Published as a conference paper at ICLR 2025

BTBS-LNS: BINARIZED-TIGHTENING, BRANCH AND
SEARCH ON LEARNING LNS POLICIES FOR MIP

Hao Yuan', Wenli Ouyang'; Changwen Zhang!, Yong Sun!, Liming Gong!, Junchi Yan?
TAT Lab, Lenovo Research

2School of Artificial Intelligence & Department of Computer Science and Engineering & MoE Lab of Al
Shanghai Jiao Tong University

{yuanhao4, ouyangwll, zhangcw5, sunyong4, gonglm3}@lenovo.com,
yanjunchi@sjtu.edu.cn

ABSTRACT

Learning to solve large-scale Mixed Integer Program (MIP) problems is an emerg-
ing research topic, and policy learning-based Large Neighborhood Search (LNS)
has been a popular paradigm. However, the explored space of LNS policy is
often limited even in the training phase, making the learned policy sometimes
wrongly fix some potentially important variables early in the search, leading to
local optimum in some cases. Moreover, many methods only assume binary vari-
ables to deal with. We present a practical approach, termed Binarized-Tightening
Branch-and-Search for Large Neighborhood Search (BTBS-LNS). It comprises
three key techniques: 1) the “Binarized Tightening” technique for integer vari-
ables to handle their wide range by binary encoding and bound tightening; 2) an
attention-based tripartite graph to capture global correlations among variables and
constraints for an MIP instance; 3) an extra branching network as a global view, to
identify and optimize wrongly-fixed backdoor variables at each search step. Ex-
periments show its superior performance over the open-source solver SCIP and
LNS baselines. Moreover, it performs competitively with, and sometimes bet-
ter than the commercial solver Gurobi (v9.5.0), especially on the MIPLIB2017
benchmark chosen by Hans Mittelmann, where our method can deliver 10% bet-
ter primal gaps compared with Gurobi in a 300s cut-off time.

1 INTRODUCTION AND RELATED WORK

Mixed-integer programming (MIP) is a well-established optimization problem. In many cases, fea-
sible or even optimal solutions are required under strong time limits, and thus efficiently finding
high-quality solutions is of great importance. Recently, machine learning for combinatorial opti-
mization has been an emerging topic (Bengio et al.,2021) with prominent success in different tasks,
e.g. graph matching (Yan et al.,[2020), and ML4MIP is also an emerging field (Zhang et al.| 2023).

A variety of deep learning-based solving methods were proposed to deal with specific MIP prob-
lems, including construction methods (Ma et al., [2019; Xing & Tul 2020; |[Fu et al., 2021; [Zhang
et al., 20205 Khalil et al., 2017 Xin et al., [2021) and iterative-based refinements (Wu et al., [2021b}
Chen & Tian, [2019; [Lu et al., 2019; [Li et al., [2020). While they cannot be directly applied to a
wider scope of MIP problems, and thus learning the solving policies for general MIP problems has
also been intensively studied, in which the primal heuristics catch more attention, including Large
Neighborhood Search (LNS) (Wu et al., [2021aj [Song et al., 2020; Nair et al., [2020a) and Local
Branching (LB) (Liu et al., 2022)). This paper focuses on LNS for solving general MIP problems —
the powerful yet expensive iteration-based heuristics (Hendel, [2022).

Traditional LNS methods usually explore a complex neighborhood by predefined heuristics (Gen-
dreau et al.l [2010), in which the heuristic selection is a long-standing challenging task, especially
for general MIP problems, which may require heavy efforts to design valid heuristics. Learning-
based methods provide a possible direction. Both Imitation Learning (IL) (Song et al., [2020) and

*Corresponding author.

Published as a conference paper at ICLR 2025

Table 1: Comparison of our method to existing works, and it achieves the SOTA performance.

References | Applicability Approach Addressing Local Optima Training
_|Huang et al.|(2023b) Binary LNS Adaptive Neighborhood Size Contrastive Learning
_|Liu et al.|(2022)) Binary Local Branching RL-based Branching Size Regression + RL
_|Wu et al.|(2021a), [Nair et al. |(2020a) Binary LNS / RL
_|Song et al.[(2020) Binary LNS / Imitation & RL

] . ALNS Adaptive Control for . J
7Hendel (2022)] General MIP (Heuristic in B&B) Multiple Heuristics Multi-armed Bandit

Sonnerat et al.|(2021) General MIP LNS Adaptive Neighborhood Size Imitation

Branching on . . RL (LNS) +

BTBS-LNS (Ours) General MIP top of LNS Step-wise Global Information Imitation (Branching)

Reinforcement Learning (RL) (Wu et al.,2021a; |Nair et al., 2020a)) showed effectiveness in learning
decomposition-based LNS policies. However, there are still some challenges. The performance of
the learned policies may significantly degrade when applied to general integers due to the vast scale
of candidate values (compared to binary variables), leading to a large complexity in optimization.
Moreover, the learned policies may be trapped in local optimum for complicated cases.

In this paper, we propose a Binarized-Tightening, Branch and Search-based LNS approach (BTBS-
LNS) for general MIP problems. Specifically, we design the “Binarized Tightening” algorithm to
deal with the optimization for general integer variables, where we first binarize the general integer
variables and express them with the resulting bit sequence, and then tighten the bound of original
variables w.r.t. the LNS decision along with the current solution. In this way, the variable bounds can
be tightened and explored effectively at a controlled complexity. Based on our binarization formu-
lation, we further employed an attention-based tripartite graph (Ding et al., [2020) to encode the MIP
instances and improved the attention architecture by removing the softmax normalization, which
allows us to fully preserve the raw weights between neighboring nodes. Meanwhile, to enhance ex-
ploration and optimize some wrongly-fixed backdoor variables (Williams et al., 2003; Khalil et al.,
2022) by the learned LNS policy, we leverage an extra branching network at each step, providing
branching decisions at the global viewto help escape local optimum. In a nutshell, this paper can
be characterized by the following bullets, which we believe are common building blocks:

1) Bound Tightening for MIP. We propose a new “Binarized Tightening” scheme for general MIP
problems with an efficient embodiment of variable encoding and bound tightening techniques.

2) Combining global information step by step with LNS. To assist the learned policy in escaping
the local optimum efficiently, we devise an extra variable branching mechanism to select and opti-
mize the LNS wrongly fixed backdoor variables, by contrast with the global optimum. The hybrid
branch and search policy greatly enhance exploration and show efficiency.

3) Problem encoding with improved attention architecture. We employ an attention-based tripar-
tite graph to encode MIP problems and capture correlations using an improved attention approach,
which demonstrates empirical effectiveness.

4) Strong empirical results. Experiments on seven MIP problems show that our method con-
sistently outperforms the LNS baselines and open-source SCIP (Gamrath et al., 2020). On MI-
PLIB2017 benchmar chosen by Hans Mittelmann, it even achieves superior performance over
Gurobi, purely taking SCIP as the baseline solver. It can further boost Gurobi when taking Gurobi
as the baseline solver (see Appendix [A.4).

We summarize the key related works in Table[I] and elaborate on more details in Appendix[A.1]
2 PRELIMINARIES

Mixed Integer Program (MIP) is in general defined as:

min c¢'x

st. Ax<b (D
z; € {0,1},Vi € B;z; € ZtVj € Gyap, > 0,Vk € C

where x € R"™ is a vector of n decision variables; ¢ € R™ denotes the vector of objective coefficients.
Ax < b denotes the overall m linear constraints, where A € R™*" represents the incidence

' A broader context that goes beyond the immediate LNS observations, e.g., contrast with global optimum.
Zhttps://plato.asu.edu/bench.html

Published as a conference paper at ICLR 2025

Current solution X,

‘ Initial feasible solution [O . O . O O . . [ub -

Tighten
_—

Ib Ib

Neighborhood Search

s

LNS decisions

min ¢’x

obj
si. Ax<b
x, el0,1},VjeB
Y ez \Vjeg —> g
x,20,¥jeC =

Input MIP
Graph Representation

lSub-MIP

MIP solver

Optimized solution X

suod

uonn|os uaund ayepdn

1+1

00000000

l Static
Branch
0 Correct the wrong LNS decisions

Encode
7N —

Branching Policy
general integers 1 Update dynamic features

O variable to optimize ' Current solution O Variable to branch O re-optimized solution

Figure 1: Overview of BTBS-LNS. First, we propose “Binarize Tightening” to handle general in-
teger variables. The Binarize mechanism can binary-encode the variables and split them into sub-
optimization bits. With the bit-wise decision by LNS, the variable bounds can be refined by bound
tightening. Second, we devise a branching network on top of LNS to select wrongly fixed backdoor
variables at a global view, which may help efficiently escape local optimum in some cases.

matrix, with b € R™. For general MIP instances, the index set of n variables N := {1, ...,n} can
be partitioned into three sets, binary variable set 3, general integer variable set G and continuous
variable set C. MIP presents greater challenges compared to integer programming (Wu et al.,[2021a)
as the continuous variables may require distinct optimization policies with integer variables.

Large Neighborhood Search (LNS) is a powerful yet expensive heuristic (Gendreau et al., 2010).
It takes the best solution so far x* as input and searches for the local optimum in its neighborhood:

/ : T
= 2
X argxer]r\lil(?c*){c x} 2)

where N (-) is a predefined neighborhood - the search scope at each step, and x’ denotes the opti-
mized solution within N (x*), obtained by destroying and re-optimization from the current solution.

Compared to local search heuristics, LNS can be more effective by using a broader neighborhood.
However, the selection of neighborhood function N (-) is nontrivial. Heuristic methods mainly rely
on problem-specific operators, e.g., 2-opt (Flood, |1956)) in TSP, which call for considerable trial-
and-error and domain knowledge (Papadimitriou & Steiglitz, [1998)). The currently popular learning-
based approaches mainly focus on binary variables and may be trapped in local optimum due to
the learning complexity. In this paper, we propose a binarized-tightening branch-and-search LNS
approach, designed to address general MIP problems. It may efficiently escape local optimum when
the LNS decisions are unreliable in some scenarios.

3 METHODOLOGY

3.1 OVERVIEW

Fig. (1] presents the overview of our approach. The input is a MIP instance, with its initial fea-
sible solution x(generated by a baseline solver. General integer variables are first encoded into
binary substitute variables, and the instance is subsequently represented as a tripartite graph (Ding
et al., [2020), which is then fed into the large neighborhood search network, selecting the variable
subsets that may need to be optimized at each step, with the remaining variables fixed or bound-
tightened (see Sec. [3.2]and [3.3). Additionally, we devise an extra branching network to select some
wrongly-fixed backdoor variables by the learned LNS policy, to help escape local optimum. With
the sequential decisions of the branch and search policy and the resulting tightened variable bounds,
an off-the-shelf solver, e.g. SCIP, is applied to obtain the optimized feasible solution x; ;. Iterations
continue until the time limit is reached, and the optimized solutions can be obtained.

In general, the neighborhood search policy and branching policy are trained sequentially, where
the training details are described in Sec. [3.3]and Sec. [3.4] respectively. They optimize the current
solution from different views and may remedy the local search drawbacks in some cases.

Published as a conference paper at ICLR 2025

3.2 THE BINARIZED TIGHTENING SCHEME

Variables in general MIP instances can be divided into three categories: binary, general integer (with
arbitrary large value), and continuous variables. Previous studies mainly focused on the binary vari-
ables (0/1). Limited values greatly simplify the optimization, making it easier to deal with compared
to the general integer variables, and some learning frameworks have proved their effectiveness (Wu
et al., [2021a} [Song et al.l 2020). In this paper, we concentrated on more general MIP problems,
especially for general integer variables.

An intuitive method is to directly migrate some efficient binary LNS approaches, e.g., [Wu et al.
(2021a), to general integers. In this way, different types of variables are equally treated. At each
step, we fix some of the variables (no matter what type the variable belongs to), and solve the
sub-MIP with a baseline solver e.g. SCIP (Gamrath et al.l [2020) or Gurobi (G., 2020). However,
empirical results revealed that the simplified generalized LNS approach (e.g., RL-LNS (Wu et al.,
2021a)) is much slower and significantly underperforms the MIP solvers, e.g., Gurobi. (see Table]
and Fig. [3|for detail comparison.)

To address these challenges, we propose the Algorithm 1 Bound tightening for Integer variable x;
so-called “Binarized Tightening” scheme for Require: Initial lower, upper bound of z;: b, ub;

MIP. The idea is to confine the variables within Current solution value: T; =Dp;

a narrow range around the current solution, Binary LNS decision for z;: af for un-
rather than directly fixing them, to balance bounded variables, and {a§j| j=12,..d}
exploration and exploitation. It shares simi- for others. ’

lar insights with local search, which relies on Ensure: Tightened Ib, ub

the current best solution to guide the search, 1. jf z; unbounded then

thus avoiding blind search throughout the en- 2. if b existed and a} = 0 then

tire solution space. Specifically, we repre- 3. ub=2p—1b

sent each general integer variable with d = 4: else if ub existed and a’ = 0 then

[log, (ub — 1b)] binary variables at a decreas- 5. Ib=2p—ub

ing magnitude, where ub and [b are the upper 6. end if

and lower bounds of the original variable, re- 7. else

spectively. The subsequent optimization is ap- 8: d = [log, (ub — Ib)]

plied to the substitute binary variables, indicat- 9. for j =0:d do

ing whether the current solution is reliable or 1¢: if al . = 0 then

not. In this way, we transform the LNS for ;. lb7: max(1b, p — 1/2(ub — Ib));
the original variable into multiple decisions on 5. ub = min(ub, p + 1/2(ub — Ib));
substitution variables. Note that the unbounded 3. else

variables where ub or [b does not exist, will not 4. break:

be encoded and will remain a single variable. 15: end if

The decision for each substitute variable can be 16: end for

obtained from the LNS policy (see Sec.3:3), 17 end if

where 0 means the variable indicates reliability

at the current encoded bit, and 1 means it still needs exploration. We design a bound-tightening
scheme to fully use the bit-wise dec1s1ons in Alg.[T](see Appendix.[A.9|for an example). Specifically,
let a! . represent the decision for the j* substitute variable of variable i at step ¢. Decisions a’ .
for all j are checked and the upper and lower bounds will be tightened around the current solution
whenever a! i; = 0,asin L1neh Therefore, more fixed substitute variables can contribute to
tighter bounds. In our embodiment, variables that sit far from both bounds can have a significantly
wider exploration scope than close-to-bound variables, as they showed no explicit “preference” on
either bound direction, which is significantly different from Nair et al.| (2020b)) (see Appendix
for detailed discussion). Tightening on either bound when the current solution sits precisely at the
midpoint of variable bounds, may contribute to performance degradation, which conceptually drives
us to design the bound tightening scheme, tightening the bounds on the far side iteratively.

In addition, as for unbounded variables, meticulous analysis of MIPLIB2017 benchmark (Gleixner
et al.| [2021) revealed that all unbounded variables within the instances are characterized by un-
bounded in only one direction, which means that either Ib or ub will exist for all general integer
variables (otherwise it will be free to optimize in our implementation). In this respect, we define
a virtual upper (lower) bound when a! = 0 as in Line and which share similar insights with
regular variables to put the current solution at precisely the midpoint of the updated bounds.

Published as a conference paper at ICLR 2025

3.3 GRAPH-BASED LNS POLICY PARAMETERIZATION

A bipartite graph is recently popularly utilized in Gasse et al.[(2019), Nair et al.| (2020b), and |Wu
et al.| (2021a)) to represent the MIP instance states. However, the objective is not explicitly con-
sidered, which may contribute to performance degradation in some cases, e.g., when all discrete
variables do not exist in the objectives (Yoonl, 2022). To capture the correlations between objectives
with variables and constraints reasonably, we propose to describe the input instance as a tripartite
graph G = (V,C, O, &), where V, C, and O denote the variable, constraint, and objective nodes, and
& denotes the edges. The features of nodes and edges can refer to Appendix where the new
objective node representations are defined as the average states of corresponding variables.

We parameterize the policy g (a¢|s¢) by an attention-based Graph Convolution Network (GCN).
Different from Graph Attention Networks (GATs) utilized in (Velickovi¢ et al.l |2018}; |Ding et al.
2020), we remove the soffmax normalization to fully reserve the raw weights between neighboring
nodes and edges, capturing the contributions for each node to the final objectives (see Table [2] []
for comparison with traditional message passing mechanism: LNS-ATT). The C — V passing is as
follows (likewise for others):

> wj(hj+hy,)
hi*! = fey [CONCAT | nf, 572

IC NN)

where h! and hg“ are the features of node ¢ and edge (i, j) at step ¢; fcy is a 2-layer perceptron with

relu activation that maps the current states to the next iteration h’;“; N; denotes the neighborhood
nodes of ¢ and |C N IV;] is the counts of neighborhood constraint nodes for node 4, used to normalize
the weighted sum neighboring features; wf.j denotes the weighted coefficient between node ¢ and
node j at step ¢, measuring their correlations as follows, where Wy, is the weight matrix between
constraint and variable.

wi; = 0s(Wey - CONCAT (b, h!, , hY)) “4)
At each graph attention layer, the message passing between different types of nodes are V — O,
0O—=CV—->CC—0,0—=V,C— YV, which are calculated as Eq. [3| sequentially. In this
way, after K iterations, the features for both the nodes and edges are updated. We finally process
the variable nodes by a multi-layer perceptron and the output value can be regarded as the destroy
probability for each variable at this step, serving as the neighborhood search policy in Fig. |1} It is
trained with Q-actor-critic by RL, following the same protocol with Wu et al.| (2021a)), while with
the following differences:

States: We adopt an attentional tripartite graph to capture correlations among variables, constraints,
and objectives. The features are gathered in Table[7]in the Appendix.

Actions: For the general variable x; with d substitutes, the LNS decision at step ¢ will contain d

binary actions a} ;» indicating the current solution reliable or not at each encoded bit j (see Alg. .

Transition and rewards: We follow the same protocol as in (Wu et al.,2021a)), where the next state
S¢+1 is obtained by the baseline solver, and the reward is defined as objective improvements.

3.4 STEP-WISE GLOBAL INFORMATION BY BRANCHING

As discussed above, previous single-policy ap- S —— N — :

Current solution i LNS policy ;

proaches were easily trapped in local optimum gggsesee] eeessceee] e |
at an early stage in some complicated tasks, due D comon P j
to .the learn1pg complie)gty and limited explo- @ vrabies aesioyea vy s |oooooseso‘_g‘:mls?lw?nlooooo eve]
ration even in the training phase. To remedy — © fremswer ! U Ul 3
this issue, an intuition is to select and optimize sl fom curetsokon -SRI L A
those wrongly fixed backdoor variables by LNS

policy at each step. With this insight, we pro-
posed to learn an extra branching network with
imitation learning on top of LNS to filter out those variables at each step. Note that it was only
applied to binary variables which are more likely to be backdoors that were fixed earlier, leading to
local optima.

Figure 2: Global branching vs Local branching on
different label collection schemes

Published as a conference paper at ICLR 2025

The most critical issue for the branching
policy learning is the collection of branch-
ing variable labels. In other words, we
need to figure out how to identify the po-
tentially wrongly-fixed variables at each
step. We proposed two different variants,
which deal with the issue in global and lo-
cal view respectively as in Fig.

Global branching (BTBS-LNS-G): It
gathers labels from the fixed variables by
LNS at each step and contrasts them with
the global optimal solution. Variables that
exhibit differing values between these so-
lutions are indicative of potentially mis-
classified variables within the current LN'S
decisions from a global perspective. Since
the global optimal solution may be too dif-
ficult to acquire in a reasonable time, it

Algorithm 2 Offline training of branching policy for LNS

Require: graph-based states S = {s;|t =1,2,...,n}

LNS decisions at each step N = {m|t =
n}

branching variable labels B = {b:|t = 1,2,...,n}

collected from the global or local branching;

Ensure: trained policy mg(B|S, N)

: // Samples are collected by resolving the training

instances, along with the learned LNS;,

: LetD = {((St, nt), bt)lt = 1, 2, 777,}
: // train the model;

: Initialize all learnable parameters 6,

: while stopping criteria not meet do

Randomly select a batch of instances D¢ from

D;

Optimize 6 by minimizing cross-entropy loss;
end while

was replaced by the best-known solution obtained across various approaches within the same time

budget.

Local branching (BTBS-LNS-L): Dif-
ferent from the global view contrast, it
gathers labels by incorporating the follow-
ing local branching constraints (Liu et al.,
2022)) at each step:

Dol —all <k 5)

i€EBNF

where F is the currently fixed variables
set by LNS. With this extra constraint, the
re-defined sub-MIP can be solved by the
baseline solver, and up to K changed fixed
variables will be selected at a local view as
the branching variable labels at the current
step. The selected variables are regarded
as locally wrongly fixed variables by LNS.

With the collected labels for each variable,
branch (1) or not (0), the branching net-
work can be trained offline. The inputs
are tripartite graph-based features (see Ta-
ble [7] in the Appendix), where we addi-
tionally append the LNS decisions made
by the learned LNS policy as variable fea-
tures, as we only focused on the fixed vari-
ables for extra branching. Note that the
input states are collected by resolving the
training instances, along with the learned
LNS policy. The labels are also gathered
within the resolving at each step. Then the
graph-based features are fed into a similar

Algorithm 3 Branch and search at the

tth step

Require: Number of variables n;

LNS decisions N* = {ntli = 1,2,..., },
branching decisions B! = {bt|z =1,2,..,n};

variable set x = {z;|i = 1,2,. },
best solution at the t*" step xt = {zlli =
2,..,n};

The ratio for branching variables r;

Ensure: x'*1;

1:

Let D = 0;

2: for j =0:ndo

3:
4:

9:
10:
11:
12:
13:

14:
15:

16:

5
6:
7
8

if z; is general integer variable then
Tighten the bound as in Alg. using nfj
(with d separate decisions for each substitute
variable);
else
if b! = 1 and z; is binary variable then
D=D U {i};
else
if n! = 0 then
Fix the value :cﬁ“ =zl
end if
end if
end if
end for

add constraint 3 [zt — 2t <rn to sub-MIP;
zED

t+1 with the solver;

Optimize x

graph attention network as described in Sec. [3.3]to update the node/edge representations. We finally
process the variable nodes by a multi-layer perceptron (MLP) and the output value can be regarded
as the branching probability for each variable at this step. Cross-entropy loss was utilized to train the
branching network to bring the outputs closer to the collected labels, with the pipeline as in Alg.

Except for the label collection scheme, BTBS-LNS-L and BTBS-LNS-G remain all the same. The
branching policy takes effect on top of LNS, enhancing exploration and optimizing its wrongly fixed
backdoor variables at each step. The pipeline for the hybrid framework is given in Alg. [3| where

Published as a conference paper at ICLR 2025

Table 2: Comparison on binary Integer Programming (IP) problems: SC, MIS, CA, MC. We also let
SCIP run for a longer time (500s with SCIP (500s) and 1000s with SCIP (1000s), respectively). So
for Gurobi and our BTBS-LNS in other tables.

Methods Set Covering (SC) Maximal Independent Set (MIS) Combinatorial Auction (CA) Maximum Cut (MC)
Gap% PI Gap% PI Gap% PI (x10%) Gap% PI
SCIP 323 20225 0.25 31225 4.71 3312.4 8.01 15193
SCIP (500s) 1.40 / 0.18 / 3.36 / 7.11 /
SCIP (1000s) 1.06 / 0.09 / 2.40 / 6.87 /
U-LNS 3.84 22459 1.50 11454 9.42 4003.0 6.72 11565
R-LNS 4.17 23015 1.29 693.45 6.92 3631.2 6.33 10923
FT-LNS 3.48 20988 1.42 1103.7 9.83 4123.6 6.30 10554
DINS 3.97 22735 1.24 657.5 4.48 33374 575 10006
GINS 3.81 22197 0.75 683.6 6.90 3599.8 5.41 9765.0
RINS 3.63 21835 1.32 816.5 7.33 3843.4 6.04 10277
RENS 2.35 19112 0.79 792.36 4.40 31252 5.29 9116
RL-LNS 1.29 17623 0.07 182.63 2.36 2271.6 4.25 6538
Branching 1.72 18007 0.07 183.44 3.09 2492.7 3.99 6104
GNN-GBDT 1.78 18169 0.22 295.43 224 2206.9 4.85 7492
CL-LNS 0.92 17025 0.07 182.99 2.05 2198.5 3.03 3883.5
LNS-TG 0.66 16828 0.08 182.24 2.32 22478 3.05 4782.6
LNS-Branch 1.11 17234 0.09 182.19 2.36 22753 3.73 5840.0
LNS-ATT 0.65 16714 0.07 182.10 2.23 2231.5 2.99 3975.1
BTBS-LNS-L 047 16234 0.05 181.47 2.18 2196.8 1.99 2518
BTBS-LNS-G 0.35 16205 0.05 178.35 143 1998.9 0.59 785
Gurobi 0.75 16796 0 173.15 1.44 2075.4 0.62 842

Table 3: Generalization to large-scale binary IP instances using the trained policies from small
problems in Sec. [.2]

Methods Set Covering (SC2) Maximal Independent Set (MIS2) Combinatorial Auclioq (CA2) Maximum Cut (MC2)
Gap% PI Gap% PI Gap% PI(x10%) Gap% PI
SCIP 4.51 14953 345 9542.1 17.87 12312 8.38 30039
SCIP (500s) 2.74 / 0.86 / 8.18 / 8.26 /
SCIP (1000s) 1.37 / 0.52 / 5.13 / 8.13 /
U-LNS 3.96 14268 0.97 2778.5 8.53 8032.5 7.03 24862
R-LNS 3.94 14392 0.71 2079.3 6.34 7050.0 6.52 22450
FT-LNS 4.49 14885 0.96 2765.6 9.08 83242 6.44 22347
DINS 2.99 13916 0.65 1935.4 6.11 6848.5 7.02 24815
GINS 3.14 14008 0.69 20115 6.74 7433.7 6.52 22477
RINS 2.95 13793 0.58 1844.7 6.55 71293 6.75 23619
RENS 2.78 13465 0.55 1782.6 6.02 6735.2 6.23 20959
RL-LNS 1.66 13007 0.51 1524.7 4.13 5933.4 320 8449.6
Branching 1.53 12916 0.55 1769.4 4.52 6142.7 3.19 7857.3
GNN-GBDT 1.78 13069 0.55 1549.3 3.44 5508.9 2.79 6533.7
CL-LNS 141 12914 0.41 1298.5 351 5621.7 2.83 7184.1
BTBS-LNS-L 0.51 12431 0.04 543.69 1.67 4800.3 1.45 33859
BTBS-LNS-G 0.68 12498 0.02 515.28 1.89 5012.6 1.44 3397.5
Gurobi 0.71 12528 0.01 495.88 3.60 57235 1.01 2195.6
Methods Set Covering (SC4) Maximal Ind dent Set (MIS4) Combinatorial Auclioq (CA4) Maximum Cut (MC4)
Gap% PI Gap% PI Gap% PI(x10%) Gap% PI
SCIP 541 15524 345 22745 16.61 25275 871 78510
SCIP (500s) 4.21 / 3.44 / 16.61 / 8.69 /
SCIP (1000s) 3.05 / 3.03 / 16.61 / 8.46 /
U-LNS 342 14814 1.41 9759.0 7.42 16470 7.39 68245
R-LNS 3.26 14747 0.98 7745.5 6.19 15875 6.98 64712
FT-LNS 3.75 14882 1.30 9150.3 8.30 17328 7.02 65329
DINS 3.23 14725 1.03 7982.4 5.02 14789 6.97 64593
GINS 3.28 14782 0.85 7244.7 5.99 15538 7.04 65778
RINS 2.96 14599 1.09 8218.0 5.78 15309 6.89 63575
RENS 2.95 14573 0.82 6972.1 5.17 14916 6.85 62998
RL-LNS 3.73 14866 0.57 5365.1 352 13572 3.76 39645
Branching 3.39 14689 0.64 5744.8 3.37 13349 4.21 42718
GNN-GBDT 3.45 14169 0.59 5233.5 2.86 12853 4.52 45423
CL-LNS 3.39 14325 0.45 4533.4 2.99 13025 3.29 37384
BTBS-LNS-L 0.84 13716 0.07 21404 1.39 11128 1.52 21195
BTBS-LNS-G 1.20 13789 0.11 2636.9 1.46 11705 1.51 20984
Gurobi 1.22 13795 0.04 2215.7 12.61 21959 5.38 51298

we fix or tighten the bounds for some variables by the LNS policy (see Line[d} [I0), and select some
variables that were labeled 1 by the branching policy (see Line[6} [7) for extra branching. The hybrid
branch and search policy work together to formulate the sub-MIP at each step.

4 EXPERIMENTS

4.1 SETTINGS AND PROTOCOLS

Peer methods. We compare with the following baselines in a 200s time limit by default.

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solvers, and were
fine-tuned with the aggressive mode to focus on improving the objectives.

2) U-LNS(Wu et al., 2021a), R-LNS(Song et al.,[2020): randomized LNS following its implemen-
tation as in|Wu et al.|(2021a) and |Song et al.|(2020).

3) DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS
(Berthold, 2014): heuristic-based LNS policies that were common utilized.

Published as a conference paper at ICLR 2025

RENS
RL-LNS
scIp

0.6
Gurobi

0.1 \\wz BTBS-LNS

T T T] 0+ T T
0 50 100 150 200 0 500 1000 1500
Time (second) Time (second)

Figure 3: Performance on Item (Left) & AMIPLIB (Right).

Average Primal Gap

Average Primal Gap
g

[T

4) FT-LNS (Song et al.; 2020), RL-LNS (Wu et al., 2021a), Branching (Sonnerat et al., 2021),
CL-LNS (Huang et al., 2023b) and GNN-GBDT (Ye et al., 2023): some learning-based LNS
policies with imitation learning or RL, following the same protocol as its original implementation.

5) LNS-TG, LNS-Branch, LNS-IBT, LNS-IT, LNS-ATT: Degraded versions of BTBS-LNS,
where we 1) replace the tripartite graph with bipartite graph (LNS-TG); ii) remove the extra branch-
ing (LNS-Branch); iii) remove the binarized encoding (LNS-IBT) and bound tightening (LNS-IT);
iv) replace the attention-based graph network with widely used GAT (Velickovi¢ et al.,2018) (LNS-
ATT). Refer to Appendix for details.

6) BTBS-LNS-F: A variant of BTBS-LNS, where we replace our bound tightening mechanism with
(Nair et al .| [2020D)).

Instances. It covers both binary and MIP problems. We follow (Wu et al., 2021a) to test four NP-
hard binary Integer Programming Problems: Set Covering (SC), Maximal Independent Set (MIS),
Combinatorial Auction (CA), and Maximum Cut (MC). We generate 200, 20, and 100 instances
as training, validation, and testing sets, respectively. To evaluate the generalization ability, we also
generate scale-transfer test instances, such as SC2 and MIS4 in Table 3| The suffix number refers to
instance scales, for which the details are gathered in Table §]in Appendix [A.2]

We also test on two MIP datasets in Machine Learning for Combinatorial Optimization (ML4CO)
competitio Balanced Item Placement (Item) and Anonymous MIPLIB (AMIPLIB), on their of-
ficial testing instances. Balanced Item Placement contained 1050 binary variables, 33 continuous
variables, and 195 constraints per instance. The anonymous MIPLIB consists of a curated set of
instances from MIPLIB2017, a long-standing benchmark for MIP solvers with diverse distributions,
in which general integer variables are included. We also show empirical results on the whole MI-
PLIB2017 benchmark set in Sec. where our BTBS-LNS even surpasses Gurobi on average.

Hyperparameters. We run experiments on an Intel 2.50GHz CPU. Performance comparison on
CPU vs GPU version of our approach is given in Appendix[A.5] All the approaches were evaluated
with three different seeds, and the average performance was reported (see detailed stability analysis
in Appendix[A.6). We use the open-source SCIP (v7.0.3) as the baseline solver by default (recall the
blue box in Fig.[I)). Gurobi version experiments are gathered in Appendix [A.4] We train 20 epochs
for each instance, with 50 iterations per epoch and a 2s re-optimization time limit per iteration.
LNS and branching are trained sequentially, with RL (see Sec. [3.3) and imitation learning (see
Sec. [3.4), respectively. The graph convolutional layers were set as K = 2 for both policies, with
64-dimensional latent representations for the nodes and edges. Specifically for branching, we set the
max branching variables k¥ = 50 in Eq. |5|for the local branching variant. In the inference phase, the
branching variable ratio r in Alg. [3|is empirically set to 10% for both branching variants. BTBS-
LNS by default denotes the local branching variant BTBS-LNS-L throughout this paper.

Evaluation metric. We calculate the average primal gap (Nair et al., [2020b) to measure the gap
between the current solution x and the best-known solution x* found by all methods among the N
testing instances, within a fixed time limit 7j:

N
gap = i Z ICiTXi — ciTXi*‘ (6)
N — max{|c, x;|, |, x;*|}

We also calculate the average Primal Integral (PI, (Huang et al., [2023b; |/Achterberg et al., 2012)) to
evaluate the anytime performance within the time limit:

1 on [[T
PI=—=>" / ¢/ xtdt — Toe] x; (7)
N =0

3https://www.ecole.ai/2021/ml4co-competition/

Published as a conference paper at ICLR 2025

where x! denotes the best solution within ¢ for instance i.

4.2 OVERALL PERFORMANCE EVALUATION

Table [2| compares the results for integer programming. As can be seen, compared with SCIP and
all competing LNS baselines, both BTBS-LNS-G and BTBS-LNS-L achieve consistently superior
performance across all problems. LNS-TG, LNS-Branch, and LNS-ATT are degraded versions of
BTBS-LNS, and they all perform slightly worse, revealing the effectiveness of the attention-based
tripartite graph and the extra branching policy. Comparing the two variants, BTBS-LNS-G delivers
consistently superior performance over BTBS-LNS-L, and it even surpasses the leading commercial
solver on SC, CA, and MC. Note that detailed anytime performance on these instances are
shown in Fig. [6|to Fig.[9in Appendix[A.7] further revealing the effectiveness of BTBS-LNS.

We also test our method on two NP-hard MIP prob-

Table 4: Perf MIP inst .
lems, and the results are gathered in Table E} Note avle erformance on mstances

that the anytime primal gap comparison is also Methods ~ Item AMIPLIB
shown in Fig. [} Our method consistently outper- Obj Gap% Pl Gap%
. - . SCIP 2333 50.73 41524 13.72
forms SCIP and the competing LNS baselines and is SCIP (500s) 19.83 39.41 / /
slightly worse than Gurobi, capable of finding even SCIP (1000s) 17.02 31.05 / /
better solutions for around 27% test instances on U-LNS 2039 4429 36856 15.73
R-LNS 2004 43.64 34850 14.96
both Item and AMIPLIB. RL-LNS 2004 4358 34985 1255
. . DINS 18.08 3723 30759 13.10
For the AMIPLIB problem, which contains a curated GINS 1978 4211 135147 13.64
set of instances from MIPLIB, we split the instances RINS 20.53 44.88 36625 13.89
into train, validation, and test sets by 70%, 15%, and RENS 1751 3418 29250 1175

. L s . Branchin 18.84 40.12 32376 1295
15% with cross-validation. Policies learned from di- LNS_TGg 1805 3785 30005 645

verse training instances are directly applied to the LNS-Branch 20.12 4390 3537.0 9.32
test set. We increase the solving and re-optimization]ill\jlss?l;r'}r 15}54 26)91 25 1/2'8 322
time limit at each step to 1800s and 60s for the in- LNS-IT / / / 765
stances, as they are too large to be solved. Differ- “BTBS-LNS-L 1382 1682 20303 4.19

; i BTBS-LNS-G 1345 1578 19125 435
ent from Wu et al.| (2021a)), we consistently utilize BTBS.I NS ; ; / 701
open-source SCIP as the baseline solve.r. As SEEN —Guobi 1267 673 1895.6 0.81
from Table [and Fig. [3] our method significantly
outperforms SCIP and LNS baselines and even de-
livers slightly better performance than Gurobi at an early stage. LNS-IBT, LNS-IT and BTBS-
LNS-F achieve significantly inferior performance than our BTBS-LNS, showing the effect of the

“Binarized Tightening” technique and its superiority over Nair et al.| (2020b).

4.3 PROBLEM-SCALE GENERALIZATION ABILITY STUDY

We test the generalization ability in line with (Wu et al., [2021a) with a 200s time limit. We directly
use the trained policies on small-scale problems in Sec. with results shown in Table 3]

As can be seen, the two variants show similar per- Table 5: Evaluation on CA against Gurobi.
formance on the generalized instances. Compared

with SCIP and all the competing LNS baselines, our Methods Ob'CAZG . Ob‘CA4G .

. ap7o ap7o
approach still delivers significantly superior perfor- Gurobi T L L
mance, showing a better generalization ability. As Gurobi(500s) ~ -224245 095 -431626 3.14

: : Gurobi(1000s) -225629 0.33 -436188 2.11
the problem sizes become larger, it can produce even BTBSINS — 239500 16 439431 139

better results than Gurobi on SC2, SC4, CA2, CA4, BTBS-LNS(500s) -225108 0.56 -445563 0
and MC4, and only slightly inferior on the remain-

ing 3 groups. It suggests that our policies can sometimes be more efficient for larger instances than
the leading commercial solver. Notably, there is a significant gap between BTBS-LNS and Gurobi
for Combinatorial Auction (CA), particularly on CA4.

We further increase the time limit to 500s and 1000s respectively on CA, with results shown in
Table 5] Our method consistently outperforms Gurobi with the same time limit. For CA4, it can
even produce better solutions with a much shorter time limit. It empirically requires over 3 hours
for Gurobi to deliver the same primal gap on CA4, being 58 x slower than our method.

Published as a conference paper at ICLR 2025

— Ttem
— AMIPLIB

0.6 4

0.4

=
o

--- Selected - - - Branching ratio r |
4 | — Optimized : —— Optimized
"y
TR
Ny) i~y
Vet 2

0.2

Average Primal Gap
Ratio of Variables
RatioDf Variable

0+ T T T T T 0- ! T 7 T . T T T T T T
0 5.1072 01 015 02 025 0 10 20 30 40 50 0 10 20 30 40 50
Branching Variable Ratio Iteration Tteration

Figure 4: Impact of different branching ratios (Left). Selected & Optimized variables by the LNS
(Middle) & Branching (Right) on Balanced Item Placement instances. The upper dotted line denotes
the selected variable ratio that can be re-optimized by the learned Search & Branch policy, while the
Solid red line denotes the variable ratio with solution value changes.

Table 6: Performance comparison on the whole MIPLIB2017 benchmark set.

SCIP SCIP(600s) SCIP(900s) U-LNS R-LNS FT-LNS BTBS-LNS BTBS-LNS-F Gurobi
Gap% 15.15 11.08 8.79 16.26 15.94 13.07 1.75 3.11 1.98

4.4 BRANCHING POLICY STUDY BY VARIABLE RATIOS

To enhance exploration, an extra branching policy was developed to incorporate global information
and help the learned LNS policy escape local optimum. Fig. 4| (Left) depicts the impact of branching
variables ratios r (see Alg. [3).

When the ratio » < 0.1, a larger size leads to better performance, optimizing some wrong decisions
made by the learned LNS. Fig. 4| (Right) depicts the filtered and updated variable ratios. As can
be seen, with increasing iterations, a growing number of LNS fixed variables were re-optimized
by the additional branching policy, indicating the LNS decisions were sometimes unreliable. In
other words, incorporating branching on top of LNS was essential to correct potential errors in
the LNS decisions. However, when the branching size becomes extremely large, the performance
significantly degrades constrained by the solving ability.

4.5 EXPERIMENTS ON MIPLIB2017 BENCHMARK

To further evaluate our proposed approach on some heterogeneous and hard instances, we also eval-
uated the whole MIPLIB2017 benchmark set from Hans Mittelmann. It contains 240 instances with
diverse distributions and difficulties. We compared different methods in a 300s time limit, which is
the geometric mean of solving time of the solved instances with SCIP, and the re-optimization time
for each iteration was set as 5s. Other hyperparameters remain the same as AMIPLIB in Sec.
We perform cross-validation for a comprehensive comparison across all instances, splitting them
into training, validation, and testing sets by 70%, 15%, and 15% respectively, at each round. The
policies learned from the diverse training instances are then directly applied to the test set.

The overall comparison results were gathered in Table[6] As can be seen, our proposed BTBS-LNS
can deliver 10% better primal gaps compared with Gurobi and achieve significantly better results
compared with all the competing baselines. Compared with Gurobi, it can deliver better solutions
on 12.4% instances, and obtained equally better solutions on 77% instances, indicating its effec-
tiveness and generalization ability. Furthermore, we notice that BTBS-LNS-F performs slightly
inferior to Gurobi and our approach, further revealing the superior performance of our Binarized
Tightening technique over Nair et al.| (2020b). Detailed per-instance comparisons are gathered in
Appendix[A.8] We also conducted specific experiments on unbounded variables from MIPLIB2017,
which are given in Appendix

5 CONCLUSION AND OUTLOOK

We have proposed a binarized tightening branch and search approach to learn LNS policies. It was
designed to efficiently deal with general MIP problems and delivers superior performance over nu-
merous competing baselines, including MIP solvers, learning and heuristic-based LNS approaches,
on ILP, MIP datasets, and even heterogeneous instances from MIPLIB2017. Sufficient ablation
studies demonstrate the effectiveness of each component. Considering the potential of our proposed
BTBS-LNS on large-scale and cross-distribution instances, the applications in real-world scenarios
may be our future direction.

10

Published as a conference paper at ICLR 2025

REFERENCES

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations Research Proceedings 2011: Selected Papers of
the International Conference on Operations Research (OR 2011), August 30-September 2, 2011,
Zurich, Switzerland, pp. 71-76. Springer, 2012.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405-421, 2021.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33-54,
2014.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

E Danna, E Rothberg, and Pape C Le. Exploring relaxation induced neighborhoods to improve mip
solutions. Mathematical Programming, (1):102, 2005.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 14521459, 2020.

Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61-75, 1956.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474-7482, 2021.

Optimization L L C G. Gurobi optimizer reference manual. 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip optimization
suite 7.0. 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 310-323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087-18097, 2020.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185-221, 2022.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Local branch-
ing relaxation heuristics for integer linear programs. In Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 96—113. Springer Nature Switzer-
land, 2023a. doi: 10.1007/978-3-031-33271-5_7. URL https://doi.org/10.1007%
2F978-3-031-33271-5_7/.

11

https://doi.org/10.1007%2F978-3-031-33271-5_7
https://doi.org/10.1007%2F978-3-031-33271-5_7

Published as a conference paper at ICLR 2025

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 13869-13890. PMLR, 23-29 Jul 2023b. URL https://proceedings.mlr.
press/v202/huang23g.htmll

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. Finding backdoors to integer programs: a
monte carlo tree search framework. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 3786-3795, 2022.

Longkang Li, Hui-Ling Zhen, Mingxuan Yuan, Jiawen Lu, Jia Zeng, Jun Wang, Dirk Schnieders,
et al. Bilevel learning model towards industrial scheduling. arXiv preprint arXiv:2008.04130,
2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198-26211, 2021.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 37963803, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial opti-
mization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Liibbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020b.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley & Sons,
2014.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584-17600. PMLR, 2022a.

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning
to cut by looking ahead: Cutting plane selection via imitation learning. In ICML, 2022b.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012-20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367-9376. PMLR, 2020.

12

https://proceedings.mlr.press/v202/huang23g.html
https://proceedings.mlr.press/v202/huang23g.html

Published as a conference paper at ICLR 2025

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. In IJCAI,
volume 3, pp. 1173-1178, 2003.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075-30087,
2021a.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems.. IEEE transactions on neural networks and learning systems,
2021b.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042-12049, 2021.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to
traveling salesman problem. IEEE Access, 8:108418-108428, 2020.

J. Yan, S. Yang, and E. Hancock. Learning graph matching and related combinatorial optimization
problems. In IJCAI, 2020.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
mizing framework for large-scale integer programming. In International Conference on Machine
Learning, pp. 39864-39878. PMLR, 2023.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 3931-3939, 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621-1632, 2020.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205-217, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 FURTHER DISCUSSION ON RELATED WORK

The main contributions of our BTBS-LNS are the general applicability and the addressing for lo-
cal optima. Most LNS-based approaches (Liu et al., [2022; [Nair et al., 2020a}; Ding et al., 2020;
Song et al.l 2020; Wu et al., 2021a) solely deal with the binary programming problems due to their
simplicity. Recently, some studies have tried to address the general MIP problems (Hendel, |2022;
Sonnerat et al., 2021 |Paulus et al.l [2022a), in which |Nair et al.| (2020b)) proposed a similar ’bound
tightening” technique. They differ from our approach in the following aspects. On one hand, the
binary decision for each encoded variable was only applied for bound tightening in our approach,
rather than directly fixed similar to |Nair et al.| (2020b). And on the other hand, the current solution
value was also considered in bound tightening decisions in our approach. Variables that sit far from
both bounds may have a significantly wider exploration scope than close-to-bound variables, as they
showed no explicit “preference” in either direction. In addition, our approach can easily transfer to
unbounded variables. We made a detailed comparison between the two approaches in Table 4 and
Table 6. As can be seen, our BTBS-LNS consistently outperforms BTBS-LNS-F, demonstrating
the effectiveness of our novel “Binarized Tightening” technique.

As for the local optima challenge, a few studies have tried Adaptive Neighborhood Size (ANS)
(Huang et al., 2023aibj [Sonnerat et al.l |2021)) or hybrid heuristics control (Hendel, [2022)), while
it still requires hand-crafted hyperparameters, which are essential but difficult to determine. To
address it more adaptively, we proposed to combine global-view information on top of LNS. When
trapped in local optima, extra branching has the potential to select those wrongly fixed backdoor
variables by the learned LNS policy for re-optimization. It is important to note that the concept of
branching extends beyond the confines of the local branching (Sonnerat et al.l [2021) and we also
devised a novel variant termed “global branching”, which can deliver even better performance in
some cases. In addition, the major difference between our hybrid framework and the pure local
branching approach (Sonnerat et al., 2021)) lies in that we concentrate solely on variables fixed by
LNS to correct its decisions, rather than the whole variable set. This specificity arises from the
observation that LNS frequently converges to local optima when a limited number of backdoor
variables are inaccurately fixed. Empirical results in Table 2, 3, and 4 demonstrated that our BTBS-
LNS consistently outperforms the Branching baseline by Sonnerat et al.| (2021)).

We further review other studies related to ours, which can be divided into two categories: One is
learning-based methods for specific MIP problems and the other is for general MIP problems.

Policy learning for specific MIP Problems: MIP problems cover numerous real-world tasks in
many fields (Paschos||[2014) and quite a few studies attempt to solve certain types of problems, such
as Traveling Salesman Problem (TSP) and Vehicle Routing Problems (VRP) (Li et al.l 2021} |Lu
et al.,2019), etc. The algorithms can be divided into construction methods and learned improvement
heuristics.

Construction methods usually attempt to directly learn approximate optimal solutions, like Graph
Pointer Networks (GPNs) (Ma et al., [2019) and Monte Carlo tree search (Xing & Tul [2020; [Fu
et al.| 2021)) for TSP instances. Compared to construction models, methods that learn improvement
heuristics can often deliver better performance, by learning to iteratively improve the solution (Wu
et al.,|2021a). The improvement heuristics can be a guide for the next solution selection (Wu et al.,
2021b), or policy to pick heuristics (Chen & Tian} 2019)), or refinement from the current solution (Lu
et al., [2019; [Li et al., [2020). In general, both the learned improvement heuristics and construction
methods have proved valid in some specific problems. In contrast, this paper aims to solve general
MIP problems by learning improvement heuristic policies.

Learning to solve general MIP problems: Dual and primal are two main perspectives to improve
solving efficiency for general MIP problems. Specifically, dual view aims to improve inner policies
of Branch and Bound, like variable selection (Gasse et al., {2019} |Zarpellon et al., 2021} |Gupta et al.
2020), node selection (He et al., [2014)) and cut selection (Tang et al., |2020; [Paulus et al.l 2022bjal).
With a better decision at each node, the overall solving process can be greatly simplified.

In the primal perspective, the algorithms aim to find better feasible solutions by prediction or
learning-based heuristics. For example, Ding et al.| (2020) learned a tripartite graph-based deep

14

Published as a conference paper at ICLR 2025

Table 7: Description of the tripartite graph features.

Tensor Feature Description
variable type (binary, integer, continuous).
objective coefficient.
lower and upper bound.
reduced cost.
solution value fractionality.
(dynamic) solution value in incumbent.
(dynamic) average solution value.
(dynamic) best solution value.
(Branching Only) LNS decisions at current step.
cosine similarity with objective.
c tightness indicator in LP solution.
dual solution value.
bias value, normalized with constraint coefficients
(@) average states of related variables.
V-C constraint coefficient per variable.
V-0O objective coefficient per variable.
C - 0O constraint right-hand-side (RHS) coefficients.

Table 8: Average variable/constraints of instances

Training Generalization
SC MIS CA MC SC2 MIS2 CA2 MC2 SC4 MIS4 CA4 MC4
Variables 1000 1500 4000 2975 2000 3000 8000 5975 4000 6000 16000 11975
Constraints 5000 5939 2674 4950 5000 11933 5344 9950 5000 23905 10717 19950

Num of

Table 9: Training, Validation and Test accuracy for graph-based branching network.

Local Branching Global Branching
SC MIS CA MC Item AMIPLIB| SC MIS CA MC Item AMIPLIB
Train% 895 849 79.6 863 855 77.5 869 873 815 885 834 75.9
Validation% | 84.8 83.5 75.1 82.1 828 74.9 83.7 849 809 87.0 818 75.1
Test% 825 81.6 729 805 815 74.2 83.1 82.6 80.1 845 80.7 73.8

neural network to generate partial assignments for binary variables, and to deal with the general
integer variables, [Nair et al.| (2020b) proposed a bound tightening mechanism and learned partial
assignments for each bit, respectively. Nevertheless, they were only applied in neural diving, and
directly fixing may also lead to performance degradation or even infeasibility. To obtain broader
applicability, learning-based primal heuristics, like large neighborhood search (Huang et al., 2023b;
Song et al., 2020} |Sonnerat et al., 2021} Nair et al} [2020a), and local branching (Liu et al.l |2022),
gradually catch more attention.

In this paper, we mainly focus on large neighborhood search heuristics, which have achieved re-
markable progress in recent years. For example, [Hendel (2022) designed an adaptive approach to
combine multiple existing LNS heuristics to enhance the performance of a single policy, while it
is largely limited by the rule-based heuristics and requires hand-crafted hyperparameters. To make
it further, learning a better neighborhood function became popular recently. |[Sonnerat et al.| (2021)
and Song et al.| (2020) both utilized imitation learning to select variable subsets to optimize at each
step. However, the equal-size subsets make it inflexible and dramatically limit the performance. In
this respect, Wu et al.| (2021a)) factorized the LNS policy into elementary actions on each variable
and trained an RL-based policy to select variable subsets dynamically. However, current studies on
LNS mainly focus on binary variables and are often susceptible to local optima even in the training
phase due to the problem’s complexity. In this respect, we propose a binarized-tightening branch
and search approach to learn more efficient LNS policies for general problems.

A.2 DETAIL FOR THE EXPERIMENTS

Tripartite graph-based features: We describe in Table [/| the variable, constraint, objective, and
multi-source edge features of the tripartite graph utilized in both the LNS and branching policy

15

Published as a conference paper at ICLR 2025

Table 10: Performance comparison on MIPLIB2017 instances that contained unbounded variables.

Instance SCIP U-LNS R-LNS FT-LNS BTBS-LNSw/oubd BTBS-LNS Gurobi
gen-ip054 6858.879 6858.879 6852.733 6858.879 6852.733 6852.733 6840.966*
gen-ip002 -4783.733*% -4772.597 -4772.597 -4768.253 -4783.733* -4783.733*% -4783.733*

neos-3046615-murg 1610 1670 1651 1651 1610 1607 1600*
buildingenergy 42652.34 42652.34 42652.34 42652.34 34243.89 33324.73 33283.85*

learning in detail. Then we will clarify the features and connections for the encoded substitute
variables. They are also characterized by static and dynamic features. For static features, the variable
type and bounds are set to binary and 1/0, respectively, while other features are directly inherited
from the original integer variables. For dynamic features, the solution value for each substitute
variable is determined based on the encoded results. For example, for a general integer variable with
arange of [0, 7], if the current solution value is 5, the solution values of the three substitute variables
would be 1, 0, 1. Additionally, the connections between the substitute variables and other nodes are
directly inherited from the original integer variables.

Except for the dynamic solving status, all the other features are collected at the root node of the
search tree, and the dynamic features are collected along with the optimization process.

Sizes for the generated instances with different difficulties: The average variable and constraint
size used in our experiments are listed in Table [8] which consists of small-scale training instances
and some hard instances to evaluate the generalization ability.

Accuracy for the imitation learning based branching policy: Table] reports the training, valida-
tion, and testing accuracy of the global and local branching variants.

We compare our proposed BTBS-LNS with various baselines, which are explained as follows in
detail:

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solver, and were
fine-tuned with the aggressive mode to focus on improving the objectives.

2) U-LNS: an LNS version that uniformly samples variables at a fixed subset size. Note that for
U-LNS, R-LNS and FT-LNS, we perform the same settings as|(Wu et al.|(2021a)).

3) R-LNS: an LNS version (Song et al.|[2020)) that randomly groups variables into equal subsets and
re-optimizes them.

4) DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS
(Berthold, 2014)): heuristic-based LNS policies.

5) FT-LNS (Song et al., 2020): an LNS approach that applies imitation learning to learn the best
R-LNS policies.

6) RL-LNS (Wu et al., 2021a): Reinforcement learning LNS approach for variable subset opti-
mization, while mainly focused on binary variable optimization.

7) Branching (Sonnerat et al.,2021): An imitation learning-based LNS approach that learned from
local branching constraints.

8) LNS-TG: A variant of our method, where we replace the tripartite graph with the widely used
bipartite graph.

10) LNS-Branch: A variant of our method, where we remove the extra branching policy.

11) LNS-IBT: A variant of our method, where the general integer variables are equally treated as
binary variables.

12) LNS-IT: A variant of our method, where we remove the “Tightening” technique and fix the
integer variable to its current solution when either bit is fixed.

13) LNS-ATT: A variant of our method, where we replace our attention-based graph attention net-
work with the widely used GAT.

14) BTBS-LNS-F: A variant of our method, where we replace our bound tightening mechanism
with that proposed by [Nair et al.|(2020b).

16

Published as a conference paper at ICLR 2025

Table 11: Experiments with Gurobi as the baseline for binary Integer Programming (IP)

Methods SC MIS CA MC
Gap% PI Gap% PI Gap% PI(x10%) Gap% PI
U-LNS 259 18820 041 63532 3.78 2690.5 4.07 5633.8
R-LNS 3.01 18925 034 54571 485 2999.0 3.75 5189.5
FT-LNS 338 19521 0.73 46245 440 2856.4 379 52147
RL-LNS 1.57 16911 0.09 17994 1.37 2029.1 352 48125
BTBS-LNS 0.28 15987 0 165.24 0.27 1710.6 0.38 426.89
Gurobi 0.75 16796 0 173.15 144 2075.4 0.62 842

Table 12: Generalization to large-scale binary integer programming (IP) instances with Gurobi as
the baseline

SC2 MIS2 CA2 MC2
Gap% Pl Gap% PI Gap% PI(x10%) Gap% PI
U-LNS 248 13599 032 1551.6 3.06 54421 376 13713
R-LNS 273 14052 055 18452 260 51120 375 13359
FT-LNS 329 14338 028 14852 372 58235 404 13753
BTBS-LNS = 028 12275 0 46238 047 41251 0.01 35045
Gurobi 0.71 12528 0.01 49588 3.60 5723.5 1.01 21956
Methods SC4 MIS4 CA4 MC4
Gap% PI Gap% PI Gap% PI(x10%) Gap% PI
U-LNS 256 14150 064 55157 4.02 15712 495 46965
R-LNS 236 14112 052 48463 3.95 15275 484 46380
FT-LNS 334 14515 054 49150 3.68 14588 478 45795
BTBS-LNS = 027 13424 0.01 2051.8 0.67 10025 0 11034
Gurobi 122 13795 004 22157 1261 21959 538 51298

Note that the work by |Sonnerat et al.| (2021) doesn’t have open-source code and some hyperpa-
rameters are difficult to fine-tune in different problems. However, to further evaluate our proposed
framework with pure local branching based methods, we try to reproduce them, with the following
details:

1) For a fair comparison, we replace the neural diving in|Sonnerat et al.|(2021)) with an initial feasible
solution generated by SCIP, the same as our approach.

2) In data collection, the desired Hamming radius 7, are selected as 50, the same as our branching
policy.

3) The model structure was the same as its descriptions, where we use the code provided by |Gasse
et al.[(2019)), and additionally use a fixed-size window (3 in the paper) of past variable assignments
as variable features.

4) In the inference phase with the learned policy, we performed the same action sampling mechanism
as in|Sonnerat et al.|(2021). As for the adaptive neighborhood size, we start with 10% of the integer
variable size, and the dynamic factor a was tuned from 1.01 to 1.05. Best-performing parameters
will be selected for comparison in each problem. As a result, on SC and MIS, a was set as 1.02, and
a = 1.03 can deliver the best performance on other problems.

A.3 DETAILED ANALYSIS ON MIPLIB2017

In Sec. 4.5, we evaluated our approach on Typle 13: Evaluation by Gurobi as baseline solver
the whole MIPLIB2017 benchmark set, which (MIP).

showed superior performance. To further eval-

uate the effectiveness of our novel virtual bound Methods Ob GItef; - A%/HPI(;IB
technique specifically for unbounded integer d ap %o apr

. U-LNS 17.64 36.08 3004.3 6.44
variables (see Alg. 1), we conducted an ex- R-LNS 1662 3194 27886 6.01
tensive analysis across all instances featured FT-LNS 1564 2731 25194 545
in the MIPLIB2017 benchmark set. Notably, BTBS-LNS 1227 4.56 1823.7 0.47
there are 19 and 4 instances that contained un- Gurobi 12.67 6.73 1895.6 0.81

bounded integer variables before and after the

presolve, respectively. In this section, we compared our BTBS-LNS with a variant BTBS-LNSw/o
ubd, where the special handling for unbounded integer variables (see Line 2-6 in Alg. 1) is removed.
In other words, unbounded variables were free to optimize at each step. The comparison results on
the four instances that still contain unbounded variables after presolve are gathered in Table

17

Published as a conference paper at ICLR 2025

Table 14: Average Standard Deviations for our proposed BTBS-LNS on different problems.

Methods . sC . SC2 . SC4
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | 547.88+0.59% 0.47 £ 0.88% 29356 £0.77% 0.51 £0.68% | 169.80£0.68% 0.84 £ 1.01%
Methods MIS MIS2 MIS4
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -685.86 +0.74% 0.05 +0.78% | -1372.66 + 0.51% 0.04 +0.21% | -2747.04 + 0.32% 0.07 + 0.19%
Methods . CA . CA2 . CA4
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -112864 + 0.32% 2.18 £0.29% | -222590 +0.39% 1.67 £0.41% | -439431 +£0.33% 1.39 + 0.49%
Methods . MC . MC2 . MC4
” Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -909.17 £0.48% 1.99 £0.52% | -1831.00 £ 0.66% 1.45 +0.58% -3664 + 0.73% 1.52 £+ 0.84%
Methods Item AMIPLIB MIPLIB2017
i Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS 13.82 + 1.09% 16.82 £+ 0.96% / 419+ 1.51% / 1.75 £ 1.62%

As can be seen, our proposed BTBS-LNS, outperforms the variant BTBS-LNSw/o ubd on two in-
stances and achieves parity on the other two. These findings underscore the potent effectiveness of
our proposed bound-tightening technique, substantiating its value in enhancing solution quality and
optimization efficiency. We will continue the experimentation on more unbounded MIP problems in
the future.

A.4 GUROBI VERSION OF OUR BTBS-LNS

To evaluate the performance of different approaches with Gurobi as the baseline solver, we perform
extensive experiments on MIP problems, four binary integer programming problems, and their scale-
transfer instances.

The hyperparameters remain unchanged from those in SCIP counterparts. The results of four bi-
nary integer programming problems and their scale-transfer instances are gathered in Table [T1]and
Table[I2] The comparison results on MIP problems are reported in Table[T3] As can be seen, our
BTBS-LNS consistently outperforms Gurobi across all the problems with different sizes, indicating
the effectiveness and generalization ability to different solvers.

A.5 EXPERIMENTS WITH CPU vs GPU

All the experiments presented in Sec. 4 were performed on the Intel(R) Xeon(R) E5-2678 v3
2.50GHz CPU with 4 physical cores, and it achieved competitive performance even compared with
the leading commercial solver. In this section, we will further evaluate the GPU version (NVIDIA
GeForce RTX 2080) of our proposed BTBS-LNS on the balanced item placement problem.

Fig. 3 depicts the anytime primal gap comparison between the CPU and GPU versions in detail
within the 200s time limit. As can be seen, compared with CPU implementation, GPU version
BTBS-LNS delivers slightly better performance almost at any time, in which the overall primal
gap and primal integral improve by 0.83% and 0.99%, respectively. In other words, our proposed
BTBS-LNS may achieve even better performance when implemented in a GPU environment.

A.6 STABILITY ANALYSIS OF OUR APPROACH

To make a fair comparison between different competing ap- 06
proaches, all the experiments in Sec. 4 were conducted with))
three different seeds. The average standard deviations for our

proposed BTBS-LNS on different problems are gathered in 0l ‘ ‘ ‘ .
Table[T4] As can be seen, it is fairly robust to different seeds, 0 P e ooy
with average standard deviations lower than 2% even on hard

and heterogeneous problems, like MIPLIB2017.

Average Primal Gap
o
=

Figure 5: Anytime Performance
comparison (GPU vs CPU).

A.7 DETAILED ANYTIME PERFORMANCE ON INTEGER PROGRAMMING PROBLEMS
To further evaluate the anytime performance among the competing approaches, we plot the anytime

primal gap curves on four binary integer programming problems, Set Covering (SC), Maximal Inde-
pendent Set (MIS), Combinatorial Auction (CA), and Maximum Cut (MC), respectively. The results

are gathered in Figure 6] [} respectively.

18

Published as a conference paper at ICLR 2025

& o & — RENS
o 0.2 o 0.2 o 0.2 —— Branching
E g E RL-LNS
= ‘B ‘B — SCIP
% 0.1 33 0.1 % 0.1 —— Gurobi
g g g Ny — BTBS-LNS
3 ~ s g ~—
< — < <
0 T 0 T T 0 T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (second) Time (second) Time (second)

Figure 6: Anytime Performance on Set Covering (SC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from SC, SC2, SC4. (see Table [§] for
detail).

—2

8 10 0.15 0.2 RENS
g 5 I .
] 6 &) 9 (.15 —— Branching
E E 01 E RL-LNS
£ 4 E £ 01 SCIP
2) 10-2 2 A} —— Gurobi

b < 5 —_— -

S 2 5 5§ 10-2 BTBS-LNS
< < <

0 T | 0 T T 0 T |

o=

T T T T d T T
0 50 100 150 200 0 50 100 150 200 50 100 150 200
Time (second) Time (second) Time (second)

Figure 7: Anytime Performance on Maximal Independent Set (MIS) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from MIS, MIS2, MIS4. (see
Table 8] for detail).

0.4 0.4
g 03 & g — RENS
© © 03 O 03 —— Branching
= = = RL-LNS
£ 02 E £
& £ 02 £ 02 —_ SCIP'
Py o Py — Gurobi
g 0.1 g 0.1 g 0.1 —— BTBS-LNS
< S Z < ~——
0 T T T) 0 T T T l 0 T T T]
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (second) Time (second) Time (second)

Figure 8: Anytime Performance on Combinatorial Auction (CA) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from CA, CA2, CA4. (see
Table 8] for detail).

0.3 0.3

o = o — RENS
o 02 o] o} —— Branching
é é 0.2 g 0.2 RL-LNS
=1 =1 =i — SCIP
% 0.1 'ﬁ % —— Gurobi
g N\ g 01 g 01 — BTBS-LNS
2 — — 2
z z — z

0 T T i 0 - T] 0 T T |

o

T T T T
0 50 100 150 200 0 50 100 150 200 50 100 150 200
Time (second) Time (second) Time (second)

Figure 9: Anytime Performance on Maximum Cut (MC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from MC, MC2, MC4. (see Table |§| for
detail).

As seen from the results, our BTBS-LNS delivers consistently superior performance over the com-
peting LNS baselines almost at any point, demonstrating its efficiency and effectiveness. More
surprisingly, the proposed approach can achieve superior performance over the leading commercial
solver in some cases, especially on the scale-transfer instances, purely by the learned policy on
small-scale instances, with SCIP as the off-the-shelf solver.

A.8 PER-INSTANCE PERFORMANCE COMPARISON ON MIPLIB2017

Considering that the results on MIPLIB2017 instances may deliver high variances due to the sig-
nificantly different problem distributions across instances, showing only the average gap may not
be sufficient. In this respect, we report the detailed per-instance performance within the given time
limit on the competing approaches, and the results are gathered in Table[T3]

19

Published as a conference paper at ICLR 2025

We report 218/240 instances from the MIPLIB2017 benchmark set. The following instances were
removed, as no feasible solution can be found for them within the pre-defined time limit by the
off-the-shelf solver SCIP:

1) Instances that are infeasible (6):

* bnatt500

* cryptanalysiskb128n50bj14
 thnw-binpack4-4

* neos-2075418-temuka

* neos-3988577-wolgan

* neos859080

2) Instances that cannot generate feasible solution by the baseline solver within timelimit (16):

* cryptanalysiskb128n50bj16
* gfd-schedulen180f7d50m30k18
* highschooll-aigio

* irish-electricity

* neos-1354092

* neos-3402454-bohle

* neos-4532248-waihi

* neos-5104907-jarama

* neos-5114902-kasavu

* ns1116954

* ns1952667

* peg-solitaire-a3

* physiciansched3-3

* rail02

* supportcasel9

* supportcase22

A.9 A SMALL NUMERICAL EXAMPLE FOR ALG.[T]

Consider a general integer variable xy with a [0, 15] range and a current solution of 3. This variable
is encoded using 4 substitution binary Variables 20,1, 0,2, To,3, and xg 4. At each LNS iteration
t, distinct actions aU 1 ao 2 aU 3, and aU 4 are taken for each substitution variable, controlling the
range of the orlglnal variable at different levels of significance. Specifically, the decision actions
aO’ ; for all j are evaluated sequentially, and the upper and lower bounds are tightened around the

current solution whenever ag" ; =0, as described in Line of Alg.|l1| Here are some examples:

1. If ag ; = 0 and the others are 1, the updated bounds for 2 will be [0, 10].

2. If af ; = af 5 = 0 and the others are 1, the updated bounds for zo will be [0, 8].
3. ..

4. If all decision actions are 0, the updated bounds for z will be [0, 6], with the current solu-
tion precisely at the midpoint of the variable bounds. Similarly, when the current solution
is 12, the updated bounds will be [9, 15].

In each LNS iteration, our bound-tightening method refines the variable bounds around the current
solution, guided by the LNS decisions, to balance computational complexity and exploration effi-
ciency. Importantly, this bound-tightening process is conducted independently at each step, always
initiating from the original variable bounds.

20

Published as a conference paper at ICLR 2025

9CTIvLE 9°CIbLE 9°CIbLE 9CIPLE €T1699S €T1699S €T 16995 9F'€L88E S8'6LI9Y €T1699S 10-800SMP
L¥9°782101 €87101 £8Z101 £87101 ¥rE101 YrE101 L68901 £87101L £87101 €87101 €C-G7-93ekeIp
Y8 €EEE0T PECEOT PEEEOT PEEEOL PEEEOT PEEEOT PECEOT PEEEOT PEEEOL PECEOT €2-001-93efeip
091~ 091~ 091~ 091~ €€1- SI- SI- 091~ 091~ 091~ 7duwoodp
ST6'9LS ST6'9LS ST6°9LS ST6°9LS 91¢€'LLS STLI8S STL'ISS ST6°9LS ST6'9LS ST6'9LS G gouep
SPE9LS SPE'9LS SPE'9LS SPE'9LS S9LS S9LS SLY'LLS SPE'9LS SPE'9LS SPE'9LS £ gouep
L6 96- L6 L6 8- 08- 98- 6" 6" €6 68-8C119[8A0

€L1 €LT €LT €LT PLI 8LI 9LI €LT €LT €LT 800PaY2sd
IS¢ IS¢ IS¢ 1S€ PS¢ 96¢ 79¢ 1S€ 1S€ 79¢ LOOPAYOsd
1768715C 1$68¥1ST 168H1ST 168P1ST | 0L0Y91ST 008TCTST 008TTLST I¥68YIST IH68PIST 008TTILST HNN-99TI800
YL 88 88 SL STt 0ST 0S¢ Tl 6L1 0S¢ xpig-1zdwod

9 9 €T 9 8L ey 81 81 81 €78 xpig-,0duwod

Tl- - - - 8- I1- I1- - - - S01Pod
90'T¥66£9C 90°TH66£9T | 90°TH66€97 90°TH66£9T | 0TLEESIT OTLEESIT OTLEESIL OTLEESIT 0TLEESIT OTLEESII 001-09
144 614 T8¢ (414 €6T 692 192 (414 ¥ST 192 ¥~ 0SLSIND
06£68LSS 06£68LSS 06£68LSS 06£68LSS | 00VITOLS 00VITO6LS — 00VITOLS — 00YIT6LS — 00VIT6LS — 00ITOLS 8-8-4Z-0sdspguo
¥ | 4 14 v 14 14 14 14 14 14 L-T1 SXapuioneworyo

¥ |2 14 14 14 12 |2 14 14 14 L2701 XopUIonewonyd

0 0 0 0 0 91°¢y 91°¢y 0 0 0 ©30-SQ0
$8'€8T€E S8'€87EE 8€°0STHE ELYTEEE | YETSITY YETSITY vETSITY 8E0STHE 8€°0STHE $ETSITH A310ua3urp[ing
T ve It a4 201 201 201 201 201 201 glizeiq

39 €S €S €S ¥S 96 9s €S €S €S 80-7oddq

I I I I I I I I I I 00theUq

Sy 16tY St'16vY S'I6bY SY'16b 99°€967 99°€961 I'61LY LL TY9¥ I'61LY 80 YLy 8621-d[q
125029 12°S029 12°S029 12°S029 66'S9S9 E€V'8S9 665959 LL€YT9 11°€0€9 66°5959 g6Ie-d[q
TTHL9 L9 L9 L9 YTEPLY 8LLYL9 9L'9bL9 L9 L9 LY "0 [Texyuiq
¥SL pSL pSL pSL SSL 6SL 6SL PSL pSL pSL £0A9[seaq

€T 8YTYT €T 8YTH8T- +'9¥508¢C- v'9vS08C- | ¥'9vS08C- $'9vS08C- $'9¥S08C- TITI6LL- TITI6LT- TITI6LT- 9qeq
TIEPPSLSE- 96°STSLSE- 6'T60bSE- 6'T60bSE- 1607SE€- L'Y90bSE- LY90¥SE- LH90bSE- Lb90bSE- L ¥90¥S¢- 79eq
STYYSYT STYHSHT STHPSHT STYPSYT Y'6LE9T 9I'IE0LT SLOYSLT TO'ILSST SSH00LT 91'1€0LT 11919
10°06 10°06 10°06 10°06 10°€6 10°S6 10°¢6 10°€6 10°€6 10°86 dr-ejuepe
Tie 4 4 44 (44 44 4 4 v1¢ 44 (4 ¥4 4 ¥4 8-G-JusIsse

It~ | - 1" 6T €T % 1" 1" €T z-1dde

€- €- €- €- €- % €- €- €- € [-1dde
¥LE9T PLEIT PLEIT PLEIT 1++9C PLEIT 6£¥9C PLEIT PLEIT pLEIT soue

0 9 Sy 9 8TT 8TC 87T 8TT 8CT 87T [[BWSI[qBIWIIOILPEIE
8I'TI¢EE SI'TIEE YT SIEE SI'TIESE I0VEEE LEOVEE 8EPTEE 8I'ElEe T6'91€€ LEOYEE 01-A0S
20¢ 20€ 20€ 20€ 20€ 20€ £6¢ 20€ 20€ 20€ 890TUQ¢
uonnjog [ewndo 1qoany A-SNT-SALd SNT-SALd | SNT-LA SN'T-¥ SNT-0 (S006)dIDS (S009)dIDS dIDS duejsuf

L10Z9TTdIIN uo uostreduros souewiojrad aoue)sur-104 G 9qel,

21

Published as a conference paper at ICLR 2025

0vS0T- 0bS0T- 0rs0z- 0bS0T- 00+0Z- 0vS0T- 0vS0T- 0vS0T- 0vs0T- 0vs0T- ZgyAzzw
8ILICT SILIT SILIT- SILIT 8/91¢- 8991¢- 8/91¢- SILIT SILIT SILIT [[AZZW
£650°0 €550°0 £550°0 €550°0 £550°0 6980°0 6980°0 £550°0 £550°0 £550°0 189q-wooIysnur

S EPI601 S'E€PI601 S'EPI601 S'E€PI601L ¥'66€TLE ¥659¢ ¥659¢ LOSYET 1" LyPT8T ¥'66€TLE [wnjuawous
1'18%92¢ 1 18¥97¢ L'18%97€ 1 I8¥97¢ L'I8¥97¢ 9:0789Z¢ 9'0289Z¢ L' 18¥97¢ L'18¥97¢ I 18¥97¢ 1-07-73-9-Z [A-O[Tu
10€TS- 10€TS- 10€TS- 10€Ts- 10€TS- 10€TS- 10€TS- 10€TS- 10€TS- 10€TS- $-6.-02-0ST- Y
€1611T €I611T €I611T €I611T 11621¢ ¥L8T1C ¥L8T1C €1611T €1611T €I611T payosout
68911 68911 68911 68911 96811 [E€LT1 0TLIT 68911 68911 68911 [ot
S0°S000% S0°S000¥ S0°S000% S0°S000¥ S0°S000¥ S0°S000¥ S0°S000¥ S0°S000¥ S0°S000¥ S0°S000¥ 9Lsewr
LS8T° 10811 6110811 6L T08IT 61 T081T 6110811 6110811 6110811 6110811 6110811 6110811 pLsewr
I 1 11 1 1€ 9¢ 1€ 8¢C 8C 1€ ZoreysyTRW

I I I I I I € I I I 0 Teysyrewt

II- - I1I- Ir- £8- 8L- 8- I1I- 601- 8L- ¥0-61,91dew
S61- S6b- S6b- S6b- Ly 01+~ 897~ S6b- S6b- 08%- o1dew
8920°0 820°0 8970°0 8970°0 76£0°0 TLLOO L90°0 75€0°0 8€0°0 L90°0 pew
S6108%1 101761 S6108¥1 S6108H1 78956¥1 898L6ST L869291 096€8%1 €TEYSYL 898.6S1 9ZI8)0]
7L LOYOY I¥PLLOYOY 00T1£5S0T 00TIESSOY | 000F¥P9€y 00TO0L9EY 0OISTI8EY 0068S6¥CH 0090609C+ 00TO0LIEH 209
9€GLTTHOY 9ESLTTHOY 007686701 00686707 | 00128167y 00IS6EEHY 000912887 00T60LOIY 00¥009CI¥ 00TSS961H 109]
¥C 4 LT 4 44 34 9 6€ v 34 [qo-G-payos1o9]
887¢- 887¢- jad jud 0T~ Y0~ 0T~ 887¢- £62- ¥0C- WoOoIysnuI |y
80°70C 80°b0T 80°v07 80°p0T L6L'Y1T 196°C1C L6L'Y1T 80'07 80'07 80°b0T JJoIno-ou-[nque)st
6V'6SI1CI 6V 6S1ZIL 6" 6S1TL 6V 6S1ZIL S 19121 S 19121 709121 6V 6S1TIL 6V 6S1ZIL 6V 6S1ZIL dur
SLE9 SLE9 SLE9 SLE9 9L£9 8¢9 SLE9 SLE9 8¢9 °6£9 UOISUS) ™/ GIIOL
o€ h6E 756¢ r6E TS6¢ SY6¢ 756€ SY6¢ SY6¢ SY6¢ [enudjod/ 601
168¢- 158¢- 1582- 1582- 1582- 1582- 1582- 1582- 1582- 1582- -pro1dyiod£y
1°28€9 1°78€9 1°78€9 1°78€9 1°78€9 1°78€9 19'91%9 1°78€9 1°78€9 1°78£9 POZE9X08Y
98961 98961 88961 98961 TLL6T 87861 87861 98961 98961 98961 urewop-mexpydess

6" 6" 6" 6" 6" 8- 8- 6" 6" 6" pueI-0z-ozydess
£€'856L09¢C- L'TT6L09T- €'8S6L097- €£'8S6L09T- 0£69092- L8ES09C- S9¥509C- 0£69092- 0£69092- 1.8909¢" 0S-g¢-nwg
LEEELIOYT- €ELIOVT- 8590t~ €ELIOVT- 8S+90¥C- 8S+90¥C- 8S¥90¥C- 8S¥90¥C- 8S¥90¥C- 8S¥90¥C- Ot-S¢-nwig
0092100021 00921000ZT | 009ZI000ZL 009TI000ZI | 009ZT000ZL 009TI000ZL 009TI000ZI 009ZI000ZI 009ZT000ZI 009ZI000ZL #SSe[3
€T €T %4 €T ¥ ST ST %4 %4 %4 95-SSE[S
9'698S60LY 00SSETLY 0£90t+8Y 0£90t+81 0£90t+81 0£90t+81 0£90t+81 06196081 06196081 0£90t+81 LIueuIog
L6°0789 L6'0¥89 85°8689 €L77589 888589 €L°7589 888589 L6089 L6089 888589 #60d1-uag
€L 8Ly €L'ESLY- €CTLLY- €L'ESLY- ST8ILY- 9TLLY- 9TLLY- €L'ESLY- €L'ESLY- €L'ESLY- 200dr-ua3
8¢l 8€T SET 8El 8El orl1 8El 8El 8El orl1 11eqy

0 0 0 0 0 0 0 0 0 0 8t-poedurq-muyy

0€¢ 0€2 (174 0£2 0€2 9¢T 0€2 0€2 (1154 0€2 T0S9ITU-WwISX)sey
YLT pLT pLI pLT PLT SLT 9LT pLT vLI pLI L0S0ISe]
L8859 L88S9 L88S9 L88S9 L88S9 L88S9 L88S9 L88S9 L88S9 L88S9 6-6-005-1-dxo
18 18 18 18 18 18 18 18 18 18 6%9

001 001 001 001 001 001 001 001 001 001 01%9

LE LE LE LE LE LE LE LE LE LE PIeyIYSIud
76°088 10°€26 76°088 76°088 €S PP €S PP €S PP LL'S66 LL'S66 LY €IET T-101VIR
800°'7€6 800'€6 800'v€6 800'€6 800'b€6 ¥L9°L86 ¥L9°L86 800'€6 800'b€6 800'€6 €61
uonnjo§ [ewndo 1qoany A-SNT-SALd SNT-SdLd SN'T-LA SN'T-d SNT-N (5006)dIDS (5009)dIDS dIDS dueysuy

22

Published as a conference paper at ICLR 2025

102¢ 107€ 107€ 107€ 102€ L9T€ 107€ 102€ 107€ 107€ 00£098-s02u
£7'86€T 21°902¢ £"8S€T €V"8S€T 09965€2C1 09965€21 09965€21 ¥$6S€T 7$°6S€T 09965€C1 685818-s09U
20011 200°CIT 200°CTIT 200°C11 200°T11 200°CI1 200211 200°T11 200°CI1 200°TIT GL1,T8-s0du
0¢ 0g 0g 0€ 0g 0€ 0g o€ 0€ o€ £€6L8L-S03U
08¢181 08€H8T 06£¥81 08€H8T S¥E0SHT ¥70STT S €66¥CT S6L9781 SSYLY8I S¥E0SHT 691799-s09u
€02 €07 €02 €07 ¥1T ¥1C ¥1T ¥1T ¥1C ¥1¢ 0TLI€9-s0su
#8€00°0 #8€00°0 $8€00°0 $8€00°0 90%00°0 81+00°0 81%00°0 $8€00°0 $8€00°0 90t00°0 INWOIU-1 7766 S-S03U
62011°0 62011°0 62011°0 62011°0 LSTIT'0 LSTIT'0 LSTIT'0 LOZIT'0 LSTIT'0 LSTIT0 1e))eU-8()888 [G-SOU
SH9¢ SP9¢ SP9¢ Sh9g 8S1Y €6Ct v61¥ #69¢ YrLE 8T odeyey-£66.015-S03u
0929 0L29 0979 0929 9899 0969 9899 9899 9899 9899 wnyeny-/ gee60S-soau
281 4] 781 81 €62 €6¢ €6¢ Y81 €6¢ €6¢ 19U K2-€(1TSOS-SOU
9§ 798 009 98 009 9¢9 9¢9 9¢9 9¢9 9¢9 BZUBNI-EG/ 61(G-S0U
01,2192 188+19¢ 01LT19T (1) 954 £'74 9058292 90$8.9C 9058.9C SELYTIT 095292 9058.9C [93199-Z /9t S61-S02U
6£0°€191 6€£0°€T91 6€£0°€191 6£0°€191 SE€L'09L9 SE€L'09L9 S€L°09L9 S€L°09L9 SE€L'09L9 S€L°09L9 nINS0)-4ZEE9/ S0
LS6LT9E8T LS6LT9E8T LS6LTIE8T LS6LTIEST | 00SOI0S8T 006C99S8T 006799S8C 00I089€8T 008089€8C 00SOT10SST OJBI)B-Z [68€L-SOdU
L'600ST L'600ST 99'60£5¢ L'600ST " LLTIT ¥ LLTIT 88'LOLLT 88°0127ST 88°01¢ST ' 8EYST USPPIM-¢HRTTL-SO0dU
1L°S9TLT 1L°S9TLT 1L°S9TLT 1L°S9TLT 81°89CLT 8+°89CLT 81°89TLT 81°89CLT 8+°89CLT 81'89TLT D{eIN-0€0Ly9H-S0U
LESY LE'SY LE'SY LE'SY 6’18 ¥6°1S LE'SY LE'SY BLN-] LE [H-S09U
8€°€E 8€°€E 8€°€€ #1°6€ P1°6¢ v1°6¢ ¥1°6¢ P1°6¢€ BNA®)-1/8/8€H-SOU
ILp] €LY1 ILVL 6LY1 6LY1 434! €LY1 YLYT Amous-y088¢ ¢-s0au
91+1'C 9IHIT 9IIHI'T €181°9 YShyL €I181°9 S6SL'T €618°C ANYRI-Z690EH-S0U

S 0621 S 0v6TIL S'0P6TI L1°TE8E1 L1TE8€1 L1°TE8EL L6'6£9¢€1 L6'6£9€1 EPPIU-08HSLE-SOU
1L1€1- ILIET- 0zIgl- LTIET- 1°L9011- 1'L9011- 1°L9011- 1°L9011- 1°L90T1- nowny-g/(9$9¢-soau
79°685886 79°S85886 79°S85886 79°S85886 9'10£686 9'10£686 8°900066 9'10£686 9'10£686 9'10£686 Tesey-891/79¢-S0U
Lye- LyE- LyE- L'pg- LyE- L'pg- LyE- LyE- LbE- Lye- BUWERIN-$()6SSGE-SOU
$TL90°0 STL90°0 STL90°0 STL90°0 SL180°0 STL90°0 SLL800 STL90°0 STL90°0 STL90°0 UIq0q-$6Z 0 E-S0U
€St 135 4 St (%4 134 PS €St 134 (%4 €St LIYME-9(T [8 E-SOdU
0zT€IL 0ZEIL SLTIV] SLTIVI SLTIVI 091161 SLTIV] 091161 09T11ST 09T11ST uund-[€691 z¢-sodu
966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 966L0€9 nqnu-618¢80¢-s0U
0091 0091 1191 LO91T 1691 1691 0L91 LO9T 0191 0191 3INW-G1994(¢-S0dU
96.9T 95.9T 6VELT 95L9T 02891 9v¥L6 69718 9€EIL 9r¥L6 0289t ANOJ-ZS61T0E-SOU

0 0 0 0 0 0 0 0 0 0 eY-9Z0F00E-S0U
88670LL09" 88670LL09- | 886T0LL09- 886TOLL09- | 886TOLL09- 886TOLLO9- 886TOLL09- 886T0LLO9- 886TOLL0O9- 886T0LLO9- $90[-0[£/86C-S03U
6919088¢€°C- 88¢°T- 88¢°T- 88¢°T- 88€°C- 88¢°C- L61'C- 88¢°C- 88¢°T- 88¢°T- 9pUI-£618L6Z-S0U
7'8002 7°8007 9'660C 7°8002 9'660C 9'660C 9'660C 9'660C 9'660C 9'660C U00pP-6869t/ C-S03U
SLOTS'T SLOIS'I €TL SLOIS'I €TL 90'8 €TL €TL €TL €TL BUID-G7G/,G9Z-S0U
16 16 16 16 16 16 16 16 16 16 0CHT8S[-s0du

9L1 9LT 8LI 9LT 981 781 L0T ¥81 781 981 6L69S1-s03u
€8LLI- €8LLI- €8LLI- €8LLT- €8LLI- €8LLI- €8LLI- €8LLT- €8LLT- €8LLI- S9LSt1-sodu
S61- S6lI- S6lI- S6I- 061- 061- €LI- 61- 61- 061- LELTLTT-S0U
60¢- 60€- 60€- 60€- 60€- So¢g- LOE- 60€- 60€- 60€- 817 1L11-S03U
191 191 191 191 191 191 191 191 191 191 L¥0TTI1-S03u
S018 SO18 SO18 SOI8 SO18 SO0I8 S0v8 SO18 SO018 SO18 ¢-gu
0080€1 0080€T 0080€T 0080€T 0080€T 00tIET 0080€T 0080€T 0080€T 0080€T 9gAIpEU
00228 0022s 002Ts 002Ts 00tCS 009¢S 0082S 002TS 002Ts 0092S bggbaszu
uonnjog feumdQ 1qoany A-SNT-SALd SNT-SALd SNT-LA SNT-I SNT-N (5006)dIDS (S009)dIDS dIds duE)suy

23

Published as a conference paper at ICLR 2025

12°€9- 17°€9- 17°€9- 17°€9- LT'€9- 129~ 1+'29- LT'€9- L'€Y LET1Y- yugeydyegior
09711 0911 0911 09¥11 0911 TLYIL 9LST1 0911 09¥11 0€STI1 000100-01D020901
6vr61 L6Y61 6bP61 6bP61 88661 6L861 10L61 PES61 6L861 88661 000110-01g020001
89'9- 89°6- 89°'9- 89°'9- S9't- 99°¢- S9'v- L9°S- 99°6- S9'p- 11-6-1100X
£020209- €020209- £020209- €020209- | €0T0209- £0£0¥0S- €0€0F0S- €0T0209- €020209- £070209- [1-p-1001
k434 1Zsy 1Zsy 1Zsy 6815 68t 681 1Zsy 6815 68%S 6d-pozyeu
(%44 (%44 (%44 (%44 LSY vy (444 £ (%44 %44 014d-00117RULI
€090089¢- £090089€- | £090089¢- €090089€- | 0£S66L9€- 0€S66L9€- OLTLLLIE- 0090089E- 0£S66L9E- 0801TLIE- S11Y00[qd1
£66€591 £'S6£S91 £'S6€S91 £'56€S91 8 ISL6LT 8ISL6LT S'9€86LIL 8 ISL6LL 8 ISL6LI 8 ISL6LL 1z-osnjdi-p1
TILE 9€LE TILE TILE SILE 86LE 86LE TILE YILE SILE g-[SIp-g [xpues
YLI pLI pLI PLI pLI SLT 8L1 pLI pLI vLI LOSrex
LSOL LS'0L 68°69- 68°69- 60°69- 6869 68°69- 6069 6069 6069 1ores
8TESSI 1€€SST 6£69S1 0€ESST 96,60 96£5€T 96£5£T ¥SESST PSESST 96£S£T 20-01-Qpwuonerpes
99SL1 L9SLL 69SL1 995.L1 20261 LTS61 £6861 vL881 vL881 LTS61 S0-Z1-gWuoneIpel
0143 (1]23 (123 (123 (1]23 (1]23 (1]23 (1]23 (123 (1123 01deb
LYLI ShLI LI ShLI 916¢ 9162 9162 916 916C 9162 gd1 [xnzZ | uSisspurajod
ELYT LLVT 609¢ 609¢ 6092 6092 6092 6092 609¢ 6092 6dz16zy 1 udisopurdjord
11 11 11 11 11 11 4 11 11 1 d
¥TI8 (74T 748 748 vaIs (74T (748 (741 748 yI8 Lz-moxadid
SS0STI1 SS0SZI SS0SZI SS0SZI SS0SZIL SS0SZI LOLEET SS0SZI SS0SZI §S0SZI 80-noxadid
YTE6Y veeer (24332 vzeey veeer vzeer 74334 vzeer (24332 (74332 Z-9payosueroisfyd
Y6eEtl- [&1334% 1334 VesEPT- | ISVTEVI- 9V YTEPl- 96°01EPI- €8°STEVI- ISWTEVI- 9V bTEVI- y€63d
PEL98- PEPLIS- PEbLIS- PE'bLIS- PEPLIS- $8TI98- $8°T998- PE'PLIS- YE'bLIS- PEPLIS- 3d
8L0S1 8LOST 8L0ST 8L0ST 8L0ST 8L0ST 8L0ST 8L0ST 8L0ST 8L0ST 2881 1x00zd
697E€- 6€1€€- 697€€- 6927€€- 8€69T- 8€59T- 8669~ 790€€- 790€€- TL162T ¥$-012-zwdo
79891 79891 79891 79891 9.891 9,891 9.891 79891 79891 79891 oMU
8¢ 8s 8 8s 8S L9 8s 8 8¢S 8¢S Z0wuLds-payosasinu
SI1 491 L66 LIT 0808 0808 0808 906L 0808 0808 €0IUIY-WNIPIAW-PIYISISINU
S06£S S06£S S06ES S06ES S06£S S06£S S06£S S06£S S06ES S06£S z11d-gznu
72902 77902 77902 77902 91T T79¢T TT9¢€T 77902 77902 77902 £590€81SU
S8EVIT 615~ LO91S- 20°8ps- 20°8ps- 9¢°6T1- 9¢° 67" 9¢' 6T~ 9¢° 67" 9¢°6T1- 9¢'6T- S6609L1SU
€CYTsI- £€'PTST- €EYTSI- €EYTSI- LY6IVI- L998YI- L9'98PI- €€'PIST- €EPIST- L961V1- SS8P9Isu
4 4 /4 4 T 4 7 T /4 4 00780TSU
1€ 6£T 1€2 1€2 LET ILL 1LL 1€2 Y€z 00€ 6-8-02-0S1-dxou
we we e we €9C 8EY006Y 8E¥006¥ €9C 8€Y0061 8€Y006Y UOISIOAIPIOU
vIT [a%4 yIC yIC vIC [S54 vIz [a%4 vIC vIC Z1Ieu
61LE- 61LE- 6ILE- 6ILE- 6ILE- 6ILE- 61LE- 6ILE- 6ILE- 6LLE- gsoau
S1 ST SI SI ST ST ST ST SI SI gsoau
S1°0 ST°0 SI°0 SI°0 1S1°0 L91°0 1L1°0 ST°0 SI°0 SI°0 L1sodu
8€T 8€T- 8€T- 8€T- veT- 0 0 8€T- 8€T- 0 76£096-S03U
9L'LET- 9L'LET- 9L'LET- 9L'LET- 9L°S€CT- 9L°6€T- 9L ¥€C- 9L'LET- 9L'LET- 9L'LET- €7ELS6-800U
4 14 4 4 v S 14 14 4 v THT0S6-S0du
8I¢ 8I€ 8I€ 8I€ 88€T 88€T 68€T 0z¢ 0z€ 88€T 996££6-803U
9L¥S 9L'bS 9L'bS 9L'bS 9L'bS €8S €8S 9L'bS 9L'bS 9L'bS 0L6116-503u
9S9°€11 959°€11 959°€11 959°€11 99°¢Z1 26'TCl €6'ST1 TLTT LTl 6'CTl 190€/8-s03u
uoynpo§ rpwndQ | 1qomd | J-SNT-SALd SNT-SALd | SNT-LA SN'T-¥ SN'T-0 (S006)dIDS (S009)dIDS dIos ERILARY |

24

Published as a conference paper at ICLR 2025

8- 8- 8- 8- 8- 8- 8- 8- 8- 8- uedyoem
SLE6YI- SLE6VI- SLE 6PI- SLE6PT- SLE6PI- TIC9VI- 1€0°LYT- SLE6PI- SLE6PI- SLE'6YI- | 9fgw-Kiows[jews-rea
8G6GE961 8SSSE961 8SSSE961 8SSSE961 | 8SSSEY61 8SSSE96I 8SSSE96L 8SSSE96L 8SSSE96T 0TISE961 L [edjun

vIg yIE L3 fats vIg Sig LI€g vIE fats Si¢g qoidqns-jon
PIET°€6601 €1'660T 1€TSO11 1€TSOTT I89L10C 60°STESY 60°8TESY SLLYEST 60'8TE8Y £ ECTEOY 695800N
I¥°LOSTI I#°LOSTIL 1#°LOSTI I#°LOSTL IP°LOSTL 8Y'LOSIL THLOSIL I¥°LOSTT I¥°LOSTY I#°LOSTT Z19sedon
L8TT L8'TT L8TT L8'TT L8'TT 54 L8TT %4 %Y %Y Jundiy
LSY681S L8P6SIS 7951618 LSP68IS 06L186ST SYTT8TL 0OISETT8I 0OISETTSI 0I8€TT81 0€9SSTST ojusn
06282 06782 0ST6T 06282 0ST62 0978C 06782 0978 0978 0Tr62 goouB)sUIUTET)
0T8IL 0Z8IL 0S6TL 0Z8IL 0816L 060t8 0816L 0TYLL 0TPLL 0816L gddouejsururen
96S0€1 96S0ET 96S0€1 96S0€T 8090€ 1 96S0€1L 8090€1 96S0€1 96S0€T 96S0€1 0211
TLLYIL TLLYIL TLLYIL TLLYYL TLLYIL SPE99L 99199L TLLYIL TLLYIL TLLYIL 1qewn
LIYOY LIYOV LIPOY LIPOY TEPOY TEVOY TEVOY TEPOY 01€£68 01€6S Aepppgioy
91'tC 9I'be 9I'vT 9I'be 9I'be 16'tC TIse 9I'vT 9I'bC 88'I€1 yromiau-dyq)
9L'L6E 9L'L6E 9L'L6€E 9L'L6E 9L'L6€E 9L'L6€E £€°66€ 9L°L6E 9L°L6E 9L'L6E gyiems
LO'6LE LO'6LE LO6LE LO'6LE LO'6LE 1S°18€ LO'6LE LO'6LE LO'6LE LO'6LE [yems
€TTTEN- €TTIENT- €TTTIENT- €TTTENN- | €TTTENN- €TTTENN- 8T6TII- €TTTENN- €TTTENI- €TTTENL- Laseouioddns
87°9061S 81°9061S 81°9061S 81°9061S 81'9061S 9L1T6IS 9LIT6IS 9L'1T6IS 9LIT6IS 9L'IT6IS gaseopoddns
98SL°L 98SL°L €ILLL 98SL'L T18L°L S89LL 8L9LL €89L°L 61008 ¥060'8 Zposeapoddns
1€°9STHT 1€°9SThe 1€°9STHT 1€°9STHT 6076TrT 98'8LYYT 8L'S9VPT 8L°S9PYT 8L'SOVYT 98'8LYPT otdseouroddns
She- She- She- She- She- Spe- otg- She- She- She- ¢goseopoddns
YT SPLI PTISPLI STS'SSLI STS'SSLT Y9T89LT Y9TS9LT SS'SSLI €CO'LYLT €E0'LYLT €00°T8LI gzaseopoddns
8Y 61 8 14 6 IS 0S 61 6v 6 g[oseopioddns
61¥T 6SSL- 61PT 6SSL- 9T EYSL- 9T EYSL- €16viL- LT'9EVL- L61SEL LYSLYL I'LEVL- ST0EYL- z19seopoddns
L 8 8 8 61 61 6 61 61 61 019seouoddns

91 0T 0T 81 1T 1T 1z 6C 6C 6C Lyorenbs

S1 91 LT ST 1T 1T 9z 9 9 9T [{orenbs
Y6¢- 8e¢- p6s- p6s- 1zl- 1zl- 121~ 76¢- 1zl- €L [Areo1ds
£290YL6TS €T90VL6TS | 008S066TS €T0VL6TS | 00SI68TES 00ESSHEES 00S0IOEES — 009SO6TES — 0080I0LES 009SHTLES Tegpds
91950099 9b950L099 | 000v£8099 9+9S0L099 | 00I¥TS6L9 00616VEL9 00ITEEIY 00ITEEISY 006686789 00STE3839 e/ 6ds
69 69 69 69 0L 69 69 69 69 69 POOEXOS 1ds

91- 91- 91- 91- SI- SI- I1- SI- SI- I1- €1[o1I08
6£7€0898S 6ETE0898S | 6ETE0898S 6£TE0898S | 00STT898S 00E680L8S 00L6TS9SS — 00SFOS9SS 00E9T898S 00LTI698S ¥01-+00-20-dus
1€88C18 £790€18 1€887IS 1€887I8 GS9GL18 869€918 €€8LL1S LILYLIS LYLYLIS GS9GL18 ypsuIs
SLYESLL 9L9€SLL SLYESLL SLYESLL 9EEEE8L 9¢EEE8L 9€€€€8L 11LS9LL 11LS9LL 9€€EE8L 9zg3urs
9.0t 9L 0TV 9L 0TY 9L°0TY 9L°0TY 9L 0IY 9L 01Y 9L 0TY 9L°0TY 9L 01Y [InowA4ss
a4 [¥44 €T %44 LT 8TH LTh Y44 Sty LTh Inow&as
66°0€C" 66°0€C- 66°0€C- 66°0€2C- 160€T $8°0€T 8L°0€T 66°0€C- 66°0€C- 16°0€T 08
81c¢ 8I¢C€ S9z€ S9z€ €9P8I1¢ 6'SL8SY 6'SL8SY €9P8IE £9P8IE €9¥81E TPAYOSAES
61- 6I- 61- 61- LT LT LT LT 8T 8T $J-09-ZSIN[[Aes
61- 61I- 61- 61- 6 6 6 6 6 6 Ob-ZSNTeES
8LILLO" 8LILT0- SLILT'0- SLILT'0- LEYT0- LEYT0- LEY10- 80L1°0" 8691°0- LEVT O~ 01105zs
LTSETLE9T O SY6£0°0- 99691°0- 99691°0- 0 0 0 0 0 0 0018
0681 06821 068CT 0681 068Z1T 068CT T06C1 06821 0681 068CT 000€I10
YYLTTTE TS 65°0S- 8T'TS- 87°Ts- 68 - 68 - 9€¢ - SILSH- SIS~ 68 - guQ|eydiegrox
uopnjos ewpdQ | 1qoany | J-SNT-SALd SNT-SILd | SNTLA SN'T-d SNT-0 (S006)dIDS (S009)dIDS dIDS soue)suy

25

	Introduction and Related Work
	Preliminaries
	Methodology
	Overview
	The Binarized Tightening Scheme
	Graph-based LNS Policy Parameterization
	Step-wise global information by branching

	Experiments
	Settings and Protocols
	Overall Performance Evaluation
	Problem-scale Generalization Ability Study
	Branching Policy Study by Variable Ratios
	Experiments on MIPLIB2017 Benchmark

	Conclusion and outlook
	Appendix
	Further Discussion on Related Work
	Detail for the Experiments
	Detailed analysis on MIPLIB2017
	Gurobi version of our BTBS-LNS
	Experiments with CPU vs GPU
	Stability Analysis of our approach
	Detailed Anytime performance on Integer Programming Problems
	Per-instance performance comparison on MIPLIB2017
	A small numerical example for Alg. 1

