 1.9 2.0 2.1 2.2

F1-All 43.20 44.00 44.09 43.78 42.34
F1-OOD 49.79 50.04 47.51 47.25 49.98
F1-IND 43.16 43.96 44.06 43.76 42.29

Table 5: Ablation study on the weight λ for the representation learning loss on STAR-small dataset.

indicate that a relatively large weight is desirable. In most cases, Caro outperforms the baseline
methods in Table 2.

4.4 QUALITATIVE ANALYSIS

To further demonstrate the effectiveness of Caro, we visualized the features learned in the penulti-
mate layer of OOD detectors that are trained by Pseudo-label and Caro, respectively. Results shown
in Figure 2 demonstrate the robust representation and OOD samples produced by Caro help the
OOD detector learn better representations. The learned feature space is smoother and represen-
tations for IND and OOD samples are more separable. This validates our claim that Caro helps to
learn robust representation and produce high-quality OOD samples and improves the OOD detection
performance.

IND Samples OOD Samples

(a) Pseudo-label

IND Samples OOD Samples

(b) Caro

Figure 2: t-SNE visualization of learned features on the test set on STAR-Full.

5 RELATED WORK

OOD Intent Detection: OOD detection problems have been widely investigated in conventional
machine learning studies Geng et al. (2020). Recent neural-based methods try to improve the OOD
detection performance by learning more robust representations on IND data Zhou et al. (2021; 2022);
Yan et al. (2020b); Zeng et al. (2021). These representations can be used to develop density-based or
distance-based OOD detectors Lee et al. (2018); Podolskiy et al. (2021); Liu et al. (2020); Tan et al.
(2019). Some methods also propose to distinguish OOD inputs using thresholds based methods Gal
& Ghahramani (2016); Lakshminarayanan et al. (2017); Ren et al. (2019); Gangal et al. (2020); Ryu
et al. (2017), or utilizing unlabeled IND data Xu et al. (2021); Jin et al. (2022).

Multi-turn Dialogue Contexts: Modeling multi-turn contexts is the foundation for various dialogue
related tasks, such as intent detection (Ghosal et al., 2021), question answering (Li et al., 2020), and
dialogue summarization (Chen et al., 2021). Lee & Shalyminov (2019) propose to perform OOD
Intent detection relying on the dialogue contexts. However, they do not explicitly tackle the long
distance obstacle (Qin et al., 2021) exhibited in the multi-turn contexts. Chen & Yu (2021) generate
pseudo OOD samples from an auxiliary dataset with a seed set of IND samples considering multi-
turn contexts. However, they need to label IND samples, which are expensive to annotate in the
context of multi-turns.

Pseudo OOD Sample Generation: Some works try to tackle OOD detection problems by gener-
ating pseudo OOD samples. Generally, three categories of approaches are proposed: 1. Feature

8



Under review as a conference paper at ICLR 2023

Mixup Zhan et al. (2021): OOD features are directly produced by mixing up IND features Zhang
et al. (2018); 2. Latent Generation Marek et al. (2021): OOD samples are drawn from the low-
density area of a latent space; 3. Open-domain Sampling Hendrycks et al. (2018): data from other
corpora are directly used as pseudo OOD samples. Existing approaches only attempt to generate
OOD samples using single-turn inputs. Our method Caro is the first attempt to synthesize OOD
samples considering multi-turn dialogue contexts.

6 CONCLUSION

In this paper, we propose Caro, a novel context-aware OOD intent detection framework to explore
OOD intent detection in multi-turn settings. We follow the information bottleneck principle to learn
robust representation for intent detection and synthesize pseudo OOD samples under the constraint
of multi-turn dialogue contexts. A three-stage training process is introduced in Caro to construct a
(k + 1)-way classifier as the resulting OOD intent detector. We conduct extensive experiments on
two benchmark datasets to empirically demonstrate the effectiveness of our proposed framework.
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A ADDITIONAL EXPERIMENTAL DETAILS

We use the BERT model (bert-base-uncased) provided in the Huggingface’s Transformers library
(Wolf et al., 2020) to implement f . Following (Zhang et al., 2021b), we add an averaging-pooling
layer on top of BERT to obtain the representation of each input utterance. The classification head
in p is implemented as two-layer MLPs with the LeakyReLU activation Xu et al. (2020), while
the projection heads in µ(vj) and Σ(vj) as three-layer MLPs. The projection dimension is 64.
Following (Federici et al., 2019), we use Jensen-Shannon mutual information estimator (Hjelm et al.,
2018) to maximize the MI between two latent variables. Following (Zhan et al., 2021), We use
AdamW (Kingma & Ba, 2014) to fine-tune BERT using a learning rate of 1e-5 and Adam (Wolf
et al., 2019) to train the MLP heads using a learning rate of 1e-4. The batch size is 25 for IND and
unlabelled data, respectively. In the training stage, 10/15 epochs of training are first conducted in
stage 1 for STAR Full and STAR Small, respectively; then, 10 epochs of training are conducted in
stage 2; finally, 10 epochs of training are conducted in stage 3 with early stopping. We tried pool
size of {20, 50, 90} for the candidate samples. All hyper-parameters are tuned according to the
classification performance over the IND samples on the validation set. We find that λ = 2 works
well with all datasets. Each result is an average of 3 runs with different random seeds, and each run is
stopped when we reach a plateau on the validation performance. ALL experiments were conducted
in the Nvidia Tesla V100-SXM2 GPU with 32G graphical memory.

B MORE DETAILS ABOUT BASELINES

We get the baseline results (MSP, SEG, DOC, ADB, and DA-ADB) using an OOD detection toolkit
TEXTOIR (Zhang et al., 2021a). We get the baseline result of Outlier by running their released
codes. We re-implement CDA by using counterfeit OOD turns. For fair comparisons, all baselines
are implemented by using BERT as the backbone.
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