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Abstract

Low-Rank Adaptation (LoRA) offers a cost-effective solution for fine-tuning large
language models (LLMs), but it often produces overconfident predictions in data-
scarce few-shot settings. To address this issue, several classical statistical learning
approaches have been repurposed for scalable uncertainty-aware LoRA fine-tuning.
However, these approaches neglect how input characteristics affect the predictive
uncertainty estimates. To address this limitation, we propose Contextual Low-Rank
Adaptation (C-LoRA) as a novel uncertainty-aware and parameter efficient fine-
tuning approach, by developing new lightweight LoRA modules contextualized to
each input data sample to dynamically adapt uncertainty estimates. Incorporating
data-driven contexts into the parameter posteriors, C-LoRA mitigates overfitting,
achieves well-calibrated uncertainties, and yields robust predictions. Extensive
experiments on LLaMA2-7B models demonstrate that C-LoRA consistently out-
performs the state-of-the-art uncertainty-aware LoRA methods in both uncertainty
quantification and model generalization. Ablation studies further confirm the
critical role of our contextual modules in capturing sample-specific uncertain-
ties. C-LoRA sets a new standard for robust, uncertainty-aware LLM fine-tuning
in few-shot regimes. Although our experiments are limited to 7B models, our
method is architecture-agnostic and, in principle, applies beyond this scale; study-
ing its scaling to larger models remains an open problem. Our code is available at
https://github.com/ahra99/c_lora.

1 Introduction

Large Language Models (LLMs) [1–7] have shown their promising potential in diverse areas [8–18].
Due to their general-purpose language understanding and generation capabilities with human-level
performance [1, 2], fine-tuning LLMs to various downstream tasks has drawn significant attention
[19–23]. However, when fine-tuned for downstream tasks with limited data, LLMs may hallucinate
to produce overconfident results, which becomes a serious concern [24–27]. To address this, reliable
estimation of uncertainty has become essential [19, 20, 28].

To enable predictive uncertainty quantification (UQ), probabilistic inference with Bayesian neural
network (BNN) has been studied in deep learning [29–41], where neural network weights are treated
as random variables with variational inference (VI) approximating the true posterior to provide reliable
UQ [42, 43]. Adopting these approaches for LLMs is limited by their prohibitive computational and
memory costs compared to conventional methods [19, 20, 22], making full Bayesian fine-tuning of
all the parameters of an LLM challenging.
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Parameter Efficient Fine-Tuning (PEFT) methods, such as Low-rank Adaptation (LoRA), substantially
reduce the number of learnable parameters and thereby mitigate the significant computational ex-
penses and excessive memory utilization [21, 44–48]. This efficiency facilitates employing Bayesian
methods for UQ in LLMs [19, 20, 49–51]. Most of the recent studies considered a more straightfor-
ward solution, like in [49–51] where authors considered ensemble methods. [19] proposed a post-hoc
Bayesian inference method for the LoRA adapters using Laplace approximation [34]. [20] repurposed
a mean-field VI based Bayesian framework for LoRA-based fine-tuning to jointly estimate the LoRA
parameters’ variational means and variances [20]. However, the uncertainty stemming from data,
aleatoric uncertainty, has not been considered in the existing methods, leading to poor performance
especially when fine-tuning with limited data. This motivates us to focus on incorporating aleatoric
uncertainty for a novel parameter efficient fine-tuning approach in this work.

We propose Contextual Low-Rank Adaptation, C-LoRA, which enables an explicit consideration
of aleatoric uncertainty (data uncertainty). This formulation not only leads to faster training, but
also provides a sample-dependent uncertainty estimation for each layer, which leads to beneficial
and more favorable uncertainty-aware LLM fine-tuning under small-data scenarios. In particular, we
introduce a contextual module for modeling the stochasticity in low-dimensional space dependent on
the data, which enables a low-cost contextualized estimation of prediction uncertainty in terms of
computation and memory usage. Our contributions can be outlined as follows:

• We propose a new end-to-end Bayesian framework for scalable uncertainty-aware LLM fine-tuning
via contextualized LoRA on data in the lower-dimensional space by a flexible contextual module;
• Our framework allows for efficient modeling of aleatoric (data) uncertainty;
• We showcase the superiority of C-LoRA regarding both UQ capabilities and generalizability via

extensive experiments across different tasks;
• Through ablation experiments, we demonstrate the significance of our new contextual module on

achieving better UQ while offering competitive accuracy with only minor drops on some tasks.

2 Preliminaries
In this paper, vectors and matrices are denoted by bold lowercase and uppercase letters, respectively.
Most of our mathematical notations follow the ones adopted in [21], [19], [20], and [39].

2.1 Low-Rank Adaptation (LoRA)
LoRA, a parameter-efficient fine-tuning approach, adapts a pre-trained language model to down-
stream tasks [21]. It rests on the assumption that the required weight updates have a low intrinsic
dimensionality, so LoRA freezes the original weights and instead learns low-rank update matrices.
To this end, the modified forward pass becomes:

h = (W0 +∆W)x = (W0 +BA)x, (1)
where x ∈ Rk and h ∈ Rd are input and output vectors, respectively, and W0 ∈ Rd×k represents
the frozen pre-trained weights. LoRA inserts two low-rank update factors B ∈ Rd×r and A ∈ Rr×k

with r ≪ min(d, k). Hence, the number of trainable parameters reduces to r × (d + k) which is
considerably lower than d×k in the full matrix. This dramatically cuts storage and computational costs
while matching full-matrix fine-tuning performance. Here on, we set k = d, so that W0 ∈ Rd×d.

2.2 Bayesian Uncertainty Estimation

Let D = {xi, yi}Ni=1 be a dataset of N independent and identically distributed (i.i.d.) observations,
where each xi is an input sample and yi is the corresponding output. In the Bayesian paradigm, rather
than selecting a single best-fit model parameterization, we maintain a distribution over all plausible
model parameters. Specifically, given model parameters θ, Bayesian inference aims to characterize
the posterior distribution p(θ|D) using Bayes’ rule: p(θ|D) ∝ p(D|θ) p(θ), where p(D|θ) is the
likelihood of the observed data under parameters θ, and p(θ) is the prior distribution reflecting beliefs
about θ before seeing any data.

To generate predictions for a new input x∗, Bayesian model averaging, which integrates over the
posterior is applied and the intractable integral is approximated using Monte Carlo sampling:

p(y∗|x∗,D) =
∫

p(y∗|x∗,θ) p(θ|D) dθ ≈ 1

M

M∑
m=1

p(y∗|x∗,θm), θm ∼ p(θ|D). (2)
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Figure 1: A visual representation of our proposed method, Conextual LoRA (C-LoRA) and the
Bayesian LoRA by backpropagation (BLoB).

2.3 Bayesian Low-Rank Adaptation

Despite the existence of scalable posterior inference methods, a full Bayesian treatment of LLMs
remains computationally prohibitive. By restricting Bayesian updates to the LoRA parameters, a
tractable uncertainty quantification scheme can be achieved; however, even Markov chain Monte
Carlo (MCMC) over millions of LoRA weights is too costly. As a practical compromise, Bayesian
LoRA by backpropagation (BLoB) [20] embeds uncertainty estimation directly into fine-tuning via
mean-field variational inference on LoRA adapters. More specifically, they keep B deterministic
in (1) and Bayesianize A with a variational distribution q(A) = N (A|µA,Ω2

A), where µA and Ω2
A

are the variational mean and variance estimates, respectively. To this end, they learn the variational
distribution parameters by maximizing the Evidence Lower BOund (ELBO):

L′ = Eq

[
log p(D|A,B)

]
− KL

[
q(A) ∥ p(A)

]
. (3)

Here, the first term measures the expected negative log-likelihood of the data under the variational
posterior, while the second term is the Kullback-Leibler (KL) divergence between the variational
posterior and the prior, acting as a regularization. Using the reparameterization trick, BLoB jointly
updates means and variances providing scalable, predictive uncertainty estimates. A visual represen-
tation of BLoB framework is presented in Figure 1.

3 Contextual Low-Rank Adaptation (C-LoRA)

We introduce the formulation of Contextual Low-Rank Adaptation (C-LoRA), which enables scal-
able, efficient, data-dependent uncertainty quantification at the sample level. First, we introduce
a lightweight LoRA factorization to reduce the computational burden of variational inference in
Bayesian LoRA. Based on this factorization, we treat the LoRA weights’ stochasticity to be data-
dependent, and learn the weight distribution parameters via a variational Bayesian objective. A
step-by-step description of C-LoRA is presented in Algorithm 1 (Appendix F).

3.1 Lightweight LoRA Factorization

The standard LoRA update in (1) introduces two low-rank matrices whose size scales with the frozen
weight dimension d, so that any Bayesian treatment—whether both adapters are stochastic or only
A is (as in BLoB)—incurs a computational cost that grows linearly in d. To break this dependency,
we insert a low-dimensional matrix E ∈ Rr×r between B and A. This modification reduces the
stochastic parameter complexity to a constant in d, yielding a modified LoRA factorization as follows

h = (W0 +∆W)x = (W0 +BEA)x. (4)

Compared to the BLoB mean-field VI framework, this new factorization facilitates a more scalable,
lightweight Bayesian LoRA by inferring a distribution over the elements of E while learning B and
A deterministically, making data-dependent Bayesianization of LoRA fine-tuning scalable.
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3.2 Stochastic LoRA Parameterization with Data Dependence

In conventional Bayesian neural networks, the focus is on epistemic uncertainties introduced by
treating model parameters as random variables drawn from a fixed distribution—one that does not
depend on the input data. Consequently, while the sampled parameters may vary across data instances,
their underlying distribution remains invariant across all samples in the training set. This assumption
limits the expressiveness of uncertainty estimates, particularly in few-shot LoRA fine-tuning scenarios.
To address this, we propose a data-dependent, or contextual, Bayesian fine-tuning paradigm, wherein
the distribution of the parameters of low-rank adapters depends on the inputs xi for each data sample
(xi, yi). Although one could perform Bayesian inference over B and A LoRA adapters from (1), this
scales linearly with the frozen weight dimension d. Instead, by leveraging the lightweight LoRA
factorization from (4), we learn the low-dimensional E matrix contextually, yielding the weight
updates as

∆W = BExA (5)
where Ex denotes the data-dependent version of E. To be specific, we take an input-dependent
Gaussian variational posterior over Exi

, qϕ(Exi
|xi) = N (µE(xi),Ω

2
E(xi)). We learn these distri-

bution parameters via lightweight per-layer auxiliary contextual modules comprising of small neural
networks whose parameters across modules are collectively denoted as φ. Such an input-dependent
variational posterior resembles amortized inference in Bayesian modeling where qϕ serves as an
inference network that approximates p(Exi

|yi,xi) ∝ p(yi|xi,Exi
)p(Exi

).

Particularly, consider a pre-trained LLM with L layers, each augmented by its own LoRA adapters
Bl,El

x , and Al. Let xl−1
i denote the output of layer l − 1. We then model El

xi
autoregressively

by conditioning on {Ej
xi
}j<l, leading to qϕ(Exi |xi) =

∏L
l=1 qϕ(E

l
xi
|xl−1

i ). Especially, in layer l,
given zl = Alxl−1 ∈ Rr as input, the corresponding contextual module denoted by hl

φ produces the
parameters (µl

E,Ω
l
E) of the El

x distribution as output. We then draw El
x conditioned on µl

E and Ωl
E.

Finally, multiplying Bl, El
x, and zl and adding it to Wl

0 x
l−1 yields the output of the layer l, xl.

This formulation enables us to focus exclusively on heteroscedastic uncertainty—modeling the
variability in yi given xi—with the epistemic uncertainty modeling available via imposing prior
on φ or Bayesianizing A or B when needed, thereby isolating and highlighting the advantages of
data-dependent (heterscedetic) UQ.

Contextual module parameterization. We parameterize each layer’s contextual module with a two
fully-connected layer neural network whose parameters at layer l are denoted as φl. In particular,
each of these neural networks have r inputs, C hidden units, and 2× r2 outputs with the nonlinear
ReLU activation function connecting the two fully-connected layers.

3.3 Amortized Inference for Contextual LoRA
In our formulation, the variational distribution is only conditioned on xi, while yi contributes
through the training objective. We then learn the model parameters, ϕ, by maximizing the ELBO of∑

i log p(yi|xi) =
∑

i log
∫
p(yi|xi,Exi

)p(Exi
)dExi

given qϕ(Exi
|xi):

L =

N∑
i=1

[
E qϕ(Exi

|xi) log pθ(yi|xi,Exi
)−KL(qϕ(Exi

|xi) ∥ p(Exi
))
]
. (6)

Here, θ denotes the parameters of all B and A adapters across layers. Hence, ϕ = {θ,φ} denotes
all model parameters. Unlike standard variational inference as in (3), our formulation makes the
distribution of Exi

input-dependent and replaces the single KL term with a sum of N per-sample KL
divergences, whose combined impact scales with N . With the objective defined in (6), we adopt a
simple and fixed Gaussian prior p(Ex) for learning Ex in each layer. The complete learning objective
can be equivalently expressed as a summation over all samples: L =

∑
(x,y)∈D L(x, y). Then, we

learn the deterministic parameters B and A together represented by θ using the expected negative
log-likelihood (NLL) term while excluding the KL term. This ensures that learning of θ remains
supervised, yielding less noisy gradients per sample computed as

∇θL(x, y) = E qϕ(Ex|x)∇θ log pθ(y|x,Ex). (7)

We approximate this expectation with a single Monte Carlo draw Ex ∼ qϕ(Ex|x) for each x sample.

Next, to update the auxiliary network parameters φ, which appear in both the NLL and KL terms
of (6), we apply the reparameterization trick [52] to handle random sampling of Ex. Concretely, in
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each layer, El
x ∼ N (µl

E,Ω
l2

E) is reparameterized as El
x = µl

E +Ωl
E ⊙ E l, where E l ∈ Rr×r is

sampled fromN (0, I). Thus, sampling El
x from qϕ(Ex|x) is equivalent to evaluating a deterministic

mapping gϕ(E ,x), enabling gradient computation via

∇φL(x, y) = E E∼N (0,I)

[
∇φ

(
log pθ(y|x, gϕ(E ,x))− log

qϕ(gϕ(E ,x)|x)
p(gϕ(E ,x))

)]
. (8)

3.4 Posterior Predictive Inference and Model Complexity

Posterior predictive inference and uncertainty estimation. Once C-LoRA training has converged,
we obtain point estimate of the fine-tuned model by replacing Ex with its variational mean and
computing p(y|x,µE(x)). As shown in Section 4, we denote these point estimate models by setting
M in our model names. Next, to demonstrate the quality of uncertainty estimation, we sample
Ex from its inferred distribution M times and, similar to (2), approximate the posterior predictive
distribution using Monte Carlo sampling, yielding p(ytest|xtest,D) = 1/M

∑M
m=1 p(y|x,Em

x ),
where Em

x ∼ qϕ(Ex|x). For example, for these calibrated models with M = 10 drawn samples in
Section 4, we label them with “M=10” in our model names. When “M=0”, the posterior mean is used
directly for evaluation.

Reducing contextual module complexity through feature reuse. In layer l, the contextual module
is designed to model qϕ(El

x|xl−1) where xl is derived from natural language; hence, learning features
from scratch becomes both non-trivial and computationally expensive. To mitigate this issue, we
follow [39] and take advantage of the main model by feeding zl into the contextual module instead.
Additional computational cost ofO(r4), stems from the auxiliary network hl

φ, whose fully connected
layers have size C = O(r2)≪ d. This overhead is minimal compared to the main model’s per-layer
operation cost of O(d2). As a result, we can efficiently estimate uncertainty at the sample level in a
low-dimensional space, sidestepping the costly feature-learning burden within the contextual modules
during fine-tuning.

4 Experiments
In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our pro-
posed C-LoRA approach for uncertainty quantification in LLMs on reasoning datasets from various
domains. We first specify the experimental settings in Section 4.1, including baselines, fine-tuning
setting, and evaluation metrics. We then benchmark C-LoRA against existing uncertainty quantifi-
cation methods across six reasoning datasets to evaluate overall task performance and uncertainty
quality in Section 4.2. Additionally, we test the robustness of each method under distribution shift by
fine-tuning on OBQA and evaluating on related OOD datasets in Section 4.3. Lastly, we perform an
ablation to demonstrate the role of our auxiliary contextual module in Section 4.4.

4.1 Experimental Settings

Baselines. We provide performance comparisons of C-LoRA with well-established cutting-edge
baselines that include Deep Ensemble [49, 51, 53], Monte-Carlo dropout (MCD) [29], Bayesian
LoRA with Backpropagation (BLoB) [20], a recent mean-field VI approach applied to LoRA
parameters; Laplace-LoRA (LA) [19], which uses a Laplace approximation over adapter weights;
and Maximum A Posteriori (MAP), representing a deterministic point-estimate baseline.

LLM fine-tuning settings. Following prior work, we evaluate the performance of C-LoRA1, by fine-
tuning LLaMA2-7B[6] using the PEFT library[54] across six commonsense reasoning benchmarks,
including both binary and multiple-choice classification tasks. For each task, the appropriate next-
token logits are selected based on the format of the target output, which we include in the Appendix
A, and the model is trained to maximize the log-likelihood of the correct answer. Following previous
works [20, 21, 28], we apply LoRA to the query, value, and output projection layers using default
hyperparameters. All models are fine-tuned with a batch size of 4. Baseline methods are trained for
5000 iterations, while C-LoRA is trained for 1500 iterations on all datasets, except for Winogrande-
medium (WG-M), which is trained for 2000 iterations. To ensure consistent evaluation, we curate
a training-validation split by reserving 80% of the original training set for fine-tuning and holding

1Using contextual modules comprising of two fully connected layers with 64 hidden units (C=64) each.
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out the remaining 20% as a validation set. This validation split is used for early stopping and
checkpointing based on a metric combining validation accuracy and calibration quality (see Appendix
F).

Evaluation metrics. We report results using three key evaluation metrics: accuracy (ACC), expected
calibration error (ECE), and negative log-likelihood (NLL). While ACC reflects raw predictive
performance, ECE and NLL are widely adopted metrics for assessing the quality of uncertainty
estimates. ECE measures the alignment between predicted confidence and actual correctness, while
NLL evaluates the sharpness and correctness of the model’s predicted probability distribution. All
reported results are averaged over three independent runs with different random seeds, and we report
the mean ± standard deviation for each metric.

4.2 Evaluation Results under In-distribution Fine-tuning

In this section, we conduct our assessment of fine-tuning performances under the in-distribution
scenario for six common-sense reasoning tasks. These tasks encompass: Winogrande-small (WG-S),
Winogrande-medium (WG-M) [55], ARC-Challenge (ARC-C), ARC-Easy (ARC-E) [56], Open-
BookQA (OBQA)[57], and BoolQ [58]. For all the experiments, the same pre-trained LLaMA2-7B
was used as the LLM backbone. For BLoB, we kept the same setting as in [20].

Accuracy and Uncertainty Quantification Table 1 presents the performance of various uncertainty
quantification methods applied to LoRA-tuned LLaMA2-7B across six common-sense reasoning
datasets. As a complement, Figure 2 in Appendix K visualizes the results with bar plots. In this
set of experiments, our proposed method, C-LoRA, as well as the baseline BLoB, are evaluated
under both deterministic (M=0) and stochastic (M=10) posterior sampling settings. While C-LoRA,
does not achieve the highest accuracy, it maintains competitive performance across all datasets, with
accuracies that are typically within 1–2% of the best methods (e.g., ARC-C: 67.79%, OBQA: 78.26%).
Notably, C-LoRA (M=0)—which uses the posterior mean without sampling—performs similarly or
slightly better than the sampled version on some tasks (e.g., ARC-C: 69.02% vs. 67.79%), suggesting
that the contextual posterior mean alone offers a robust deterministic approximation.

The strength of C-LoRA becomes more apparent when examining uncertainty calibration, as measured
by expected calibration error (ECE). Here, C-LoRA (M=10) consistently achieves the lowest or
second-lowest ECE across all datasets, including WG-S (6.86%), ARC-C (8.83%), ARC-E (4.27%),
WG-M (3.71%), and BoolQ (1.62%). These values are significantly better than those obtained by MAP,
MCD, and even Deep Ensemble, indicating that C-LoRA produces confidence estimates that are
closely aligned with actual correctness. Even the deterministic variant, C-LoRA (M=0), outperforms
BLoB (M=10) in calibration on datasets such as WG-S (7.16% vs. 11.23%) and performs comparably
on BoolQ (1.46% vs. 1.46%). A similar pattern holds for negative log-likelihood (NLL), which
reflects the quality of probabilistic predictions. C-LoRA (M=10) achieves among the lowest NLL
values in nearly all cases, such as 0.63 on WG-S, and 0.88 on ARC-C, often outperforming both
BLoB (M=10) and Deep Ensemble. Additionally, C-LoRA (M=0) matches or slightly outperforms
BLoB (M=10) in NLL on several tasks (e.g., ARC-C: 0.89 vs. 0.88), while avoiding the computational
overhead of posterior sampling. In summary, while C-LoRA trades off a small amount of accuracy
compared to non-Bayesian methods, it delivers substantial improvements in calibration and likelihood,
which are essential for uncertainty-aware applications.

Post-hoc Calibration with Temperature Scaling To further evaluate calibration, we apply post-
hoc temperature scaling [59] to both BLoB and C-LoRA and report the resulting ECE on six
common-sense reasoning tasks in Table 2. Bar plots of these results are presented in Figure 3 in
Appendix K. Even before temperature scaling, C-LoRA (M=10) achieves stronger calibration than
BLoB on nearly every dataset. After applying temperature scaling, C-LoRA (M=0, tmp) achieves
the best or second-best ECE in 4 of the 6 datasets, including WG-S (4.00%), ARC-E (3.86%), ARC-C
(6.30%), and WG-M (2.90%). Notably, it outperforms BLoB (M=10, tmp) in 5 out of the 6 datasets,
despite using no posterior sampling. Interestingly, C-LoRA (M=10, tmp) does not always show
improvement over its uncalibrated variant. On datasets like OBQA and BoolQ, temperature scaling
can actually worsen ECE (e.g., from 4.00% to 6.27% on OBQA). This may be due to the fact that
posterior sampling already flattens the predictive distribution, and further scaling can overcorrect,
leading to underconfident predictions. Also, temperature scaling minimizes NLL, a proper scoring
rule, but it does not directly optimize ECE, which is a binned, non-differentiable, and improper
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metric. Consequently, if a model is already reasonably well-calibrated or if its logit distribution
exhibits certain local structures, temperature scaling may shift predictions in ways that degrade ECE
in specific bins. Similar observations have been reported in prior work [60], where temperature
scaling was found to degrade classwise ECE. These results suggest that C-LoRA (M=0) provides an
effective balance between calibration quality and inference efficiency.

Table 1: Performance comparison of different methods applied to LoRA on LLAMA2-7B weights
accross six common sense reasoning tasks with a validation set split from the training dataset. The
best and the second best performances are specified in boldface and via underline respectively.

Metric Method Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

MAP 69.37±1.04 67.67±1.18 85.20±0.63 74.57±0.73 81.60±0.40 87.68±0.02

MCD 69.06±1.40 66.66±2.30 85.49±0.74 75.89±0.48 81.46±0.92 87.67±0.08

Deep Ensemble 68.98±0.97 68.57±2.11 86.24±1.26 77.39±1.08 82.20±0.91 88.07±0.17

LA 68.18±1.04 64.17±0.97 85.30±0.97 74.15±0.40 77.53±0.80 86.45±0.35

BLoB (M=0) 69.95±0.95 69.25±0.33 85.79±0.83 75.52±0.36 81.85±0.53 86.63±0.52

BLoB (M=10) 66.55±0.61 66.66±2.25 84.56±0.20 73.38±0.29 81.44±0.53 86.63±0.50

C-LoRA (M=0) 67.16±0.27 69.02±1.03 84.74±0.20 72.09±2.70 81.13±1.00 85.84±0.67

C-LoRA (M=10) 66.21±1.24 67.79±1.27 84.38±0.67 70.48±1.71 78.26±2.61 84.64±0.81

ECE ↓

MAP 29.76±1.08 30.60±1.26 13.49±0.63 23.01±0.44 15.30±0.11 5.93±0.36

MCD 28.49±1.60 29.60±2.77 12.69±0.60 20.73±0.38 14.34±1.11 5.13±0.25

Deep Ensemble 28.72±1.46 27.75±1.86 11.87±0.16 18.67±0.29 13.98±1.12 5.24±0.27

LA 11.41±0.17 30.54±0.70 45.85±2.08 10.80±0.38 35.65±1.14 18.22±0.41

BLoB (M=0) 21.22±1.67 22.57±1.24 10.13±0.39 12.35±0.86 9.35±1.08 2.90±0.18

BLoB (M=10) 11.23±1.45 10.77±1.91 4.29±1.08 4.52±0.91 3.82±0.96 1.46±0.36

C-LoRA (M=0) 7.16±2.92 12.28±1.01 5.75±1.00 6.07±4.85 5.10±1.36 1.46±0.85

C-LoRA (M=10) 6.86±3.99 8.83±1.20 4.27±1.24 3.71±1.30 4.00±0.84 1.62±0.44

NLL ↓

MAP 2.86±0.23 3.07±0.09 1.13±0.10 1.26±0.12 1.04±0.02 0.34±0.00

MCD 2.50±0.12 2.81±0.25 1.13±0.04 1.16±0.03 1.01±0.07 0.32±0.00

Deep Ensemble 2.44±0.23 2.20±0.03 0.91±0.05 1.04±0.09 0.87±0.03 0.32±0.00

LA 0.62±0.00 1.17±0.01 0.97±0.05 0.56±0.00 0.98±0.01 0.45±0.00

BLoB (M=0) 0.90±0.07 1.34±0.05 0.63±0.02 0.61±0.03 0.59±0.02 0.31±0.00

BLoB (M=10) 0.66±0.01 0.88±0.03 0.44±0.00 0.54±0.00 0.51±0.01 0.31±0.01

C-LoRA (M=0) 0.64±0.03 0.89±0.09 0.46±0.01 0.58±0.03 0.53±0.01 0.34±0.01

C-LoRA (M=10) 0.63±0.02 0.88±0.00 0.48±0.02 0.57±0.03 0.59±0.05 0.35±0.02

Table 2: Performance comparison of uncertainty quantification based on the ECE metric with
temperature scaling using validation sets over six common-sense reasoning tasks.

Metric Method Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ECE ↓

BLoB (M=0) 21.22±1.67 22.57±1.24 10.13±0.39 12.35±0.86 9.35±1.08 2.90±0.18

BLoB (M=0, tmp) 13.54±1.19 15.47±0.73 6.16±0.40 5.76±0.40 4.56±0.95 1.89±0.37

BLoB (M=10) 11.23±1.45 10.77±1.91 4.29±1.08 4.52±0.91 3.82±0.96 1.46±0.36

BLoB (M=10, tmp) 5.10±1.47 6.87±1.91 5.38±1.08 3.18±0.62 5.71±0.80 3.40±0.67

C-LoRA (M=0) 7.16±2.92 12.28±1.01 5.75±1.00 6.07±4.85 5.10±1.36 1.46±0.85

C-LoRA (M=0, tmp) 4.00±1.37 6.58±0.76 3.86±0.17 2.90±0.12 4.90±2.16 1.78±0.56

C-LoRA (M=10) 6.86±3.99 8.83±1.20 4.27±1.24 3.71±1.30 4.00±0.84 1.62±0.44

C-LoRA (M=10, tmp) 5.18±1.54 6.30±0.87 4.35±1.35 3.87±1.77 6.27±1.01 2.67±0.29

4.3 Robustness Under Distribution Shift
Table 3 presents model performance under both in-distribution (OBQA) and out-of-distribution (OOD)
settings with smaller (ARC-E, ARC-C) and larger (Chem, Phy) distribution shifts. Figure 4 in Appendix
K illustrates bar plots of the results. While C-LoRA does not achieve the highest accuracy under
shift, it demonstrates strong robustness in uncertainty estimation, especially in calibration (ECE)
and likelihood (NLL). In terms of accuracy, Deep Ensemble and BLoB generally maintain higher
predictive performance across OOD datasets. However, C-LoRA (M=10) remains competitive,
achieving 65.09% accuracy on ARC-C and 41.00% on Chem—nearly matching the highest-performing
methods. While C-LoRA (M=10) sees a slight drop in accuracy under severe shift (e.g., Phy: 31.00%),
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Table 3: Performance comparison on out-of-distribution datasets. The following results are evaluated
using LLaMA2-7B fine-tuned on the OBQA dataset in Table 1.

Metric Method
Datasets

In-Dist. Smaller Dist. Shift Larger Dist. Shift

OBQA ARC-C ARC-E Chem Phy

ACC ↑

MAP 81.60±0.40 67.67±1.52 73.88±0.27 41.00±3.60 33.00±5.29

MCD 81.46±0.92 68.69±0.85 75.00±2.13 39.00±3.00 31.00±6.24

Deep Ensemble 82.20±0.91 68.01±1.28 74.05±0.50 42.33±3.51 27.66±2.51

BLoB (M=0) 81.85±0.53 69.48±0.78 76.93±1.33 45.33±1.15 26.66±4.61

BLoB (M=10) 81.44±0.53 67.22±1.17 75.11±1.25 44.00±0.00 33.66±2.08

C-LoRA (M=0) 81.13±1.00 66.66±0.78 75.99±1.63 40.00±1.73 28.00±1.73

C-LoRA (M=10) 78.26±2.61 65.09±4.68 74.29±2.90 41.00±2.64 31.00±1.00

ECE ↓

MAP 15.30±0.11 25.54±1.25 20.09±0.53 29.73±0.30 36.22±3.60

MCD 14.34±1.11 23.41±0.74 18.36±1.03 28.67±0.77 36.53±4.30

Deep Ensemble 13.98±1.12 20.90±1.05 16.89±0.80 16.10±2.22 26.74±3.23

BLoB (M=0) 9.35±1.08 15.76±1.42 11.70±0.62 14.12±4.05 27.35±4.01

BLoB (M=10) 3.82±0.96 9.77±0.91 5.74±0.91 12.63±0.11 17.56±2.81

C-LoRA (M=0) 5.10±1.36 10.08±3.30 6.42±2.48 15.42±2.99 24.42±6.02

C-LoRA (M=10) 4.00±0.84 8.83±1.44 6.68±0.71 12.49±1.18 18.16±1.52

NLL ↓

MAP 1.04±0.02 1.66±0.12 1.37±0.04 1.81±0.03 1.86±0.04

MCD 1.01±0.07 1.58±0.01 1.24±0.03 1.81±0.03 1.88±0.10

Deep Ensemble 0.87±0.03 1.15±0.09 0.94±0.06 1.45±0.01 1.58±0.09

BLoB (M=0) 0.59±0.02 0.95±0.05 0.72±0.01 1.41±0.02 1.57±0.03

BLoB (M=10) 0.51±0.01 0.83±0.02 0.63±0.01 1.35±0.01 1.46±0.01

C-LoRA (M=0) 0.53±0.01 0.85±0.04 0.64±0.04 1.43±0.01 1.54±0.09

C-LoRA (M=10) 0.59±0.05 0.89±0.09 0.67±0.02 1.31±0.02 1.42±0.01

it significantly outperforms all baselines in ECE and NLL, indicating more reliable and calibrated
uncertainty estimates.

For calibration (ECE), C-LoRA (M=10) achieves the lowest error on Chem (12.49%) and
ARC-C (8.83%). This trend also holds for Phy, where C-LoRA (M=10) yields 18.16% which is
only slightly worse than BLoB and significantly better than all other baselines. This indicates that
C-LoRA remains well-calibrated even as the input distribution diverges from training. C-LoRA
also excels in negative log-likelihood (NLL), achieving the lowest or second-lowest values across
nearly all OOD datasets. On Chem and Phy, for example, C-LoRA (M=10) obtains NLL of 1.31
and 1.42 respectively, both lower than Deep Ensemble (1.45 and 1.58) and BLoB (1.35 and 1.46)
and significantly better than all other baselines. Moreover, it is noteworthy that C-LoRA (M=0),
which uses only the posterior mean, also maintains competitive performance. For example, on ARC-C
and ARC-E, C-LoRA (M=0) achieves 10.08% and 6.42% ECE respectively, compared to BLoB
(M=10)’s 9.77% and 5.74%. This suggests that C-LoRA’s contextual posterior mean already captures
meaningful uncertainty, making it attractive for deployment in compute-constrained scenarios.

4.4 Ablation Study: Impact of Contextual Module

We also conduct the ablation study investigating the importance of the contextual module for overall
performance. Since in C-LoRA we focus on contextualizing the distribution of matrix E ∈ Rr×r, to
examine the effect of the contextual module, we compare with the results of fine-tuning the model on
different tasks using lightweight factorization introduced in Section 3.1, with mean-field variational
inference without the contextual module; we refer to this setting as FE in Tables 4 and 5.

Table 4 underscores the importance of the contextual module by comparing FE and C-LoRA across
the six common-sense reasoning tasks under in-distribution scenario. C-LoRA offers significant
improvements with respect to ECE across almost all tasks for inference-time sample with both M=0
and M=10, except for BoolQ where it achieves the second best performance. Also, C-LoRA gives
the lowest NLL across all tasks.

Furthermore, we assess the effect of the contextual module on generalization. Table 5 provides the
performance comparison of the corresponding models fine-tuned on OBQA in Table 4 under similar
distribution shifts as in Table 3. C-LoRA outperforms FE across all datasets in both smaller and larger
distribution shifts, with respect to ECE. In addition, C-LoRA offers the lowest NLL on all tasks in both
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distribution shifts. With respect to accuracy, in all tasks C-LoRA achieves a comparable performance,
except for Chem where it has a subpar performance; however, this shortcoming is a result of the
tradeoff between a generalized model with a proper uncertainty quantification, and an overconfident
model with a poor uncertainty estimation. In summary, these results indicate the significance
of our auxiliary contextual module, particularly on enhancing the uncertainty quantification and
generalization while maintaining competitive predictive performance.

Table 4: Impact of the contextual module on performance. The performance comparison is conducted
across six common-sense reasoning tasks with a validation set split from the training dataset.

Metric Method Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

FE (M=0) 65.45±1.36 68.35±1.02 85.32±0.39 73.47±2.36 80.46±0.11 84.70±0.45

FE (M=10) 65.06±1.33 68.20±2.40 85.08±0.36 72.43±1.28 80.93±0.50 84.65±0.52

C-LoRA (M=0) 67.16±0.27 69.02±1.03 84.74±0.20 72.09±2.70 81.13±1.00 85.84±0.67

C-LoRA (M=10) 66.21±1.24 67.79±1.27 84.38±0.67 70.48±1.71 78.26±2.61 84.64±0.81

ECE ↓

FE (M=0) 23.76±1.64 27.26±0.90 12.23±0.25 14.90±1.98 11.23±0.35 2.57±0.13

FE (M=10) 18.12±1.52 19.60±2.42 9.54±0.47 12.21±1.87 8.42±0.50 1.34±0.22

C-LoRA (M=0) 7.16±2.92 12.28±1.01 5.75±1.00 6.07±4.85 5.10±1.36 1.46±0.85

C-LoRA (M=10) 6.86±3.99 8.83±1.20 4.27±1.24 3.71±1.30 4.00±0.84 1.62±0.44

NLL ↓

FE (M=0) 0.89±0.07 1.85±0.11 0.85±0.05 0.69±0.03 0.68±0.04 0.34±0.00

FE (M=10) 0.78±0.04 1.35±0.12 0.65±0.02 0.63±0.02 0.60±0.03 0.34±0.00

C-LoRA (M=0) 0.64±0.03 0.89±0.09 0.46±0.01 0.58±0.03 0.53±0.01 0.34±0.01

C-LoRA (M=10) 0.63±0.02 0.88±0.00 0.48±0.02 0.57±0.03 0.59±0.05 0.35±0.02

Table 5: Impact of the contextual module on generalization. The performance comparison is
conducted on out-of-distribution datasets using LLaMA2-7B fine-tuned on OBQA dataset in Table 4.

Metric Method
Datasets

In-Dist. Smaller Dist. Shift Larger Dist. Shift

OBQA ARC-C ARC-E Chem Phy

ACC ↑

FE (M=0) 80.46±0.11 68.91±1.22 74.72±0.63 45.00±1.73 31.66±3.51

FE (M=10) 80.93±0.50 66.65±1.09 74.76±0.70 46.00±1.73 32.33±1.52

C-LoRA (M=0) 81.13±1.00 66.66±0.78 75.99±1.63 40.00±1.73 28.00±1.73

C-LoRA (M=10) 78.26±2.61 65.09±4.68 74.29±2.90 41.00±2.64 31.00±1.00

ECE ↓

FE (M=0) 11.23±0.35 18.44±1.51 14.65±0.49 20.02±2.26 31.75±3.20

FE (M=10) 8.42±0.50 15.78±1.11 11.69±0.68 17.61±1.25 26.02±1.32

C-LoRA (M=0) 5.10±1.36 10.08±3.30 6.42±2.48 15.42±2.99 24.42±6.02

C-LoRA (M=10) 4.00±0.84 8.83±1.44 6.68±0.71 12.49±1.18 18.16±1.52

NLL ↓

FE (M=0) 0.68±0.04 1.03±0.01 0.87±0.01 1.53±0.05 1.77±0.03

FE (M=10) 0.60±0.03 0.95±0.02 0.78±0.01 1.46±0.03 1.67±0.02

C-LoRA (M=0) 0.53±0.01 0.85±0.04 0.64±0.04 1.43±0.01 1.54±0.09

C-LoRA (M=10) 0.59±0.05 0.89±0.09 0.67±0.02 1.31±0.02 1.42±0.01

5 Related Works
LLMs have demonstrated remarkable successes across a wide range of applications, including code
generation, scientific reasoning, and open-domain question answering; however, they are also notori-
ous for hallucination—a phenomenon in which the model generates fluent but factually incorrect
or unsupported content that is not grounded in the input or external knowledge. To mitigate halluci-
nation, a variety of strategies have been proposed, including Reinforcement Learning from Human
Feedback (RLHF) to align model outputs with human preferences [61, 62], and Retrieval-Augmented
Generation (RAG) to ground responses in external knowledge [63, 64]. Additionally, probabilistic
methods such as BNNs [19, 20] and conformal prediction [65, 66] have been demonstrated to be
able to quantify uncertainty and flag unreliable outputs. Recent work also shows the effectiveness of
prompt-level interventions [67, 68] by carefully crafting instructions and uncertainty-aware prompts
to reduce hallucinated content without altering the model architecture.

Our work connects to previous efforts in BNNs by introducing a Bayesian formulation over the
LoRA layers; however, we extend this line of work by using a data-dependent lightweight low-rank
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factorization, where the intermediate matrix E is modeled as random variables, enabling flexible and
context-aware uncertainty estimation to mitigate overconfidence and hallucination in LLMs.

6 Conclusion and Discussion
In this work, we introduced C-LoRA, a novel uncertainty-aware parameter-efficient approach for
fine-tuning LLMs in an end-to-end Bayesian framework. C-LoRA facilitates modeling the aleatoric
uncertainty (data uncertainty) via an efficient and scalable contextual module, without compromis-
ing the potential for estimating the model uncertainty. Through extensive empirical studies, we
demonstrate the superior performance of our method in achieving outstanding accuracy and strong
uncertainty quantification capabilities, with consistent generalization across diverse data distributions.
Our method underscores the significance of modeling the aleatoric uncertainty in low-data regimes
that can lead to substantial gains in generalization and trustworthiness of LLMs.

While C-LoRA establishes a promising foundation for uncertainty-aware parameter-efficient fine-
tuning, several avenues remain open for future exploration. One interesting direction is extending the
framework to multi-modal or multi-task settings, where capturing cross-modal or task-dependent
uncertainty could further enhance robustness and generalization. Another promising avenue involves
integrating C-LoRA with active learning or adaptive data acquisition strategies, leveraging its un-
certainty estimates to guide sample-efficient model updates. Moreover, exploring hierarchical or
structured priors within the Bayesian formulation may offer richer representations of both epistemic
and aleatoric uncertainty.

7 Limitations
In this study, we restricted our experiments to fine-tuning LLaMA2-7B models, which limits our
understanding of how C-LoRA scales to larger architectures. Investigating the scaling behavior
of C-LoRA on larger models remains an open challenge. Furthermore, evaluating uncertainty in
language models remains challenging due to the lack of standardized benchmarks with ground-truth
uncertainty labels. While our evaluation—based on held-out test sets and established metrics like
ECE and NLL—provides meaningful insight into model calibration and predictive confidence, these
metrics offer only an indirect view of uncertainty quality. Developing task-specific benchmarks
or human-in-the-loop protocols for evaluating uncertainty in NLP would be a valuable direction.
Moreover, while C-LoRA is motivated by data-dependent/aleatoric uncertainty, this work does not
provide a theoretical guarantee that it can disentangle aleatoric and epistemic uncertainty, which we
leave to future investigation.

We also note that, as shown throughout our experiments, C-LoRA overall provides a more calibrated
predictions and better uncertainty estimation at the expense of marginally reduced predictive perfor-
mance which can be preferable in many high-stakes applications. However, in other domains such
as spam detection where accuracy is more critical, this trade-off may not be desirable. Hence we
acknowledge that this trade-off is task dependent and should be considered before deploying C-LoRA
(and in general any uncertainty-aware method).

Finally, our approach employs amortized variational inference to approximate the posterior distri-
bution over the LoRA adapter parameters, providing a scalable and principled Bayesian treatment
suitable for large language models. This variational approximation, based on a Gaussian family and a
reverse KL objective, is inherently mode-seeking and may underestimate posterior uncertainty or
fail to capture multi-modality in the true posterior. Investigating richer variational families and more
comprehensive posterior predictive analyses represents an important direction for future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As indicated in the abstract and introduction, we introduce a novel data-
dependent, uncertainty-aware approach for fine-tuning LLMs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work and the proposed method at the end of
the paper in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not include any theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 4, we explain the settings of our experiments. Furthermore, in the
Appendix, we clearly describe the hyperparameters that we utilized in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide the experiment details in Section 4, and technical details in Section
3. Moreover, additional information is provided in the Appendix. We will release the code
for the proposed approach upon acceptance of our paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment settings and the hyperparameters are specified in Section 4 and
Appendix respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In all our tables, we report the mean and standard deviations for all metrics
over three independent runs, across all tasks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the information regarding the computational resources that
we used for conducting the experiments in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and adhered to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: The proposed method enables the access to trustworthy fine-tuned LLMs for
downstream tasks with reliable UQ which is necessary in many safety critical applications.
Further discussion on the societal impacts of our method is provided in the Appendix.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not provide safeguards for our proposed methods as we do not see the
potential of a high risk of misuse of our uncertainty-aware fine-tuning approach for reliable
UQ in LLMs.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited papers which provided the pretrained model, as well as the
packages and libraries we used. We have also cited the papers for datasets used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We will release the GitHub repository implementing our C-LoRA method with
proper instructions upon the acceptance of our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our study does not involve research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: In this work, LLM was used only for editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Details

A brief summary of the prompt templates used for fine-tuning LLaMA2 on common-sense reasoning
tasks is provided in Table 6. More details on the size of training datasets after applying an 80%
train-validation split, and the number of labels are gathered in Table 7.

Table 6: Prompt templates for fine-tuning on common-sense reasoning tasks

task prompt

Winogrande (WG-S/WG-M)
Select one of the choices that answers the following question:

{question} Choices: A. {option1}. B. {option2}. Answer:
ARC (ARC-C/ARC-E), Select one of the choices that answers the following question:
Openbook QA (OBQA), {question} Choices: A. {choice1}. B. {choice2}, C. {choice3}.

MMLU D. {choice4}. Answer:
BoolQ Answer the question with only True or False:

{question} Context: {passage}

Table 7: Size of the training dataset after train-validation split and number of labels in each dataset

WG-S ARC-C ARC-E WG-M OBQA BoolQ
Training dataset size 512 892 1.8K 2.05k 3.97k 1.99k

Number of labels 2 5 5 2 4 2

B Temperature Scaling

Temperature scaling is a commonly adopted method to convert the predicted probabilities to more
calibrated values [59, 69]. To do so, it employs a positive constant scaler, T , called the temperature
parameter, to soften the softmax values making the distribution less peaky. That is, given the logit
vector z, the new confidence can be expressed as,

q = σ(z/T ), (9)

where σ is the softmax operator. It has been empirically shown in [59] that such temperature scaling
leads to lower Expected Calibration Error (ECE) on classification tasks. Here, T can be estimated
via optimizing the Negative Log-Likelihood (NLL) on the validation set. Since T does not change
the maximum of the softmax function, the prediction is unaffected; therefore, it does not change the
model’s accuracy while enhancing model’s calibration.

C Uncertainty Estimation Metrics

Uncertainty quantification is commonly assessed by NLL and ECE in the literature. The summation
of the negative expected log probability of predicting the correct label is calculated for NLL. That is,
for the model Pθ, and a dataset of size N , NLL is computed as,

NLL =
1

N

N∑
i=1

− logPθ(yi), (10)

where yi denotes the correct label. This metric promotes the model to assign a higher probability
to the correct predictions. For an overconfident model in an incorrect prediction, the probability
of correct answer decreases, which leads to an increase in NLL. ECE on the other hand, estimates
how well a model is calibrated by assessing how close the model’s confidence is to its accuracy.
Specifically, by binning the predictions according to the confidence levels, this metric is calculated
by the weighted average of the absolute difference in each bin, that is,

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (11)
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where acc(Bm) and conf(Bm) indicate the average accuracy and confidence in each bin, Bm,

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), conf(Bm) =
1

|Bm|
∑
i∈Bm

P (ŷi), (12)

in which |Bm| denotes the number of examples in bin m.

D Hyperparameters

Table 8 summarizes the hyperparameters for LoRA fine-tuning of LLaMA2-7B, selected based on
prior work [19–21] and default values provided in PEFT library [54]. Following [20], we optimize
the KL term with SGD and a linear learning-rate scheduler.

Table 8: Hyperparameters of LoRA fine-tuning of LlaMA2-7B

Hyper-parameter Value
Optimizer AdamW

LR Scheduler Linear
Learning Rate 1e-4

Batch Size 4
Max Sequence Length 300

LoRA α 16
LoRA r 8

E On the Importance of Flexibility

To study the impact of complexity we examine the performance of FE with the case where the matrix
E is a diagonal matrix with r random variables. We refer to this as DE.

Table 9 summarizes the performance of DE and FE with M=0 and M=10 under in-distribution
scenario for the six common-sense reasoning tasks. These models are ordered from top to bottom for
each metric, such that each successive model is more flexible than the previous one. From Table 9, it
is clear that as the flexibility increases, the performance generally improves. Specifically, in almost
all tasks, FE provides a better uncertainty quantification with respect to DE, with a lower ECE and
NLL. Although FE does not always deliver the highest accuracy, it shows a comparable performance
across all tasks. Particularly, it provides the best accuracy in ARC-C under both deterministic (M=0)
and stochastic (M=10) settings. It can be concluded from Table 9 that a more flexible model yields
more reliable uncertainty quantification, with no significant loss in predictive accuracy.

To assess the effect of model complexity on generalization, we further compared DE and FE under
out-of-distribution scenario, using the models fine-tuned on OBQA from Table 9. As Table 10 indicates,
FE consistently delivers superior uncertainty quantification over all tasks under both smaller and
larger distribution shifts. It also delivers the best accuracy in almost all tasks.

These findings from Tables 9 and 10 confirm that richer stochastic structures enhance both general-
ization and uncertainty estimation, motivating our focus on contextualizing the full matrix E.

F Checkpoint Metric

Given our goal of achieving a well-calibrated model while maintaining competitive accuracy relative
to the states of the art (SOTAs), we devise a metric that incorporates both accuracy (ACC) and
expected calibration error (ECE). Specifically, we define:

C = (1− ACCval) · ECEval,

with ACCval and ECEval representing the validation accuracy and expected calibration error, respec-
tively. During training, the model is evaluated using this criterion every 100 steps. We summarize the
training algorithm of C-LoRA in Algorithm 1.
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Table 9: Impact of different levels of flexibility on performance. Performance comparison is conducted
across six common-sense reasoning tasks with a validation set split from the training dataset. The
best and the second best performances are specified in boldface and via underline respectively.

Metric Method
Datasets

WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

DE (M=0) 65.98±2.46 66.77±1.28 85.61±0.36 75.19±0.05 81.80±1.05 87.47±0.03

DE (M=10) 66.09±1.50 66.88±1.47 85.71±0.64 75.19±0.16 82.06±0.41 87.44±0.07

FE (M=0) 65.45±1.36 68.35±1.02 85.32±0.39 73.47±2.36 80.46±0.11 84.70±0.45

FE (M=10) 65.06±1.33 68.20±2.40 85.08±0.36 72.43±1.28 80.93±0.50 84.65±0.52

ECE ↓

DE (M=0) 30.99±1.39 29.63±1.58 13.17±0.30 21.91±0.49 14.19±0.37 4.67±0.17

DE (M=10) 27.00±0.62 26.26±1.17 11.79±0.16 20.21±0.09 13.24±0.34 4.41±0.02

FE (M=0) 23.76±1.64 27.26±0.90 12.23±0.25 14.90±1.98 11.23±0.35 2.57±0.13

FE (M=10) 18.12±1.52 19.60±2.42 9.54±0.47 12.21±1.87 8.42±0.50 1.34±0.22

NLL ↓

DE (M=0) 2.14±0.00 2.83±0.26 1.17±0.08 1.18±0.06 0.91±0.02 0.32±0.00

DE (M=10) 1.58±0.05 2.21±0.06 1.05±0.07 1.05±0.05 0.85±0.02 0.32±0.00

FE (M=0) 0.89±0.07 1.85±0.11 0.85±0.05 0.69±0.03 0.68±0.04 0.34±0.00

FE (M=10) 0.78±0.04 1.35±0.12 0.65±0.02 0.63±0.02 0.60±0.03 0.34±0.00

Table 10: Impact of different levels of complexity on generalization. Performance comparison is
conducted on out-of-distribution datasets. The following results are evaluated using LLaMA2-7B
fine-tuned on the OBQA dataset. The best and the second best performances are specified in boldface
and via underline respectively.

Metric Method
Datasets

In-Dist. Smaller Dist. Shift Larger Dist. Shift

OBQA ARC-C ARC-E Chem Phy

ACC ↑

DE (M=0) 81.80±1.05 68.46±1.92 74.75±0.79 44.33±2.08 31.00±4.35

DE (M=10) 82.06±0.41 67.90±0.67 74.80±1.07 43.33±0.57 30.66±4.51

FE (M=0) 80.46±0.11 68.91±1.22 74.72±0.63 45.00±1.73 31.66±3.51

FE (M=10) 80.93±0.50 66.65±1.09 74.76±0.70 46.00±1.73 32.33±1.52

ECE ↓

DE (M=0) 14.19±0.37 23.51±2.07 17.74±0.64 23.37±3.97 34.33±2.34

DE (M=10) 13.24±0.34 22.31±0.53 16.81±1.17 21.90±1.90 35.14±5.68

FE (M=0) 11.23±0.35 18.44±1.51 14.65±0.49 20.02±2.26 31.75±3.20

FE (M=10) 8.42±0.50 15.78±1.11 11.69±0.68 17.61±1.25 26.02±1.32

NLL ↓

DE (M=0) 0.91±0.02 1.35±0.08 1.08±0.03 1.64±0.06 1.86±0.05

DE (M=10) 0.85±0.02 1.28±0.05 1.04±0.02 1.62±0.06 1.82±0.05

FE (M=0) 0.68±0.04 1.03±0.01 0.87±0.01 1.53±0.05 1.77±0.03

FE (M=10) 0.60±0.03 0.95±0.02 0.78±0.01 1.46±0.03 1.67±0.02

G Flipout

To speed up the sampling, we apply the Flipout technique–originally introduced in [70] and also
adopted by [51]–in C-LoRA to the low-rank matrix E. In particular, having two randomly sampled
flipping vectors s = {−1,+1}r and t = {−1,+1}r, and considering bi to be the i-th input in a
mini-batch, the output after flipout is:

oi = Wbi = W0bi +BEAbi = W0bi +B(µE + (E ◦ΩE) ◦ (tis⊤i ))Abi, E ∼ N (0, I)

H Discussion on Results of Laplace Approximation

For experiments involving fine-tuning via Laplace approximation (LA), we used the publicly released
code provided by the authors of [19]. However, the results that we attempted to reproduce—reported
in Table 1 in our main paper—are substantially worse than those reported in the original paper [19].
This discrepancy is especially pronounced for the OBQA and BoolQ datasets. Our findings are
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Algorithm 1 Contextual Low-rank Adaptation (C-LoRA)
Require: Dataset split: Dtrain, Dvalidation, Dtest
Require: contextual module hφ, deterministic parameters θ, number of iterations T , evaluation

frequency feval, learning rate η, checkpoint metric b
1: b←∞
2: for t← 0 to T do
3: x, y ∼ Dtrain
4: x0 ← x
5: for l← 1 to L do
6: µl

E,Ω
l
E ← hl

φ(x
l−1)

7: E l ∼ N (0, I)
8: El

x ← Flipout(E l)
9: end for

10: θ ← θ − η∇θL(x, y) ▷ Eq. 7
11: φ← φ− η∇φL(x, y) ▷ Eq. 8
12: if t mod feval = 0 then
13: Compute validation accuracy and ECE
14: b̃← (1− ACCval) · ECEval

15: if b̃ < b then
16: b← b̃
17: Save θ, φ ▷ Checkpoint best model
18: Record performance on Dtest
19: end if
20: end if
21: end for

consistent with those reported by the authors of BLoB [20], which suggests that the degradation in
performance may stem from sub-optimal MAP solutions that negatively impact the quality of the
Laplace approximation-based LoRA fine-tuning.

Additionally, in our experiments, we observed that LA is notably memory-intensive, requiring
hardware with higher memory capacity than BLoB and our C-LoRA implementations. This might
make the practical applicability of LA more challenging considering the scalability compared to other
competing methods.

I Discussion on the choice of prior

In this work, we adopt a fixed Gaussian prior which, when paired with a variational Gaussian posterior,
enables a closed-form KL divergence and further facilitates performance comparison across baseline
methods. However, due to Monte Carlo approximation of the ELBO, alternative richer distributions
could also be considered as priors. While richer priors may offer empirical benefits in specific settings,
they can introduce additional computational and design challenges. Moreover, due to the highly
expressive contextual modules, despite the simplicity, fixed Gaussian prior mainly act as a light
regularizer rather than as a strict inductive bottleneck. Prior work [71] has also shown that Bayesian
Model Averaging (BMA) is robust to the choice of prior, with posterior predictive behavior remaining
similar across different prior families.

J Empirical Study of Contextualized Variance

To further illustrate that our model captures input-dependent uncertainty, we analyze the predictive
variance behavior of the LM head for three OBQA questions, each sharing the same correct label
(option “C”). For each question, we extract the predicted variance matrix from the final layer, compute
the mean variance across tokens, and report the ℓ2 norm of the resulting vector to summarize overall
uncertainty.
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Table 11: Example questions and corresponding variance magnitudes. Despite sharing the same
label, the model assigns distinct variances to each question, reflecting input-dependent uncertainty.

Question Variance ℓ2 norm

Q1: What would light bounce off of when it hits it? 3.7661
Q2: A mother births what? 3.6792
Q3: What happens when animals in hot environments are active? 3.9443

Despite sharing the same label, the model assigns distinct variances to each question, reflecting
differences in ambiguity and specificity of the input. This confirms that C-LoRA modulates its
predictive distribution based on input semantics, not merely on class labels.

We further examined whether the learned variance meaningfully affects the model’s representations.
Specifically, we computed the ℓ2 norm of the difference between the last-token embedding at
M = 0 and the mean embedding across M = 10 stochastic samples. For the three representative
examples (Q1–Q3), the differences ranged from 6.18 to 7.25, while the embedding norms themselves
were approximately 120–122, corresponding to a relative change of about 5–6%. In embedding
space, this level of perturbation is non-trivial and indicates meaningful input-dependent variability
introduced by the contextualized variance modules.

We extended this analysis to a broader set of examples, comparing 8 correct and 8 incorrect predictions.
For each, we computed the ℓ2 norm of the difference between the deterministic embedding (M = 0)
and the mean of embeddings from M = 10 samples, then averaged across each group. Correct
predictions had an average difference of 6.7 ± 1.09, while incorrect predictions showed higher
variability at 8.45±2.66. This systematic increase in embedding perturbation for incorrect predictions
suggests that C-LoRA’s learned variance corresponds to greater uncertainty for ambiguous or difficult
inputs, further supporting its interpretation as modeling input-specific uncertainty.

K Visualization of Results

For a visual performance comparison, we present the results under in-distribution scenario, after
temperature scaling, and the results under out-of-distribution scenario, reported in Tables 1, 2, and 3,
using bar plots.

Figure 3 presents bar plots summarizing the results reported in Table 1. As discussed in Section 4.2, all
methods exhibit similar predictive performance overall, while C-LoRA and BLoB (M = 10) achieve
superior uncertainty quantification, as measured by ECE and NLL. Figure 3 also illustrates the effect
of temperature scaling on calibration, corresponding to Table 2. As noted in Section 4.2, temperature
scaling substantially improves calibration. Finally, Figure 4 visualizes the out-of-distribution results
from Table 3 via bar plots. Consistent with in-distribution results, performance degrades as the
distribution shifts; however, predictive performance remains largely similar across methods, with
C-LoRA and BLoB demonstrating more robust uncertainty quantification according to ECE and NLL.
As we mentioned earlier, it worth noting that, although C-LoRA offers similar predictive performance
overall, it can underperform on certain datasets in exchange for better uncertainty quantification.

Figure 2: Visualization of the results in Table 1.
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Figure 3: Visualization of the results in Table 2.

Figure 4: Visualization of the results in Table 3.

L Broader Impacts

Our uncertainty-aware fine-tuning framework integrating uncertainty quantification in LLMs could
enhance the safety, reliability, and trustworthiness of AI systems deployed in high-stakes settings such
as medical diagnosis, atmospheric modeling, and autonomous navigation, where unrecognized model
errors can have major consequences. Moreover, as our approach explicitly models aleatoric or data
uncertainty, it is particularly well-suited for low-resource tasks and rare-event prediction, providing
access to robust LLM-based AI tools in fields ranging from global health to societal governance and
policy-making.

We anticipate minimal additional computational overhead compared to standard fine-tuning, and
because our framework is compatible with existing Bayesian extensions for epistemic uncertainty, it
offers a clear path toward unified uncertainty quantification without introducing undue complexity.
We do not foresee any negative societal impacts beyond those already inherent to large-scale model
deployment, and we believe that equipping models with calibrated confidence measures is an essential
step toward more ethical, accountable, and human-centered AI.

M Additional Information

In our contextual module, we set C, the number of hidden units, to 64 in order to ensure sufficient
expressiveness for learning meaningful features. Also, to have a robust performance, the variance
output, ΩE, uses a sigmoid activation function; however, we do not use any activation function for
the mean µE. All the experiments for almost all methods were conducted using 1 NVIDIA A100
GPU with 40 GB memory except for BLoB, for which we used 2 NVIDIA A100 with 40 GB memory.
Also for LA we used NVIDIA L40S GPU with 48 GB memory due to its memory demands.
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