
Benchmarking Multimodal Retrieval Augmented Generation with
Dynamic VQA Dataset and Self-adaptive Planning Agent

Yangning Li1,2*, Yinghui Li1*, Xinyu Wang3, Zhen Zhang3, Xinran Zheng4, Yong Jiang3 ‡

Hui Wang2, Hai-Tao Zheng1,2‡, Pengjun Xie3, Fei Huang3, Jingren Zhou3

1Tsinghua Shenzhen International Graduate School, Tsinghua University
2Tongyi Lab, Alibaba Group

3Peng Cheng Laboratory
4University College London

Abstract

Multimodal Retrieval Augmented Generation (mRAG) plays
an important role in mitigating the “hallucination” inherent
in multimodal large language models (MLLMs). Although
promising, existing heuristic mRAGs typically predefined
fixed retrieval processes, which causes two issues: (1) Non-
adaptive Retrieval Queries. (2) Overloaded Retrieval Queries.
However, these flaws cannot be adequately reflected by cur-
rent knowledge-seeking visual question answering (VQA)
datasets, since the most required knowledge can be readily
obtained with a standard two-step retrieval. To bridge the
dataset gap, we first construct Dyn-VQA dataset, consisting
of three types of “dynamic” questions, which require com-
plex knowledge retrieval strategies variable in query, tool, and
time: (1) Questions with rapidly changing answers. (2) Ques-
tions requiring multi-modal knowledge. (3) Multi-hop ques-
tions. Experiments on Dyn-VQA reveal that existing heuristic
mRAGs struggle to provide sufficient and precisely relevant
knowledge for dynamic questions due to their rigid retrieval
processes. Hence, we further propose the first self-adaptive
planning agent for multimodal retrieval, OmniSearch. The
underlying idea is to emulate the human behavior in ques-
tion solution which dynamically decomposes complex mul-
timodal questions into sub-question chains with retrieval ac-
tion. Extensive experiments1 prove the effectiveness of our
OmniSearch, also provide direction for advancing mRAG.

Introduction
Multimodal Retrieval Augmented Generation (mRAG)
(Zhao et al. 2024, 2023; Gao et al. 2023) aims to provide
more comprehensive, accurate and up-to-date knowledge
from external sources for AI systems. It has emerged as a
key technology to mitigate the “hallucination” issue (Liu
et al. 2024c; Bai et al. 2024) inherent in multimodal large
language models (MLLMs).

Existing heuristic mRAG methods typically predefined
fixed retrieval processes that ground all modalities into one
primary modality (usually text), then retrieve for a single
time. Despite the promising results, these retrieval strate-
gies suffer from two issues: (1) Non-adaptive Retrieval
Queries refer to the fixed retrieval processes and query

*These authors contributed equally. ‡Corresponding Authors.
1Code and dataset will be open-sourced at https://github.com/

Alibaba-NLP/OmniSearch. The work is led by Xinyu Wang.
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Figure 1: Bottom: Heuristic mRAG based VQA. Upper:
OmniSearch based VQA.

structures of heuristic mRAG methods. These inflexible re-
trieval strategies fail to adapt to evolving contexts or in-
termediate findings within a question, hindering the model
from re-retrieving to further comprehend, verify, or rethink
the question. For example, in Figure 2, question (a) asks,
“What is his (Cillian Murphy’s) latest film?” A fixed re-
trieval process returns multiple relevant films, but heuris-
tic methods fail to construct further retrieval based on the
retrieved content to distinguish between the sequence of
different films. (2) Overloaded Retrieval Queries refer to
heuristic retrieval methods refer to heuristic mRAG methods
merely format a single query by concatenating textual de-
scriptions of objects in images with input questions. A single
query carries multiple retrieval aspects, leading to ambigu-
ous retrieval and influx of superficially relevant knowledge
yet not essential to the question solving. For example, in Fig-
ure 2, question (c) asks, “Which one of them (two actors,
Ling Jia, and Teng Shen) grossed more?” Heuristic meth-
ods might generate a single query like “Ling Jia, Teng Shen,
Which one of them grossed more?”, which contains the in-
tent to retrieve box office information for both actors. This
mixed query conversely fails to provide precise knowledge
for each individual aspect. Therefore, as shown in Figure
1, when faced with real-world questions requiring complex
knowledge, current heuristic mRAG methods fail to provide
sufficient and precise knowledge, due to their rigidity issues.

Unfortunately, although several knowledge-seeking vi-



Question: Who designed this building?
GT Answer: Antonio Barluzzi

Common Two-hop Question in previous VQA datasets Dynamic Questions in Dyn-VQA
a) Question with Rapidly Changing Answers

Question: What his latest film?
GT Answer: Small Things Like These (2024)

l Image Search with Input Image
Cillian Murphy

l Web Search: Cillian Murphy + Latest Film
[1] … include Oppenheimer …
[2] … Small Things Like These, has …

l Web Search: Oppenheimer + Release Date
July 11, 2023

l Web Search: Small Things Like These + Release Date
15 February 2024

b) Question Requiring Multimodal Knowledge

Question: What object is the icon of his team?
GT Answer: A dark yellow ball

l Image Search with Input Image
Kobe Bryant

l Web Search: Kobe Bryant + nba team
Los Angeles Lakers

l Image Search with Textual Query: LA Lakers icon

l Image Search with Input Image
Dominus Flevit Church

l Web Search: Dominus Flevit Church + Designer
Antonio Barluzzi

c) Multi-hop Question

Question: Which one of them grossed more?
GT Answer: Teng Shen, The right one

l Image Search with Input Image
Ling Jia, Teng Shen

l Web Search: Jia Ling + Total Box Office
… exceed 10 billion yuan (US$1.4 billion)

l Web Search: Teng Shen + Total Box Office
… approximately 33.501 billion yuan

Figure 2: Dynamic VQA examples that require different kinds of retrieval strategies.
sual question answering (VQA) datasets (Chen et al. 2023;
Schwenk et al. 2022) are widely utilized as mRAG bench-
marks, they cannot adequately reflect the rigidity issues of
heuristic mRAGs in acquiring complex knowledge. Since
most questions in them merely require textual knowledge
within two-hop, which can be readily obtained by heuristic
mRAGs with a standard two-step retrieval process. As illus-
trated in the upper left of Figure 2, the most common type
of question inquires about a certain property of an object.

To bridge the mRAG dataset gap, we first construct a
challenging dataset, Dyn-VQA, comprising 1,452 dynamic
questions that require complex multimodal knowledge re-
trieval for solution. Dynamic questions are defined as ques-
tions that require the model to flexibly provide knowledge
retrieval solutions, where the query, tool, and time of re-
trievals are all variable. These questions cannot be solved
by a predefined retrieval process. Concretely, there types of
dynamic questions are included in Dyn-VQA: (1) Ques-
tions with rapidly changing answers. Since the context
knowledge of such question updates frequently, the retrieved
content may be mixed with outdated and newer knowl-
edge that is difficult to distinguish. This requires mARG
methods to flexibly plan additional retrievals based on feed-
back from current retrieved content for further comprehen-
sion, rather than merely a one-time retrieval. (2) Ques-
tions requiring multi-modal knowledge. The knowledge
necessary by Dyn-VQA spans various modalities. This de-
mands that mRAG methods retrieve knowledge across di-
verse modalities with tailored retrieval APIs, differing from
most VQA datasets limited in seeking textual knowledge
with multimodal questions. (3) Multi-hop questions. Ques-
tions in Dyn-VQA necessitate varied reasoning hops for so-
lution, which entails that mRAG methods conduct various
retrieval steps. While existing VQA datasets primarily focus
on two-hop question, i.e., identifying visual concepts via text
and then answering single-hop textual question.

We evaluated the performance of various mRAG methods
combined with leading MLLMs on Dyn-VQA. Experiments
reveal that existing heuristic mRAGs struggle to provide suf-
ficient and precisely relevant knowledge for dynamic ques-
tions in Dyn-VQA, due to their rigid retrieval processes.

To address these issues, we further propose a self-adaptive

planning agent for multimodal retrieval, OmniSearch2. The
underlying idea is to emulate the human behavior in ques-
tion solution which dynamically decomposes complex mul-
timodal questions into sub-question chains with retrieval ac-
tion. At each step, OmniSearch flexibly adjusts the next ac-
tion according to question-solving state and retrieved con-
tent, with diverse purposes such as deepening comprehen-
sion of retrieved content, modifying retrieval method for cur-
rent sub-question, proposing the next sub-question, etc. It is
noteworthy that OmniSearch can serve as a plug-and-play
RAG module, cooperating with arbitrary MLLMs to aug-
ment their capability in addressing complex dynamic ques-
tions. Two different versions of OmniSearch are developed
based on closed-source GPT-4V (Achiam et al. 2023) and
open-source Qwen-VL-Chat (Bai et al. 2023a), respectively.
As far as we know, OmniSearch is the first multimodal re-
trieval agent for VQA tasks with self-adaptive planning and
scalable submodules.

In summary, our main contributions are fourfold:

• We reveal that existing VQA-based mRAG benchmarks
fail to reflect the feature that real-world questions require
dynamic knowledge retrieval, and propose novel Dyn-VQA
dataset, which contains three types of dynamic questions.

• We benchmark various mRAG methods with leading
MLLMs on Dyn-VQA, demonstrating their flaw in provid-
ing sufficient and relevant knowledge for dynamic questions.

• We propose OmniSearch, a self-adaptive retrieval agent
that plans each retrieval action in real-time according to
question solution stage and current retrieval content.

• Extensive experiments prove the effectiveness of our
OmniSearch. Detailed analyses are conducted to provide di-
rection for advancing mRAG.

Related Works
Multimodal Retrieval Augmented Generation
The mRAG methods (Zhao et al. 2023, 2024; Gao et al.
2023) aim to provide MLLMs (Lu et al. 2024b; Ye et al.
2024; Liu et al. 2024a; Du et al. 2022; Chai et al. 2024a) with

2We hope OmniSearch can achieve Omnipotent Multimodal
Search for solving real-world questions in the future.



Dataset Knowledge Type Ans. Change Freq. Reasoning
Step

External
Visual-Seek

Human
Annotation # {I, Q, A} Len. of

Q/A Lang. Const.
Year

VQAv2(Goyal et al. 2017) common never change ≤ 2-hop % ! 614K 6.2/1.1 en 2017
OK-VQA (Marino et al. 2019) factoid never change 2-hop % ! 14K 8.1/1.3 en 2019
S3VQA (Jain et al. 2021) factoid never change 2-hop % % 7.5K 12.7/2.8 en 2021
ViQuAE (Lerner et al. 2022) fixed kb never change 2-hop % % 3.6K 10.9/2.4 en 2022
A-OKVQA (Schwenk et al. 2022) common/factoid never change 2-hop % ! 24.9K 8.8/1.3 en 2022
InfoSeek (Chen et al. 2023) fixed kb never change 2-hop % % 1.35M 9.0/1.6 en 2023

Dyn-VQA real world fast/slow/never change > 2-hop ! ! 1.5K 12.5/4.3 zh/en 2024

Table 1: Comparison of knowledge-seeking VQA datasets.

more comprehensive, accurate and up-to-date world knowl-
edge from external sources (Wu et al. 2024; Ji et al. 2024;
Hou et al. 2024). They have been empirically proven to be
effective on various VQA datasets, which can be categorized
into two classes based on the retrieval method.

One category employs visual encoding model for direct
image representation, and then retrieves the knowledge from
knowledge base with the highest feature similarity. For in-
stance, KAT (Gui et al. 2022) and Revive (Lin et al. 2022)
both use the image encoder of CLIP (Radford et al. 2021)
for retrieval. The other category (Hu et al. 2023; Yang et al.
2022; Lin et al. 2024) first transforms the input image into
textual representation utilizing off-the-shelf tools and then
performs text retrieval. For example, RA-VQA (Lin and
Byrne 2022) and RA-VQA-v2 (Lin et al. 2024) first use ex-
isting object detection and image captioning models to con-
vert images to text, and than perform dense passage retrieval
to fetch relevant text documents. Several studies (Yao et al.
2023; Xu et al. 2023) have preliminarily explored into agen-
tic RAG, but their primary focus was on the text domain.
Chen et al. (2024a) proposed a causality-enhanced agent
framework focus on unimodal biases in MLLMs, while it
lacks plug-and-play capabilities.

The purpose of OmniSearch aligns with previous works to
furnish pertinent and accurate knowledge for MLLMs, but
diverging in three aspects: (1) OmniSearch plans multiple
retrieval actions for the each question with diverse retrieval
tools, supplementing missing knowledge of each modality.
(2) OmniSearch dynamically adjusts subsequent retrieval
actions based on retrieved content, diverging from methods
formulate query solely with input questions and images. (3)
OmniSearch’s retrieval scope extends to the entire Internet,
offering intricate yet more comprehensive knowledge.

Dyn-VQA Dataset
In this section, we curated a novel dataset, Dyn-VQA, de-
signed to evaluate the performance of existing mRAG meth-
ods in addressing questions requiring dynamic retrieval.

Dyn-VQA Construction
To guarantee the dataset quality, we explain the overall goal
of the dataset to the annotators, who are all professional AI
researchers. A straightforward construction strategy might
directly request the annotators to write more visual ques-
tions after showing them the various types of VQA cases in
Figure 2. However, in the preliminary annotation, we found
that this overloaded single-step strategy is quite impractical.

Annotators often found themselves in a dilemma of search-
ing an image first, then laboriously devising a correspond-
ing question while keeping various criteria, e.g., changing
speed, and reasoning steps in their mind. Therefore, we op-
timize the strategy and divide them into three steps:
Step 1. Textual Question Writing. First, annotators are re-
quired to craft textual questions and categorize them using
a three-dimensional schema based on answer update fre-
quency (fast, slow, never), whether requiring external vi-
sual knowledge (yes, no), and reasoning steps (≤ 2-hop,
> 2-hop). The annotation of fast or slow is determined by
whether the updating occurs on yearly basis. Whether seek-
ing visual knowledge beyond input images is also consid-
ered to separate questions emphasizing on different modal-
ities. Meanwhile, multi-hop questions are delineated by a
2-hop cutoff, as previous VQA datasets typically focus on
2-hop. Annotators are prompted to compose questions incor-
porating newly emerged concepts from the past six months.
The annotation difficulty is significantly reduced since vi-
sual information is not considered. Besides, English QA in-
stances from FreshQA (Vu et al. 2023) are also included.
Step 2. Multimodal Rewriting. The annotator transforms
textual questions from the first step into multimodal ones
by replacing visual concepts with co-references (e.g., ”Kobe
Bryant” to ”this player”) and pairing the revised question
with a relevant image found on Google. Images sourced
from commonly used pre-trained corpus such as Wikipedia
and Baidu Encyclopedia are forbidden.
Step 3. Chinese-English Translation. This step aligns Chi-
nese and English parts of the Dyn-VQA for side-by-side lan-
guage comparison. Chinese and English VQA instances are
translated into each other using Google Translate API, fol-
lowed by manual checks and corrections to guarantee ac-
curacy, especially for proper nouns. Instances that are in-
tractable to translate or not applicable to Chinese/English
contexts are filtered. Additionally, each question is anno-
tated with the golden query, which simplifies the question
by focusing solely on the last-hop question. This means that
references to visual concepts and complex intermediate rea-
soning are omitted from the questions.

Dyn-VQA Analysis
Dataset Statistics Dyn-VQA is the first dataset specifically
proposed for assessing the efficacy of mRAG systems. As
shown in Table 2, it contains ∼1.5K questions in 9 domains,
covering 3 types of question requiring complex dynamic re-
trieval: questions with rapidly changing answers, questions



Statistic Number
Total Questions 1452
Domain 9
English questions 715 (49.2%)
Chinese questions 737 (50.8%)

Questions with fast updating answers 385 (26.5%)
&& requiring > 2-hop reasoning 112 (7.7%)
&& requiring external visual knowledge 178 (12.3%)

Questions with slow updating answers 494 (34.0%)
Questions with never updating answers 573 (39.5%)

Questions requiring > 2-hop reasoning 387 (26.7%)
&& requiring external visual knowledge 237 (16.3%)

Questions requiring ≤ 2-hop reasoning 1065 (73.3%)

Questions requiring external visual knowledge 865 (59.6%)
Questions not requiring external visual knowledge 587 (40.4%)

Average question length 12.5
Max question length 60
Average answer length 4.3
Max answer length 73

Table 2: Statistics of Dyn-VQA.

requiring multi-modal knowledge, multi-hop questions.
Comparative analysis between Dyn-VQA and other

knowledge-seeking VQA datasets is also presented in Ta-
ble 1. It is evident that while other datasets also emphasize
the necessity of external knowledge in the question solv-
ing, their knowledge typically pertains to only one cate-
gory. In contrast, each question in Dyn-VQA originates from
the real world, encompassing a broader and more heteroge-
neous range of knowledge types, and featuring more open-
ended answer styles. Reflecting in the length of questions
and answers, Dyn-VQA exhibits the longest entries com-
pared to other datasets. Furthermore, Dyn-VQA employs
a more systematic question categorization schema, ensur-
ing its challenging. Unlike other datasets, which are primar-
ily constructed through templated and automated processes,
Dyn-VQA is meticulously curated by humans and requires
ongoing human input to maintain the dataset with dynami-
cally updated answers. Consequently, while Dyn-VQA may
not match other datasets in scale, it far surpasses them in
terms of quality, difficulty, and the cost of each instance.
More details of Dyn-VQA can be found in Appendix.
Dataset Difficulty Questions in Dyn-VQA require more
complex external knowledge, whose retrieval process is not
fixed. The inherent dynamism of Dyn-VQA naturally en-
sures its difficulty. To illustrate more intuitively, we also
conducted a quantitative comparison of human performance
on different datasets. As shown in Table 3, the questions
in existing VQA datasets can typically be resolved within
two reasoning steps, resulting in an average search count of
less than 2 per question. Besides, image search with tex-
tual query is not performed at all in other datasets, since
the question therein do not require additional visual knowl-
edge except the textual description of the object in image.
In terms of overall accuracy, humans achieved the lowest
performance on Dyn-VQA, further demonstrating the chal-
lenges it presents.

Retrieval Baselines and OmniSearch
In this section, we establish several heuristic mRAG base-
lines and develop our OmniSearch to address dynamic ques-
tions that require complex retrieval. Retrieval tools in all

Dataset Search Count Performance
Web Search Image Search

with I. I.
Image Search

with T. Q.
VQAv2 0.05 0 0 74.31
A-OKVQA 0.18 0.06 0 60.19
InfoSeek 0.87 0.75 0 63.67

Dyn-VQA 1.57 0.89 0.65 55.12

Table 3: Human performances on different VQA datasets.

methods are Google-based, including web search (textual
web content retrieval with textual queries), image search
with input images, and image search with textual query.

Baselines
Single-hop heuristic mRAG baselines. The first heuristic
baseline is to retrieve images with input images, which
provides similar images alongside descriptive captions. This
method augments MLLMs with visual knowledge about the
objects depicted in the input images. Similarly, the second
heuristic baseline conducts web search with input textual
questions and provides MLLMs with the top-k retrieved
content as supplementary knowledge. It is acknowledged
that these two methods may not furnish precise supportive
knowledge, since them only leverage partial modality of the
input question as search query. Nonetheless, these baselines
are still established to explore the benefits from uni/cross-
modality retrieval.
Two-hop heuristic mRAG baselines. Typically, existing
mRAG methods can be generalized into two primary steps:
first, converting the visual concepts in input images into text,
and then combining the obtained text with input questions
as search queries to retrieve related textual knowledge. For
the first step, we employed the caption of the top-1 im-
age retrieved by the input image and the output of the
image caption model as textual representations of the in-
put images, respectively. Subsequently, the web search API
is utilized to extract relevant knowledge from the Internet.
Compared to single-step mRAG methods, two-step mRAG
methods can provide knowledge more precisely related to
questions. However, they still encounter the limitation of a
fixed retrieval process.
Estimated Upper Bound. We estimate the upper bound of
mRAGs by the annotation of golden query, which simplifies
the question to a last-hop question. Depending on whether
the question requires external visual knowledge, either web
search or image search API is called. We believe that in this
simplified setting, the heuristic mRAG method can provide
accurate information to MLLMs.

Descriptions of other baselines are available at Appendix.

OmniSearch Framework
Heuristic mRAG encounter the issues posed by rigid re-
trieval processes. A more flexible model that can plan the re-
trieval strategy tailored to the specific question and dynami-
cally adjusts it throughout the process is desired. Therefore,
we propose a self-routing framework called OmniSearch for
retrieval planning. The underlying idea behind is to mimic
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Figure 3: Left: overall framework of OmniSearch. Right: running example of OmniSearch.

the human of incrementally decomposing the complex ques-
tion into a sequence of solution actions. As illustrated in Fig-
ure 3, overall framework consists of three module. The plan-
ning agent is the core module that formulates sub-questions
and plans the subsequent retrieval action based on real-world
feedback (i.e., retrieved content or solver output). Actual re-
trieval action is execute by the retriever. Then, sub-question
solver generates feedback on sub-question based on the re-
trieval content and update it to the planner.

Planning Agent. Each planned action comprises four
critical part: self-thought <ST>, sub-question <SQ>, re-
trieval API <R>, and API query <Q>. In each step, plan-
ning agent comprehends the given question and the real-
world feedback in self-thought, then carefully determines
the follow-up sub-question to tackle. Meanwhile, different
retrieval APIs with query are invoked, depending on the
knowledge type required for the sub-question. In a manner
akin to human cognitive processes during question-solving,
planning agent autonomously generates various potential ac-
tions, including: posing additional question to clarify am-
biguous or conflicting parts of the retrieved content; refining
the retrieval query to acquire more supplementary knowl-
edge; modifying the phrasing of sub-questions; verifying
the response to the current sub-question; presenting the next
sub-questions; concluding the final answer, etc.

Retriever executes actual retrieval operations. In our ex-
periments, web search, image search with text and image
retrieval with images are included. More retrieval tools can
be considered in future.

Sub-question Solver summarizes the retrieved content
and endeavors to address the sub-question accordingly.
The feedback generated by the solver is then provided to
the agent. Notably, the solver is compatible with arbitrary
MLLMs or even the planning agent itself, i.e., directly re-
turning the retrieved information to the planner. Depending
on computational resources, MLLMs with larger or smaller
sizes can be employed. Such pluggable and scalable feature
is desired in industrial scenarios, which facilitates the flexi-
ble control of GPU cost.

The above process is fully automatic, with OmniSearch

performing iterative actions until it believes it has retrieved
sufficient knowledge to output a final answer. We trained
two versions of OmniSearch based on different MLLMs:
proprietary GPT-4V and open-source Qwen-VL-Chat. For
GPT-4V, we employed prompt engineering to stimulate its
dynamic planning and decision-making capabilities. To fa-
cilitate Qwen-VL-Chat’s ability to plan and utilize retrieval
APIs, we constructed a retrieval API training dataset, lever-
aging the GPT-4V synthetic data and the existing Infoseek
dataset. We train the MLLM in a multi-round conversation
mode. Additionally, general instruction data is also utilized
to keep the general conversation capability of trained Agent.

The proposal of OmniSearch is inspired by Chain-of-
Thought (CoT) (Wei et al. 2022), but differs from it essen-
tially. The fundamental distinction between OmniSearch, as
a multimodal agent, and CoT is its ability to utilize tools,
interact with the environment, and response to the environ-
ment (Zhang et al. 2023). In contrast, CoT methods primar-
ily stimulate the model’s inherent logical reasoning capabili-
ties through prompts. The CoT approach is unable to decou-
ple intermediate processes, therefore can not be integrated
with retrieval tools.

Experiments
Experimental Settings
Backbone MLLMs for heuristic mRAGs. We select sev-
eral advanced MLLMs as backbone model to show their
effectiveness equipped with heuristic mRAGs. Qwen-VL-
7B-Chat is a large visual language model with strong vi-
sual and text recognition abilities proposed by Bai et al.
(2023b). GPT-4V and Qwen-VL-Max3 are also selected as
representatives of the closed-source models to show how the
larger MLLMs will affect the results. Additionally, Qwen-
7B-Chat is included in our experiments, which is a text-only
LLM. We use this model to assess how multimodal RAG can
solve the visual problem for textual LLM.

Evaluation Metric. The automated metric F1-Recall is
utilized as the evaluation metric. We calculate the ratio of

3Our evaluation was conducted up to July 1, 2024.



Model Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

Original (M)LLMs
Qwen-VL-Chat 13.69 14.20 17.27 15.56 14.49 15.50 15.13 16.92 13.58 15.28
Qwen-7B-Chat 5.63 7.86 15.97 10.48 10.43 11.05 10.08 10.48 10.46 10.47
Qwen-VL-Max 15.11 30.44 39.51 30.22 29.21 31.10 29.18 22.81 37.32 29.96
GPT-4V 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25

+ Heuristic mRAG: Retrieving Images with Input Images
Qwen-VL-Chat 15.74 17.12 25.74 20.52 19.14 22.68 18.44 22.06 18.19 20.16
Qwen-7B-Chat 10.97 15.04 25.91 18.76 16.86 24.18 14.23 16.80 19.75 18.25
Qwen-VL-Max 24.04 28.99 45.49 34.22 34.08 41.54 29.19 31.07 37.39 34.19
GPT-4V 20.18 33.21 50.00 35.94 35.65 42.63 31.33 30.90 40.32 35.87

+ Heuristic mRAG: Retrieving Web Pages with Input Questions
Qwen-VL-Chat 20.78 18.27 27.61 22.76 22.20 23.34 22.07 26.66 17.94 22.59
Qwen-7B-Chat 14.65 15.47 24.98 19.14 18.66 19.99 18.34 17.93 20.12 19.01
Qwen-VL-Max 26.71 27.37 35.84 30.65 30.22 31.14 30.13 30.27 30.82 30.54
GPT-4V 22.48 30.92 40.84 33.00 31.47 34.32 31.42 31.10 34.13 32.59

+ Heuristic Two-Step mRAG: Retrieving Image First, then Retrieving Web Pages with Question appended to Retrieved Caption
Qwen-VL-Chat 19.17 20.02 28.54 23.33 22.68 23.84 22.69 24.11 22.17 23.16
Qwen-7B-Chat 15.27 17.33 28.53 21.70 19.83 26.65 17.50 20.47 21.96 21.20
Qwen-VL-Max 24.44 30.75 43.21 34.03 33.91 38.26 31.10 32.04 36.01 33.99
GPT-4V 20.37 33.98 48.46 36.12 36.04 40.19 33.32 32.99 39.30 36.10

+ Heuristic Two-Step mRAG: Image Caption First, then Retrieving Web Pages with Question appended to Caption
Qwen-VL-Chat 22.05 25.87 31.84 27.58 26.21 27.44 27.06 28.81 25.57 27.21
Qwen-7B-Chat 14.65 21.16 28.66 22.89 21.02 23.64 21.55 16.57 28.39 22.39
Qwen-VL-Max 24.27 32.93 44.03 35.04 34.97 35.16 34.92 31.10 39.05 35.02
GPT-4V 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

Generative Search Engine
Bing Chat 27.71 32.77 32.99 31.67 30.80 35.44 28.64 29.62 32.74 31.44
Perplexity AI 29.62 34.69 34.88 33.67 32.81 37.46 30.67 31.59 34.80 33.51
Gemini 36.17 32.86 42.84 38.75 34.78 46.39 31.82 35.77 39.69 37.69

Ours
OmniSearch (Qwen-VL-Chat) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (GPT-4V) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
Estimated Upper Bound: + Retrieving Web Pages with Gloden Query
Qwen-VL-Chat 37.46 46.52 52.18 46.73 45.28 47.94 45.27 43.88 48.90 46.35
Qwen-7B-Chat 39.69 47.27 57.76 49.53 49.02 50.94 48.36 46.02 52.88 49.40
Qwen-VL-Max 42.19 53.01 56.60 51.91 50.58 52.97 50.60 49.83 53.33 51.56
GPT-4V 45.59 54.23 60.78 55.15 52.81 54.53 54.51 51.08 58.07 54.52

Human Performance 51.63 60.02 53.19 54.12 58.31 57.86 53.20 51.96 58.36 55.12

Table 4: Main results on Dyn-VQA.

common tokens between model-generated responses and
ground truth. Specifically, we first segment the generated
text and golden text into token lists using word segmenta-
tion tools4, then calculate the ratio of tokens generated by
models belonging to the golden token list.

Main Results
The performance of various MLLMs with different mRAG
methods are shown in Table 4, from which we can find that:

(1) Our OmniSearch (GPT-4V) significantly outperforms
other models, encompassing both state-of-the-art MLLMs
with heuristic mRAGs and commercial generative search
engines. Even Qwen-VL-Chat-based OmniSearch surpasses
the considerably larger GPT-4V equipped with two-step
heuristic mRAG. We attribute this to two aspects: on the one
hand, the OmniSearch decomposes a complex question into
a sequence of sub-questions, reducing the retrieval burden
in a single step. On the other hand, it rethinks the retrieved
content and sub-questions to ensure the accuracy of the sub-
answers, mitigating the risk of error propagation.

(2) Regarding overall performance, the OmniSearch
closely parallel human and GPT-4V enhanced with content

4Jieba (https://github.com/fxsjy/jieba) for Chinese, and NLTK
(https://www.nltk.org/) for English.

retrieved via gold query, highlighting its superior abilities.
Nevertheless, a significant gap remains between the Om-
niSearch and human performance on questions belong to the
three most challenging subcategories (fast-changing, >2-
hop, requiring external visual knowledge), which indicates
substantial room for improvement in agent-based mRAG
for real-world questions. How to generate more human-like
search logic is a promising direction for future research.

(3) Despite achieving more than 50% performance, Dyn-
VQA remains a formidable challenge for both AI systems
and humans. It is observed that for questions necessitating
multi-step retrieval or additional visual knowledge, all mod-
els consistently underperform compared to other questions
within the same classification schema. Especially for ques-
tions with different answer update frequencies, the variance
in model performance is high. We can conclude that ques-
tions requiring rapidly changing knowledge pose the most
intractable challenge, as such knowledge cannot be internal-
ized by MLLMs.

(4) For two-step heuristic mRAGs, leveraging image cap-
tion model to transform visual concepts brings more gain to
the original MLLMs, which provides a more detailed image
description for the next retrieval step. However, this advan-
tage reverses for questions that do not require additional vi-



Planning Model Sub-question Solver Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

OmniSearch (Q) OmniSearch (Q) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (Q) GPT-4V 37.14 42.82 47.48 43.29 42.78 44.46 42.26 41.21 45.15 43.15
OmniSearch (Q) GPT-4V + GPT-4 38.98 44.52 49.18 45.03 44.52 46.20 44.00 42.97 46.87 44.89
OmniSearch (Q) Qwen-VL-Chat 34.10 39.88 44.50 40.32 39.77 41.53 39.25 38.18 42.22 40.17

OmniSearch (G) OmniSearch (G) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
OmniSearch (G) Qwen-VL-Chat 38.65 44.68 52.25 46.56 44.72 49.40 43.80 41.63 50.64 46.07

Table 5: Experiments on OmniSearch paired with different MLLMs as sub-question solvers. OmniSearch (G) and OmniSearch
(Q) refer to OmniSearch implementations based on GPT-4V and Qwen-VL-Chat, respectively.

Planning Model Sub-question Solver # Input Tokens # Output Tokens Expenses (×10−3$) Performance
Two-Step mRAG GPT-4V 1454.0 (G) 132.5 (G) 18.5 37.15
Two-Step mRAG Qwen-VL-Chat 749.9 (Q) 28.6 (Q) 0.2 27.21

OmniSearch (G) OmniSearch (G) 3028.5 (G) 476.9 (G) 44.6 50.03
OmniSearch (G) Qwen-VL-Chat 1217.2 (G) + 2073.4 (Q) 386.0 (G) + 124.8 (Q) 24.4 46.07
OmniSearch (Q) OmniSearch (Q) 9578.3 (Q) 572.5 (Q) 3.2 41.20
OmniSearch (Q) GPT-4V 2371.5 (G) + 992.2 (Q) 281.0 (G) + 551.4 (Q) 32.8 43.15

Table 6: Comparison of token costs and expenses for different models.

sual knowledge, primarily because the majority of them are
2-hop (74%) and do not demand visual knowledge beyond
the concepts presented in the image itself. Supplementary
information from the image caption model does not substan-
tially benefit the model.

(5) Commercial generative search engines generally per-
form poorly on Dyn-VQA. Even the best-performing en-
gine, Gemini, only matching the performance of GPT-4V
with two-step mRAG. Further case analysis reveals these
generative search engines lack essential grounding capabili-
ties: they fail to associate “it” in the question with objects in
the image, nor can integrate multimodal information effec-
tively. This suggests that questions in Dyn-VQA represent
the real demand in industrial scenarios.

(6) Comparing Qwen-7B-Chat and Qwen-VL-Chat, we
observe that the performance gap between the models is re-
duced once equipped with mRAG. This phenomenon indi-
cates that mRAG can assist pure text LLMs in addressing
multi-modal issues.

Due to space constraints, more analysis experiments are
placed in the appendices in the Supplementary Material,
and they are highly recommended to the reader.

Analysis Experiments on OmniSearch
In this section, we conduct extensive analysis experiments
to answer the following questions on our OmniSearch:
How different models as sub-question solvers affect over-
all performance? As shown in Table 5, several observa-
tions can be made regarding the performance of OmniSearch
when paired with different MLLMs as sub-question solvers:

(1) In the case of the Qwen-VL-Chat Based OmniSearch,
employing the larger model GPT-4V as the sub-question
solver significantly enhances the performance of the Om-
niSearch, indicating the continued validity of scaling laws
for sub-question solver. Meanwhile, substituting the sub-
question solver of the GPT-4V Based OmniSearch with the
smaller Qwen-VL-Chat leads to a predictable decrease in
model performance. Nonetheless, it still outperforms Qwen-
VL-Chat with two-step heuristics mRAG from Table 4.

(2) we also explored a more complex invocation strat-
egy for the sub-question solving model: leveraging GPT-4V
for sub-questions entailing multimodal contexts, and em-
ploying GPT-4 for those involving purely textual contexts,
which is considered to be more capable on text-only ques-
tions compared to GPT-4V. This approach contributes fur-
ther to performance enhancement. More refined invocation
strategies is also worthy to be explored, such as having the
sub-question solver output bounding boxes for certain ob-
jects in the image to guide more precise retrieval. We leave
this topic in the future work.

(3) To assess whether the OmniSearch with retrieval path
planning learning has been impaired in its question solving
ability, we replaced the sub-question solver of the Qwen-
VL-Chat Based OmniSearch with the original Qwen-VL-
Chat. Comparison of rows 1 and 4 in Table 5 reveals that
employing the OmniSearch as the sub-question solver in-
stead improves question-solving ability. This enhancement
demonstrate that the learning of retrieval path planning also
involves the ability to understand and reason about retrieval
knowledge, potentially enhancing the model’s problem solv-
ing ability and yielding cross-task gains.
How different models as sub-question solvers affect to-
ken and expenses? In Table 6, we further examine the token
costs and actual expenses5 brought by different sub-question
solvers. Although more costly, the enhancement provided by
the OmniSearch relative to the heuristic mRAG is consider-
ably substantial. The correlation between the performance of
the OmniSearch and the actual expenses is proportional, yet
not linear. When substituting GPT-4V with Qwen-VL-Chat
as the sub-question solver (rows 3 and 4), the absolute per-
formance declines by under 4 points, approximately 7.9%,
while the expenditure is nearly halved, demonstrating the
excellent scalability of OmniSearch. The results also indi-
cate that sub-question reasoning is not the bottleneck of cur-
rent methods, rather the retrieval strategy of complex ques-

5We refer https://azure.microsoft.com/zh-cn/pricing/details/
cognitive-services/openai-service/ for GPT-4V price.
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Figure 4: Model performance of different domains.

tions presents a more urgent challenge. This conclusion is
further supported by comparing the enhancements achieved
by substituting the planning model (row 6 to 5) and sub-
question solver (row 6 to 7) of the OmniSearch (Q) with
GPT-4V. The benefits realized by the former are more pro-
nounced. Consequently, when computational resources are
constrained, priority should be given to ensuring that re-
trieval planning model can utilize a larger model as back-
bone.

Analysis Experiments on Dyn-VQA Dataset
Performance Comparison on Different Domains
Figure 4 illustrates the performance of Qwen-VL-Chat and
GPT-4V equipped with different mRAG methods across var-
ious domains. We can intuitively observe that each mRAG
method enhances the efficacy of the original model. The
coverage of both original models is notably broadened by
the mRAG methods, particularly for the smaller Qwen-VL-
Chat. However, in several domains, such as transportation,
the Qwen-VL-Chat-based OmniSearch instead exhibits su-
perior performance compared to the GPT-4V-based one.
Further analysis reveals that this phenomenon is primarily
attributed to the long-tail property of transportation domain,
which contains only 10 VQA instances, with the majority
comprising 2-hop questions or questions that do not involve
changing knowledge. In these cases, GPT-4V-based Om-
niSearch tends to over-retrieve, e.g., it has retrieved the nec-
essary information but over-cautiously continues to gather
additional information to validate the answer, resulting in
the correct answer being obscured within a large volume of
retrieved information. This underscores the need for ongo-
ing enhancements to the robustness of our OmniSearch.

Prediction Overlap
In this subsection, we investigate the overlap of questions
correctly answered by different models. Firstly, we observed
that no questions in the Dyn-VQA were correctly answered
by all models, and 31% of the questions did not receive a
correct prediction from any model. Figure 5 illustrates the
degree of pairwise overlap in correctly answering questions
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Figure 5: Pairwise overlap between correctly answered
questions of different models. 0-8: Qwen-VL-Chat, Qwen-
7B-Chat, Deepseek-VL-7B-Chat, VisualGLM-6B, Llava-
V1.6-Mistral-7B, mPLUG-Owl2.1, InstructBLIP-Vicuna-
7B, Qwen-VL-Max, GPT-4V.

on Dyn-VQA. Each row indicates the proportion of ques-
tions correctly answered by the corresponding model that
were also correctly answered by other models. Overall, the
two highest-performing models, Qwen-VL-Max and GPT-
4V, exhibited relatively high overlap, but still hover around
60%. Furthermore, looking at heat blocks (6, 8), we find
that even for InstructBLIP-Vicuna-7B, which demonstrated
the weakest performance (12.33 overall F1 recall, as de-
tailed in Table 11 in the Appendix), 26.87% (100 - 73.13)
of the questions it successfully answered could not be cor-
rectly answered by the best-performing GPT-4V. This indi-
cates substantial differences in model behavior and shows
that although some models generally outperform others,
their superiority is not attributable to correctly answering the
“hard” questions while consistently getting the “easy” ones
right. The varied challenges presented by Dyn-VQA affect
models differently, highlighting ensemble-based and self-
consist-based approaches as promising directions for future
research.

Conclusion
In this paper, we study the multimodal retrieval aug-
mented generation (mRAG). We argue that existing heuristic
mRAGs typically predefined fixed retrieval processes, which
causes two issues: (1) Non-adaptive Retrieval Queries. (2)
Overloaded Retrieval Queries. However, these rigidity is-
sues cannot be adequately reflected by current knowledge-
seeking visual question answering (VQA) datasets. There-
fore, we first construct Dyn-VQA dataset, consisting of
three types of “dynamic” questions, which require complex
knowledge retrieval strategies variable in query, tool, and
time. Furthermore, OmniSearch is proposed as the first self-
adaptive planning agent for multimodal retrieval. Extensive
experiments prove the effectiveness of our OmniSearch, also
highlight the challenges posed by Dyn-VQA.
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More Details on Dyn-VQA Dataset
Statistics
Figure 6 illustrates the data distribution across various do-
mains and the answer change frequencies in Dyn-VQA.
Among the 9 domains, Sports and Recreation, and Compa-
nies and Products constitute approximately 50% of the data.
The distribution of questions with fast, slow, and never an-
swer changes is relatively balanced within the classes and
does not exhibit a long tail, reflecting a distribution that
closely aligns with real-world scenarios.
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Figure 6: Data distribution of different domains and answer
change frequencies on the Dyn-VQA dataset.

Dataset Quality
To ensure dataset quality, following the initial annotation of
Dyn-VQA, we employed two quality control (QC) annota-
tors to re-evaluate the dataset. This re-evaluation included
verification of the answers, domains, answer update frequen-
cies, reasoning steps, and whether require external visual
knowledge for each data instance. Data deemed incorrect by
both QC annotators was filtered out. The agreement between
QC annotators #1 and #2 with the initial annotations, as well
as the agreement between the two QC annotators, are pre-
sented in Table 7. The inter-annotator agreement measured
by Fleiss’s Kappa (Fleiss 1971) all exceeded 0.8, demon-
strating the reliability of the annotation results.

Dataset Diversity
To assess the diversity of Dyn-VQA compared with other
datasets, we calculated pairwise cosine distances for each
dataset. Following A-OKVQA, we utilized a sentence-
transformers6 as the encoder. As indicated in Table 8, Dyn-
VQA exhibits more diverse data types, evidenced by larger

6https://huggingface.co/sentence-transformers/multi-qa-
MiniLM-L6-cos-v1



Answer Domain Answer
Update Freq.

Reasoning
Step

External
Visual-Seek

Init. vs. QC#1 81.2 84.4 89.6 84.1 87.9
Init. vs. QC#2 84.2 85.6 85.4 82.3 84.5
QC#1 vs. QC#2 80.1 83.8 86.9 81.7 85.0

Avg. 81.8 84.6 87.3 82.7 85.8

Table 7: The inter-annotator agreement of QC#1, QC#2 and
initial annotation with each other.

cosine distances. Intuitively, questions in InfoSeek are pri-
marily constructed through templates, resulting in more ho-
mogeneous data format. In contrast, Dyn-VQA is manu-
ally curated. Moreover, since the questions of Dyn-VQA are
all from open-ended domains, the answers of them feature
longer response length compared with the same manually
constructed VQAv2 and A-OKVQA, which can essentially
be answered with a single word.

Dataset Question Answer
VQAv2 0.8405 0.7606
A-OKVQA 0.8428 0.9078
InfoSeek 0.7569 0.8918

Dyn-VQA 0.8532 0.9135

Table 8: Question and answer diversity. Mean pairwise co-
sine distances are used as metrics.

Regular Updates to Dyn-VQA
The biggest characteristic of Dyn-VQA is that the knowl-
edge required to answer the questions it contains is dynami-
cally updated over time, that is, the answers to the questions
in Dyn-VQA are constantly changing. Therefore, to ensure
that Dyn-VQA can serve as an effective research resource
for the community in the long term, it is necessary for us to
dynamically update and maintain Dyn-VQA’s answer anno-
tation information. In general, based on the analysis of the
frequency of change of Dyn-VQA’s answer, we commit
to updating Dyn-VQA’s answer annotation every three
months to ensure its timeliness.

In particular, we plan to implement a semi-automatic data
update mechanism in which models and humans work to-
gether. Specifically, For a certain sample in Dyn-VQA, we
first retrieve relevant text knowledge through the search en-
gine, and then we use LLMs such as Qwen1.5-72B to com-
pare the latest knowledge retrieved with the original answer
to determine whether the original answer for the sample
needs to be updated. Note that here we only need LLMs
to determine whether the answer needs to be updated, and
do not need them to accurately answer the latest answer, be-
cause we think this is simpler and more friendly for LLMs.
After we have the prediction results of LLMs as a basis, we
then carry out the manual update process. We require ev-
ery human annotator involved in the data update process to
accurately update each sample’s answer based on their com-
mon sense, the results of large model judgments, and the
latest relevant knowledge retrieved by the search engines.

We believe that the semi-automatic update mechanism, in
which models and humans cooperate, will not only reduce
the workload of manual annotators but also improve the ac-
curacy of data updates.

Related Works
Multimodal Large Language Models
In 2023, with the advent of GPT-4V (Achiam et al. 2023),
a series of MLLMs (Bai et al. 2023b; Lu et al. 2024a;
Dai et al. 2023; Liu et al. 2024b; Wang et al. 2023) have
been proposed and demonstrated superior results on a va-
riety of vision-language tasks (Yin et al. 2023; Wu et al.
2023). Despite promising results, MLLMs tend to haphaz-
ardly produce responses that appear plausible yet contain
factual errors when faced with real-world questions. Many
prior works explore mitigating this hallucination issue (Liu
et al. 2024c; Bai et al. 2024) by introducing additional
knowledge-enhancing data or tasks into the different train-
ing stages of MLLMs, including pre-training (Zhai et al.
2023), instruction fine-tuning (Chai et al. 2024b; Jain, Yang,
and Shi 2024), and RLHF (Sun et al. 2023; Yu et al. 2024).
However, the expensive training cost of MLLMs pose signif-
icant challenges to the scalability of these methods. There-
fore, mRAG attracts growing interest as an effective and ef-
ficient alternative.

Multimodal Retrieval Augmented Generation
Besides retrieval from knowledge bases as described in Re-
lated Works section in main content, some work explores
retrieval from other knowledge sources. REVEAL (Hu et al.
2023) integrates knowledge retrieved from multiple sources,
including wikidata, wikipedia and other VQA datasets. PICa
(Yang et al. 2022) consider LLMs as implicit knowledge
bases and extract relevant information from GPT-3 (Brown
et al. 2020) with image description as prompt.

VQA datasets as mRAG Benchmarks
Knowledge-seeking VQA datasets (Marino et al. 2019; Jain
et al. 2021; Schwenk et al. 2022; Kil et al. 2024; Chen et al.
2024b) are widely employed to evaluate the performance
of mRAGs, which rely on external information to address
open-domain visual questions. For instance, the recently
introduced Wikipedia-based VQA dataset, InfoSeek (Chen
et al. 2023), emphasizes fine-grained entity knowledge for
open-domain questions. A-OKVQA (Schwenk et al. 2022)
is a new knowledge-based VQA benchmark that necessitates
a broad spectrum of commonsense and world knowledge.
As illustrated in Table 1, several knowledge-seeking VQA
datasets have been proposed in recent years.

Nevertheless, the knowledge scope assessed by these
datasets is constrained. More critically, the questions in
these datasets often exhibit a fixed format, typically query-
ing a specific property of the object in image, which is gen-
erally textual knowledge available on the internet. Such two-
hop questions can be readily addressed by standard two-step
retrieval. The static nature of these datasets prompts us to
propose Dyn-VQA, which requires the retrieval of dynamic



knowledge, knowledge from a more diverse range of modal-
ities, or more complex multi-hop knowledge.

Experiments
Baselines
In the main experiment of Table 4, we also introduced gen-
erative search engine and human as baseline models. We de-
scribe them following:
Generative Search Engine Among the commercial AI
products, LLM-powered generative search engines like Bing
Chat, PerplexityAI, mita.ai, Tongyi, and GPT-4o stand out.
For our experiment, we select Bing Chat, pro-version of
PerplexityAI, and Gemini-Advance as representatives of AI
search engines. They have multimodal RAG ability for fair
comparison.
Human Performance. We also investigated human perfor-
mance on Dyn-VQA, employing participants with at least a
bachelor degree. These participants were not involved in the
Dyn-VQA annotation process.

Other Backbone MLLMs for Heuristic mRAGs
In the Appendix, we supplement the main experiment with
more MLLM as backbone for heuristic mRAGs. Deepseek-
VL-7B-Chat is an open-source large visual language model
introduced by Lu et al. (2024b). VisualGLM-6B is an open-
source, bilingual, multi-modal large visual language model
proposed by Du et al. (2022). Llava-V1.6-Mistral-7B is
an open-source large visual language model proposed by
Liu et al. (2024a), which is trained by fine-tuning LLM on
multimodal instruction-following data based on Jiang et al.
(2023). mPLUG-Owl2.1 (Ye et al. 2024) is a large visual
language model trained with a two-stage method for align-
ing image and text.

Training Details
OmniSearch (G) is constructed by prompt engineering for
GPT-4V, whose prompt template can be found in the next
subsection. OmniSearch (Q) is developed by instruction
fine-tuning of Qwen-VL-Chat. we synthesize instruction
data containing planning trajectories by using GPT-4V and
raw InfoSeek data. ∼40K data is synthesized, and then the
data is filtered by a sequence of predefined rules. 13K data
is eventually obtained. Additionally, general instruction data
from CogVLM-SFT-311K7 is mixed in a ratio of 1:2 with
the planning instruction data. We use LoRA to parameter-
efficient fine-tune Qwen-VL-Chat, with LoRA rank and al-
pha are 8 and 32. AdamW (Loshchilov and Hutter 2019) op-
timizer is employed for model training, with learning rate set
of 1e-4 and weight decay of 0.1. We utilize a cosine learn-
ing rate schedule, warming up over 5% of the training steps.
The model is fine-tuned with 1 epochs, with the batch size
per device set to 4 and the gradient accumulation step set to
8. The maximum sequence length is 8192. The training are
run on 4 NVIDIA A100 SXM4 80GB GPUs.

7https://huggingface.co/datasets/THUDM/CogVLM-SFT-
311K

All data is in the form of multi-round conversations. Dur-
ing model training, we expect the model to learn to generate
response given the instruction and input text, thus we com-
pute the loss function by considering only the response to-
kens of each round and ignoring the input tokens.

Supplement to Main Experiments
Experiment results of using more MLLMs as backbones for
heuristic mRAGs are supplemented in Table 9, from which
we can find:

(1) Among all open-sourced MLLMs, Deepseek-VL-
7B-Chat exhibits the best performance as a backbone,
achieving the highest overall performance. While heuristic
mRAG methods show the most significant improvements
with InstructBLIP-Vicuna-7B, where the average absolute
gain across four heuristic mRAG approaches reaches 16.60,
marking an enhancement of 223.1% compared to the base-
line performance of InstructBLIP-Vicuna-7B. This substan-
tial increase is likely attributed to the initially lower perfor-
mance of the original InstructBLIP-Vicuna-7B.

(2) The performance variance between MLLMs that
enhanced by the heuristic mRAG becomes smaller. For
instance, with the incorporation of the image caption-
based two-step mRAG method, the variance in performance
among open-source MLLMs reduces from 4.92 to 2.42.
Combined with the analysis in (1), this suggests that for
MLLMs with suboptimal foundational capabilities, mRAG
serves as an optimal method to bolster model performance.
It is not only less resource-dependent, but also convenient to
deploy.

(3) Although single-step heuristic mRAGs may not re-
trieve the most precise content, they still benefit the original
model capabilities. Retrieving image information with input
images enriches the MLLM with information about the ob-
jects in images, whereas web page retrieval with input ques-
tions can also retrieve some relevant information due to cer-
tain keywords in the questions. Overall, web page retrieval
yields a greater improvement with an average of 6.78, which
might be attributable to the inherent capacity of MLLMs to
recognize some objects depicted in the images. It also in-
dicates that unlike previous VQA datasets, the challenge of
Dyn-VQA does not lie solely in the recognition of objects in
images.

Analysis Experiments on OmniSearch
Analysis Experiments on Retrieved Content
Is each part of the retrieved content useful? Table 10
presents the impact of utilizing different parts of the content
returned by the retrieval APIs, from which we can find that
each part of the retrieved content is beneficial to overall per-
formance. Utilizing different single part results in varying
degrees of performance degradation compared to using the
entire retrieved content. Notably, image captions contribute
most to final performance. This phenomenon arises primar-
ily because nearly all questions in Dyn-VQA necessitate ob-
ject recognition in images, for which captions from retrieved
similar images provide crucial additional information to the
model. In contrast, the benefit derived from incorporating



Model Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

Original (M)LLMs
Qwen-VL-Chat 13.69 14.20 17.27 15.56 14.49 15.50 15.13 16.92 13.58 15.28
Qwen-7B-Chat 5.63 7.86 15.97 10.48 10.43 11.05 10.08 10.48 10.46 10.47
Deepseek-VL-7B-Chat 11.66 18.57 30.16 22.12 19.08 23.26 19.99 19.94 22.73 21.31
VisualGLM-6B 12.05 13.94 20.92 16.63 14.99 18.92 14.34 16.21 16.18 16.19
Llava-V1.6-Mistral-7B 15.39 19.72 28.34 22.65 20.12 23.53 20.92 16.27 27.85 21.97
mPLUG-Owl2.1 8.82 11.25 18.44 13.81 12.44 14.48 12.74 8.05 19.01 13.44
InstructBLIP-Vicuna-7B 6.08 7.40 8.38 7.48 7.33 7.51 7.38 4.65 10.31 7.44
Qwen-VL-Max 15.11 30.44 39.51 30.22 29.21 31.10 29.18 22.81 37.32 29.96
GPT-4V 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25

+ Heuristic mRAG: Retrieving Images with Input Images
Qwen-VL-Chat 15.74 17.12 25.74 20.52 19.14 22.68 18.44 22.06 18.19 20.16
Qwen-7B-Chat 10.97 15.04 25.91 18.76 16.86 24.18 14.23 16.8 19.75 18.25
Deepseek-VL-7B-Chat 15.95 22.63 36.80 26.49 26.35 32.27 22.50 25.97 26.94 26.45
VisualGLM-6B 15.51 16.69 29.08 21.73 19.99 25.75 18.22 20.84 21.71 21.27
Llava-V1.6-Mistral-7B 17.38 19.74 33.48 25.42 22.10 32.00 19.47 17.01 32.29 24.54
mPLUG-Owl2.1 13.49 16.52 28.14 21.42 17.20 25.84 16.54 13.45 27.36 20.30
InstructBLIP-Vicuna-7B 13.40 15.83 29.02 20.19 19.73 25.15 16.68 13.10 25.05 20.07
Qwen-VL-Max 24.04 28.99 45.49 34.22 34.08 41.54 29.19 31.07 37.39 34.19
GPT-4V 20.18 33.21 50.00 35.94 35.65 42.63 31.33 30.90 40.32 35.87

+ Heuristic mRAG: Retrieving Web Pages with Input Questions
Qwen-VL-Chat 20.78 18.27 27.61 22.76 22.20 23.34 22.07 26.66 17.94 22.59
Qwen-7B-Chat 14.65 15.47 24.98 19.14 18.66 19.99 18.34 17.93 20.12 19.01
Deepseek-VL-7B-Chat 20.34 23.44 32.02 26.13 25.65 27.48 25.01 25.03 27.01 26.00
VisualGLM-6B 20.71 18.02 28.56 23.13 22.23 23.47 22.50 22.53 23.26 22.89
Llava-V1.6-Mistral-7B 20.39 21.62 30.33 24.99 24.01 26.70 23.39 20.96 28.62 24.73
mPLUG-Owl2.1 20.49 24.29 30.93 26.04 25.53 28.42 24.19 21.16 30.79 25.90
InstructBLIP-Vicuna-7B 21.63 18.79 27.65 23.44 21.95 23.07 23.02 19.98 26.19 23.04
Qwen-VL-Max 26.71 27.37 35.84 30.65 30.22 31.14 30.13 30.27 30.82 30.54
GPT-4V 22.48 30.92 40.84 33.00 31.47 34.32 31.42 31.10 34.13 32.59

+ Heuristic Two-Step mRAG: Retrieving Image First, then Retrieving Web Pages with Question appended to Retrieved Caption
Qwen-VL-Chat 19.17 20.02 28.54 23.33 22.68 23.84 22.69 24.11 22.17 23.16
Qwen-7B-Chat 15.27 17.33 28.53 21.70 19.83 26.65 17.50 20.47 21.96 21.20
Deepseek-VL-7B-Chat 18.65 23.51 34.68 26.66 26.54 29.74 24.51 25.70 27.59 26.63
VisualGLM-6B 18.56 19.98 29.43 23.87 21.84 27.07 20.79 22.00 24.70 23.33
Llava-V1.6-Mistral-7B 18.41 20.81 34.70 26.27 23.97 30.49 22.37 19.10 32.41 25.65
mPLUG-Owl2.1 14.10 19.28 30.24 22.77 20.74 26.96 19.02 16.24 28.41 22.23
InstructBLIP-Vicuna-7B 16.22 18.95 30.34 22.96 22.07 25.47 20.86 16.46 29.18 22.72
Qwen-VL-Max 24.44 30.75 43.21 34.03 33.91 38.26 31.1 32.04 36.01 33.99
GPT-4V 20.37 33.98 48.46 36.12 36.04 40.19 33.32 32.99 39.30 36.10

+ Heuristic Two-Step mRAG: Image Caption First, then Retrieving Web Pages with Question appended to Caption
Qwen-VL-Chat 22.05 25.87 31.84 27.58 26.21 27.44 27.06 28.81 25.57 27.21
Qwen-7B-Chat 14.65 21.16 28.66 22.89 21.02 23.64 21.55 16.57 28.39 22.39
Deepseek-VL-7B-Chat 21.12 27.65 36.27 29.41 29.08 29.72 29.05 26.84 31.88 29.32
VisualGLM-6B 19.60 21.75 33.23 25.88 25.23 27.27 24.65 22.95 28.56 25.71
Llava-V1.6-Mistral-7B 21.09 26.41 33.87 28.20 27.25 29.76 26.71 21.66 34.42 27.94
mPLUG-Owl2.1 20.46 26.67 34.91 28.77 26.90 28.31 28.25 20.33 36.47 28.27
InstructBLIP-Vicuna-7B 24.37 28.22 35.62 30.51 29.85 30.77 30.06 22.98 35.57 30.33
Qwen-VL-Max 24.27 32.93 44.03 35.04 34.97 35.16 34.92 31.1 39.05 35.02
GPT-4V 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

Generative Search Engine
Bing Chat 27.71 32.77 32.99 31.67 30.80 35.44 28.64 29.62 32.74 31.44
Perplexity AI 29.62 34.69 34.88 33.67 32.81 37.46 30.67 31.59 34.80 33.51
Gemini 36.17 32.86 42.84 38.75 34.78 46.39 31.82 35.77 39.69 37.69

Ours
OmniSearch (Qwen-VL-Chat) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (GPT-4V) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
Estimated Upper Bound: + Retrieving Web Pages with Gloden Query
Qwen-VL-Chat 37.46 46.52 52.18 46.73 45.28 47.94 45.27 43.88 48.90 46.35
Qwen-7B-Chat 39.69 47.27 57.76 49.53 49.02 50.94 48.36 46.02 52.88 49.40
Deepseek-VL-7B-Chat 35.89 46.00 54.29 46.84 45.92 49.20 44.81 45.41 47.80 46.59
VisualGLM-6B 36.09 40.09 50.59 43.33 42.75 44.00 42.61 41.98 44.40 43.17
Llava-V1.6-Mistral-7B 39.67 48.56 56.09 49.67 47.80 52.38 47.00 43.90 54.61 49.17
mPLUG-Owl2.1 41.19 48.66 55.83 49.63 49.17 51.77 47.97 44.49 54.68 49.51
InstructBLIP-Vicuna-7B 37.17 43.92 55.53 46.51 45.94 49.22 44.45 41.25 54.05 46.36
Qwen-VL-Max 42.19 53.01 56.6 51.91 50.58 52.97 50.6 49.83 53.33 51.56
GPT-4V 45.59 54.23 60.78 55.15 52.81 54.53 54.51 51.08 58.07 54.52

Human Performance 51.63 60.02 53.19 54.12 58.31 57.86 53.20 51.96 58.36 55.12

Table 9: Main results on Dyn-VQA.



Retrieved Content Using Part Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

Image
Image & Caption 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
- Caption 41.65 47.23 52.03 48.00 46.67 48.02 47.39 44.57 50.81 47.64
- Image 42.58 48.14 52.97 48.93 47.60 48.98 48.30 45.50 51.74 48.57

Web Snippet
Web Title & Description 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
+ Related Knowledge 45.26 50.78 55.68 51.60 50.28 51.75 50.92 48.17 54.43 51.25
- Web Title 42.09 47.66 52.47 48.44 47.11 48.47 47.82 45.01 51.25 48.08

Table 10: Experiments on the impact of using different parts of retrieved content. We report the performance of OmniSearch
(G).

Model # R.C. Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

GPT-4V None 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25
GPT-4V 1 24.07 32.6 46.11 35.47 34.98 37.98 33.54 32.91 38.02 35.33
GPT-4V 3 26.66 37.7 47.65 39.05 38.02 40.01 37.94 37.37 40.21 38.78
GPT-4V All 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

OmniSearch (G) 1 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (G) 3 39.08 49.06 52.87 48.93 45.89 52.38 44.98 48.89 48.23 48.09
OmniSearch (G) All 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03

Table 11: Performances of GPT-4V and OmniSearch(G) with different top-k retrieved content.

relevant knowledge provided by the search engine is rela-
tively modest. This is predominantly due to such informa-
tion typically constituting static background knowledge that
lacks direct relevance to the specific problem at hand.
Is more retrieved content useful? Table 11 explores the
impact of varying amounts of retrieved content on model
performance, from which we can find that:

(1) The model incorporating retrieved content consis-
tently surpasses its counterpart without retrieval, affirming
the inherent advantage of mRAG.

(2) Unlike GPT-4V, which does not exhibit continual im-
provement with increased retrieval volume, our OmniSearch
demonstrates superior capacity for utilizing extensive re-
trieved content. This indicates that despite potential noise
contained in the retrieved content that may be harmful to
question solving, OmniSearch can effectively filters or dis-
regards such disturbances, thereby adequately leveraging the
complex and voluminous retrieved content.

(3) For the English question, the performance of both
models continues to grow with the increase of retrieved con-
tent. This is partly due to the fact that both models use GPT-
4V as the backbone, which is inherently more capable in
English than in Chinese, and also arises from the fact that
Google search is naturally more inclined towards English
websites, leading to better support for English questions.
This inspires us that in the future, more search tools can be
introduce based on language characteristics, such as Bing,
Baidu, etc., and even multiple search tools can be utilized to
verify or vote for the final answers.

Consistency of Different Evaluation Metrics
In the main experiment, we employed F1-Recall as an eval-
uation metric due to its convenience. To demonstrate that

it reliably reflects the true capabilities of models, we intro-
duced two supplementary metrics: GPT-based Accuracy and
Human-based Accuracy. For these metrics, we presented
questions with ground-truth answers to GPT-4V and human
evaluators, respectively, asking them to assess the correct-
ness of the model responses and then compute the percent-
age of correct answers. Table 12 delineates the scores of
the different models across these three metrics, as well as
their correlation, which is quantified by the Pearson corre-
lation coefficient. The Pearson coefficient ranges from -1
to 1, with 1 signifies a perfect positive correlation and -1
denotes a complete negative correlation. The trends of the
different models across these three metrics are entirely con-
sistent, with all coefficients exceeding 0, affirming a posi-
tive correlation. This demonstrates that F1-Recall fully re-
flects model performance. While GPT-based Accuracy and
Human-based Accuracy exhibit stronger consistency, which
may prove that they are more reliable, F1-Recall remains
advantageous as an automated metric, offering significantly
lower computational costs and better scalability.

Supplementary Analysis of Computational Costs
In Table 13, we further reported the computational cost of
OmniSearch on questions with different answer update fre-
quencies (fast, slow, never). The results indicate that:

(1) Overall, OmniSearch consumes more tokens for more
complex questions, such as those with fast or slow answer
updates, primarily because these questions inherently re-
quire more retrieval steps.

(2) The difference in resource consumption for questions
of varying difficulty is more pronounced for the smaller
model OmniSearch (Q). This is due to the behavioral dif-
ferences between GPT-4V and Qwen-VL. Specifically, as



Model Recall GPT-based
Eval.

Human
Eval.

Correlation
#1 & #2 #1 & #3 #2 & #3

GPT-4V + mRAG 40.23 37.50 42.00 0.47 0.34 0.66
Qwen-VL-Chat + mRAG 28.46 26.50 25.00 0.49 0.41 0.69
OmniSearch (G) 57.56 54.00 49.00 0.45 0.38 0.63
OmniSearch (Q) 41.39 40.50 39.50 0.43 0.37 0.61

Table 12: Consistency of Different Metrics Consistency of Different Metrics Consistency of Different Metrics.

Planning Model Sub-question
Solver

Fast Slow Never
Input T. Output T. Perf. Input T. Output T. Perf. Input T. Output T. Perf.

OmniSearch (G) OmniSearch (G) 3098.5 (G) 466.3 (G) 44.04 3036.5 (G) 477.0 (G) 49.58 2974.6 (G) 483.9 (G) 54.45

OmniSearch (G) Qwen-VL-Chat 1268.2 (G)
+ 2165.4 (Q)

403.1 (G)
+ 148.4 (Q) 38.65 1214.1 (G)

+ 1925.7 (Q)
358.5 (G)

+ 112.7 (Q) 44.68 1185.6 (G)
+ 2138.8 (Q)

398.2 (G)
+ 119.3 (Q) 52.25

OmniSearch (Q) OmniSearch (Q) 10258.2 (Q) 638.1 (Q) 35.16 9874.8 (Q) 634.2 (Q) 40.89 8866.9 (Q) 475.3 (Q) 45.52

OmniSearch (Q) GPT-4V 2508.8 (G)
+ 933.0 (Q)

269.3 (G)
+ 547.8 (Q) 37.14 2452.5 (G)

+ 1000.9 (Q)
233.6 (G)

+ 490.5 (Q) 42.82 2209.6 (G)
+ 1024 (Q)

329.7 (G)
+ 606.3 (Q) 47.48

Table 13: The token cost of OmniSearch on questions with different answer update frequencies.

Model VQAv2 A-OKVQA InfoSeek Dyn-VQA
Original MLLMs
GPT-4V 68.00 83.63 70.44 30.25

+ Heuristic Two-Step mRAG
GPT-4V 65.36 81.00 58.64 37.15

Ours
OmniSearch (G) 70.34 84.12 71.48 50.03

Table 14: Model performance comparison on different
VQA datasets. Heuristic mRAG in Table represents image
caption-based mARG.

described in the Section , GPT-4V tends to be more rig-
orous in question-solving, proactively planning verification
retrievals to validate final answers, leading to retrieval pro-
cesses exceeding three steps even for some relatively easier
questions.

(3) By comparing rows 1 and 2 in the Table 13, we can
observe that after replacing OmniSearch (G)’s Sub-question
Solver with a smaller Qwen-VL-Chat, the total token con-
sumption of Qwen-VL-Chat and GPT-4V is stil comparable
to the original model. This suggests that OmniSearch (G)
effectively offloads computational burden to smaller models
without a significant drop in overall performance.

Additionally, we also reported the average latency for
each question in Table 15. The results show that substitut-
ing some modules in OmniSearch with smaller models ef-
fectively reduces latency. Moreover, the ratio of search time
to model inference time is roughly 2:3, indicating signifi-
cant potential for optimization in both aspects. It is impor-
tant to note that latency is a complex system engineering
issue that involves not only the model’s complexity but also
factors network configuration of search APIs, caching strate-
gies for retrieval content, inference model acceleration, and
hardware FLOPS, etc.

Analysis Experiments on Dyn-VQA Dataset
Model Performance on Other VQA Datasets
Table 14 presents the model performances on various VQA
datasets, highlighting several observations:

(1) The original GPT-4V achieves an average perfor-
mance exceeding 74 on previous datasets, approaching
human-level proficiency in the Table 3. Conversely, its per-
formance poorly on our Dyn-VQA with a significantly
lower F1-reacll of 30.25, substantially lagging behind hu-
man capabilities. This discrepancy primarily arises because
MLLMs have internalized much of the knowledge pertinent
to traditional VQA datasets, where many questions rely on
common-sense knowledge. For instance, VQAv2 frequently
poses questions about object properties or intentions behind
actions, which are relatively specialized by GPT-4V.

(2) The performance of the heuristic mRAG method is
unstable on different types of questions (datasets). It impairs
the effectiveness of GPT-4V on all previous datasets, espe-
cially on the InfoSeek where the decline is over 10 points.
Through case analysis, we found that the heuristic mRAG
struggles predominantly with questions of images depicting
buildings, specific flora and fauna, which the image cap-
tion model fails to describe accurately. Consequently, the
search engine yields “shallow” knowledge, i.e., content that
is relevant to the question topic but is actually irrelevant to
question, and instead misleads the original model. More-
over, given that InfoSeek is automatically generated from
Wikipedia and characterized by homogenous question types,
a substantial proportion of these problematic questions mag-
nifies the disability of heuristic mRAG. On the contrary, the
questions of VQAv2 and A-OKVQA typically inquire about
common-sense knowledge, which is quite different from the
real-world knowledge on the Internet, therefore the retrieved
content instead has a minor (but still present) negative im-
pact on the model.

(3) Our OmniSearch method achieved steady gains on
each dataset. Even for datasets such as VQAv2 and A-



Planning Model Sub-question Solver Search Time (s/%) Inference Time (s/%) Total Time (s)
OmniSearch (G) OmniSearch (G) 14.1 (44.8%) 18.4 (55.2%) 31.5
OmniSearch (G) Qwen-VL-Chat 12.3 (44.6%) 15.3 (55.4%) 27.6
OmniSearch (Q) OmniSearch (Q) 8.5 (38.3%) 13.7 (61.7%) 22.2
OmniSearch (Q) GPT-4V 11.8 (45.0%) 14.4 (55.0%) 26.2

Table 15: The average model latency for question in Dyn-VQA.
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Sports and Recreation - 47.14% Companies and Products - 54.96% Science and Technology - 43.03% Languages and Cultures - 55.74% History - 60.08%
Daily - 39.49% Geography - 63.42% Transportation - 36.50% Miscellaneous - 53.34%

Figure 7: The performance of OmniSearch on different domains. Each category is represented by 7 bars of the same color,
representing questions of different categories (in order fast, slow, never, ≤2-hop, >2-hop, no, yes).

OKVQA, which demand less extensive real-world knowl-
edge from the Internet, OmniSearch still achieved slight
growth. Since OmniSearch potentially makes search deter-
minations, allowing it to avoid unnecessary retrieval inter-
ference with the intrinsic model understanding of questions
that actually do not benefit from external knowledge aug-
mentation. OmniSearch proves more adaptable and robust
to diverse question types compared to the heuristic mRAG.

OmniSearch Performance on Different Domains
Figure 7 displays the performance of OmniSearch across
various domains, as an complement to Figure 4 in the main
content. We find that in most domains, the heights of the bars
follow a similar pattern: 1st bar (fast) < 2nd bar (slow) < 3rd
bar (never), 4th bar (less than 2-hop) > 5th bar (more than 2-
hop), 6th bar (not require external visual knowledge) > 7th
bar (require external visual knowledge). This indicates that
OmniSearch generally underperforms on questions necessi-
tating more complex retrieval processes. There are excep-
tions in data-sparse domains such as Transportation, where
OmniSearch also shows relatively poor performs in these
domains.

Case Study
Figure 8 presents several intriguing case studies. In the first
case on the left, the model dynamically adjusted its re-
trieval strategy multiple times after an initial retrieval failure,
demonstrating OmniSearch’s ability to adapt to complex re-
trieval environments and actively adjust its strategy based
on environmental feedback. However, the subsequent two
cases highlight different challenges faced by OmniSearch.
In the middle example, after the model estimated the current
GDP of South Korea by changing the direct search strat-
egy to an indirect one with the growth rate and the previous

year’s GDP, it should have proceeded to retrieve Japan’s cur-
rent GDP. Instead, OmniSearch abruptly ceased its thought
and retrieval. This indicates that OmniSearch struggles with
questions requiring extended reasoning chains and tends to
lose track of the original question and preceding informa-
tion. In the right case, the initial planned retrieval strategy
is incorrect from the start, as the main body of the image is
a PowerPoint slice, and the person involved in the question
only occupies a small space in the bottom right corner of the
image. The OmniSearch focuses on the wrong visual evi-
dence and gets caught in a ”thinking trap”. Ideally, the model
should first search the image to find out that it is a screenshot
of a course video, then view the video to find out the name
of the speaker, and further search the web page to find out
information about his academic institution. Another alterna-
tive is to get the exact search region, i.e., the bottom-right
corner of the image, through image object recognition and
image cropping. Then the person information is obtained
based on the caption of the retrieved image. However, both
approaches cannot be perfectly achieved by the current Om-
niSearch, which does not support such complex and fine-
grained retrieval. These failed cases bring us significant in-
sights and inspirations: firstly, how to solve the question re-
quiring long context knowledge is worth studying, we anal-
ysed 100 error cases, and found that 73 of them encounter
the issue of partially containing the correct answer, but the
OmniSearch can’t complete the full retrieval process due to
the long context. On the one hand, we need to improve the
maximum length of the context window of MLLMs, on the
other hand, how to denoise, compress, and summarize the
context is the direction that the sub-problem solver of Om-
niSearch can be improved. Secondly, advancing more pre-
cise retrieval techniques and incorporating a broader range
of retrieval tools is an urgent research to be carried out.



<Thought>
First, the name of the cartoon needs to be determined. The image shows the main 
characters of the animated series The Simpsons. Next, we need to find out which 
particular episode of The Simpsons featured a deaf actor for the first time.

<Sub-Question>
Which episode of 'The Simpsons' marked the first time a deaf actor appeared on the 
show?

<Search>
Text Retrieval: episodes of The Simpsons that featured deaf actors for the first time.

Which episode of the cartoon marked the first time a deaf actor 
appeared on the show?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
There seems to be a misunderstanding. Due to a lack of clarity in my instructions, the 
information provided was about the appearance of C-3PO in the Star Wars series, not 
about the number of episodes in which the deaf actor first appeared in The Simpsons. I 
need to revisit my search strategy to get the right information. I will try to use more 
specific keywords for my searches.

<Sub-Question>
Which episode in the history of The Simpsons was the first to feature a deaf actor?

<Search>
Text Retrieval : the simpsons deaf actor episode.

......

<Thought>
According to information retrieved, a historic episode of the animated series The 
Simpsons aired on April 10, 2022, titled “The Sound of Bleeding Gums”, which featured 
six Deaf voice actors. John Autry II was the first deaf voice actor. This is the first time in 
the 33 years that The Simpsons has been on the air that a deaf actor has been 
involved. 

<End>
Final Answer: The episode of the animated series “The Simpsons” that marked the first 
appearance of a deaf actor was episode 17 of season 33, titled “The Sound of Bleeding 
Gums”.

✅

<Thought>
First, we need to identify which country the flag in the image represents. 

<Sub-Question>
Which country does this flag represent? 

<Search>
Image retrieval with input image .

Who has a higher GDP, it or Japan?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
The information retrieved from the image suggests that this flag represents South 
Korea. Now that we know the country is South Korea, the next step is to find out what 
the current GDP of South Korea and Japan is so we can compare the size of their 
economies. 

<Sub-Question>
What is the current GDP of South Korea? 

<Search>
Text retrieval : gdp of South Korea in 2024.

<Thought>
Although the retrieved information gives the growth rate of Korea‘s GDP, it does not 
directly give a specific GDP value for 2024. However, the growth rate can be used to 
estimate the approximate value of GDP if we know the value of GDP in the previous 
year. Therefore, the next sub-question should be to find the value of GDP of Korea in 
2023. 

<Sub-Question>
What is the value of Korea's GDP in 2023? 

<Search>
Text retrieval: south korea 2023 gdp.

<Thought>
The content of the document retrieved suggests that South Korea's GDP growth rate 
in 2023 is 1.4%, but does not provide a specific GDP value. However, one of the 
results shows that Korea's GDP in 2023 is $1.71 trillion. Now that we have the GDP 
value for 2023, we next need to combine it with the growth rate to estimate the GDP 
value for 2024. 

<Sub-Question>
Calculate the value of South Korea's GDP in 2024 using the GDP in 2023 and a growth 
rate of 2.2%. 

<End>
Final Answer: by increasing the 2023 GDP of $1.71 trillion by 2.2%, we can estimate 
South Korea's GDP in 2024 to be approximately $1.7482 trillion ($1.71 trillion * 
1.022).

... ….
RETRIEVED CONTENT

Omitted for brevity

❌
<Thought>
First you need to identify the topic of the presentation in the diagram in order to find 
relevant academic or conference information, which may be relevant to the 
researcher's institution. 

<Sub-Question>
What is the topic explored by the researcher in the diagram 

<Search>
Text retrieval : stochastic models for learning control\n\nPlease wait while I provide 
you with the information you need.

At which university is the researcher pictured currently employed?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
The content of the documentation provided does not directly answer the question of 
which university the researchers shown in the original image …… none of which 
pinpointed the current affiliation of the researcher discussing “Stochastic Models of 
Learning Control.”. Therefore, we need to refine our search to find more specific and 
relevant documents that provide insight into the current academic affiliations of the 
individuals in the picture. 
Next we need to look for information more directly related to “Stochastic models for 

learning control” to identify researchers or universities associated with it. 

<Search>
Text search: stochastic models for learning control academic papers or lectures

<Thought>
Since the information provided does not contain detailed information directly pointing 
to the researcher or their institutional affiliation for work related to “Stochastic models 
for learning control”, it seems difficult to identify the university where the researcher in 
the picture is currently located. Given the complexity of this problem, we may need 
more specific information to accomplish this task, such as the researcher's name or 
other identifying information.

<End>
Final Answer: based on the information provided so far, it is not possible to determine 
the college or university where the researcher in the picture is currently located.

❌

......

Figure 8: Case study with successful case and two bad cases.
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