
Reasoning over Uncertain Text by Generative Large Language Models

Aliakbar Nafar1, Kristen Brent Venable2,3, Parisa Kordjamshidi1

1Michigan State University
2Florida Institute for Human and Machine Cognition

3University of West Florida
{nafarali, kordjams}@msu.edu, bvenable@ihmc.org

Abstract

This paper considers the challenges Large Language Models
(LLMs) face when reasoning over text that includes infor-
mation involving uncertainty explicitly quantified via proba-
bility values. This type of reasoning is relevant to a variety
of contexts ranging from everyday conversations to medical
decision-making. Despite improvements in the mathematical
reasoning capabilities of LLMs, they still exhibit significant
difficulties when it comes to probabilistic reasoning. To deal
with this problem, we introduce the Bayesian Linguistic In-
ference Dataset (BLInD), a new dataset specifically designed
to test the probabilistic reasoning capabilities of LLMs. We
use BLInD to find out the limitations of LLMs for tasks in-
volving probabilistic reasoning. In addition, we present sev-
eral prompting strategies that map the problem to different
formal representations, including Python code, probabilistic
algorithms, and probabilistic logical programming. We con-
clude by providing an evaluation of our methods on BLInD
and an adaptation of a causal reasoning question-answering
dataset. Our empirical results highlight the effectiveness of
our proposed strategies for multiple LLMs.

Code and Dataset — https://github.com/HLR/BLInD
Extended Version — https://arxiv.org/abs/2402.09614

Introduction
Uncertainty in text is communicated in many contexts, rang-
ing from everyday conversations to domain-specific docu-
ments, such as those with medical focus (Heritage 2013;
Landmark, Gulbrandsen, and Svennevig 2015). Processing
this uncertain information is critical. For example, uncer-
tainty in text has been shown to significantly affect decision-
making in the biomedical domain (Poggi et al. 2019). Rea-
soning over uncertain text is also closely related to ratio-
nal reasoning, e.g., if the probabilities of events A and B
are low, the probability of both happening simultaneously
should also be low. As a result, it is essential for language
models to be able to use text with uncertainty and perform
inference based on it. While the human intuitive approach
to probabilistic reasoning often aligns with Bayesian Ra-
tionalism (Oaksford and Chater 2007, 2009), humans usu-
ally do not explicitly calculate the probabilities of outcomes.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example from the BLInD dataset including
an underlying Bayesian network, its textual description, and
probabilistic queries in natural language form.

Still, probabilistic modeling using Bayesian Networks of-
fers a robust computational approach for dealing with un-
certainty. Thus, we tackle the challenge of enabling LLMs
to conduct probabilistic reasoning by mapping uncertainty
expressed through language to a Bayesian Network. This
approach resembles other strategies for enabling mathemat-
ical reasoning over text, such as with math word problems
(MWPs) (Cobbe et al. 2021; Kim et al. 2023). The com-
mon theme of our problem formulation and MWPs is that a
formal problem is extracted from the text and solved using
external tools (Dries et al. 2017; He-Yueya et al. 2023).

First-generation LLMs were shown to struggle with math-
ematical reasoning and fail in answering even simple ques-
tions (e.g., about summation (Mishra et al. 2022)). With
the advent of newer generations of LLMs, their mathe-
matical reasoning capability improved significantly, with
GPT4 achieving 92% (OpenAI 2023) and Gemini achieving
94.4% (Google 2023) accuracy on the Grade School Math
(GSM8K) dataset (Cobbe et al. 2021). These results have
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misled to the belief that LLMs are now proficient in math-
ematical reasoning. However, the LLMs’ performance on
math problems varies significantly depending on the ques-
tion types (Kim et al. 2023). Here, we confirm this latter
result by showing that LLMs still struggle with the essen-
tial task of probabilistic reasoning over text. Furthermore,
we illustrate how, depending on the LLM, different limita-
tions and weaknesses hinder their ability to solve these prob-
lems. Simply utilizing Chain of Thought (Wei et al. 2022b)
or Python code is not always effective (Shi, Zhang, and Li-
pani 2022; Kim et al. 2023). These observations support the
design of customized solutions for each problem and model.

We focus on Bayesian inference over text and intro-
duce a new dataset, Bayesian Linguistic Inference Dataset
(BLInD), to evaluate and improve LLMs’ probabilistic rea-
soning. BLInD instances have up to 10 interconnected ran-
dom variables used to answer a probabilistic query over
them. Figure 1 shows a BLInD example, with the Bayesian
Network and conditional probability tables at the top. The
corresponding natural language explanation, which is given
in input to the language models, is shown below. Given the
textual context, the models are asked to answer probabilistic
queries such as ”What is the probability of event P?”.

We design prompts that decompose this complex prob-
lem into extracting the probability values and generating the
dependency graph prior to probabilistic inference. We inves-
tigate solutions that include the above extractions as well as
a mapping to symbolic solvers such as pure Python code,
probabilistic inference algorithms, and probabilistic logical
formalisms. Ultimately, we test our methods on our new
challenging dataset and on an adapted version of a causal
reasoning question-answering dataset, CLADDER (Jin et al.
2023), further solidifying our results.

In summary, our contributions are as follows: 1) Creat-
ing a new dataset (BLInD) designed for reasoning over text
with uncertainty explicitly quantified as probabilities; 2) An-
alyzing the capabilities of LLMs in solving the complex
probabilistic reasoning problems contained in BLInD, high-
lighting their limitations; 3) Designing innovative prompt
engineering and in-context learning techniques which
leverage mapping to Python code, to inference algorithms,
and to a probabilistic logical formalism, leading to improve-
ments in performance across multiple LLMs, proprietary
and open-source; 4) Evaluating the proposed techniques on
our new dataset and an adapted existing benchmark.

Related Work
A few prior works have explored question-answering (QA)
involving probabilistic rules. RuleBERT (Saeed et al. 2021)
and (Nafar, Venable, and Kordjamshidi 2024) mainly evalu-
ate BERT-based models (Devlin et al. 2019) by fine-tuning
them. They use a simple independence structure instead of
dealing with arbitrary Bayesian Networks. Their queries are
limited to asking the probability of a single variable, and
their closed world assumption (CWA) assigns a probability
of zero to any event with unspecified probability. In contrast,
our queries involve any joint and marginal computation and
do not use the CWA. CLADDER (Jin et al. 2023) creates a
dataset with probabilistic contexts, but it is mainly designed

to test the causal reasoning capabilities of LLMs with in-
context learning and structured prompts. They use a limited
number of variables (less than 5), their task setting is limited
to binary QA, and their solution is to map the natural lan-
guage text to a causal reasoning formalism. An adaptation
of this dataset for mapping to probabilistic reasoning applies
to our problem setting and is used in our experiments.

Looking at reasoning over uncertain text as a form of
the math word problem, (Dries et al. 2017; Suster et al.
2021) solve simple probability word problems from intro-
ductory mathematics textbooks. However, in most questions,
the probabilities are not directly given in the context, and the
inference does not necessarily require mapping to Bayesian
Networks. These works utilize either classical NLP parsers
or fine-tuned LMs instead of our in-context prompting meth-
ods. NumGLUE (Mishra et al. 2022) is the first work that
analyses Pre-trained and Large Language Models for mathe-
matical reasoning. But, it is limited to questions that require
simple arithmetic reasoning. (Bubeck et al. 2023; Frieder
et al. 2023; Kim et al. 2023) looks at a broader range of
math questions for analyzing LLM’s reasoning capabilities.
However, none of these works include Bayesian probabilis-
tic questions with complex structures.

In our solutions, we use neuro-symbolic methods to rea-
son over uncertain text. Neuro-symbolic techniques have
been used in related research to solve various NLP tasks by
integration of symbolic reasoning during training or infer-
ence (Rajaby Faghihi et al. 2021, 2023) though not for prob-
abilistic reasoning over uncertain text. In a slightly related
work, ThinkSum (Ozturkler et al. 2023) uses probabilistic
reasoning by calculating the likelihood of the LLM generat-
ing each possible answer and then aggregating these token
probabilities. This approach is applied to usual question an-
swering problems that output the final crisp answers. This
is fundamentally different from our work that interprets the
uncertainty measures that are expressed explicitly in the text
and reasons over them to infer the probability of a query.

Problem Definition
The input to the QA task is a textual context paired with a
probabilistic query in a textual form which we refer to as
the question throughout the paper. The context comprises
sentences that describe the probability of random events,
which are binary variables, or the conditional probabilities
of events. Figure 1 shows a context with five sentences de-
scribing the probabilities of random events G, P, and O. The
query can be any question that probes the probabilities of
these events, such as “What is the probability of G being
true and P being false given that O is false?”. The output,
which is the probability of the query, is a real number that
ranges from 0.0 to 1.0.

BLInD Generation
We introduce the Bayesian Language Inference Dataset
(BLInD) to investigate the ability of LLMs to perform prob-
abilistic reasoning. Each example in the dataset contains a
textual context describing the probability of events and a
textual question about the probability of events occurring in
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the context. Moreover, we provide a Bayesian Network (BN)
corresponding to the context with their conditional probabil-
ity tables (CPTs) and a probability value computed as the an-
swer to the question. In this section, we provide an overview
of the generation process and the dataset structure. Details
are included in the Appendix of the arXiv version of the pa-
per (the link is provided below the abstract).

Bayesian Network
In the first step of our dataset creation, we generate all
isomorphic graphs that would serve as our Bayesian Net-
works, each including up to ten random variables. We gener-
ate these graphs with the following properties: 1) all graphs
are Directed Acyclic (DAGs), 2) all graphs are Weakly Con-
nected, and 3) each node has at most one parent (arbores-
cence). This results in dataset splits denoted as Vi for i ∈
{2, 3, . . . , 10}, each including a set of graphs with i nodes
(random variables). Properties 2 and 3 are necessary to con-
trol the complexity of the splits. The complexity increases
as i increases. To clarify, property 2 prevents the breakdown
of a graph into smaller, independent, and subsequently sim-
pler components. Assumption 3 results in 2 + (V − 1) ∗ 4
probability entries in a BN’s CPTs with V variables (2 prob-
abilities for the root node and 4 for other nodes). For exam-
ple, in Figure 1, we depict a BN over nodes G (Green), O
(Orange), and P (Pink) with corresponding CPTs and a to-
tal of 10 probability entries. While property 3 might restrict
the networks’ coverage, it enables us to analyze the exam-
ples with better control over their complexity. Further, we
assume each random variable is binary and fill their asso-
ciated conditional probability tables with uniformly random
generated probabilities ranging from 0.01 to 0.99.

Query
We generate only complex queries for a given Bayesian Net-
work. By complex, we mean those which require all vari-
ables in the BN for inference. For example, for a size 2 BN
with variables A and B where A is the parent of B, all
possible queries are P (A), P (B), P (A,B), P (A|B), and
P (B|A). Among these, P (A) is the only query that is not
complex since it can be answered only with the CPT of A
and, therefore, is not selected. We assign true/false values
randomly to the query variables.

Textual Context and Question
After generating the BNs, CPTs, and queries, we create the
textual context and question that describes the BN (map-
ping every entry in the CPTs to natural language) and the
query, respectively. For the context, sentences follow two
templates: 1) For explaining prior probabilities, we use the
template ”{node name} is True/False with ##% Probabil-
ity”. 2) For explaining dependent nodes, we use the tem-
plate ”{node name} is True/False with ##% Probability, if
{parent node name} is True/False”. Figure 1 shows the con-
text for a given BN and CPTs. The template for textual ques-
tions is: ”What is the probability that {a node name} is
True/False and . . . given that {a node name} is True/False
and . . . ?”. For a query without evidence variables, the text

after “given” is omitted. For example, P (A| ∼B) would be
translated to the textual query (question), ”What is the prob-
ability that A event is True given that B event is False?”.

Verification and Inference
At the final step of our dataset generation, we use the Python
library pgmpy (Ankan and Panda 2015) to verify the sound-
ness of our BN, probabilities, and queries and to infer the
answer to the queries. This library, which is specifically de-
signed for creating and working with Bayesian Networks,
takes our generated CPTs as input, verifies their soundness
and answers the queries via an exact inference method.

Methodology
Here, we introduce our approach to probabilistic reasoning
with LLMs. We use a basic QA and a Chain of Thought
prompting as baselines and propose new strategies for map-
ping to symbolic representations.

Baselines
Basic QA Prompting In this prompting approach, we ask
the model to generate a single numerical answer to the prob-
abilistic question. We experiment with zero-shot and few-
shot settings. In the zero-shot setting, only the instruction,
context, and question are in the prompt. Figure 2 shows the
few-shot setting with an in-context example included.

Chain of Thought (COT) Following COT (Wei et al.
2022a), we prompt the LLM to explain its reasoning process
while refraining completely (in zero-shot setting) or partially
(in few-shot setting) from imposing a strict solution struc-
ture. COT’s prompting structure is similar to Basic QA’s,
except that the requested answer should explain the math-
ematical reasoning, calculate the final answer, and generate
the target output probability at the end, as shown in Figure 2.

Structured Prompting with Subtasks
Given the complexity of the probabilistic inference, we pro-
pose to divide the problem into multiple steps and demon-
strate the steps to the LLMs in one prompt. This approach
has shown to be effective in other similar research (Jin et al.
2023; Poesia et al. 2023). The most intuitive step for our
problem is identifying the probabilities of the single events
and the conditional probabilities. Another important step
is to recognize the variables’ dependencies, which are the
edges in the corresponding BN. Consequently, we use the
extraction of probability values from text, named Number
Extraction subtask, and probabilistic dependencies Graph
Generation subtask as the prior steps to final reasoning.

Number Extraction In this subtask, the LLM should ex-
tract the CPT probabilities from the input context and out-
put them in a structured format as Python-compatible vari-
able assignments. Each line of the output represents either
a probability of an event or a conditional probability. This
format is shown in the “PAL” column of Figure 2. To add
this subtask, we prepend its corresponding instruction to the
prompt, i.e., “Extract the probabilities...” and its answers to
the in-context examples. This subtask aims to facilitate the
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Figure 2: This figure shows our main prompting approaches, PAL, Monte Carlo, and ProbLog, alongside the baseline ap-
proaches, Basic QA and COT. Each prompt begins with an instruction (purple boxes) that describes the problem and the answer
format. Then, the context, question, and answer are demonstrated depending on the approach. We display only the first in-
context example here but use 3 in our experiments. When we require the use of our designed subtasks in the prompt, their
instructions and answers are prepended to the main approach, as shown in the PAL method for Number Extraction and the
Monte Carlo method for Graph Generation.

correct extraction of probabilities before reasoning to avoid
hallucination (Ouyang et al. 2022) of incorrect numbers.

Graph Generation In this subtask, we want the LLM to
generate the underlying Bayesian Network of the given con-
text as a list of edges, each indicating the direct dependency
between two variables. For a BN with V variables, the out-
put should consist of V − 1 edges in the format of vi− > vj
separated by ‘,’. This will help the model capture the ran-
dom variables’ dependency structure and utilize it in map-
ping to symbolic solutions. Similar to Number Extraction, to
use Graph Generation, its instruction and answers are added
to the prompts. An example of a simple Bayesian Network
with two nodes, Green and Pink, is shown in the “Monte
Carlo Inference Algorithm” column of Figure 2.

Mapping to Symbolic Computations
Program-aided Language Models (PAL) PAL (Gao
et al. 2023) is the first study to analyze the use of Python
in various mathematical reasoning QA datasets. However,
most problems tested in PAL require only a few lines of
code, unlike BLInD, which may need complex, multi-line
calculations depending on the BN. A benefit of the PAL
method is it bypasses the challenge of mathematical calcu-
lations by the LLM itself. Similar to the original PAL pa-
per, we instruct the LLM to solve the problem by explain-
ing the mathematical reasoning process and mapping to the
basic arithmetic calculations in Python code leading to the

answer. Figure 2 shows an in-context example of this ap-
proach, where the Number Extraction subtask is first used,
followed by mapping the reasoning solution to Python code.

Monte Carlo Inference Algorithm Given the efficiency
and popularity of Monte Carlo Algorithms (Koller and
Friedman 2009) for approximate inference, we try to map
our problem the Direct Sampling technique for inference.
An LLM can use this method by generating a Python func-
tion, we call simulate, that samples all events according to
the probabilistic dependencies expressed in the BN. Here,
all parent variables must be sampled before their children.
Keeping this order is the main challenge in mapping to this
algorithm with LLMs. Figure 2 shows an in-context exam-
ple of the Monte Carlo method with the simulate function
defined as a part of the answer. The LLM is also instructed to
call this function in the generated Python code which leads
to computing the answer to the probabilistic question.

Probabilistic Logical Solver (ProbLog) In our neuro-
symbolic method, we employ a technique that involves map-
ping the context and question to a probabilistic logical for-
malism. We use ProbLog (De Raedt, Kimmig, and Toivo-
nen 2007), a probabilistic programming language that ex-
tends Prolog (Bratko 2000) to incorporate probabilistic logi-
cal reasoning. Here, the LLM is asked to generate a ProbLog
code corresponding to the probabilities given in the context
and to create the formal ProbLog query based on the ques-
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tion. We subsequently execute the ProbLog code and ex-
tract the final answer. An in-context example of this code
is shown in Figure 2. The LLM does not need extensive
ProbLog programming knowledge; The three in-context ex-
amples we supply are sufficiently complex and encompass
all the necessary ProbLog syntax information to enable the
generation of code for our contexts and questions.

Experiments

Here, we present the results of our experiments on our base-
lines and proposed prompting techniques, which we eval-
uate on BLInD and an adapted version of the CLADDER
dataset. Refer to the Appendix of the arXiv version of the pa-
per for additional information, including our models’ hyper-
parameters (the link is provided below the abstract).
LLM Models In our experiments, we employ three LLMs:
Llama3 (AI@Meta 2024), specifically the meta-llama-3-
70b-instruct variant; GPT3.5 (Brown et al. 2020), using the
gpt-3.5-turbo-0613 release; and GPT4 (OpenAI 2023), with
the gpt-4-0613 version. These models are evaluated in zero-
shot and few-shot settings without any fine-tuning.
Few-shot Example Selection We selected a set of shots
from a development dataset and manually crafted their so-
lutions. After evaluating these shots on the same develop-
ment dataset, we identified the three most effective examples
through an iterative, trial-and-error process. To ensure a fair
comparison, we consistently use these three examples across
all models and methods rather than tailoring the examples to
each specific approach or model.
Evaluation Metrics. Given a context and a question, we
consider an answer probability to be correct if it is within the
±0.01 range of the ground truth probability (ex. any answer
within [0.30−0.32] is correct for a ground truth of 0.31). We
chose this threshold because we found that the outputs were
either correct or wrong with a large margin since the ex-
act line of computations is not followed in those cases. This
bimodal behavior, which differs from traditional regression
models, renders evaluation metrics such as MSE and L1 in-
effective. In this context, correct predictions contribute min-
imally to the error, while incorrect predictions dominate the
error metric in a way that lacks relevance. Additionally, this
behavior rendered larger thresholds useless, as the accuracy
at a threshold of 0.01 was nearly identical to that at 0.05.
A narrower threshold would cause the challenge of number
precision which is not in our interest due to the nature of
our task and has been previously highlighted in (Gao et al.
2023) for other mathematical reasoning problems. For the
evaluation of the subtasks, we count an output as accurate
if all the numbers in Number Extraction and all the edges
in Graph Generation are correctly generated without redun-
dancy. As a result, the numbers in all Tables are accuracy
values in percentages based on these criteria.
Evaluation Splits of the Dataset. To assess our methods,
we randomly select 100 instances from each data split Vi,
resulting in a total of 900 instances. This test set remains
consistent across all of our LLMs.

Solving Probabilistic Questions Directly
Here, we apply the baseline methods of Basic QA and COT,
focusing on answering probabilistic questions directly. Their
performance is detailed in Table 1. In Basic QA, overall, the
results are very low, and only GPT4 achieves meaningful re-
sults for some of the dataset splits with smaller BNs, i.e.
Vi with i <= 5. In the few-shot setting of Basic QA, the
additional examples, which do not explain their solutions,
worsen the results for all the LLMs. Using COT improved
the results for all models. However, even with COT, these
models struggle particularly in dataset splits with larger
BNs, i.e. Vi with i > 5. We will use these baselines to com-
pare with our symbolic methods.

Subtasks
Before reporting the results of the final symbolic solvers, we
discuss the results of Number Extraction and Graph Gen-
eration. The results of Number Extraction are shown in Ta-
ble 2, which indicates this subtask is quite straightforward
to solve. Llama3 and GPT4 extract all numbers correctly,
achieving 100% accuracy in all Vis. For GPT3.5, although
the accuracy drops as the number of variables increases, it
remains overall very high above 90%.

The results of the more challenging Graph Generation
subtask are shown in Table 3. Mirroring the pattern observed
in Table 2, we notice a decline in accuracy as the number of
variables increases. However, the drop in accuracy is more
notable and goes from 100% in V2 to as low as 73% in V9

for GPT3.5. GPT4 generated all graphs correctly in all Vis.
Looking at the results in Table 3, we observe minor incon-
sistencies such as a lower accuracy for V9 compared to V10.
These inconsistencies stem from the inherent randomness
in the output generation of LLMs and our random selec-
tion dataset instances. These small inconsistencies happen
in some other parts of our experiments but they do not de-
tract from the core message and pattern of our findings.

Note that the accuracies reported here are calculated when
each subtask is prompted to the LLM as a standalone prob-
lem. When integrating these subtasks within our solutions,
we prompt the LLM to generate both the subtask and the
problem solution together. This affects the subtasks’ accu-
racy and, consequently, usefulness depending on the sym-
bolic method, as discussed in the next section.

Evaluation of Proposed Methods
Here, we assess our three proposed approaches, PAL, Monte
Carlo, and ProbLog combined with Number Extraction and
Graph Generation in three LLMs. We discuss how effective
the subtasks are with each method and analyze their impact
based on factors like the number of variables and the em-
ployed LLM. The results of these experiments are presented
in Table 4. Not all of the combinations are useful; some lead
to lower final accuracy. These underperforming configura-
tions are not presented in the table.

PAL, Monte Carlo, and ProbLog As seen in Table 4,
there is a significant improvement in the performance of all
of these methods, compared to Basic QA and COT (previ-
ously shown in Table 1). Additionally, accuracy consistently
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Model Method V2 V3 V4 V5 V6 V7 V8 V9 V10 V2−5 V6−10 V2−10

GPT3.5

Basic QA ZS 33 13 5 4 6 2 3 1 2 13 2 7
Basic QA FS 3 0 1 1 2 2 1 1 0 1 1 1

COT ZS 53 8 4 5 10 5 2 2 0 17 3 9
COT FS 52 23 12 5 8 4 1 4 2 23 3 12

Llama3

Basic QA ZS 31 21 5 6 6 5 1 1 0 16 3 8
Basic QA FS 3 0 1 1 2 2 1 1 0 1 1 1

COT ZS 63 45 21 17 18 11 9 4 2 37 9 21
COT FS 63 46 21 12 20 15 7 8 5 36 11 22

GPT4

Basic QA ZS 44 23 9 9 11 11 8 8 2 21 8 14
Basic QA FS 3 0 1 1 2 2 1 1 0 1 1 1

COT ZS 79 63 27 10 17 6 5 7 6 45 8 24
COT FS 78 64 36 25 22 16 7 7 7 50 12 29

Table 1: Comparison of GPT3.5, Llama3, and GPT4 accuracy results for Basic QA and COT methods, presented as percentages.
The columns represent dataset splits Vi, and the average results for smaller BNs V2−5, larger BNs V6−10, and all BNs V2−10.
The rows show the methods tested with zero-shot (ZS) or few-shot (FS) settings.

LLM / Vi V2 V3 V4 V5 V6 V7 V8 V9 V10

GPT3.5 100 100 100 100 96 95 98 94 94
Llama3 100 100 100 100 100 100 99 100 100
GPT4 100 100 100 100 100 100 100 100 100

Table 2: Number Extraction accuracy of our models, pre-
sented as percentages and based on the exact match of all
the extracted probabilities of the context.

LLM / Vi V2 V3 V4 V5 V6 V7 V8 V9 V10

GPT3.5 100 95 92 93 84 75 79 73 78
Llama3 99 99 99 100 99 95 94 93 89
GPT4 100 100 100 100 100 100 100 100 100

Table 3: Graph Generation accuracy, presented as percent-
ages. The extracted graph should exactly match the correct
BN graph to be counted as correct.

increases across all models (closed and open-source) by
transitioning from PAL to Monte Carlo and then to ProbLog.
This suggests that the proposed methods’ effectiveness is in-
dependent of the LLMs. All models struggle to generate a
solution with PAL for larger BNs. In contrast, when we uti-
lize the Monte Carlo approach, the accuracy of these larger
BNs sharply increases, suggesting proficiency of LLMs at
mapping the entire BN correctly to a Monte Carlo algorithm
code, even for a large number of variables.

ProbLog eliminates the challenge of structural program-
ming and requires only the correct extraction of probabili-
ties (represented declaratively) and generating a correspond-
ing ProbLog query. In this case, GPT4 can solve almost ev-
ery question. GPT3.5 is mainly held back by the challenge
of writing probabilistic logical programming code. While
Llama3 (like GPT4) featured nearly 100% correct Python
syntax in the PAL and Monte Carlo methods, it sometimes
fails to create coherent ProbLog code. This leads to some-
what inconsistent performance among smaller BNs.

PAL with Number Extraction This combination, which
is shown as “PAL w/NE” in Table 4, shows that the accu-
racy of both GPT3.5 and Llama3 benefits from the addition

of the Number Extraction subtas to the PAL prompt. This
appears to reduce the hallucination (Ouyang et al. 2022) of
probability values in PAL solutions, as we further confirmed
by analyzing several test cases. This subtask was not needed
for the more robust GPT4, which can remember the numbers
and its addition resulted in marginal improvements.

Monte Carlo with Graph Generation The accuracy of
GPT3.5 and GPT4 improved when the Monte Carlo method
was combined with the Graph Generation subtask, shown as
‘Monte Carlo w/GG” in Table 4. Graph Generation subtask
further improves the already high performance of Monte
Carlo for larger BNs and enables GPT4 to reach a near-
perfect average accuracy of 95% in this setting. The im-
provements caused by the addition of Graph Generation are
not surprising since the Monte Carlo method generates a
Python function with many nested “if” structures tied to the
underlying Bayesian Network’s graph structure. However,
Llama3 is the exception and the only model that does not
benefit from this configuration, as discussed further below.

Discussion
Practical Use of Subtasks While our proposed ap-
proaches proved effective, independently of the LLMs, this
was not true for our subtasks. As mentioned earlier, we com-
prehensively tested all the configurations, but not all of them
improved our models. This raises a few questions: Q1) Why
do the added subtasks not always help? For example, in
principle, the Monte Carlo method could use Number Ex-
traction in its code to improve. Q2) Why does ProbLog not
improve with any subtasks? Q3) Why does Llama3 not im-
prove with Graph Generation in its Monte Carlo method
like GPT3.5 and GPT4? Q4) Why does no method improve
by adding both subtasks together? To answer these ques-
tions, we looked at subtask generation and their utilization
by LLMs more closely, which led to two main findings.

The first finding is that in contrast to most mathemat-
ical problems tested with LLMs, which require brief so-
lutions (Kim et al. 2023; Frieder et al. 2023), our dataset
demands the generation of large outputs. When the added
information by subtasks is not exploited effectively and
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Model Method V2 V3 V4 V5 V6 V7 V8 V9 V10 V2−5 V6−10 V2−10

GPT3.5

PAL 66 34 25 17 14 9 6 5 2 35 7 19
PAL w/NE 85 66 41 27 19 12 5 3 6 54 9 29

Monte Carlo 79 63 71 65 41 32 33 18 14 69 27 46
Monte Carlo w/GG 85 82 83 68 42 31 28 18 8 79 25 49

ProbLog 87 82 88 75 59 52 46 38 35 83 46 62

Llama3

PAL 100 84 57 36 31 20 10 14 8 69 17 40
PAL w/NE 100 95 71 52 46 28 16 16 9 79 23 48

Monte Carlo 100 100 96 96 92 85 77 72 64 98 78 87
ProbLog 90 95 92 87 95 94 87 82 78 91 87 89

GPT4

PAL 100 86 70 58 50 27 21 14 7 78 24 48
PAL w/NE 99 96 78 64 43 26 14 14 10 84 21 49

Monte Carlo 100 99 98 100 92 94 92 90 88 99 91 94
Monte Carlo w/GG 100 97 99 98 97 96 88 92 85 99 92 95

ProbLog 99 98 100 100 96 97 97 98 96 99 97 98

Table 4: GPT3.5, Llama3, and GPT4 accuracy results, presented as percentages, for the PAL, Monte Carlo, and ProbLog
methods. w/NE and w/GG denote the inclusion of Number Extraction and Graph Generation. The columns represent dataset
splits Vi, and the average results for smaller BNs V2−5, larger BNs V6−10, and all BNs V2−10.

lengthens the output even more for no reason, it leads to a
notable drop in the LLM performance. For example, while
the graph structure is intuitively helpful for probabilistic in-
ference, the Python code in PAL does not utilize it directly.
This directly addresses Q1 and touches on Q4. The main
bottleneck of the ProbLog method was the syntax errors that
subtasks could help with, which answers Q2.

The second finding concerns the accuracy of the subtasks,
which drops when generated in the same prompt with the
main solution (as we prompt the LLM only once). This
puts Llama3 in a precarious position regarding the Monte
Carlo method with its high accuracy. For Graph Generation
to further improve this method, it has to have an accuracy
higher than the method to be helpful. However, that is not
the case for this configuration for Llama3. For instance, the
accuracy of Llama3 in the Monte Carlo method for V10 is
64% (Table 4), which is already higher than Graph Gener-
ation accuracy for V10 that is 56% when generated in the
same prompt (See the Supplementary for detailed results).
For GPT3.5 and GPT4, Graph Generation accuracy remains
high enough, which in the case of GPT3.5 is partially due
to its weaker performance in the Monte Carlo method. This
finding resolves Q3 and provides further insights into Q4.

Trade-off Between Complexity and Effectiveness
Among our 5 methods, the Simplest and the most efficient
one is the Basic QA, which generates a few tokens. COT
slightly improves the results at the cost of more tokens in
the input and output. There is a significant improvement
in accuracy, moving to our main methods with external
tools. Their LLM code generation time is the same as COT,
but they need the additional time to execute the generated
program. According to our experiments, the probabilistic
inference run-time is negligible compared to the inference
run-time of LLM output generation which is a few millisec-
onds versus seconds taken by LLMs. However, from an
algorithmic perspective for probabilistic inference, ProbLog
will be more complex compared to Monte Carlo sampling
as it needs to deal with logical representations. Given that

a probabilistic network question described in a natural
language context forms rather small Bayesian Networks,
our methods are practical for solving this problem.

Use of External Tools Using external tools with LLMs
is an area of research that leverages the LLMs and exploits
diverse computational paradigms (Schick et al. 2024). The
tools we use are 1) pure Python for PAL and Monte Carlo
methods and 2) Python plus the underlying ProbLog en-
gine. All these tools are open-source, and conversion to their
Python interface is highly accurate using language models.
They are more efficient compared to LLMs, as discussed
above, and their operation as black-box executables requires
minimal computing resources.

Adaptation of the CLADDER Dataset
We conclude our experiments by testing our methods on
an adaptation of the CLADDER dataset (Jin et al. 2023).
This dataset is designed to test the causal reasoning capa-
bilities of LLMs. The contexts of this QA dataset describe
a probabilistic causal structure with a maximum of 4 vari-
ables, designed from natural-sounding templates. Questions
in this dataset mostly require a binary yes/no answer and not
a probability. Our results are, thus, not comparable to the
ones in (Jin et al. 2023). Using the natural-sounding con-
texts in CLADDER’s hard tests split, we created challenging
queries for the contexts and sample 100 instances. Figure 3
provides an example of this dataset along with one of our
generated queries for its context.

The results of our tests on this adaptation of CLADDER
are shown in Table 5, which follow the same trend seen in
BLInD for smaller BNs. For example, adding Graph Gen-
eration to the Monte Carlo method does not improve the
model here as it was most helpful when the number of vari-
ables was large. This consistency with BLInD evaluations
further solidifies our claims. When testing our methods on
the CLADDER, we used the same in-context examples of
BLInD without tailoring them to the more natural contexts
of CLADDER as we found it unnecessary. The performance
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Figure 3: An example from the hard test subset of CLAD-
DER dataset and a corresponding generated probabilistic
query. The top section displays the context with events in
bold font (white box), a query (yellow box), and the binary
(Yes/No) answer (purple box). The bottom section presents
an example of a probabilistic query derived from the same
context, which requires a probability-based response.

Method GPT3.5 Llama3 GPT4
Basic QA ZS 0 0 20
Basic QA FS 0 0 0

COT ZS 9 47 65
COT FS 3 38 64

PAL 26 91 96
PAL w/NE 39 96 96

Monte Carlo 75 96 98
Monte Carlo w/GG 75 95 97

ProbLog 71 84 97

Table 5: Accuracy results of the CLADDER dataset as per-
centages. w/NE, w/GG, ZS and FS denote use of Number
Extraction, Graph Generation, zero-shot and few-shot.

remained very high, as seen in Table 5. Based on the results
from BLInD and CLADDER, our experiments suggest that
the difficulty of probabilistic reasoning over text is not di-
rectly correlated with the naturalness and sophistication of
the language. Instead, it depends on the depth of reasoning
required and the number of variables involved.

Conclusion and Future Work
In this work, we introduced BLInD, a new dataset for deal-
ing with uncertain text and evaluating the capabilities of
LLMs on probabilistic reasoning over text with explicitly
quantified uncertainty. We proposed several prompt engi-
neering techniques, mapping the problem to different formal
representations, including Python low-level arithmetic com-
putations, approximate inference algorithms, and probabilis-
tic logical programming. Our evaluations demonstrated that
our main methods significantly improve the performance
of LLMs on BLInD and on an adapted version of another

dataset, CLADDER, with natural-sounding contexts.
Our methods solve probabilistic questions without any

fine-tuning or modification to the architecture of LLMs. As
an interesting direction to continue this work, future research
could explore alterations to open-source LLMs’ architec-
tures and training objectives specifically designed for prob-
abilistic inference.
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