
Published as a conference paper at ICLR 2025

BTBS-LNS: BINARIZED-TIGHTENING, BRANCH AND
SEARCH ON LEARNING LNS POLICIES FOR MIP

Hao Yuan1, Wenli Ouyang1∗, Changwen Zhang1, Yong Sun1, Liming Gong1, Junchi Yan2

1AI Lab, Lenovo Research
2School of Artificial Intelligence & Department of Computer Science and Engineering & MoE Lab of AI,
Shanghai Jiao Tong University
{yuanhao4, ouyangwl1, zhangcw5, sunyong4, gonglm3}@lenovo.com,
yanjunchi@sjtu.edu.cn

ABSTRACT

Learning to solve large-scale Mixed Integer Program (MIP) problems is an emerg-
ing research topic, and policy learning-based Large Neighborhood Search (LNS)
has been a popular paradigm. However, the explored space of LNS policy is
often limited even in the training phase, making the learned policy sometimes
wrongly fix some potentially important variables early in the search, leading to
local optimum in some cases. Moreover, many methods only assume binary vari-
ables to deal with. We present a practical approach, termed Binarized-Tightening
Branch-and-Search for Large Neighborhood Search (BTBS-LNS). It comprises
three key techniques: 1) the “Binarized Tightening” technique for integer vari-
ables to handle their wide range by binary encoding and bound tightening; 2) an
attention-based tripartite graph to capture global correlations among variables and
constraints for an MIP instance; 3) an extra branching network as a global view, to
identify and optimize wrongly-fixed backdoor variables at each search step. Ex-
periments show its superior performance over the open-source solver SCIP and
LNS baselines. Moreover, it performs competitively with, and sometimes bet-
ter than the commercial solver Gurobi (v9.5.0), especially on the MIPLIB2017
benchmark chosen by Hans Mittelmann, where our method can deliver 10% bet-
ter primal gaps compared with Gurobi in a 300s cut-off time.

1 INTRODUCTION AND RELATED WORK

Mixed-integer programming (MIP) is a well-established optimization problem. In many cases, fea-
sible or even optimal solutions are required under strong time limits, and thus efficiently finding
high-quality solutions is of great importance. Recently, machine learning for combinatorial opti-
mization has been an emerging topic (Bengio et al., 2021) with prominent success in different tasks,
e.g. graph matching (Yan et al., 2020), and ML4MIP is also an emerging field (Zhang et al., 2023).

A variety of deep learning-based solving methods were proposed to deal with specific MIP prob-
lems, including construction methods (Ma et al., 2019; Xing & Tu, 2020; Fu et al., 2021; Zhang
et al., 2020; Khalil et al., 2017; Xin et al., 2021) and iterative-based refinements (Wu et al., 2021b;
Chen & Tian, 2019; Lu et al., 2019; Li et al., 2020). While they cannot be directly applied to a
wider scope of MIP problems, and thus learning the solving policies for general MIP problems has
also been intensively studied, in which the primal heuristics catch more attention, including Large
Neighborhood Search (LNS) (Wu et al., 2021a; Song et al., 2020; Nair et al., 2020a) and Local
Branching (LB) (Liu et al., 2022). This paper focuses on LNS for solving general MIP problems –
the powerful yet expensive iteration-based heuristics (Hendel, 2022).

Traditional LNS methods usually explore a complex neighborhood by predefined heuristics (Gen-
dreau et al., 2010), in which the heuristic selection is a long-standing challenging task, especially
for general MIP problems, which may require heavy efforts to design valid heuristics. Learning-
based methods provide a possible direction. Both Imitation Learning (IL) (Song et al., 2020) and

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

Table 1: Comparison of our method to existing works, and it achieves the SOTA performance.

References Applicability Approach Addressing Local Optima Training
Huang et al. (2023b) Binary LNS Adaptive Neighborhood Size Contrastive Learning
Liu et al. (2022) Binary Local Branching RL-based Branching Size Regression + RL
Wu et al. (2021a), Nair et al. (2020a) Binary LNS / RL
Song et al. (2020) Binary LNS / Imitation & RL

Hendel (2022) General MIP ALNS
(Heuristic in B&B)

Adaptive Control for
Multiple Heuristics Multi-armed Bandit

Sonnerat et al. (2021) General MIP LNS Adaptive Neighborhood Size Imitation

BTBS-LNS (Ours) General MIP Branching on
top of LNS Step-wise Global Information RL (LNS) +

Imitation (Branching)

Reinforcement Learning (RL) (Wu et al., 2021a; Nair et al., 2020a) showed effectiveness in learning
decomposition-based LNS policies. However, there are still some challenges. The performance of
the learned policies may significantly degrade when applied to general integers due to the vast scale
of candidate values (compared to binary variables), leading to a large complexity in optimization.
Moreover, the learned policies may be trapped in local optimum for complicated cases.

In this paper, we propose a Binarized-Tightening, Branch and Search-based LNS approach (BTBS-
LNS) for general MIP problems. Specifically, we design the “Binarized Tightening” algorithm to
deal with the optimization for general integer variables, where we first binarize the general integer
variables and express them with the resulting bit sequence, and then tighten the bound of original
variables w.r.t. the LNS decision along with the current solution. In this way, the variable bounds can
be tightened and explored effectively at a controlled complexity. Based on our binarization formu-
lation, we further employed an attention-based tripartite graph (Ding et al., 2020) to encode the MIP
instances and improved the attention architecture by removing the softmax normalization, which
allows us to fully preserve the raw weights between neighboring nodes. Meanwhile, to enhance ex-
ploration and optimize some wrongly-fixed backdoor variables (Williams et al., 2003; Khalil et al.,
2022) by the learned LNS policy, we leverage an extra branching network at each step, providing
branching decisions at the global view 1 to help escape local optimum. In a nutshell, this paper can
be characterized by the following bullets, which we believe are common building blocks:

1) Bound Tightening for MIP. We propose a new “Binarized Tightening” scheme for general MIP
problems with an efficient embodiment of variable encoding and bound tightening techniques.

2) Combining global information step by step with LNS. To assist the learned policy in escaping
the local optimum efficiently, we devise an extra variable branching mechanism to select and opti-
mize the LNS wrongly fixed backdoor variables, by contrast with the global optimum. The hybrid
branch and search policy greatly enhance exploration and show efficiency.

3) Problem encoding with improved attention architecture. We employ an attention-based tripar-
tite graph to encode MIP problems and capture correlations using an improved attention approach,
which demonstrates empirical effectiveness.

4) Strong empirical results. Experiments on seven MIP problems show that our method con-
sistently outperforms the LNS baselines and open-source SCIP (Gamrath et al., 2020). On MI-
PLIB2017 benchmark2 chosen by Hans Mittelmann, it even achieves superior performance over
Gurobi, purely taking SCIP as the baseline solver. It can further boost Gurobi when taking Gurobi
as the baseline solver (see Appendix A.4).

We summarize the key related works in Table 1, and elaborate on more details in Appendix A.1.

2 PRELIMINARIES

Mixed Integer Program (MIP) is in general defined as:

min c⊤x
s.t. Ax ≤ b

xi ∈ {0, 1},∀i ∈ B;xj ∈ Z+,∀j ∈ G;xk ≥ 0,∀k ∈ C
(1)

where x ∈ Rn is a vector of n decision variables; c ∈ Rn denotes the vector of objective coefficients.
Ax ≤ b denotes the overall m linear constraints, where A ∈ Rm×n represents the incidence

1A broader context that goes beyond the immediate LNS observations, e.g., contrast with global optimum.
2https://plato.asu.edu/bench.html

2

Published as a conference paper at ICLR 2025

Figure 1: Overview of BTBS-LNS. First, we propose “Binarize Tightening” to handle general in-
teger variables. The Binarize mechanism can binary-encode the variables and split them into sub-
optimization bits. With the bit-wise decision by LNS, the variable bounds can be refined by bound
tightening. Second, we devise a branching network on top of LNS to select wrongly fixed backdoor
variables at a global view, which may help efficiently escape local optimum in some cases.

matrix, with b ∈ Rm. For general MIP instances, the index set of n variables N := {1, ..., n} can
be partitioned into three sets, binary variable set B, general integer variable set G and continuous
variable set C. MIP presents greater challenges compared to integer programming (Wu et al., 2021a)
as the continuous variables may require distinct optimization policies with integer variables.

Large Neighborhood Search (LNS) is a powerful yet expensive heuristic (Gendreau et al., 2010).
It takes the best solution so far x∗ as input and searches for the local optimum in its neighborhood:

x′ = arg min
x∈N(x∗)

{c⊤x} (2)

where N(·) is a predefined neighborhood - the search scope at each step, and x′ denotes the opti-
mized solution within N(x∗), obtained by destroying and re-optimization from the current solution.

Compared to local search heuristics, LNS can be more effective by using a broader neighborhood.
However, the selection of neighborhood function N(·) is nontrivial. Heuristic methods mainly rely
on problem-specific operators, e.g., 2-opt (Flood, 1956) in TSP, which call for considerable trial-
and-error and domain knowledge (Papadimitriou & Steiglitz, 1998). The currently popular learning-
based approaches mainly focus on binary variables and may be trapped in local optimum due to
the learning complexity. In this paper, we propose a binarized-tightening branch-and-search LNS
approach, designed to address general MIP problems. It may efficiently escape local optimum when
the LNS decisions are unreliable in some scenarios.

3 METHODOLOGY

3.1 OVERVIEW

Fig. 1 presents the overview of our approach. The input is a MIP instance, with its initial fea-
sible solution x0 generated by a baseline solver. General integer variables are first encoded into
binary substitute variables, and the instance is subsequently represented as a tripartite graph (Ding
et al., 2020), which is then fed into the large neighborhood search network, selecting the variable
subsets that may need to be optimized at each step, with the remaining variables fixed or bound-
tightened (see Sec. 3.2 and 3.3). Additionally, we devise an extra branching network to select some
wrongly-fixed backdoor variables by the learned LNS policy, to help escape local optimum. With
the sequential decisions of the branch and search policy and the resulting tightened variable bounds,
an off-the-shelf solver, e.g. SCIP, is applied to obtain the optimized feasible solution xt+1. Iterations
continue until the time limit is reached, and the optimized solutions can be obtained.

In general, the neighborhood search policy and branching policy are trained sequentially, where
the training details are described in Sec. 3.3 and Sec. 3.4, respectively. They optimize the current
solution from different views and may remedy the local search drawbacks in some cases.

3

Published as a conference paper at ICLR 2025

3.2 THE BINARIZED TIGHTENING SCHEME

Variables in general MIP instances can be divided into three categories: binary, general integer (with
arbitrary large value), and continuous variables. Previous studies mainly focused on the binary vari-
ables (0/1). Limited values greatly simplify the optimization, making it easier to deal with compared
to the general integer variables, and some learning frameworks have proved their effectiveness (Wu
et al., 2021a; Song et al., 2020). In this paper, we concentrated on more general MIP problems,
especially for general integer variables.

An intuitive method is to directly migrate some efficient binary LNS approaches, e.g., Wu et al.
(2021a), to general integers. In this way, different types of variables are equally treated. At each
step, we fix some of the variables (no matter what type the variable belongs to), and solve the
sub-MIP with a baseline solver e.g. SCIP (Gamrath et al., 2020) or Gurobi (G., 2020). However,
empirical results revealed that the simplified generalized LNS approach (e.g., RL-LNS (Wu et al.,
2021a)) is much slower and significantly underperforms the MIP solvers, e.g., Gurobi. (see Table 4
and Fig. 3 for detail comparison.)

Algorithm 1 Bound tightening for Integer variable xi

Require: Initial lower, upper bound of xi: lb, ub;
Current solution value: xi = p;
Binary LNS decision for xi: ati for un-
bounded variables, and {ati,j |j = 1, 2, ..., d}
for others.

Ensure: Tightened lb, ub
1: if xi unbounded then
2: if lb existed and ati = 0 then
3: ub = 2p− lb
4: else if ub existed and ati = 0 then
5: lb = 2p− ub
6: end if
7: else
8: d = ⌈log2 (ub− lb)⌉
9: for j = 0 : d do

10: if ati,j = 0 then
11: lb = max(lb, p− 1/2(ub− lb));
12: ub = min(ub, p+ 1/2(ub− lb));
13: else
14: break;
15: end if
16: end for
17: end if

To address these challenges, we propose the
so-called “Binarized Tightening” scheme for
MIP. The idea is to confine the variables within
a narrow range around the current solution,
rather than directly fixing them, to balance
exploration and exploitation. It shares simi-
lar insights with local search, which relies on
the current best solution to guide the search,
thus avoiding blind search throughout the en-
tire solution space. Specifically, we repre-
sent each general integer variable with d =
⌈log2 (ub− lb)⌉ binary variables at a decreas-
ing magnitude, where ub and lb are the upper
and lower bounds of the original variable, re-
spectively. The subsequent optimization is ap-
plied to the substitute binary variables, indicat-
ing whether the current solution is reliable or
not. In this way, we transform the LNS for
the original variable into multiple decisions on
substitution variables. Note that the unbounded
variables where ub or lb does not exist, will not
be encoded and will remain a single variable.

The decision for each substitute variable can be
obtained from the LNS policy (see Sec. 3.3),
where 0 means the variable indicates reliability
at the current encoded bit, and 1 means it still needs exploration. We design a bound-tightening
scheme to fully use the bit-wise decisions in Alg. 1 (see Appendix. A.9 for an example). Specifically,
let ati,j represent the decision for the jth substitute variable of variable i at step t. Decisions ati,j
for all j are checked, and the upper and lower bounds will be tightened around the current solution
whenever ati,j = 0, as in Line 11-12. Therefore, more fixed substitute variables can contribute to
tighter bounds. In our embodiment, variables that sit far from both bounds can have a significantly
wider exploration scope than close-to-bound variables, as they showed no explicit “preference” on
either bound direction, which is significantly different from Nair et al. (2020b) (see Appendix A.1
for detailed discussion). Tightening on either bound when the current solution sits precisely at the
midpoint of variable bounds, may contribute to performance degradation, which conceptually drives
us to design the bound tightening scheme, tightening the bounds on the far side iteratively.

In addition, as for unbounded variables, meticulous analysis of MIPLIB2017 benchmark (Gleixner
et al., 2021) revealed that all unbounded variables within the instances are characterized by un-
bounded in only one direction, which means that either lb or ub will exist for all general integer
variables (otherwise it will be free to optimize in our implementation). In this respect, we define
a virtual upper (lower) bound when ati = 0 as in Line 3 and 5, which share similar insights with
regular variables to put the current solution at precisely the midpoint of the updated bounds.

4

Published as a conference paper at ICLR 2025

3.3 GRAPH-BASED LNS POLICY PARAMETERIZATION

A bipartite graph is recently popularly utilized in Gasse et al. (2019), Nair et al. (2020b), and Wu
et al. (2021a) to represent the MIP instance states. However, the objective is not explicitly con-
sidered, which may contribute to performance degradation in some cases, e.g., when all discrete
variables do not exist in the objectives (Yoon, 2022). To capture the correlations between objectives
with variables and constraints reasonably, we propose to describe the input instance as a tripartite
graph G = (V, C,O, E), where V , C, and O denote the variable, constraint, and objective nodes, and
E denotes the edges. The features of nodes and edges can refer to Appendix A.2, where the new
objective node representations are defined as the average states of corresponding variables.

We parameterize the policy πθ(at|st) by an attention-based Graph Convolution Network (GCN).
Different from Graph Attention Networks (GATs) utilized in (Veličković et al., 2018; Ding et al.,
2020), we remove the softmax normalization to fully reserve the raw weights between neighboring
nodes and edges, capturing the contributions for each node to the final objectives (see Table 2, 4
for comparison with traditional message passing mechanism: LNS-ATT). The C → V passing is as
follows (likewise for others):

ht+1
i = fCV

CONCAT

ht
i,

∑
j∈C∩Ni

wt
ij(h

t
j + ht

eij)

|C ∩Ni|


 (3)

where ht
i and ht

eij are the features of node i and edge (i, j) at step t; fCV is a 2-layer perceptron with
relu activation that maps the current states to the next iteration ht+1

i ; Ni denotes the neighborhood
nodes of i and |C ∩Ni| is the counts of neighborhood constraint nodes for node i, used to normalize
the weighted sum neighboring features; wt

ij denotes the weighted coefficient between node i and
node j at step t, measuring their correlations as follows, where WCV is the weight matrix between
constraint and variable.

wt
ij = σs(WCV · CONCAT(ht

i,h
t
eij ,h

t
j)) (4)

At each graph attention layer, the message passing between different types of nodes are V → O,
O → C, V → C, C → O, O → V , C → V , which are calculated as Eq. 3 sequentially. In this
way, after K iterations, the features for both the nodes and edges are updated. We finally process
the variable nodes by a multi-layer perceptron and the output value can be regarded as the destroy
probability for each variable at this step, serving as the neighborhood search policy in Fig. 1. It is
trained with Q-actor-critic by RL, following the same protocol with Wu et al. (2021a), while with
the following differences:

States: We adopt an attentional tripartite graph to capture correlations among variables, constraints,
and objectives. The features are gathered in Table 7 in the Appendix.

Actions: For the general variable xi with d substitutes, the LNS decision at step t will contain d
binary actions ati,j , indicating the current solution reliable or not at each encoded bit j (see Alg. 1).

Transition and rewards: We follow the same protocol as in (Wu et al., 2021a), where the next state
st+1 is obtained by the baseline solver, and the reward is defined as objective improvements.

3.4 STEP-WISE GLOBAL INFORMATION BY BRANCHING

Figure 2: Global branching vs Local branching on
different label collection schemes

.

As discussed above, previous single-policy ap-
proaches were easily trapped in local optimum
at an early stage in some complicated tasks, due
to the learning complexity and limited explo-
ration even in the training phase. To remedy
this issue, an intuition is to select and optimize
those wrongly fixed backdoor variables by LNS
policy at each step. With this insight, we pro-
posed to learn an extra branching network with
imitation learning on top of LNS to filter out those variables at each step. Note that it was only
applied to binary variables which are more likely to be backdoors that were fixed earlier, leading to
local optima.

5

Published as a conference paper at ICLR 2025

Algorithm 2 Offline training of branching policy for LNS

Require: graph-based states S = {st|t = 1, 2, ..., n}
LNS decisions at each step N = {nt|t =
1, 2, ..., n}
branching variable labels B = {bt|t = 1, 2, ..., n}
collected from the global or local branching;

Ensure: trained policy πθ(B|S,N)
1: // Samples are collected by resolving the training

instances, along with the learned LNS;
2: Let D = {((st, nt), bt)|t = 1, 2, ..., n}.
3: // train the model;
4: Initialize all learnable parameters θ;
5: while stopping criteria not meet do
6: Randomly select a batch of instances DC from

D;
7: Optimize θ by minimizing cross-entropy loss;
8: end while

The most critical issue for the branching
policy learning is the collection of branch-
ing variable labels. In other words, we
need to figure out how to identify the po-
tentially wrongly-fixed variables at each
step. We proposed two different variants,
which deal with the issue in global and lo-
cal view respectively as in Fig. 2:

Global branching (BTBS-LNS-G): It
gathers labels from the fixed variables by
LNS at each step and contrasts them with
the global optimal solution. Variables that
exhibit differing values between these so-
lutions are indicative of potentially mis-
classified variables within the current LNS
decisions from a global perspective. Since
the global optimal solution may be too dif-
ficult to acquire in a reasonable time, it
was replaced by the best-known solution obtained across various approaches within the same time
budget.

Algorithm 3 Branch and search at the tth step

Require: Number of variables n;
LNS decisions N t = {nt

i|i = 1, 2, ..., n};
branching decisions Bt = {bti|i = 1, 2, ..., n};
variable set x = {xi|i = 1, 2, ..., n};
best solution at the tth step xt = {xt

i|i =
1, 2, ..., n};
The ratio for branching variables r;

Ensure: xt+1;
1: Let D = ∅;
2: for j = 0 : n do
3: if xi is general integer variable then
4: Tighten the bound as in Alg. 1 using nt

i,j
(with d separate decisions for each substitute
variable);

5: else
6: if bti = 1 and xi is binary variable then
7: D=D ∪ {i};
8: else
9: if nt

i = 0 then
10: Fix the value xt+1

i = xt
i;

11: end if
12: end if
13: end if
14: end for
15: add constraint

∑
i∈D

|xt+1
i − xt

i| ≤rn to sub-MIP;

16: Optimize xt+1 with the solver;

Local branching (BTBS-LNS-L): Dif-
ferent from the global view contrast, it
gathers labels by incorporating the follow-
ing local branching constraints (Liu et al.,
2022) at each step:∑

i∈B∩F
|xt+1

i − xt
i| ≤ k (5)

where F is the currently fixed variables
set by LNS. With this extra constraint, the
re-defined sub-MIP can be solved by the
baseline solver, and up to K changed fixed
variables will be selected at a local view as
the branching variable labels at the current
step. The selected variables are regarded
as locally wrongly fixed variables by LNS.

With the collected labels for each variable,
branch (1) or not (0), the branching net-
work can be trained offline. The inputs
are tripartite graph-based features (see Ta-
ble 7 in the Appendix), where we addi-
tionally append the LNS decisions made
by the learned LNS policy as variable fea-
tures, as we only focused on the fixed vari-
ables for extra branching. Note that the
input states are collected by resolving the
training instances, along with the learned
LNS policy. The labels are also gathered
within the resolving at each step. Then the
graph-based features are fed into a similar
graph attention network as described in Sec. 3.3 to update the node/edge representations. We finally
process the variable nodes by a multi-layer perceptron (MLP) and the output value can be regarded
as the branching probability for each variable at this step. Cross-entropy loss was utilized to train the
branching network to bring the outputs closer to the collected labels, with the pipeline as in Alg. 2.

Except for the label collection scheme, BTBS-LNS-L and BTBS-LNS-G remain all the same. The
branching policy takes effect on top of LNS, enhancing exploration and optimizing its wrongly fixed
backdoor variables at each step. The pipeline for the hybrid framework is given in Alg. 3, where

6

Published as a conference paper at ICLR 2025

Table 2: Comparison on binary Integer Programming (IP) problems: SC, MIS, CA, MC. We also let
SCIP run for a longer time (500s with SCIP (500s) and 1000s with SCIP (1000s), respectively). So
for Gurobi and our BTBS-LNS in other tables.

.

Methods Set Covering (SC) Maximal Independent Set (MIS) Combinatorial Auction (CA) Maximum Cut (MC)
Gap% PI Gap% PI Gap% PI (×103) Gap% PI

SCIP 3.23 20225 0.25 312.25 4.71 3312.4 8.01 15193
SCIP (500s) 1.40 / 0.18 / 3.36 / 7.11 /
SCIP (1000s) 1.06 / 0.09 / 2.40 / 6.87 /
U-LNS 3.84 22459 1.50 1145.4 9.42 4003.0 6.72 11565
R-LNS 4.17 23015 1.29 693.45 6.92 3631.2 6.33 10923
FT-LNS 3.48 20988 1.42 1103.7 9.83 4123.6 6.30 10554
DINS 3.97 22735 1.24 657.5 4.48 3337.4 5.75 10006
GINS 3.81 22197 0.75 683.6 6.90 3599.8 5.41 9765.0
RINS 3.63 21835 1.32 816.5 7.33 3843.4 6.04 10277
RENS 2.35 19112 0.79 792.36 4.40 3125.2 5.29 9116
RL-LNS 1.29 17623 0.07 182.63 2.36 2271.6 4.25 6538
Branching 1.72 18007 0.07 183.44 3.09 2492.7 3.99 6104
GNN-GBDT 1.78 18169 0.22 295.43 2.24 2206.9 4.85 7492
CL-LNS 0.92 17025 0.07 182.99 2.05 2198.5 3.03 3883.5
LNS-TG 0.66 16828 0.08 182.24 2.32 2247.8 3.05 4782.6
LNS-Branch 1.11 17234 0.09 182.19 2.36 2275.3 3.73 5840.0
LNS-ATT 0.65 16714 0.07 182.10 2.23 2231.5 2.99 3975.1
BTBS-LNS-L 0.47 16234 0.05 181.47 2.18 2196.8 1.99 2518
BTBS-LNS-G 0.35 16205 0.05 178.35 1.43 1998.9 0.59 785
Gurobi 0.75 16796 0 173.15 1.44 2075.4 0.62 842

Table 3: Generalization to large-scale binary IP instances using the trained policies from small
problems in Sec. 4.2

.

Methods Set Covering (SC2) Maximal Independent Set (MIS2) Combinatorial Auction (CA2) Maximum Cut (MC2)
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

SCIP 4.51 14953 3.45 9542.1 17.87 12312 8.38 30039
SCIP (500s) 2.74 / 0.86 / 8.18 / 8.26 /
SCIP (1000s) 1.37 / 0.52 / 5.13 / 8.13 /
U-LNS 3.96 14268 0.97 2778.5 8.53 8032.5 7.03 24862
R-LNS 3.94 14392 0.71 2079.3 6.34 7050.0 6.52 22450
FT-LNS 4.49 14885 0.96 2765.6 9.08 8324.2 6.44 22347
DINS 2.99 13916 0.65 1935.4 6.11 6848.5 7.02 24815
GINS 3.14 14008 0.69 2011.5 6.74 7433.7 6.52 22477
RINS 2.95 13793 0.58 1844.7 6.55 7129.3 6.75 23619
RENS 2.78 13465 0.55 1782.6 6.02 6735.2 6.23 20959
RL-LNS 1.66 13007 0.51 1524.7 4.13 5933.4 3.20 8449.6
Branching 1.53 12916 0.55 1769.4 4.52 6142.7 3.19 7857.3
GNN-GBDT 1.78 13069 0.55 1549.3 3.44 5508.9 2.79 6533.7
CL-LNS 1.41 12914 0.41 1298.5 3.51 5621.7 2.83 7184.1
BTBS-LNS-L 0.51 12431 0.04 543.69 1.67 4800.3 1.45 3385.9
BTBS-LNS-G 0.68 12498 0.02 515.28 1.89 5012.6 1.44 3397.5
Gurobi 0.71 12528 0.01 495.88 3.60 5723.5 1.01 2195.6

Methods Set Covering (SC4) Maximal Independent Set (MIS4) Combinatorial Auction (CA4) Maximum Cut (MC4)
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

SCIP 5.41 15524 3.45 22745 16.61 25275 8.71 78510
SCIP (500s) 4.21 / 3.44 / 16.61 / 8.69 /
SCIP (1000s) 3.05 / 3.03 / 16.61 / 8.46 /
U-LNS 3.42 14814 1.41 9759.0 7.42 16470 7.39 68245
R-LNS 3.26 14747 0.98 7745.5 6.19 15875 6.98 64712
FT-LNS 3.75 14882 1.30 9150.3 8.30 17328 7.02 65329
DINS 3.23 14725 1.03 7982.4 5.02 14789 6.97 64593
GINS 3.28 14782 0.85 7244.7 5.99 15538 7.04 65778
RINS 2.96 14599 1.09 8218.0 5.78 15309 6.89 63575
RENS 2.95 14573 0.82 6972.1 5.17 14916 6.85 62998
RL-LNS 3.73 14866 0.57 5365.1 3.52 13572 3.76 39645
Branching 3.39 14689 0.64 5744.8 3.37 13349 4.21 42718
GNN-GBDT 3.45 14169 0.59 5233.5 2.86 12853 4.52 45423
CL-LNS 3.39 14325 0.45 4533.4 2.99 13025 3.29 37384
BTBS-LNS-L 0.84 13716 0.07 2140.4 1.39 11128 1.52 21195
BTBS-LNS-G 1.20 13789 0.11 2636.9 1.46 11705 1.51 20984
Gurobi 1.22 13795 0.04 2215.7 12.61 21959 5.38 51298

we fix or tighten the bounds for some variables by the LNS policy (see Line 4, 10), and select some
variables that were labeled 1 by the branching policy (see Line 6, 7) for extra branching. The hybrid
branch and search policy work together to formulate the sub-MIP at each step.

4 EXPERIMENTS

4.1 SETTINGS AND PROTOCOLS

Peer methods. We compare with the following baselines in a 200s time limit by default.

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solvers, and were
fine-tuned with the aggressive mode to focus on improving the objectives.

2) U-LNS(Wu et al., 2021a), R-LNS(Song et al., 2020): randomized LNS following its implemen-
tation as in Wu et al. (2021a) and Song et al. (2020).

3) DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS
(Berthold, 2014): heuristic-based LNS policies that were common utilized.

7

Published as a conference paper at ICLR 2025

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 500 1000 1500
0

0.1

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

RENS
RL-LNS

SCIP
Gurobi

BTBS-LNS

Figure 3: Performance on Item (Left) & AMIPLIB (Right).

4) FT-LNS (Song et al., 2020), RL-LNS (Wu et al., 2021a), Branching (Sonnerat et al., 2021),
CL-LNS (Huang et al., 2023b) and GNN-GBDT (Ye et al., 2023): some learning-based LNS
policies with imitation learning or RL, following the same protocol as its original implementation.

5) LNS-TG, LNS-Branch, LNS-IBT, LNS-IT, LNS-ATT: Degraded versions of BTBS-LNS,
where we i) replace the tripartite graph with bipartite graph (LNS-TG); ii) remove the extra branch-
ing (LNS-Branch); iii) remove the binarized encoding (LNS-IBT) and bound tightening (LNS-IT);
iv) replace the attention-based graph network with widely used GAT (Veličković et al., 2018) (LNS-
ATT). Refer to Appendix A.2 for details.

6) BTBS-LNS-F: A variant of BTBS-LNS, where we replace our bound tightening mechanism with
(Nair et al., 2020b).

Instances. It covers both binary and MIP problems. We follow (Wu et al., 2021a) to test four NP-
hard binary Integer Programming Problems: Set Covering (SC), Maximal Independent Set (MIS),
Combinatorial Auction (CA), and Maximum Cut (MC). We generate 200, 20, and 100 instances
as training, validation, and testing sets, respectively. To evaluate the generalization ability, we also
generate scale-transfer test instances, such as SC2 and MIS4 in Table 3. The suffix number refers to
instance scales, for which the details are gathered in Table 8 in Appendix A.2.

We also test on two MIP datasets in Machine Learning for Combinatorial Optimization (ML4CO)
competition3: Balanced Item Placement (Item) and Anonymous MIPLIB (AMIPLIB), on their of-
ficial testing instances. Balanced Item Placement contained 1050 binary variables, 33 continuous
variables, and 195 constraints per instance. The anonymous MIPLIB consists of a curated set of
instances from MIPLIB2017, a long-standing benchmark for MIP solvers with diverse distributions,
in which general integer variables are included. We also show empirical results on the whole MI-
PLIB2017 benchmark set in Sec. 4.5, where our BTBS-LNS even surpasses Gurobi on average.

Hyperparameters. We run experiments on an Intel 2.50GHz CPU. Performance comparison on
CPU vs GPU version of our approach is given in Appendix A.5. All the approaches were evaluated
with three different seeds, and the average performance was reported (see detailed stability analysis
in Appendix A.6). We use the open-source SCIP (v7.0.3) as the baseline solver by default (recall the
blue box in Fig. 1). Gurobi version experiments are gathered in Appendix A.4. We train 20 epochs
for each instance, with 50 iterations per epoch and a 2s re-optimization time limit per iteration.
LNS and branching are trained sequentially, with RL (see Sec. 3.3) and imitation learning (see
Sec. 3.4), respectively. The graph convolutional layers were set as K = 2 for both policies, with
64-dimensional latent representations for the nodes and edges. Specifically for branching, we set the
max branching variables k = 50 in Eq. 5 for the local branching variant. In the inference phase, the
branching variable ratio r in Alg. 3 is empirically set to 10% for both branching variants. BTBS-
LNS by default denotes the local branching variant BTBS-LNS-L throughout this paper.

Evaluation metric. We calculate the average primal gap (Nair et al., 2020b) to measure the gap
between the current solution x and the best-known solution x∗ found by all methods among the N
testing instances, within a fixed time limit T0:

gap =
1

N

N∑
i=1

|c⊤i xi − c⊤i xi
∗|

max{|c⊤i xi|, |c⊤i xi
∗|}

(6)

We also calculate the average Primal Integral (PI, (Huang et al., 2023b; Achterberg et al., 2012)) to
evaluate the anytime performance within the time limit:

PI =
1

N

N∑
i=1

(∫ T0

t=0

c⊤i x
t
idt− T0c

⊤
i x

∗
i

)
(7)

3https://www.ecole.ai/2021/ml4co-competition/

8

Published as a conference paper at ICLR 2025

where xt
i denotes the best solution within t for instance i.

4.2 OVERALL PERFORMANCE EVALUATION

Table 2 compares the results for integer programming. As can be seen, compared with SCIP and
all competing LNS baselines, both BTBS-LNS-G and BTBS-LNS-L achieve consistently superior
performance across all problems. LNS-TG, LNS-Branch, and LNS-ATT are degraded versions of
BTBS-LNS, and they all perform slightly worse, revealing the effectiveness of the attention-based
tripartite graph and the extra branching policy. Comparing the two variants, BTBS-LNS-G delivers
consistently superior performance over BTBS-LNS-L, and it even surpasses the leading commercial
solver on SC, CA, and MC. Note that detailed anytime performance on these instances are
shown in Fig. 6 to Fig. 9 in Appendix A.7, further revealing the effectiveness of BTBS-LNS.

Table 4: Performance on MIP instances.

Methods Item AMIPLIB
Obj Gap% PI Gap%

SCIP 23.33 50.73 4152.4 13.72
SCIP (500s) 19.83 39.41 / /

SCIP (1000s) 17.02 31.05 / /
U-LNS 20.39 44.29 3685.6 15.73
R-LNS 20.04 43.64 3485.0 14.96

RL-LNS 20.04 43.58 3498.5 12.55
DINS 18.08 37.23 3075.9 13.10
GINS 19.78 42.11 3514.7 13.64
RINS 20.53 44.88 3662.5 13.89
RENS 17.51 34.18 2925.0 11.75

Branching 18.84 40.12 3237.6 12.95
LNS-TG 18.05 37.85 3090.5 6.45

LNS-Branch 20.12 43.90 3537.0 9.32
LNS-ATT 15.54 26.91 2512.8 5.45
LNS-IBT / / / 7.63
LNS-IT / / / 7.65

BTBS-LNS-L 13.82 16.82 2030.3 4.19
BTBS-LNS-G 13.45 15.78 1912.5 4.35
BTBS-LNS-F / / / 7.01

Gurobi 12.67 6.73 1895.6 0.81

We also test our method on two NP-hard MIP prob-
lems, and the results are gathered in Table 4. Note
that the anytime primal gap comparison is also
shown in Fig. 3. Our method consistently outper-
forms SCIP and the competing LNS baselines and is
slightly worse than Gurobi, capable of finding even
better solutions for around 27% test instances on
both Item and AMIPLIB.

For the AMIPLIB problem, which contains a curated
set of instances from MIPLIB, we split the instances
into train, validation, and test sets by 70%, 15%, and
15% with cross-validation. Policies learned from di-
verse training instances are directly applied to the
test set. We increase the solving and re-optimization
time limit at each step to 1800s and 60s for the in-
stances, as they are too large to be solved. Differ-
ent from Wu et al. (2021a), we consistently utilize
open-source SCIP as the baseline solver. As seen
from Table 4 and Fig. 3, our method significantly
outperforms SCIP and LNS baselines and even de-
livers slightly better performance than Gurobi at an early stage. LNS-IBT, LNS-IT and BTBS-
LNS-F achieve significantly inferior performance than our BTBS-LNS, showing the effect of the
“Binarized Tightening” technique and its superiority over Nair et al. (2020b).

4.3 PROBLEM-SCALE GENERALIZATION ABILITY STUDY

We test the generalization ability in line with (Wu et al., 2021a) with a 200s time limit. We directly
use the trained policies on small-scale problems in Sec. 4.2, with results shown in Table 3.

Table 5: Evaluation on CA against Gurobi.

Methods CA2 CA4
Obj Gap% Obj Gap%

Gurobi -218245 3.60 -389396 12.61
Gurobi(500s) -224245 0.95 -431626 3.14

Gurobi(1000s) -225629 0.33 -436188 2.11
BTBS-LNS -222590 1.67 -439431 1.39

BTBS-LNS(500s) -225108 0.56 -445563 0

As can be seen, the two variants show similar per-
formance on the generalized instances. Compared
with SCIP and all the competing LNS baselines, our
approach still delivers significantly superior perfor-
mance, showing a better generalization ability. As
the problem sizes become larger, it can produce even
better results than Gurobi on SC2, SC4, CA2, CA4,
and MC4, and only slightly inferior on the remain-
ing 3 groups. It suggests that our policies can sometimes be more efficient for larger instances than
the leading commercial solver. Notably, there is a significant gap between BTBS-LNS and Gurobi
for Combinatorial Auction (CA), particularly on CA4.

We further increase the time limit to 500s and 1000s respectively on CA, with results shown in
Table 5. Our method consistently outperforms Gurobi with the same time limit. For CA4, it can
even produce better solutions with a much shorter time limit. It empirically requires over 3 hours
for Gurobi to deliver the same primal gap on CA4, being 58× slower than our method.

9

Published as a conference paper at ICLR 2025

0 5 · 10−2 0.1 0.15 0.2 0.25
0

0.2

0.4

Branching Variable Ratio

A
ve

ra
ge

Pr
im

al
G

ap Item
AMIPLIB

0 10 20 30 40 50
0

0.2

0.4

0.6

Iteration

R
at

io
of

V
ar

ia
bl

es

Selected
Optimized

0 10 20 30 40 50
0

5 · 10−2

0.1

Iteration

R
at

io
of

V
ar

ia
bl

e Branching ratio r
Optimized

Figure 4: Impact of different branching ratios (Left). Selected & Optimized variables by the LNS
(Middle) & Branching (Right) on Balanced Item Placement instances. The upper dotted line denotes
the selected variable ratio that can be re-optimized by the learned Search & Branch policy, while the
Solid red line denotes the variable ratio with solution value changes.

Table 6: Performance comparison on the whole MIPLIB2017 benchmark set.
SCIP SCIP(600s) SCIP(900s) U-LNS R-LNS FT-LNS BTBS-LNS BTBS-LNS-F Gurobi

Gap% 15.15 11.08 8.79 16.26 15.94 13.07 1.75 3.11 1.98

4.4 BRANCHING POLICY STUDY BY VARIABLE RATIOS

To enhance exploration, an extra branching policy was developed to incorporate global information
and help the learned LNS policy escape local optimum. Fig. 4 (Left) depicts the impact of branching
variables ratios r (see Alg. 3).

When the ratio r < 0.1, a larger size leads to better performance, optimizing some wrong decisions
made by the learned LNS. Fig. 4 (Right) depicts the filtered and updated variable ratios. As can
be seen, with increasing iterations, a growing number of LNS fixed variables were re-optimized
by the additional branching policy, indicating the LNS decisions were sometimes unreliable. In
other words, incorporating branching on top of LNS was essential to correct potential errors in
the LNS decisions. However, when the branching size becomes extremely large, the performance
significantly degrades constrained by the solving ability.

4.5 EXPERIMENTS ON MIPLIB2017 BENCHMARK

To further evaluate our proposed approach on some heterogeneous and hard instances, we also eval-
uated the whole MIPLIB2017 benchmark set from Hans Mittelmann. It contains 240 instances with
diverse distributions and difficulties. We compared different methods in a 300s time limit, which is
the geometric mean of solving time of the solved instances with SCIP, and the re-optimization time
for each iteration was set as 5s. Other hyperparameters remain the same as AMIPLIB in Sec. 4.2.
We perform cross-validation for a comprehensive comparison across all instances, splitting them
into training, validation, and testing sets by 70%, 15%, and 15% respectively, at each round. The
policies learned from the diverse training instances are then directly applied to the test set.

The overall comparison results were gathered in Table 6. As can be seen, our proposed BTBS-LNS
can deliver 10% better primal gaps compared with Gurobi and achieve significantly better results
compared with all the competing baselines. Compared with Gurobi, it can deliver better solutions
on 12.4% instances, and obtained equally better solutions on 77% instances, indicating its effec-
tiveness and generalization ability. Furthermore, we notice that BTBS-LNS-F performs slightly
inferior to Gurobi and our approach, further revealing the superior performance of our Binarized
Tightening technique over Nair et al. (2020b). Detailed per-instance comparisons are gathered in
Appendix A.8. We also conducted specific experiments on unbounded variables from MIPLIB2017,
which are given in Appendix A.3.

5 CONCLUSION AND OUTLOOK

We have proposed a binarized tightening branch and search approach to learn LNS policies. It was
designed to efficiently deal with general MIP problems and delivers superior performance over nu-
merous competing baselines, including MIP solvers, learning and heuristic-based LNS approaches,
on ILP, MIP datasets, and even heterogeneous instances from MIPLIB2017. Sufficient ablation
studies demonstrate the effectiveness of each component. Considering the potential of our proposed
BTBS-LNS on large-scale and cross-distribution instances, the applications in real-world scenarios
may be our future direction.

10

Published as a conference paper at ICLR 2025

REFERENCES

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations Research Proceedings 2011: Selected Papers of
the International Conference on Operations Research (OR 2011), August 30-September 2, 2011,
Zurich, Switzerland, pp. 71–76. Springer, 2012.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33–54,
2014.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

E Danna, E Rothberg, and Pape C Le. Exploring relaxation induced neighborhoods to improve mip
solutions. Mathematical Programming, (1):102, 2005.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1452–1459, 2020.

Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61–75, 1956.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Optimization L L C G. Gurobi optimizer reference manual. 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip optimization
suite 7.0. 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 310–323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185–221, 2022.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Local branch-
ing relaxation heuristics for integer linear programs. In Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 96–113. Springer Nature Switzer-
land, 2023a. doi: 10.1007/978-3-031-33271-5 7. URL https://doi.org/10.1007%
2F978-3-031-33271-5_7.

11

https://doi.org/10.1007%2F978-3-031-33271-5_7
https://doi.org/10.1007%2F978-3-031-33271-5_7

Published as a conference paper at ICLR 2025

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 13869–13890. PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.
press/v202/huang23g.html.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. Finding backdoors to integer programs: a
monte carlo tree search framework. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 3786–3795, 2022.

Longkang Li, Hui-Ling Zhen, Mingxuan Yuan, Jiawen Lu, Jia Zeng, Jun Wang, Dirk Schnieders,
et al. Bilevel learning model towards industrial scheduling. arXiv preprint arXiv:2008.04130,
2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3796–3803, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial opti-
mization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020b.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley & Sons,
2014.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584–17600. PMLR, 2022a.

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning
to cut by looking ahead: Cutting plane selection via imitation learning. In ICML, 2022b.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

12

https://proceedings.mlr.press/v202/huang23g.html
https://proceedings.mlr.press/v202/huang23g.html

Published as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. In IJCAI,
volume 3, pp. 1173–1178, 2003.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021a.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems.. IEEE transactions on neural networks and learning systems,
2021b.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to
traveling salesman problem. IEEE Access, 8:108418–108428, 2020.

J. Yan, S. Yang, and E. Hancock. Learning graph matching and related combinatorial optimization
problems. In IJCAI, 2020.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
mizing framework for large-scale integer programming. In International Conference on Machine
Learning, pp. 39864–39878. PMLR, 2023.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 3931–3939, 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632, 2020.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 FURTHER DISCUSSION ON RELATED WORK

The main contributions of our BTBS-LNS are the general applicability and the addressing for lo-
cal optima. Most LNS-based approaches (Liu et al., 2022; Nair et al., 2020a; Ding et al., 2020;
Song et al., 2020; Wu et al., 2021a) solely deal with the binary programming problems due to their
simplicity. Recently, some studies have tried to address the general MIP problems (Hendel, 2022;
Sonnerat et al., 2021; Paulus et al., 2022a), in which Nair et al. (2020b) proposed a similar ”bound
tightening” technique. They differ from our approach in the following aspects. On one hand, the
binary decision for each encoded variable was only applied for bound tightening in our approach,
rather than directly fixed similar to Nair et al. (2020b). And on the other hand, the current solution
value was also considered in bound tightening decisions in our approach. Variables that sit far from
both bounds may have a significantly wider exploration scope than close-to-bound variables, as they
showed no explicit “preference” in either direction. In addition, our approach can easily transfer to
unbounded variables. We made a detailed comparison between the two approaches in Table 4 and
Table 6. As can be seen, our BTBS-LNS consistently outperforms BTBS-LNS-F, demonstrating
the effectiveness of our novel ”Binarized Tightening” technique.

As for the local optima challenge, a few studies have tried Adaptive Neighborhood Size (ANS)
(Huang et al., 2023a;b; Sonnerat et al., 2021) or hybrid heuristics control (Hendel, 2022), while
it still requires hand-crafted hyperparameters, which are essential but difficult to determine. To
address it more adaptively, we proposed to combine global-view information on top of LNS. When
trapped in local optima, extra branching has the potential to select those wrongly fixed backdoor
variables by the learned LNS policy for re-optimization. It is important to note that the concept of
branching extends beyond the confines of the local branching (Sonnerat et al., 2021) and we also
devised a novel variant termed ”global branching”, which can deliver even better performance in
some cases. In addition, the major difference between our hybrid framework and the pure local
branching approach (Sonnerat et al., 2021) lies in that we concentrate solely on variables fixed by
LNS to correct its decisions, rather than the whole variable set. This specificity arises from the
observation that LNS frequently converges to local optima when a limited number of backdoor
variables are inaccurately fixed. Empirical results in Table 2, 3, and 4 demonstrated that our BTBS-
LNS consistently outperforms the Branching baseline by Sonnerat et al. (2021).

We further review other studies related to ours, which can be divided into two categories: One is
learning-based methods for specific MIP problems and the other is for general MIP problems.

Policy learning for specific MIP Problems: MIP problems cover numerous real-world tasks in
many fields (Paschos, 2014) and quite a few studies attempt to solve certain types of problems, such
as Traveling Salesman Problem (TSP) and Vehicle Routing Problems (VRP) (Li et al., 2021; Lu
et al., 2019), etc. The algorithms can be divided into construction methods and learned improvement
heuristics.

Construction methods usually attempt to directly learn approximate optimal solutions, like Graph
Pointer Networks (GPNs) (Ma et al., 2019) and Monte Carlo tree search (Xing & Tu, 2020; Fu
et al., 2021) for TSP instances. Compared to construction models, methods that learn improvement
heuristics can often deliver better performance, by learning to iteratively improve the solution (Wu
et al., 2021a). The improvement heuristics can be a guide for the next solution selection (Wu et al.,
2021b), or policy to pick heuristics (Chen & Tian, 2019), or refinement from the current solution (Lu
et al., 2019; Li et al., 2020). In general, both the learned improvement heuristics and construction
methods have proved valid in some specific problems. In contrast, this paper aims to solve general
MIP problems by learning improvement heuristic policies.

Learning to solve general MIP problems: Dual and primal are two main perspectives to improve
solving efficiency for general MIP problems. Specifically, dual view aims to improve inner policies
of Branch and Bound, like variable selection (Gasse et al., 2019; Zarpellon et al., 2021; Gupta et al.,
2020), node selection (He et al., 2014) and cut selection (Tang et al., 2020; Paulus et al., 2022b;a).
With a better decision at each node, the overall solving process can be greatly simplified.

In the primal perspective, the algorithms aim to find better feasible solutions by prediction or
learning-based heuristics. For example, Ding et al. (2020) learned a tripartite graph-based deep

14

Published as a conference paper at ICLR 2025

Table 7: Description of the tripartite graph features.

Tensor Feature Description

V

variable type (binary, integer, continuous).
objective coefficient.
lower and upper bound.
reduced cost.
solution value fractionality.
(dynamic) solution value in incumbent.
(dynamic) average solution value.
(dynamic) best solution value.
(Branching Only) LNS decisions at current step.

C
cosine similarity with objective.
tightness indicator in LP solution.
dual solution value.
bias value, normalized with constraint coefficients

O average states of related variables.
V - C constraint coefficient per variable.
V - O objective coefficient per variable.
C - O constraint right-hand-side (RHS) coefficients.

Table 8: Average variable/constraints of instances

Num of Training Generalization
SC MIS CA MC SC2 MIS2 CA2 MC2 SC4 MIS4 CA4 MC4

Variables 1000 1500 4000 2975 2000 3000 8000 5975 4000 6000 16000 11975
Constraints 5000 5939 2674 4950 5000 11933 5344 9950 5000 23905 10717 19950

Table 9: Training, Validation and Test accuracy for graph-based branching network.

Local Branching Global Branching
SC MIS CA MC Item AMIPLIB SC MIS CA MC Item AMIPLIB

Train% 89.5 84.9 79.6 86.3 85.5 77.5 86.9 87.3 81.5 88.5 83.4 75.9
Validation% 84.8 83.5 75.1 82.1 82.8 74.9 83.7 84.9 80.9 87.0 81.8 75.1

Test% 82.5 81.6 72.9 80.5 81.5 74.2 83.1 82.6 80.1 84.5 80.7 73.8

neural network to generate partial assignments for binary variables, and to deal with the general
integer variables, Nair et al. (2020b) proposed a bound tightening mechanism and learned partial
assignments for each bit, respectively. Nevertheless, they were only applied in neural diving, and
directly fixing may also lead to performance degradation or even infeasibility. To obtain broader
applicability, learning-based primal heuristics, like large neighborhood search (Huang et al., 2023b;
Song et al., 2020; Sonnerat et al., 2021; Nair et al., 2020a), and local branching (Liu et al., 2022),
gradually catch more attention.

In this paper, we mainly focus on large neighborhood search heuristics, which have achieved re-
markable progress in recent years. For example, Hendel (2022) designed an adaptive approach to
combine multiple existing LNS heuristics to enhance the performance of a single policy, while it
is largely limited by the rule-based heuristics and requires hand-crafted hyperparameters. To make
it further, learning a better neighborhood function became popular recently. Sonnerat et al. (2021)
and Song et al. (2020) both utilized imitation learning to select variable subsets to optimize at each
step. However, the equal-size subsets make it inflexible and dramatically limit the performance. In
this respect, Wu et al. (2021a) factorized the LNS policy into elementary actions on each variable
and trained an RL-based policy to select variable subsets dynamically. However, current studies on
LNS mainly focus on binary variables and are often susceptible to local optima even in the training
phase due to the problem’s complexity. In this respect, we propose a binarized-tightening branch
and search approach to learn more efficient LNS policies for general problems.

A.2 DETAIL FOR THE EXPERIMENTS

Tripartite graph-based features: We describe in Table 7 the variable, constraint, objective, and
multi-source edge features of the tripartite graph utilized in both the LNS and branching policy

15

Published as a conference paper at ICLR 2025

Table 10: Performance comparison on MIPLIB2017 instances that contained unbounded variables.
Instance SCIP U-LNS R-LNS FT-LNS BTBS-LNSw/o ubd BTBS-LNS Gurobi

gen-ip054 6858.879 6858.879 6852.733 6858.879 6852.733 6852.733 6840.966*
gen-ip002 -4783.733* -4772.597 -4772.597 -4768.253 -4783.733* -4783.733* -4783.733*

neos-3046615-murg 1610 1670 1651 1651 1610 1607 1600*
buildingenergy 42652.34 42652.34 42652.34 42652.34 34243.89 33324.73 33283.85*

learning in detail. Then we will clarify the features and connections for the encoded substitute
variables. They are also characterized by static and dynamic features. For static features, the variable
type and bounds are set to binary and 1/0, respectively, while other features are directly inherited
from the original integer variables. For dynamic features, the solution value for each substitute
variable is determined based on the encoded results. For example, for a general integer variable with
a range of [0, 7], if the current solution value is 5, the solution values of the three substitute variables
would be 1, 0, 1. Additionally, the connections between the substitute variables and other nodes are
directly inherited from the original integer variables.

Except for the dynamic solving status, all the other features are collected at the root node of the
search tree, and the dynamic features are collected along with the optimization process.

Sizes for the generated instances with different difficulties: The average variable and constraint
size used in our experiments are listed in Table 8, which consists of small-scale training instances
and some hard instances to evaluate the generalization ability.

Accuracy for the imitation learning based branching policy: Table 9 reports the training, valida-
tion, and testing accuracy of the global and local branching variants.

We compare our proposed BTBS-LNS with various baselines, which are explained as follows in
detail:

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solver, and were
fine-tuned with the aggressive mode to focus on improving the objectives.

2) U-LNS: an LNS version that uniformly samples variables at a fixed subset size. Note that for
U-LNS, R-LNS and FT-LNS, we perform the same settings as Wu et al. (2021a).

3) R-LNS: an LNS version (Song et al., 2020) that randomly groups variables into equal subsets and
re-optimizes them.

4) DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS
(Berthold, 2014): heuristic-based LNS policies.

5) FT-LNS (Song et al., 2020): an LNS approach that applies imitation learning to learn the best
R-LNS policies.

6) RL-LNS (Wu et al., 2021a): Reinforcement learning LNS approach for variable subset opti-
mization, while mainly focused on binary variable optimization.

7) Branching (Sonnerat et al., 2021): An imitation learning-based LNS approach that learned from
local branching constraints.

8) LNS-TG: A variant of our method, where we replace the tripartite graph with the widely used
bipartite graph.

10) LNS-Branch: A variant of our method, where we remove the extra branching policy.

11) LNS-IBT: A variant of our method, where the general integer variables are equally treated as
binary variables.

12) LNS-IT: A variant of our method, where we remove the “Tightening” technique and fix the
integer variable to its current solution when either bit is fixed.

13) LNS-ATT: A variant of our method, where we replace our attention-based graph attention net-
work with the widely used GAT.

14) BTBS-LNS-F: A variant of our method, where we replace our bound tightening mechanism
with that proposed by Nair et al. (2020b).

16

Published as a conference paper at ICLR 2025

Table 11: Experiments with Gurobi as the baseline for binary Integer Programming (IP)

.

Methods SC MIS CA MC
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

U-LNS 2.59 18820 0.41 635.32 3.78 2690.5 4.07 5633.8
R-LNS 3.01 18925 0.34 545.71 4.85 2999.0 3.75 5189.5
FT-LNS 3.38 19521 0.73 462.45 4.40 2856.4 3.79 5214.7
RL-LNS 1.57 16911 0.09 179.94 1.37 2029.1 3.52 4812.5

BTBS-LNS 0.28 15987 0 165.24 0.27 1710.6 0.38 426.89
Gurobi 0.75 16796 0 173.15 1.44 2075.4 0.62 842

Table 12: Generalization to large-scale binary integer programming (IP) instances with Gurobi as
the baseline

.

Methods SC2 MIS2 CA2 MC2
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

U-LNS 2.48 13599 0.32 1551.6 3.06 5442.1 3.76 13713
R-LNS 2.73 14052 0.55 1845.2 2.60 5112.0 3.75 13359
FT-LNS 3.29 14338 0.28 1485.2 3.72 5823.5 4.04 13753

BTBS-LNS 0.28 12275 0 462.38 0.47 4125.1 0.01 350.45
Gurobi 0.71 12528 0.01 495.88 3.60 5723.5 1.01 2195.6

Methods SC4 MIS4 CA4 MC4
Gap% PI Gap% PI Gap% PI(×103) Gap% PI

U-LNS 2.56 14150 0.64 5515.7 4.02 15712 4.95 46965
R-LNS 2.36 14112 0.52 4846.3 3.95 15275 4.84 46380
FT-LNS 3.34 14515 0.54 4915.0 3.68 14588 4.78 45795

BTBS-LNS 0.27 13424 0.01 2051.8 0.67 10025 0 11034
Gurobi 1.22 13795 0.04 2215.7 12.61 21959 5.38 51298

Note that the work by Sonnerat et al. (2021) doesn’t have open-source code and some hyperpa-
rameters are difficult to fine-tune in different problems. However, to further evaluate our proposed
framework with pure local branching based methods, we try to reproduce them, with the following
details:

1) For a fair comparison, we replace the neural diving in Sonnerat et al. (2021) with an initial feasible
solution generated by SCIP, the same as our approach.

2) In data collection, the desired Hamming radius ηt are selected as 50, the same as our branching
policy.

3) The model structure was the same as its descriptions, where we use the code provided by Gasse
et al. (2019), and additionally use a fixed-size window (3 in the paper) of past variable assignments
as variable features.

4) In the inference phase with the learned policy, we performed the same action sampling mechanism
as in Sonnerat et al. (2021). As for the adaptive neighborhood size, we start with 10% of the integer
variable size, and the dynamic factor a was tuned from 1.01 to 1.05. Best-performing parameters
will be selected for comparison in each problem. As a result, on SC and MIS, a was set as 1.02, and
a = 1.03 can deliver the best performance on other problems.

A.3 DETAILED ANALYSIS ON MIPLIB2017

Table 13: Evaluation by Gurobi as baseline solver
(MIP).

Methods Item AMIPLIB
Obj Gap% PI Gap%

U-LNS 17.64 36.08 3004.3 6.44
R-LNS 16.62 31.94 2788.6 6.01
FT-LNS 15.64 27.31 2519.4 5.45

BTBS-LNS 12.27 4.56 1823.7 0.47
Gurobi 12.67 6.73 1895.6 0.81

In Sec. 4.5, we evaluated our approach on
the whole MIPLIB2017 benchmark set, which
showed superior performance. To further eval-
uate the effectiveness of our novel virtual bound
technique specifically for unbounded integer
variables (see Alg. 1), we conducted an ex-
tensive analysis across all instances featured
in the MIPLIB2017 benchmark set. Notably,
there are 19 and 4 instances that contained un-
bounded integer variables before and after the
presolve, respectively. In this section, we compared our BTBS-LNS with a variant BTBS-LNSw/o
ubd, where the special handling for unbounded integer variables (see Line 2-6 in Alg. 1) is removed.
In other words, unbounded variables were free to optimize at each step. The comparison results on
the four instances that still contain unbounded variables after presolve are gathered in Table 10.

17

Published as a conference paper at ICLR 2025

Table 14: Average Standard Deviations for our proposed BTBS-LNS on different problems.

Methods SC SC2 SC4
Obj Gap% Obj Gap% Obj Gap%

BTBS-LNS 547.88 ± 0.59% 0.47 ± 0.88% 293.56 ± 0.77% 0.51 ± 0.68% 169.80 ± 0.68% 0.84 ± 1.01%

Methods MIS MIS2 MIS4
Obj Gap% Obj Gap% Obj Gap%

BTBS-LNS -685.86 ± 0.74% 0.05 ± 0.78% -1372.66 ± 0.51% 0.04 ± 0.21% -2747.04 ± 0.32% 0.07 ± 0.19%

Methods CA CA2 CA4
Obj Gap% Obj Gap% Obj Gap%

BTBS-LNS -112864 ± 0.32% 2.18 ± 0.29% -222590 ± 0.39% 1.67 ± 0.41% -439431 ± 0.33% 1.39 ± 0.49%

Methods MC MC2 MC4
Obj Gap% Obj Gap% Obj Gap%

BTBS-LNS -909.17 ± 0.48% 1.99 ± 0.52% -1831.00 ± 0.66% 1.45 ± 0.58% -3664 ± 0.73% 1.52 ± 0.84%

Methods Item AMIPLIB MIPLIB2017
Obj Gap% Obj Gap% Obj Gap%

BTBS-LNS 13.82 ± 1.09% 16.82 ± 0.96% / 4.19 ± 1.51% / 1.75 ± 1.62%

As can be seen, our proposed BTBS-LNS, outperforms the variant BTBS-LNSw/o ubd on two in-
stances and achieves parity on the other two. These findings underscore the potent effectiveness of
our proposed bound-tightening technique, substantiating its value in enhancing solution quality and
optimization efficiency. We will continue the experimentation on more unbounded MIP problems in
the future.

A.4 GUROBI VERSION OF OUR BTBS-LNS

To evaluate the performance of different approaches with Gurobi as the baseline solver, we perform
extensive experiments on MIP problems, four binary integer programming problems, and their scale-
transfer instances.

The hyperparameters remain unchanged from those in SCIP counterparts. The results of four bi-
nary integer programming problems and their scale-transfer instances are gathered in Table 11 and
Table 12. The comparison results on MIP problems are reported in Table 13. As can be seen, our
BTBS-LNS consistently outperforms Gurobi across all the problems with different sizes, indicating
the effectiveness and generalization ability to different solvers.

A.5 EXPERIMENTS WITH CPU VS GPU

All the experiments presented in Sec. 4 were performed on the Intel(R) Xeon(R) E5-2678 v3
2.50GHz CPU with 4 physical cores, and it achieved competitive performance even compared with
the leading commercial solver. In this section, we will further evaluate the GPU version (NVIDIA
GeForce RTX 2080) of our proposed BTBS-LNS on the balanced item placement problem.

Fig. 5 depicts the anytime primal gap comparison between the CPU and GPU versions in detail
within the 200s time limit. As can be seen, compared with CPU implementation, GPU version
BTBS-LNS delivers slightly better performance almost at any time, in which the overall primal
gap and primal integral improve by 0.83% and 0.99%, respectively. In other words, our proposed
BTBS-LNS may achieve even better performance when implemented in a GPU environment.

A.6 STABILITY ANALYSIS OF OUR APPROACH

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

GPU
CPU

Figure 5: Anytime Performance
comparison (GPU vs CPU).

To make a fair comparison between different competing ap-
proaches, all the experiments in Sec. 4 were conducted with
three different seeds. The average standard deviations for our
proposed BTBS-LNS on different problems are gathered in
Table 14. As can be seen, it is fairly robust to different seeds,
with average standard deviations lower than 2% even on hard
and heterogeneous problems, like MIPLIB2017.

A.7 DETAILED ANYTIME PERFORMANCE ON INTEGER PROGRAMMING PROBLEMS

To further evaluate the anytime performance among the competing approaches, we plot the anytime
primal gap curves on four binary integer programming problems, Set Covering (SC), Maximal Inde-
pendent Set (MIS), Combinatorial Auction (CA), and Maximum Cut (MC), respectively. The results
are gathered in Figure 6, 7, 8, 9, respectively.

18

Published as a conference paper at ICLR 2025

0 50 100 150 200
0

0.1

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

RENS
Branching
RL-LNS

SCIP
Gurobi

BTBS-LNS

Figure 6: Anytime Performance on Set Covering (SC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from SC, SC2, SC4. (see Table 8 for
detail).

0 50 100 150 200
0

2

4

6

8
·10−2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

5 · 10−2

0.1

0.15

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

5 · 10−2

0.1

0.15

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

RENS
Branching
RL-LNS

SCIP
Gurobi

BTBS-LNS

Figure 7: Anytime Performance on Maximal Independent Set (MIS) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from MIS, MIS2, MIS4. (see
Table 8 for detail).

0 50 100 150 200
0

0.1

0.2

0.3

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap
RENS

Branching
RL-LNS

SCIP
Gurobi

BTBS-LNS

Figure 8: Anytime Performance on Combinatorial Auction (CA) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from CA, CA2, CA4. (see
Table 8 for detail).

0 50 100 150 200
0

0.1

0.2

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

0.3

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

0 50 100 150 200
0

0.1

0.2

0.3

Time (second)

A
ve

ra
ge

Pr
im

al
G

ap

RENS
Branching
RL-LNS

SCIP
Gurobi

BTBS-LNS

Figure 9: Anytime Performance on Maximum Cut (MC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from MC, MC2, MC4. (see Table 8 for
detail).

As seen from the results, our BTBS-LNS delivers consistently superior performance over the com-
peting LNS baselines almost at any point, demonstrating its efficiency and effectiveness. More
surprisingly, the proposed approach can achieve superior performance over the leading commercial
solver in some cases, especially on the scale-transfer instances, purely by the learned policy on
small-scale instances, with SCIP as the off-the-shelf solver.

A.8 PER-INSTANCE PERFORMANCE COMPARISON ON MIPLIB2017

Considering that the results on MIPLIB2017 instances may deliver high variances due to the sig-
nificantly different problem distributions across instances, showing only the average gap may not
be sufficient. In this respect, we report the detailed per-instance performance within the given time
limit on the competing approaches, and the results are gathered in Table 15.

19

Published as a conference paper at ICLR 2025

We report 218/240 instances from the MIPLIB2017 benchmark set. The following instances were
removed, as no feasible solution can be found for them within the pre-defined time limit by the
off-the-shelf solver SCIP:

1) Instances that are infeasible (6):

• bnatt500
• cryptanalysiskb128n5obj14
• fhnw-binpack4-4
• neos-2075418-temuka
• neos-3988577-wolgan
• neos859080

2) Instances that cannot generate feasible solution by the baseline solver within timelimit (16):

• cryptanalysiskb128n5obj16
• gfd-schedulen180f7d50m30k18
• highschool1-aigio
• irish-electricity
• neos-1354092
• neos-3402454-bohle
• neos-4532248-waihi
• neos-5104907-jarama
• neos-5114902-kasavu
• ns1116954
• ns1952667
• peg-solitaire-a3
• physiciansched3-3
• rail02
• supportcase19
• supportcase22

A.9 A SMALL NUMERICAL EXAMPLE FOR ALG. 1

Consider a general integer variable x0 with a [0, 15] range and a current solution of 3. This variable
is encoded using 4 substitution binary variables: x0,1, x0,2, x0,3, and x0,4. At each LNS iteration
t, distinct actions at0,1, at0,2, at0,3, and at0,4 are taken for each substitution variable, controlling the
range of the original variable at different levels of significance. Specifically, the decision actions
at0,j for all j are evaluated sequentially, and the upper and lower bounds are tightened around the
current solution whenever at0,j = 0, as described in Line 11-12 of Alg. 1. Here are some examples:

1. If at0,1 = 0 and the others are 1, the updated bounds for x0 will be [0, 10].

2. If at0,1 = at0,2 = 0 and the others are 1, the updated bounds for x0 will be [0, 8].
3. ...
4. If all decision actions are 0, the updated bounds for x0 will be [0, 6], with the current solu-

tion precisely at the midpoint of the variable bounds. Similarly, when the current solution
is 12, the updated bounds will be [9, 15].

In each LNS iteration, our bound-tightening method refines the variable bounds around the current
solution, guided by the LNS decisions, to balance computational complexity and exploration effi-
ciency. Importantly, this bound-tightening process is conducted independently at each step, always
initiating from the original variable bounds.

20

Published as a conference paper at ICLR 2025

Ta
bl

e
15

:P
er

-i
ns

ta
nc

e
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
on

M
IP

L
IB

20
17

In
st

an
ce

SC
IP

SC
IP

(6
00

s)
SC

IP
(9

00
s)

U
-L

N
S

R
-L

N
S

FT
-L

N
S

B
T

B
S-

L
N

S
B

T
B

S-
L

N
S-

F
G

ur
ob

i
O

pt
im

al
So

lu
tio

n

30
n2

0b
8

30
2

30
2

30
2

35
3

30
2

30
2

30
2

30
2

30
2

30
2

50
v-

10
33

40
.3

7
33

16
.9

2
33

13
.1

8
33

24
.3

8
33

40
.3

7
33

34
.0

1
33

11
.1

8
33

15
.2

4
33

11
.1

8
33

11
.1

8
ac

ad
em

ic
tim

et
ab

le
sm

al
l

22
8

22
8

22
8

22
8

22
8

22
8

6
45

6
0

ai
r0

5
26

37
4

26
37

4
26

37
4

26
43

9
26

37
4

26
44

1
26

37
4

26
37

4
26

37
4

26
37

4
ap

p1
-1

-3
-3

-3
-3

-2
-3

-3
-3

-3
-3

ap
p1

-2
-2

3
-4

1
-4

1
-2

4
-2

3
-2

9
-4

1
-4

1
-4

1
-4

1
as

si
gn

1-
5-

8
21

2
21

2
21

2
21

4
21

2
21

2
21

2
21

2
21

2
21

2
at

la
nt

a-
ip

98
.0

1
93

.0
1

93
.0

1
93

.0
1

95
.0

1
93

.0
1

90
.0

1
90

.0
1

90
.0

1
90

.0
1

b1
c1

s1
27

03
1.

16
27

00
4.

55
25

57
1.

02
27

54
0.

75
27

03
1.

16
26

37
9.

4
24

54
4.

25
24

54
4.

25
24

54
4.

25
24

54
4.

25
ba

b2
-3

54
06

4.
7

-3
54

06
4.

7
-3

54
06

4.
7

-3
54

06
4.

7
-3

54
06

4.
7

-3
54

09
1

-3
54

09
2.

9
-3

54
09

2.
9

-3
57

52
5.

96
-3

57
54

4.
31

2
ba

b6
-2

79
12

1.
2

-2
79

12
1.

2
-2

79
12

1.
2

-2
80

54
6.

4
-2

80
54

6.
4

-2
80

54
6.

4
-2

80
54

6.
4

-2
80

54
6.

4
-2

84
24

8.
23

-2
84

24
8.

23
be

as
le

yC
3

75
4

75
4

75
4

75
9

75
9

75
5

75
4

75
4

75
4

75
4

bi
nk

ar
10

1
67

42
.2

67
42

.2
67

42
.2

67
46

.7
6

67
47

.7
8

67
43

.2
4

67
42

.2
67

42
.2

67
42

.2
67

42
.2

bl
p-

ar
98

65
65

.9
9

63
03

.1
1

62
43

.7
7

65
65

.9
9

65
84

.4
3

65
65

.9
9

62
05

.2
1

62
05

.2
1

62
05

.2
1

62
05

.2
1

bl
p-

ic
98

47
44

.0
8

47
19

.1
46

41
.7

7
47

19
.1

49
63

.6
6

49
63

.6
6

44
91

.4
5

44
91

.4
5

44
91

.4
5

44
91

.4
5

bn
at

t4
00

1
1

1
1

1
1

1
1

1
1

bp
pc

4-
08

53
53

53
56

56
54

53
53

53
53

br
az

il3
10

2
10

2
10

2
10

2
10

2
10

2
24

41
24

24
bu

ild
in

ge
ne

rg
y

42
65

2.
34

34
25

0.
38

34
25

0.
38

42
65

2.
34

42
65

2.
34

42
65

2.
34

33
32

4.
73

34
25

0.
38

33
28

3.
85

33
28

3.
85

cb
s-

ct
a

0
0

0
43

.1
6

43
.1

6
0

0
0

0
0

ch
ro

m
at

ic
in

de
x1

02
4-

7
4

4
4

4
4

4
4

4
4

4
ch

ro
m

at
ic

in
de

x5
12

-7
4

4
4

4
4

4
4

4
4

4
cm

fls
p5

0-
24

-8
-8

57
92

14
00

57
92

14
00

57
92

14
00

57
92

14
00

57
92

14
00

57
92

14
00

55
78

93
90

55
78

93
90

55
78

93
90

55
78

93
90

C
M

S7
50

4
26

1
25

4
25

2
26

1
26

9
25

3
25

2
25

2
25

2
25

2
co

-1
00

11
83

37
20

11
83

37
20

11
83

37
20

11
83

37
20

11
83

37
20

11
83

37
20

26
39

94
2.

06
26

39
94

2.
06

26
39

94
2.

06
26

39
94

2.
06

co
d1

05
-1

2
-1

2
-1

2
-1

1
-1

1
-8

-1
2

-1
2

-1
2

-1
2

co
m

p0
7-

2i
dx

82
3

14
8

14
8

14
8

14
8

78
6

23
6

6
co

m
p2

1-
2i

dx
25

0
17

9
14

2
25

0
25

0
22

5
75

88
88

74
co

st
26

6-
U

U
E

25
22

28
00

25
14

89
41

25
14

89
41

25
22

28
00

25
22

28
00

25
16

40
70

25
14

89
41

25
14

89
41

25
14

89
41

25
14

89
41

cs
ch

ed
00

7
36

2
35

1
35

1
36

2
35

6
35

4
35

1
35

1
35

1
35

1
cs

ch
ed

00
8

17
3

17
3

17
3

17
6

17
8

17
4

17
3

17
3

17
3

17
3

cv
s1

6r
12

8-
89

-9
3

-9
5

-9
5

-8
6

-8
0

-8
4

-9
7

-9
7

-9
6

-9
7

da
no

3
3

57
6.

34
5

57
6.

34
5

57
6.

34
5

57
7.

47
5

57
6.

52
57

6.
52

57
6.

34
5

57
6.

34
5

57
6.

34
5

57
6.

34
5

da
no

3
5

57
6.

92
5

57
6.

92
5

57
6.

92
5

58
1.

72
5

58
1.

72
5

57
7.

31
6

57
6.

92
5

57
6.

92
5

57
6.

92
5

57
6.

92
5

de
co

m
p2

-1
60

-1
60

-1
60

-1
52

-1
52

-1
33

-1
60

-1
60

-1
60

-1
60

dr
ay

ag
e-

10
0-

23
10

33
34

10
33

34
10

33
34

10
33

34
10

33
34

10
33

34
10

33
34

10
33

34
10

33
34

10
33

33
.8

74
dr

ay
ag

e-
25

-2
3

10
12

83
10

12
83

10
12

83
10

68
97

10
13

44
10

13
44

10
12

83
10

12
83

10
12

83
10

12
82

.6
47

dw
s0

08
-0

1
56

69
1.

23
46

17
9.

85
38

87
3.

46
56

69
1.

23
56

69
1.

23
56

69
1.

23
37

41
2.

6
37

41
2.

6
37

41
2.

6
37

41
2.

6

21

Published as a conference paper at ICLR 2025

In
st

an
ce

SC
IP

SC
IP

(6
00

s)
SC

IP
(9

00
s)

U
-L

N
S

R
-L

N
S

FT
-L

N
S

B
T

B
S-

L
N

S
B

T
B

S-
L

N
S-

F
G

ur
ob

i
O

pt
im

al
So

lu
tio

n

ei
l3

3-
2

93
4.

00
8

93
4.

00
8

93
4.

00
8

98
7.

67
4

98
7.

67
4

93
4.

00
8

93
4.

00
8

93
4.

00
8

93
4.

00
8

93
4.

00
8

ei
lA

10
1-

2
13

13
.4

7
99

5.
77

99
5.

77
14

43
.5

3
14

43
.5

3
14

43
.5

3
88

0.
92

88
0.

92
92

3.
01

88
0.

92
en

lig
ht

ha
rd

37
37

37
37

37
37

37
37

37
37

ex
10

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

ex
9

81
81

81
81

81
81

81
81

81
81

ex
p-

1-
50

0-
5-

5
65

88
7

65
88

7
65

88
7

65
88

7
65

88
7

65
88

7
65

88
7

65
88

7
65

88
7

65
88

7
fa

st
05

07
17

4
17

4
17

4
17

6
17

5
17

4
17

4
17

4
17

4
17

4
fa

st
xg

em
m

-n
2r

6s
0t

2
23

0
23

0
23

0
23

0
23

6
23

0
23

0
23

0
23

0
23

0
fh

nw
-b

in
pa

ck
4-

48
0

0
0

0
0

0
0

0
0

0
fib

al
l

14
0

13
8

13
8

13
8

14
0

13
8

13
8

13
8

13
8

13
8

ge
n-

ip
00

2
-4

78
3.

73
-4

78
3.

73
-4

78
3.

73
-4

77
2.

6
-4

77
2.

6
-4

76
8.

25
-4

78
3.

73
-4

77
2.

33
-4

78
3.

73
-4

78
3.

73
ge

n-
ip

05
4

68
58

.8
8

68
40

.9
7

68
40

.9
7

68
58

.8
8

68
52

.7
3

68
58

.8
8

68
52

.7
3

68
58

.5
8

68
40

.9
7

68
40

.9
7

ge
rm

an
rr

48
44

06
30

48
09

61
90

48
09

61
90

48
44

06
30

48
44

06
30

48
44

06
30

48
44

06
30

48
44

06
30

47
13

55
00

47
09

58
69

.6
gl

as
s-

sc
23

23
23

25
25

24
23

23
23

23
gl

as
s4

12
00

01
26

00
12

00
01

26
00

12
00

01
26

00
12

00
01

26
00

12
00

01
26

00
12

00
01

26
00

12
00

01
26

00
12

00
01

26
00

12
00

01
26

00
12

00
01

26
00

gm
u-

35
-4

0
-2

40
64

58
-2

40
64

58
-2

40
64

58
-2

40
64

58
-2

40
64

58
-2

40
64

58
-2

40
67

33
-2

40
64

58
-2

40
67

33
-2

40
67

33
.3

7
gm

u-
35

-5
0

-2
60

68
71

-2
60

69
30

-2
60

69
30

-2
60

54
65

-2
60

53
87

-2
60

69
30

-2
60

79
58

.3
-2

60
79

58
.3

-2
60

79
22

.7
-2

60
79

58
.3

3
gr

ap
h2

0-
20

-1
ra

nd
-9

-9
-9

-8
-8

-9
-9

-9
-9

-9
gr

ap
hd

ra
w

-d
om

ai
n

19
68

6
19

68
6

19
68

6
19

84
8

19
84

8
19

77
2

19
68

6
19

68
8

19
68

6
19

68
6

h8
0x

63
20

d
63

82
.1

63
82

.1
63

82
.1

64
16

.6
1

63
82

.1
63

82
.1

63
82

.1
63

82
.1

63
82

.1
63

82
.1

hy
po

th
yr

oi
d-

k1
-2

85
1

-2
85

1
-2

85
1

-2
85

1
-2

85
1

-2
85

1
-2

85
1

-2
85

1
-2

85
1

-2
85

1
ic

97
po

te
nt

ia
l

39
45

39
45

39
45

39
52

39
45

39
52

39
42

39
52

39
42

39
42

ic
ir

97
te

ns
io

n
63

92
63

82
63

75
63

75
63

82
63

76
63

75
63

75
63

75
63

75
ir

p
12

15
9.

49
12

15
9.

49
12

15
9.

49
12

16
0.

2
12

16
1.

5
12

16
1.

5
12

15
9.

49
12

15
9.

49
12

15
9.

49
12

15
9.

49
is

ta
nb

ul
-n

o-
cu

to
ff

20
4.

08
20

4.
08

20
4.

08
21

4.
79

7
21

2.
96

1
21

4.
79

7
20

4.
08

20
4.

08
20

4.
08

20
4.

08
k1

m
us

hr
oo

m
-2

04
-2

93
-3

28
8

-2
04

-2
04

-2
04

-3
14

4
-3

14
4

-3
28

8
-3

28
8

le
ct

sc
he

d-
5-

ob
j

48
41

39
46

48
44

24
27

24
24

le
o1

41
96

55
20

0
41

26
00

40
0

41
07

09
20

0
48

82
16

00
0

44
33

95
10

0
42

91
82

10
0

40
49

89
40

0
40

49
89

40
0

40
42

27
53

6
40

42
27

53
6

le
o2

43
67

00
20

0
42

60
90

60
0

42
49

58
90

0
43

81
15

10
0

43
67

00
20

0
43

64
44

00
0

40
55

31
20

0
40

55
31

20
0

40
40

77
44

1
40

40
77

44
1

lo
ts

iz
e

15
57

86
8

14
84

32
3

14
83

96
0

16
26

58
7

15
57

86
8

14
95

68
2

14
80

19
5

14
80

19
5

14
94

10
1

14
80

19
5

m
ad

0.
06

7
0.

03
8

0.
03

52
0.

06
7

0.
07

72
0.

03
92

0.
02

68
0.

02
68

0.
02

8
0.

02
68

m
ap

10
-4

80
-4

95
-4

95
-4

68
-4

10
-4

72
-4

95
-4

95
-4

95
-4

95
m

ap
16

71
5-

04
-7

8
-1

09
-1

11
-8

2
-7

8
-8

3
-1

11
-1

11
-1

11
-1

11
m

ar
ks

ha
re

4
0

1
1

1
3

1
1

1
1

1
1

m
ar

ks
ha

re
2

31
28

28
31

36
31

11
11

11
1

m
as

74
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

19
11

80
1.

18
57

m
as

76
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
40

00
5.

05
m

c1
1

11
68

9
11

68
9

11
68

9
11

72
0

11
73

1
11

89
6

11
68

9
11

68
9

11
68

9
11

68
9

m
cs

ch
ed

21
19

13
21

19
13

21
19

13
21

28
74

21
28

74
21

29
11

21
19

13
21

19
13

21
19

13
21

19
13

m
ik

-2
50

-2
0-

75
-4

-5
23

01
-5

23
01

-5
23

01
-5

23
01

-5
23

01
-5

23
01

-5
23

01
-5

23
01

-5
23

01
-5

23
01

m
ilo

-v
12

-6
-r

2-
40

-1
32

64
81

.1
32

64
81

.1
32

64
81

.1
32

68
20

.6
32

68
20

.6
32

64
81

.1
32

64
81

.1
32

64
81

.1
32

64
81

.1
32

64
81

.1
m

om
en

tu
m

1
37

23
99

.4
28

24
47

.1
13

48
97

36
59

44
36

59
44

37
23

99
.4

10
91

43
.5

10
91

43
.5

10
91

43
.5

10
91

43
.5

m
us

hr
oo

m
-b

es
t

0.
05

53
0.

05
53

0.
05

53
0.

08
69

0.
08

69
0.

05
53

0.
05

53
0.

05
53

0.
05

53
0.

05
53

m
zz

v1
1

-2
17

18
-2

17
18

-2
17

18
-2

16
78

-2
16

68
-2

16
78

-2
17

18
-2

17
18

-2
17

18
-2

17
18

m
zz

v4
2z

-2
05

40
-2

05
40

-2
05

40
-2

05
40

-2
05

40
-2

04
00

-2
05

40
-2

05
40

-2
05

40
-2

05
40

22

Published as a conference paper at ICLR 2025

In
st

an
ce

SC
IP

SC
IP

(6
00

s)
SC

IP
(9

00
s)

U
-L

N
S

R
-L

N
S

FT
-L

N
S

B
T

B
S-

L
N

S
B

T
B

S-
L

N
S-

F
G

ur
ob

i
O

pt
im

al
So

lu
tio

n

n2
se

q3
6q

52
60

0
52

20
0

52
20

0
52

80
0

52
60

0
52

40
0

52
20

0
52

20
0

52
20

0
52

20
0

n3
di

v3
6

13
08

00
13

08
00

13
08

00
13

08
00

13
14

00
13

08
00

13
08

00
13

08
00

13
08

00
13

08
00

n5
-3

81
05

81
05

81
05

84
05

81
05

81
05

81
05

81
05

81
05

81
05

ne
os

-1
12

20
47

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

ne
os

-1
17

14
48

-3
09

-3
09

-3
09

-3
07

-3
05

-3
09

-3
09

-3
09

-3
09

-3
09

ne
os

-1
17

17
37

-1
90

-1
92

-1
92

-1
73

-1
90

-1
90

-1
95

-1
95

-1
95

-1
95

ne
os

-1
44

57
65

-1
77

83
-1

77
83

-1
77

83
-1

77
83

-1
77

83
-1

77
83

-1
77

83
-1

77
83

-1
77

83
-1

77
83

ne
os

-1
45

69
79

18
6

18
4

18
4

20
7

18
4

18
6

17
6

17
8

17
6

17
6

ne
os

-1
58

24
20

91
91

91
91

91
91

91
91

91
91

ne
os

-2
65

75
25

-c
rn

a
7.

23
7.

23
7.

23
7.

23
8.

06
7.

23
1.

81
07

5
7.

23
1.

81
07

5
1.

81
07

5
ne

os
-2

74
65

89
-d

oo
n

20
99

.6
20

99
.6

20
99

.6
20

99
.6

20
99

.6
20

99
.6

20
08

.2
20

99
.6

20
08

.2
20

08
.2

ne
os

-2
97

81
93

-i
nd

e
-2

.3
88

-2
.3

88
-2

.3
88

-2
.1

97
-2

.3
88

-2
.3

88
-2

.3
88

-2
.3

88
-2

.3
88

-2
.3

88
06

16
9

ne
os

-2
98

73
10

-j
oe

s
-6

07
70

29
88

-6
07

70
29

88
-6

07
70

29
88

-6
07

70
29

88
-6

07
70

29
88

-6
07

70
29

88
-6

07
70

29
88

-6
07

70
29

88
-6

07
70

29
88

-6
07

70
29

88
ne

os
-3

00
40

26
-k

rk
a

0
0

0
0

0
0

0
0

0
0

ne
os

-3
02

49
52

-l
ou

e
12

65
20

97
44

6
71

33
6

81
46

9
97

44
6

12
65

20
26

75
6

27
34

9
26

75
6

26
75

6
ne

os
-3

04
66

15
-m

ur
g

16
10

16
10

16
07

16
70

16
51

16
51

16
07

16
11

16
00

16
00

ne
os

-3
08

38
19

-n
ub

u
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
63

07
99

6
ne

os
-3

21
69

31
-p

ur
ir

i
15

11
60

15
11

60
15

11
60

14
12

75
15

11
60

14
12

75
14

12
75

14
12

75
71

32
0

71
32

0
ne

os
-3

38
12

06
-a

w
he

a
45

3
45

3
45

3
45

3
45

4
45

3
45

3
45

4
45

3
45

3
ne

os
-3

40
22

94
-b

ob
in

0.
06

72
5

0.
06

72
5

0.
06

72
5

0.
08

77
5

0.
06

72
5

0.
08

17
5

0.
06

72
5

0.
06

72
5

0.
06

72
5

0.
06

72
5

ne
os

-3
55

59
04

-t
ur

am
a

-3
4.

7
-3

4.
7

-3
4.

7
-3

4.
7

-3
4.

7
-3

4.
7

-3
4.

7
-3

4.
7

-3
4.

7
-3

4.
7

ne
os

-3
62

71
68

-k
as

ai
98

93
01

.6
98

93
01

.6
98

93
01

.6
99

00
06

.8
98

93
01

.6
98

93
01

.6
98

85
85

.6
2

98
85

85
.6

2
98

85
85

.6
2

98
85

85
.6

2
ne

os
-3

65
60

78
-k

um
eu

-1
10

67
.1

-1
10

67
.1

-1
10

67
.1

-1
10

67
.1

-1
10

67
.1

-1
10

67
.1

-1
31

27
-1

31
20

-1
31

71
-1

31
71

ne
os

-3
75

44
80

-n
id

da
13

83
2.

17
13

63
9.

97
13

63
9.

97
13

83
2.

17
13

83
2.

17
13

83
2.

17
12

94
0.

5
12

94
0.

5
12

94
1.

69
12

94
0.

5
ne

os
-4

30
06

52
-r

ah
ue

7.
44

54
2.

81
93

2.
75

95
6.

18
13

7.
44

54
6.

18
13

2.
14

16
2.

14
16

2.
14

16
2.

14
16

ne
os

-4
33

88
04

-s
no

w
y

14
77

14
74

14
73

14
82

14
79

14
79

14
71

14
73

14
71

14
71

ne
os

-4
38

78
71

-t
av

ua
35

.1
4

35
.1

4
35

.1
4

35
.1

4
35

.1
4

35
.1

4
33

.3
8

33
.3

8
33

.3
8

33
.3

8
ne

os
-4

41
37

14
-t

ur
ia

45
.3

7
45

.3
7

45
.3

7
51

.9
4

51
.9

4
45

.3
7

45
.3

7
45

.3
7

45
.3

7
45

.3
7

ne
os

-4
64

70
30

-t
ut

ak
i

27
26

8.
48

27
26

8.
48

27
26

8.
48

27
26

8.
48

27
26

8.
48

27
26

8.
48

27
26

5.
71

27
26

5.
71

27
26

5.
71

27
26

5.
71

ne
os

-4
72

28
43

-w
id

de
n

25
43

8.
44

25
21

0.
88

25
21

0.
88

27
70

7.
88

26
27

7.
44

26
27

7.
44

25
00

9.
7

25
30

9.
66

25
00

9.
7

25
00

9.
7

ne
os

-4
73

89
12

-a
tr

at
o

28
50

10
50

0
28

36
80

80
0

28
36

80
10

0
28

56
62

90
0

28
56

62
90

0
28

50
10

50
0

28
36

27
95

7
28

36
27

95
7

28
36

27
95

7
28

36
27

95
7

ne
os

-4
76

33
24

-t
og

ur
u

67
60

.7
35

67
60

.7
35

67
60

.7
35

67
60

.7
35

67
60

.7
35

67
60

.7
35

16
13

.0
39

16
13

.0
39

16
13

.0
39

16
13

.0
39

ne
os

-4
95

46
72

-b
er

ke
l

26
78

50
6

26
27

56
0

26
24

73
5

26
78

50
6

26
78

50
6

26
78

50
6

26
12

71
0

26
12

71
0

26
14

88
1

26
12

71
0

ne
os

-5
04

97
53

-c
ua

nz
a

63
6

63
6

63
6

63
6

63
6

60
0

56
2

60
0

56
2

56
2

ne
os

-5
05

24
03

-c
yg

ne
t

29
3

29
3

18
4

29
3

29
3

29
3

18
2

18
2

18
2

18
2

ne
os

-5
09

33
27

-h
ua

hu
m

66
86

66
86

66
86

66
86

69
60

66
86

62
60

62
60

62
70

62
60

ne
os

-5
10

75
97

-k
ak

ap
o

42
48

37
44

36
54

41
94

42
93

41
58

36
45

36
45

36
45

36
45

ne
os

-5
18

88
08

-n
at

ta
i

0.
11

25
7

0.
11

25
7

0.
11

20
7

0.
11

25
7

0.
11

25
7

0.
11

25
7

0.
11

02
9

0.
11

02
9

0.
11

02
9

0.
11

02
9

ne
os

-5
19

52
21

-n
ie

m
ur

0.
00

40
6

0.
00

38
4

0.
00

38
4

0.
00

41
8

0.
00

41
8

0.
00

40
6

0.
00

38
4

0.
00

38
4

0.
00

38
4

0.
00

38
4

ne
os

-6
31

71
0

21
4

21
4

21
4

21
4

21
4

21
4

20
3

20
3

20
3

20
3

ne
os

-6
62

46
9

24
50

34
.5

18
47

45
.5

18
46

79
.5

22
49

93
.5

22
50

44
24

50
34

.5
18

43
80

18
43

90
18

43
80

18
43

80
ne

os
-7

87
93

3
30

30
30

30
30

30
30

30
30

30
ne

os
-8

27
17

5
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
11

2.
00

2
ne

os
-8

48
58

9
12

35
96

60
23

59
.5

4
23

59
.5

4
12

35
96

60
12

35
96

60
12

35
96

60
23

58
.4

3
23

58
.4

3
32

06
.1

2
23

58
.4

3
ne

os
-8

60
30

0
32

01
32

01
32

01
32

01
32

67
32

01
32

01
32

01
32

01
32

01

23

Published as a conference paper at ICLR 2025

In
st

an
ce

SC
IP

SC
IP

(6
00

s)
SC

IP
(9

00
s)

U
-L

N
S

R
-L

N
S

FT
-L

N
S

B
T

B
S-

L
N

S
B

T
B

S-
L

N
S-

F
G

ur
ob

i
O

pt
im

al
So

lu
tio

n

ne
os

-8
73

06
1

12
2.

92
12

2.
72

12
2.

72
12

5.
93

12
2.

92
12

3.
66

11
3.

65
6

11
3.

65
6

11
3.

65
6

11
3.

65
6

ne
os

-9
11

97
0

54
.7

6
54

.7
6

54
.7

6
54

.8
3

54
.8

3
54

.7
6

54
.7

6
54

.7
6

54
.7

6
54

.7
6

ne
os

-9
33

96
6

23
88

32
0

32
0

23
89

23
88

23
88

31
8

31
8

31
8

31
8

ne
os

-9
50

24
2

4
4

4
4

5
4

4
4

4
4

ne
os

-9
57

32
3

-2
37

.7
6

-2
37

.7
6

-2
37

.7
6

-2
34

.7
6

-2
35

.7
6

-2
35

.7
6

-2
37

.7
6

-2
37

.7
6

-2
37

.7
6

-2
37

.7
6

ne
os

-9
60

39
2

0
-2

38
-2

38
0

0
-2

34
-2

38
-2

38
-2

38
-2

38
ne

os
17

0.
15

0.
15

0.
15

0.
17

1
0.

16
7

0.
15

1
0.

15
0.

15
0.

15
0.

15
ne

os
5

15
15

15
15

15
15

15
15

15
15

ne
os

8
-3

71
9

-3
71

9
-3

71
9

-3
71

9
-3

71
9

-3
71

9
-3

71
9

-3
71

9
-3

71
9

-3
71

9
ne

t1
2

21
4

21
4

21
4

21
4

25
5

21
4

21
4

21
4

21
4

21
4

ne
td

iv
er

si
on

49
00

43
8

49
00

43
8

26
3

49
00

43
8

49
00

43
8

26
3

24
2

24
4

24
2

24
2

ne
xp

-1
50

-2
0-

8-
5

30
0

23
4

23
1

77
1

77
1

23
7

23
1

23
1

23
9

23
1

ns
12

08
40

0
2

2
2

2
2

2
2

2
2

2
ns

16
44

85
5

-1
41

9.
67

-1
52

4.
33

-1
52

4.
33

-1
48

6.
67

-1
48

6.
67

-1
41

9.
67

-1
52

4.
33

-1
52

4.
33

-1
52

4.
33

-1
52

4.
33

ns
17

60
99

5
-4

29
.3

6
-4

29
.3

6
-4

29
.3

6
-4

29
.3

6
-4

29
.3

6
-4

29
.3

6
-5

48
.0

2
-5

48
.0

2
-5

16
.0

7
-5

49
.2

14
38

5
ns

18
30

65
3

20
62

2
20

62
2

20
62

2
23

62
2

23
62

2
21

62
2

20
62

2
20

62
2

20
62

2
20

62
2

nu
25

-p
r1

2
53

90
5

53
90

5
53

90
5

53
90

5
53

90
5

53
90

5
53

90
5

53
90

5
53

90
5

53
90

5
nu

rs
es

ch
ed

-m
ed

iu
m

-h
in

t0
3

80
80

80
80

79
06

80
80

80
80

80
80

11
7

99
7

15
2

11
5

nu
rs

es
ch

ed
-s

pr
in

t0
2

58
58

58
58

67
58

58
58

58
58

nw
04

16
86

2
16

86
2

16
86

2
16

87
6

16
87

6
16

87
6

16
86

2
16

86
2

16
86

2
16

86
2

op
m

2-
z1

0-
s4

-2
91

12
-3

30
62

-3
30

62
-2

65
38

-2
65

38
-2

65
38

-3
32

69
-3

32
69

-3
31

39
-3

32
69

p2
00

x1
18

8c
15

07
8

15
07

8
15

07
8

15
07

8
15

07
8

15
07

8
15

07
8

15
07

8
15

07
8

15
07

8
pg

-8
67

4.
34

-8
67

4.
34

-8
67

4.
34

-8
66

2.
84

-8
66

2.
84

-8
67

4.
34

-8
67

4.
34

-8
67

4.
34

-8
67

4.
34

-8
67

4.
34

pg
5

34
-1

43
24

.4
6

-1
43

24
.8

1
-1

43
25

.8
3

-1
43

10
.9

6
-1

43
24

.4
6

-1
43

24
.8

1
-1

43
39

.4
-1

43
39

.4
-1

43
39

.4
-1

43
39

.4
ph

ys
ic

ia
ns

ch
ed

6-
2

49
32

4
49

32
4

49
32

4
49

32
4

49
32

4
49

32
4

49
32

4
49

32
4

49
32

4
49

32
4

pi
pe

ro
ut

-0
8

12
50

55
12

50
55

12
50

55
13

37
07

12
50

55
12

50
55

12
50

55
12

50
55

12
50

55
12

50
55

pi
pe

ro
ut

-2
7

81
24

81
24

81
24

81
24

81
24

81
24

81
24

81
24

81
24

81
24

pk
1

11
11

11
12

11
11

11
11

11
11

pr
ot

ei
nd

es
ig

n1
21

hz
51

2p
9

26
09

26
09

26
09

26
09

26
09

26
09

26
09

26
09

14
77

14
73

pr
ot

ei
nd

es
ig

n1
22

tr
x1

1p
8

29
16

29
16

29
16

29
16

29
16

29
16

17
48

17
62

17
48

17
47

qa
p1

0
34

0
34

0
34

0
34

0
34

0
34

0
34

0
34

0
34

0
34

0
ra

di
at

io
nm

18
-1

2-
05

19
52

7
18

87
4

18
87

4
19

85
3

19
52

7
19

20
2

17
56

6
17

56
9

17
56

7
17

56
6

ra
di

at
io

nm
40

-1
0-

02
23

53
96

15
53

54
15

53
54

23
53

96
23

53
96

20
97

96
15

53
30

15
69

39
15

53
31

15
53

28
ra

il0
1

-6
9.

09
-6

9.
09

-6
9.

09
-6

9.
89

-6
9.

89
-6

9.
09

-6
9.

89
-6

9.
89

-7
0.

57
-7

0.
57

ra
il5

07
17

4
17

4
17

4
17

8
17

5
17

4
17

4
17

4
17

4
17

4
ra

n1
4x

18
-d

is
j-

8
37

15
37

14
37

12
37

98
37

98
37

15
37

12
37

12
37

36
37

12
rd

-r
pl

us
c-

21
17

97
51

.8
17

97
51

.8
17

97
51

.8
17

98
36

.5
17

97
51

.8
17

97
51

.8
16

53
95

.3
16

53
95

.3
16

53
95

.3
16

53
95

.3
re

bl
oc

k1
15

-3
67

21
08

0
-3

67
99

53
0

-3
68

00
60

0
-3

67
77

27
0

-3
67

99
53

0
-3

67
99

53
0

-3
68

00
60

3
-3

68
00

60
3

-3
68

00
60

3
-3

68
00

60
3

rm
at

r1
00

-p
10

42
3

42
3

42
3

44
2

42
4

45
7

42
3

42
3

42
3

42
3

rm
at

r2
00

-p
5

54
89

54
89

45
21

54
89

54
89

54
89

45
21

45
21

45
21

45
21

ro
cI

-4
-1

1
-6

02
02

03
-6

02
02

03
-6

02
02

03
-5

04
03

03
-5

04
03

03
-6

02
02

03
-6

02
02

03
-6

02
02

03
-6

02
02

03
-6

02
02

03
ro

cI
I-

5-
11

-4
.6

5
-5

.6
6

-5
.6

7
-4

.6
5

-5
.6

6
-4

.6
5

-6
.6

8
-6

.6
8

-5
.6

8
-6

.6
8

ro
co

co
B

10
-0

11
00

0
19

98
8

19
87

9
19

53
4

19
70

1
19

87
9

19
98

8
19

44
9

19
44

9
19

49
7

19
44

9
ro

co
co

C
10

-0
01

00
0

11
53

0
11

46
0

11
46

0
11

57
6

11
47

2
11

46
0

11
46

0
11

46
0

11
46

0
11

46
0

ro
i2

al
ph

a3
n4

-6
1.

37
-6

3.
17

-6
3.

17
-6

2.
41

-6
2.

41
-6

3.
17

-6
3.

21
-6

3.
21

-6
3.

21
-6

3.
21

24

Published as a conference paper at ICLR 2025

In
st

an
ce

SC
IP

SC
IP

(6
00

s)
SC

IP
(9

00
s)

U
-L

N
S

R
-L

N
S

FT
-L

N
S

B
T

B
S-

L
N

S
B

T
B

S-
L

N
S-

F
G

ur
ob

i
O

pt
im

al
So

lu
tio

n

ro
i5

al
ph

a1
0n

8
-4

4.
89

-4
5.

15
-4

5.
15

-4
4.

36
-4

4.
89

-4
4.

89
-5

2.
28

-5
2.

28
-5

0.
59

-5
2.

32
22

74
4

ro
ll3

00
0

12
89

0
12

89
0

12
89

0
12

90
2

12
89

0
12

89
0

12
89

0
12

89
0

12
89

0
12

89
0

s1
00

0
0

0
0

0
0

-0
.1

69
66

-0
.1

69
66

-0
.0

39
45

-0
.1

69
72

35
27

s2
50

r1
0

-0
.1

43
7

-0
.1

69
8

-0
.1

70
8

-0
.1

43
7

-0
.1

43
7

-0
.1

43
7

-0
.1

71
78

-0
.1

71
78

-0
.1

71
78

-0
.1

71
78

sa
te

lli
te

s2
-4

0
49

49
49

49
49

49
-1

9
-1

9
-1

9
-1

9
sa

te
lli

te
s2

-6
0-

fs
28

28
27

27
27

27
-1

9
-1

9
-1

9
-1

9
sa

vs
ch

ed
1

31
84

6.
3

31
84

6.
3

31
84

6.
3

45
87

5.
9

45
87

5.
9

31
84

6.
3

32
65

32
65

32
18

32
18

sc
t2

-2
30

.9
1

-2
30

.9
9

-2
30

.9
9

-2
30

.7
8

-2
30

.8
5

-2
30

.9
1

-2
30

.9
9

-2
30

.9
9

-2
30

.9
9

-2
30

.9
9

se
ym

ou
r

42
7

42
5

42
3

42
7

42
8

42
7

42
3

42
3

42
3

42
3

se
ym

ou
r1

41
0.

76
41

0.
76

41
0.

76
41

0.
76

41
0.

76
41

0.
76

41
0.

76
41

0.
76

41
0.

76
41

0.
76

si
ng

32
6

78
33

33
6

77
65

71
1

77
65

71
1

78
33

33
6

78
33

33
6

78
33

33
6

77
53

67
5

77
53

67
5

77
53

67
6

77
53

67
5

si
ng

44
81

75
65

5
81

74
76

7
81

74
76

7
81

77
83

3
81

63
69

8
81

75
65

5
81

28
83

1
81

28
83

1
81

30
64

3
81

28
83

1
sn

p-
02

-0
04

-1
04

58
69

12
70

0
58

68
16

30
0

58
68

04
50

0
58

68
29

70
0

58
70

89
30

0
58

68
21

50
0

58
68

03
23

9
58

68
03

23
9

58
68

03
23

9
58

68
03

23
9

so
rr

el
l3

-1
1

-1
5

-1
5

-1
1

-1
5

-1
5

-1
6

-1
6

-1
6

-1
6

sp
15

0x
30

0d
69

69
69

69
69

70
69

69
69

69
sp

97
ar

68
88

32
80

0
68

29
89

90
0

68
13

32
10

0
68

13
32

10
0

67
34

91
90

0
67

95
24

10
0

66
07

05
64

6
66

08
34

00
0

66
07

05
64

6
66

07
05

64
6

sp
98

ar
53

72
45

60
0

53
30

10
80

0
53

29
05

60
0

53
30

10
80

0
53

34
55

30
0

53
28

91
30

0
52

97
40

62
3

52
99

05
80

0
52

97
40

62
3

52
97

40
62

3
sp

lic
e1

k1
-7

3
-1

21
-3

94
-1

21
-1

21
-1

21
-3

94
-3

94
-3

38
-3

94
sq

ua
re

41
26

26
26

26
21

21
15

17
16

15
sq

ua
re

47
29

29
29

21
21

21
18

20
20

16
su

pp
or

tc
as

e1
0

19
19

19
9

19
19

8
8

8
7

su
pp

or
tc

as
e1

2
-7

43
0.

15
-7

43
7.

1
-7

47
5.

67
-7

35
1.

97
-7

43
6.

17
-7

44
9.

13
-7

54
3.

26
-7

54
3.

26
-7

55
9.

24
19

-7
55

9.
24

19
su

pp
or

tc
as

e1
8

49
49

49
50

51
49

48
48

49
48

su
pp

or
tc

as
e2

6
17

81
.0

03
17

47
.0

33
17

47
.0

33
17

55
.8

45
17

68
.2

64
17

68
.2

64
17

55
.5

25
17

55
.5

25
17

45
.1

24
17

45
.1

24
su

pp
or

tc
as

e3
3

-3
45

-3
45

-3
45

-3
40

-3
45

-3
45

-3
45

-3
45

-3
45

-3
45

su
pp

or
tc

as
e4

0
24

47
8.

86
24

46
5.

78
24

46
5.

78
24

46
5.

78
24

47
8.

86
24

29
4.

09
24

25
6.

31
24

25
6.

31
24

25
6.

31
24

25
6.

31
su

pp
or

tc
as

e4
2

8.
09

04
8.

00
19

7.
76

83
7.

76
78

7.
76

85
7.

78
11

7.
75

86
7.

77
13

7.
75

86
7.

75
86

su
pp

or
tc

as
e6

51
92

1.
76

51
92

1.
76

51
92

1.
76

51
92

1.
76

51
92

1.
76

51
90

6.
48

51
90

6.
48

51
90

6.
48

51
90

6.
48

51
90

6.
48

su
pp

or
tc

as
e7

-1
13

2.
22

3
-1

13
2.

22
3

-1
13

2.
22

3
-1

12
9.

28
-1

13
2.

22
3

-1
13

2.
22

3
-1

13
2.

22
3

-1
13

2.
22

3
-1

13
2.

22
3

-1
13

2.
22

3
sw

at
h1

37
9.

07
37

9.
07

37
9.

07
37

9.
07

38
1.

51
37

9.
07

37
9.

07
37

9.
07

37
9.

07
37

9.
07

sw
at

h3
39

7.
76

39
7.

76
39

7.
76

39
9.

33
39

7.
76

39
7.

76
39

7.
76

39
7.

76
39

7.
76

39
7.

76
tb

fp
-n

et
w

or
k

13
1.

88
24

.1
6

24
.1

6
25

.1
2

24
.9

1
24

.1
6

24
.1

6
24

.1
6

24
.1

6
24

.1
6

th
or

50
dd

ay
59

31
0

59
31

0
40

43
2

40
43

2
40

43
2

40
43

2
40

41
7

40
41

7
40

41
7

40
41

7
tim

ta
b1

76
47

72
76

47
72

76
47

72
76

61
66

76
63

45
76

47
72

76
47

72
76

47
72

76
47

72
76

47
72

tr
12

-3
0

13
05

96
13

05
96

13
05

96
13

06
08

13
05

96
13

06
08

13
05

96
13

05
96

13
05

96
13

05
96

tr
ai

ni
ns

ta
nc

e2
79

18
0

77
42

0
77

42
0

79
18

0
84

09
0

79
18

0
71

82
0

72
95

0
71

82
0

71
82

0
tr

ai
ni

ns
ta

nc
e6

29
42

0
28

46
0

28
46

0
28

29
0

28
46

0
29

25
0

28
29

0
29

25
0

28
29

0
28

29
0

tr
en

to
1

25
25

56
30

18
22

38
10

18
22

38
10

18
22

38
10

72
82

24
5

15
98

17
90

51
89

48
7

51
91

56
2

51
89

48
7

51
89

48
7

tr
ip

tim
1

25
.5

25
.5

25
.5

22
.8

7
25

.5
22

.8
7

22
.8

7
22

.8
7

22
.8

7
22

.8
7

uc
ca

se
12

11
50

7.
41

11
50

7.
41

11
50

7.
41

11
50

7.
42

11
50

7.
48

11
50

7.
41

11
50

7.
41

11
50

7.
41

11
50

7.
41

11
50

7.
41

uc
ca

se
9

46
32

33
.3

48
32

8.
09

15
34

7.
75

48
32

8.
09

48
32

8.
09

20
17

6.
81

11
05

2.
31

11
05

2.
31

10
99

4.
13

10
99

3.
13

14
uc

t-
su

bp
ro

b
31

5
31

4
31

4
31

7
31

5
31

4
31

4
31

4
31

4
31

4
un

itc
al

7
19

63
56

20
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
19

63
55

58
va

r-
sm

al
le

m
er

y-
m

6j
6

-1
49

.3
75

-1
49

.3
75

-1
49

.3
75

-1
47

.0
31

-1
46

.3
12

-1
49

.3
75

-1
49

.3
75

-1
49

.3
75

-1
49

.3
75

-1
49

.3
75

w
ac

hp
la

n
-8

-8
-8

-8
-8

-8
-8

-8
-8

-8

25

	Introduction and Related Work
	Preliminaries
	Methodology
	Overview
	The Binarized Tightening Scheme
	Graph-based LNS Policy Parameterization
	Step-wise global information by branching

	Experiments
	Settings and Protocols
	Overall Performance Evaluation
	Problem-scale Generalization Ability Study
	Branching Policy Study by Variable Ratios
	Experiments on MIPLIB2017 Benchmark

	Conclusion and outlook
	Appendix
	Further Discussion on Related Work
	Detail for the Experiments
	Detailed analysis on MIPLIB2017
	Gurobi version of our BTBS-LNS
	Experiments with CPU vs GPU
	Stability Analysis of our approach
	Detailed Anytime performance on Integer Programming Problems
	Per-instance performance comparison on MIPLIB2017
	A small numerical example for Alg. 1

