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Figure 1: Visualization of the Web-CogKnowledge Framework along with the experimental results.
ABSTRACT

Multimodal large-scale models have significantly advanced the development of
web agents, enabling them to perceive and interact with the digital environment
in a manner analogous to human cognition. In this paper, we argue that web
agents must first acquire sufficient knowledge to effectively engage in cognitive
reasonindﬂ Therefore, we decompose a web agent’s capabilities into two essential
phases: knowledge content learning and cognitive processes. To formalize this,
we propose the Web-CogKnowledge Framework, which categorizes knowledge
into Factual, Conceptual, and Procedural domains. In this framework, knowl-
edge content learning corresponds to the agent’s processes of Memorizing and

'Drawing inspiration from Bloom’s educational philosophy, a cornerstone of modern pedagogy.
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Understanding, which rely on the first two types of knowledge respectively, rep-
resenting the ”what” of learning. Conversely, cognitive processes correspond to
Exploring, grounded in Procedural knowledge, defining the ”how” of reasoning
and action. To facilitate knowledge acquisition, we construct Web-CogDataset,
a structured resource curated from 14 real-world websites, designed to systemat-
ically instill the core knowledge necessary for a web agent. This dataset serves
as the agent’s conceptual grounding—the “nouns” upon which comprehension is
built—as well as the basis for learning how to reason and act. Building on this
foundation, we operationalize these processes through a novel knowledge-driven
Chain-of-Thought (CoT) reasoning framework, developing and training our pro-
posed agent, Web-CogReasoner. Extensive experimentation reveals its signifi-
cant superiority over existing models, particularly in its capacity for generaliza-
tion to unseen tasks where its structured knowledge proves decisive. To facilitate
rigorous and systematic evaluation, we introduce Web-CogBench, a comprehen-
sive evaluation suite designed to assess and compare agent performance across the
delineated knowledge domains and cognitive capabilities.

1 INTRODUCTION

The advent of large-scale models marks a milestone in artificial intelligence, with Large Multimodal
Models (LMMs) greatly expanding application horizons. Al agents have become the primary vehicle
for deploying these models, enabling capabilities in code generation (Hui et al., 2024} Jiang et al.,
2024])), image and video synthesis (Huang et al.l 2025; [Bie et al., 2024} |Assran et al., 2025} [Liu
et al.| 2024c)), and academic research (Li et al.| 2025} [Zhang et al.,|2025). Recent progress has also
highlighted the growing importance of web agents.

Web agents have evolved from early rule-based systems to modern approaches leveraging Large
Language Models (LLMs) and Language Vision Models (LVMs) (Wang et al.| [2024; [Ning et al.,
2025} [Zhang et al.| 2024; Sapkota et al.l 2025). LLM-powered agents typically convert HTML
or Accessibility Tree inputs into natural language prompts for reasoning and action. With LVMs,
agents gain perceptual abilities akin to human vision, allowing them to process multimodal content
on web pages. Broadly, web agents can be categorized as: (1) text-only (Zhou et al.,[2023} |L1 et al.}
2023)), which miss visual cues; (2) vision-only (Qin et al.|[2025)), which lack structured data; and (3)
hybrid (Koh et al., [2024; He et al.,|2024b)), which integrate both modalities.

LLMs and LVMs pre-trained on general-domain knowledge provide strong foundations but remain
limited in specialized tasks, creating performance bottlenecks. Prior knowledge-enhancement meth-
ods often lack systematic or theoretical grounding. To address this, we draw inspiration from
Bloom’s Taxonomy (Ormell, 1974;|Conklinl |2005), which divides learning into two phases: Knowl-
edge Content Learning and Cognitive Processes.

In our paradigm, the first phase builds a multi-layered foundation: Factual Knowledge, covering
basic concepts, and Conceptual Knowledge, capturing their interrelations. This equips the agent
with core web knowledge and its application to familiar tasks. The second phase develops Proce-
dural Knowledge, providing logical frameworks to synthesize prior knowledge for reasoning and
exploration. This enables the agent to “learn how to learn,” creatively leveraging self-knowledge to
solve novel challenges. This mirrors the human learning trajectory: we first accumulate knowledge
through education (Phase 1), and then based on that foundation of knowledge and experience, we
learn to apply, innovate, and create (Phase 2).

To support this, we construct Web-CogDataset from 14 prominent websites with 12 fine-grained
tasks, and design knowledge-guided reasoning templates combined with imitation learning to instill
the required cognitive faculties. Rigorous evaluations on public and in-domain benchmarks show
that our method consistently surpasses state-of-the-art baselines, with the performance advantage es-
pecially pronounced in knowledge-intensive tasks. These results confirm that structured knowledge
acquisition is crucial for enabling agents to excel in complex, domain-specific scenarios.

In summary, our contributions are threefold:

1. Drawing inspiration from Bloom’s taxonomy and established human educational
paradigms, we propose the Web-CogKnowledge Framework, a systematic, two-phase train-
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ing methodology designed to enhance the cognitive capabilities of web agents. As shown
in Figure (1} built upon this framework, we develop Web-CogReasoner. Rigorous bench-
marking demonstrates that agents trained under our framework achieve a significant per-
formance improvement over current state-of-the-art models.

2. We construct Web-CogDataset, a structured curriculum consisting of 12 fine-grained and
progressively challenging tasks. These tasks are meticulously designed to incrementally
build the agent’s web knowledge, cognition capability, and higher-order reasoning.

3. To enable comprehensive and robust evaluation, we introduce Web-CogBench, a novel
benchmark specifically designed to assess whether a web agent possesses the requisite
prior knowledge and cognitive capabilities for effective web navigation. This benchmark
will be released publicly to foster further research in this area.

2 RELATED WORK

2.1 WEB AGENT

Early work on web understanding focused on structured HTML, addressing tasks like semantic clas-
sification, description generation, and navigation (Gur et al., |2022)), with AutoWebGLM (Lai et al.,
2024) further applying curriculum learning for structure recognition, component understanding, and
progressively complex task execution. More recent studies leverage visual signals: SeeClick (Cheng
et al.| 2024)) linked elements to textual descriptions to enhance localization, CogAgent (Hong et al.,
2024) combined high-resolution cross-module modeling with a large GUI dataset for VQA and
navigation, OmniParser (Wan et al.| 2024) unified text spotting, extraction, and table recognition,
UI-TARS (Qin et al., |2025) directly maps screenshots to actions, and UGround (Gou et al.| [2024)
trained on 10M GUI elements for robust desktop and mobile performance. Multimodal approaches
integrate text and vision: WebVoyager (He et al.,2024a) combines screenshots with bounding boxes
and accessibility trees, SeeAct (Zheng et al., [2024)) grounds text plans via GPT-4V, and TAG (Xu
et al.| 2025)) exploits pretrained attention for grounding without fine-tuning.

2.2 WEB AGENT EVALUATION

Benchmarks are categorized into browsing and understanding. For browsing, offline datasets like
Mind2Web (Deng et al.l [2023), Multimodal-Mind2Web, AutoWebBench (Lai et al., 2024), and
WebVLN-v1 (Chen et al., [2024) test multi-step task execution, while online environments such as
Mini-WoB++ (Liu et al., 2018), Webshop (Yao et all [2022), and WebArena (Zhou et al., [2023)
allow real-time evaluation. Mini-WoB++ emphasizes low-level Ul operations, whereas Webshop
and WebArena simulate complex tasks. VisualWebArena (Koh et al.| [2024])) further adds multimodal
inputs for dynamic interactions.

For web understanding, WEBQA (Chang et al., |2022)) evaluates open-domain multi-hop reasoning.
ScreenQA (Hsiao et al., [2022) and ScreenAl (Baechler et al.l 2024) focus on screen comprehen-
sion, with ScreenQA targeting Ul recognition and contextual QA, while ScreenAl extends this into
three subtasks: Screen Annotation, ScreenQA Short, and Complex ScreenQA. Together, they assess
layout understanding, semantic interpretation, and reasoning in visually dense interfaces.

3 WEB-COGKNOWLEDGE FRAMEWORK

3.1 BLOOM’S TAXONOMY

The Bloom’s Taxonomyﬂ (Anderson & Krathwohl, 2001) presents a two-dimensional framework:
knowledge content learning and cognitive processes, embodying a “shallow-to-deep” instructional
methodology. It structures learning from foundational facts and concepts to complex procedures,
ensuring a solid knowledge base before higher-level reasoning.

This progression can be formalized through four hierarchical types of knowledge: Factual, Concep-
tual, and Procedural Knowledge. Further details are in Appendix

“https://fetl.ucf.edu/teaching-resources/course-design/blooms-taxonomy/
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Web-CogDataset

Factual Web Knowledge : Improving agent's ability o accurately identify facts about web elements and webpages

Procedural Web Knowledge : Developing agent's ability to accomplish complex and real-world web tasks.

Conceptual Web Knowledge : Enhancing agent's ability to analyze the deep semantics and contextual relationships within web content.
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Figure 2: Illustration of Web-CogDataset.
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Motivated by Bloom’s taxonomy, we propose a hierarchical web knowledge framework that struc-
tures web knowledge according to its taxonomy, collects corresponding knowledge at each level,
and trains the model correspondingly. We refer to this knowledge as Web-CogKnowledge. This
Web-CogKnowledg decomposes knowledge into three levels:

1. Factual knowledge: concrete information extracted from web contents, such as identifying
the attributes of individual web elements and predicting the immediate, direct consequences
of a single interaction.

2. Conceptual knowledge: semantic relationships and abstract patterns underlying webpage
content and structures, such as inferring the function of interface components, compre-
hending the overall purpose and structure of a webpage, and interpreting its multimodal

content.

3. Procedural knowledge: actionable know-how for accomplishing specific tasks through
interaction, including planning, decision-making, and sequential execution. Such as exe-
cuting goal-oriented action sequences, inferring user intent from observed behaviors, and
handling unexpected interruptions to complete complex tasks.

This taxonomy aligns each knowledge type with a corresponding cognitive competency required for
web-based reasoning and interaction.
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To fully leverage the potential of Web-CogKnowledge, leading to the ultimate realization of the
Web-CogKnowledge Framework, we first collect multimodal metadata from 14 real-world web-
sites (see Figure[3)) and then design Web-CogDataset with diverse sets of web tasks for web-agent
training in Section[3.3] and finally construct Web-CogBench in Section[3.4] built from meticulously
chosen subsets. Specifically, we curate Web-CogReasoner learning and training process in Section
[] due to its importance and complexity. More details about data collection and cleaning process can
be found in Appendix [A.T.5]

3.3 WEB-COGDATASET

By selectively crawling metadata from 14 representative websites and aligning it with the hierar-
chical design of Web-CogKnowledge, we construct Web-CogDataset, a large-scale, hierarchically
structured dataset tailored for knowledge-centric web reasoning. The dataset spans three layers of
knowledge: Factual, Conceptual, and Procedural. Each mapped to carefully designed task families
that progressively cultivate perception, comprehension, and action-oriented reasoning.

As illustrated in Figure[2] these tasks together form a coherent pipeline that transitions agents from
identifying elemental attributes, to grasping semantic patterns and page structures, and finally to
executing complex, goal-directed interactions under realistic constraints. This organization mirrors
human learning trajectories, ensuring that higher-order reasoning is built on solid perceptual and
conceptual foundations.

Detailed task definitions, implementation protocols, and examples are provided in Appendix
Dataset statistics are reported in Table [I3]

3.4 WEB-COGBENCH

To evaluate the cognitive capabilities enabled by our knowledge-centric framework, we introduce
Web-CogBench. While our training dataset is organized by knowledge type (Factual, Concep-
tual, Procedural), Web-CogBench measures agent performance across three corresponding abili-
ties: Memorizing, Understanding, and Exploring. Curated from a representative subset of Web-
CogDataset, it assesses how effectively an agent applies learned knowledge in complex web con-
texts. Detailed statistics are in Table [1} and the evaluation dimensions align with our hierarchical
knowledge framework. A complete definition of all tasks is provided in the appendix

Table 1: Statistics of Web-CogBench.

Task Congition Metric #Num
Element Attribute Recognition ROUGE-L 249
Next Page Prediction Memorizing Accuracy 93
Source Element Prediction Accuracy 32
Element Understanding Understandin LVM Judge 200
WebPage Understanding £ LvMm Judge 77
User’s Intention Prediction Explorin LVM Judge 105
Popup Close P £ Accuracy 58
Single Step Exploration Accuracy 62
Total - - 876

Memorizing Assessing the agent’s ability to recall and recognize concrete information, directly
corresponding to the acquisition of Factual Knowledge. It evaluates whether the agent can accurately
identify the attributes of web elements and the state of a webpage.

Understanding Measuring the agent’s capacity for semantic interpretation, aligning with the mas-
tery of Conceptual Knowledge. It tests whether the agent can move beyond mere identification to
comprehend the function of elements and the contextual relationships within a page.
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Exploring Evaluating the agent’s ability to plan and execute goal-oriented actions, reflecting the
application of Procedural Knowledge. It assesses whether the agent can strategically navigate the
web, handle interruptions, and complete multi-step tasks to fulfill user goals.

4 WEB-COGREASONER

4.1 PROBLEM SETUP

We model the interaction between Web-CogReasoner and the environment as a partially observable
Markov decision process (POMDP): P = (S, A,0, K, T, R), where S denotes the webpage state,
A the action space (Table @), O the observation space, K the internal knowledge, T the transition
function, and R the reward function. At each step ¢, the agent receives a screenshot and its accessi-
bility tree (AX Tree), forms a reasoning thought h;, and selects an action a; under policy 7g. This
process continues until task completion or step limits are reached, with binary rewards indicating
success or failure.

4.2 FRAMEWORK OVERVIEW

Web-CogReasoner is a knowledge-driven reasoning system built on LVMs and trained on Web-
CogDataset (Section [3.3). As illustrated in Figure 3] it tackles complex web tasks by generating a
Knowledge-driven Chain-of-Thought (CoT), in which each reasoning stage is explicitly grounded
in a layer of Web-CogKnowledge.
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[ Observation Space ] #4# Webpage Layout Description:
The webpage is structured 1o help users find Apple stores near a specified location. At the top, there is a navigation bar with links to various sections such as
= Store, Mac, iPad, iPhone, Watch, Vision, AirPods, TV & Home, Entertainment, Accessories, and Support. Below the navigation bar, there is a search bar for
. entering a location, ZIP, or store name. The main content area displays a list of stores near San Jose, with images, names, addresses, and opening times. At the
oo bottom, there is a pagination control for navigating through additional store listings. The page also includes a promotional banner offering discounts on Mac and
iPad purchases with education savings.
Sores s San ose il Key Element Analysis:

- **Element Name: Search Bar**
- ARTA role is * search" , accessible name is "Search by location, ZIP, or store name"
- [Brief description of function and visual appearance]: The search bar is prominently displayed in the fop section of the page, allowing users o input a location
ZIP, or store name to find nearby Apple stores magnifying q\LSS can, Inlcating s search furctionaiy.
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- ARIA role is * navigation', accessible name is *Previous page"

- [Brief description of function and visual appearance]: The pagination contral is located at the bottom of the page, featuring a rightward-pointing arrow icon.
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Knowledge-driven COT Reasoning
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### Summary:

‘The webpage is designed fo assist users in locating Apple stores near a specified location. The primary interaction path involves using the search bar fo enter a
location, which then filters the store listings displayed below. Users can click on individual store listings to access more details or directions. The pagination
control at the bottom allows users to browse through additional store listings. The page also includes a promotional banner offering discounts on Mac and iPad
purchases, enhancing user engagement and providing additional value. The overall layout is user-friendly, with clear navigation and interactive elements to
facilitate easy access to store information

### Trajectory History Review:
to th " section and is prepared to input the ZIP code. The next logical step is to use the search bar to find stores

Action Space

Planing

it Step-by-Step Reasoning:
The user’s goal is to find Apple Stores near the ZIP code 90028, The search bar is the primary tool for this task. By entering the ZIP code info the search bar,
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Wait Wait

Figure 3: Tllustrating the Knowledge-driven Chain of Thought (CoT) process.

Knowledge-driven CoT Reasoning The core of Web-CogReasoner is a structured chain-of-
thought (CoT) reasoning process (Figure [3), decomposed into three layers: Factual (identify-
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ing page elements and states: “What is on the page?”), Conceptual (inferring roles and interac-
tions: “What does it mean?”’), and Procedural (planning goal-directed steps: “How to accomplish
the task?”). This layered reasoning maps task prompts to executable actions: Task Prompt —
Knowledge-driven CoT — Plan — Action. The agent initiates with a Task and observes the web-
page (Observation Space). This structured reasoning guides the Planning phase, which decomposes
the task and formulates a step-by-step strategy. The process culminates in a concrete Action to be
executed on the webpage.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models and Baselines Our proposed Web-CogReasoner builds on Qwen2.5-VL-7B (Bai et al.,
20235)), extended with a knowledge-induced reasoning framework. Training details are provided
in Appendix [A.3.1] For comparison, we include diverse baselines: the vanilla Qwen2.5-VL-7B
(zero/few-shot), OpenWebVoyager (He et all [2024b)) in IL and Max variants, the open-source
UI-TARS-7B-SFT (Qin et al., 2025)), and two powerful commercial LVMs, Claude Sonnet 4 and
Gemini 2.5 Pro. Together these cover foundational LLMs, end-to-end web agents, and general-
purpose multimodal models.

Datasets Web-CogReasoner is trained via supervised fine-tuning on the curated Web-CogDataset
(Sec.[3.3), which aligns samples with Factual, Conceptual, and Procedural knowledge using screen-
shots, accessibility trees, and reasoning trajectories. Evaluation is conducted on four datasets. Our
custom Web-CogBench (Sec. assesses cognitive dimensions of Memorizing, Understanding,
and Exploring. VisualWebBench (Liu et al.l [2024b) provides 1.5K curated tasks across 139 real
websites, testing grounding and reasoning in diverse settings. WebVoyager (He et al.| 2024b) con-
tains 643 queries across 15 seen sites, measuring performance in familiar environments. Online
Multimodal-Mind2Web (Deng et al., 2023)) evaluates cross-task and cross-website generalization
with queries from both known and unseen domains.

5.2 MAIN RESULTS

Table 2: Performance evaluation on the Web-CogBench benchmark.

Model Element Next Source Element
ode Attribute Rec  Page Pre Element Pre Understanding
Claude Sonnet 4 79.7 93.5 62.5 62.8
Gemini 2.5 Pro 79.8 94.6 84.4 62.6
Qwen2.5-VL-7B 53.2 83.9 65.6 60.0
UI-TARs-7B-SFT 63.5 88.0 31.3 48.0
Web-CogReasoner (Ours) 914 93.5 87.5 69.2
WebPage User Popup Single Overall
Understanding Intent Pre  Close  Step Exp
Claude Sonnet 4 54.3 64.7 100 96.8 76.8
Gemini 2.5 Pro 73.5 51.9 96.6 98.4 80.4
Qwen2.5-VL-7B 62.0 51.9 91.4 90.3 69.8
UI-TARs-7B-SFT 48.0 324 259 33.9 46.4
Web-CogReasoner (Ours) 79.0 614 98.3 95.2 \ 84.4

Results on Web-CogBench We evaluate Web-CogReasoner on Web-CogBench, which assesses
foundational knowledge and cognitive reasoning across twelve web tasks. As Table [2| shows,
our model outperforms both commercial and open-source baselines, owing to the integration of
structured Web-CogKnowledge (factual, conceptual, procedural) with Knowledge-driven Chain-of-
Thought reasoning. This combination enables accurate perception of web elements and informed,
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step-wise decision-making. The strong synergy between visual recognition and cognitive reason-
ing allows Web-CogReasoner to excel on diverse tasks and generalize effectively to web navigation
scenarios. We also provide a detailed LVM evaluation protocol and inter-rater reliability analysis in
Appendix [A-4]to validate the robustness of our scoring metrics.

Table 3: Performance evaluation on the VisualWebBench benchmark.

Perception-Oriented Tasks  Perception ‘ Reasoning-Oriented Tasks Reasoning ‘ Overall
Model

WebQA HeadOCR  OCR Avg Element Action Action Avg Avg

¢ ca Ground  Prediction  Ground

Claude Sonnet 4 73.3 72.6 96.2 80.7 81.1 96.1 96.3 91.2 85.9
Gemini 2.5 Pro 74.9 70.8 95.1 80.3 91.8 96.8 90.3 93.0 86.6
Qwen2.5-VL-7B 70.8 71.7 81.4 74.6 71.5 86.8 68.0 77.4 76.0
UI-TARs-7B-SFT 71.3 78.7 97.2 824 91.8 91.8 85.4 89.7 86.0
Web-CogReasoner (Ours) 67.2 72.6 97.0 79.0 ‘ 96.4 96.1 88.4 93.6 ‘ 86.3

Results on VisualWebBench We evaluate visual understanding on VisualWebBench (Liu et al.,
2024b). As Table 3] shows, Web-CogReasoner achieves the highest average score (86.3%), slightly
above UI-TARs (86.0%). However, UI-TARs performs poorly on Web-CogBench (46.4%), high-
lighting that strong visual perception alone does not ensure robust cognitive reasoning. In contrast,
Web-CogReasoner consistently excels across both visual and reasoning benchmarks, demonstrating
the effective integration of precise visual perception with structured knowledge-driven reasoning —
a dual capability essential for reliable web agents.

Table 4: Task success rates on the WebVoyager. The ”Overall” score is the average success rate.

Agent Allrecipes Amazon Apple ArXiv GitHub Booking ESPN Coursera
Claude Sonnet 4 26.7% 87.8% 48.8%  69.8% 68.3% 2.3% 45.5% 83.3%
Gemini 2.5 Pro 60.0% 63.4% 62.8% 67.4% 68.3% 9.1% 56.8% 73.8%
Qwen2.5-VL-7B 0.0% 0.0% 0.0% 4.7% 0.0% 0.0% 0.0% 2.3%
OpenWebVoyagery, 17.8% 122%  209% 14.0% 14.6% 9.1% 9.1% 31.0%
OpenWebVoyageryax 22.2% 29.3% 32.6% 20.9% 26.8% 11.4% 11.4% 42.9%
Web-CogReasoner (Ours) 26.7 % 31.7%  32.6% 349% 29.3% 2.3% 15.9% 54.8%

BBC Cambridge Google Google . Wolfram

News Dictionary Flights Map Huggingface Alpha Overall
Claude Sonnet 4 23.8% 37.2% 4.8% 80.5% 48.8% 82.6% 47.7%
Gemini 2.5 Pro 52.3% 76.7% 4.8% 75.6% 58.1% 82.6% 54.9%
Qwen2.5-VL-7B 0.0% 11.6% 0.0% 2.4% 7.0% 2.2% 2.2%
OpenWebVoyagery, 9.5% 37.2% 9.5% 22.0% 20.9% 26.1% 18.1%
OpenWebVoyageryax 14.3% 34.9% 214%  29.3% 32.6% 37.0% 26.2%
Web-CogReasoner (Ours) 14.3% 55.8% 9.5% 39.0% 37.2% 39.1% \ 30.2%

Table 5: Performance comparison on the Online-Mind2Web under cross-task and cross-websites

Agent Cross-task (Unseen Task) Cross-web (Unseen Websites)

8 Entertainment Shopping Travel Overall | Entertainment Shopping Travel Overall
Claude Sonnet 4 44.9% 35.3% 40.0% 40.2% 45.5% 6.7% 14.0% 21.7%
Gemini 2.5 Pro 46.9% 35.3% 283%  37.5% 42.4% 10.0% 233%  25.5%
OpenWebVoyageryax 22.4% 29.4% 152%  20.5% 3.0% 8.7% 233% 11.7%
Qwen2.5-VL-7B 2.2% 0.0% 0.0% 1.0% 3.0% 0.0% 0.0% 1.0%
OpenWebVoyagery, 8.2% 5.9% 4.3% 6.3% 3.0% 5.8% 4.7% 6.6%
Web-CogReasoner (Ours) 16.3% 23.5% 152% 17.0% 12.1% 7.7% 9.3% 10.1%

Results on Online Web Tasks We evaluate Web-CogReasoner on live web tasks using We-
bVoyager and Online Multimodal-Mind2Web to assess practical utility and generalization to
unseen websites and multi-step tasks, excluding UI-TARs-7B-SFT due to missing online infer-
ence scripts. Web-CogReasoner achieves state-of-the-art performance among open-source agents,
demonstrating that integrating structured Web-CogKnowledge with Chain-of-Thought reasoning en-
hances accurate perception and informed task execution. On Mind2Web, which tests cross-task
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and cross-web generalization, OpenWebVoyagery,x appears competitive but uses additional sam-
ple collection and retraining on high-error sites, making direct comparison unfair. Without task-
specific fine-tuning, Web-CogReasoner outperforms OpenWebVoyager;;, and remains competitive
with OpenWebVoyagery,x, highlighting that structured knowledge and cognitive reasoning provide
robust, broadly applicable generalization.

Table 6: Average steps per successful task across different benchmarks.

Mind2Web Mind2Web

Agent WebVoyager Cross-Task  Cross-Web Final Avg
Claude 7.35 10.89 11.04 9.76
Gemini 6.68 7.74 10.30 8.24
OpenWebVoyageryax 5.07 7.59 691 6.52
Qwen2.5-VL-7B 7.69 12.00 13.00 10.9
OpenWebVoyagery, 5.26 7.00 9.29 7.18
Ours 4.73 7.37 8.89 7.00

Results on Average Steps  Table[f]reports the average number of steps for successful online tasks.
Our approach consistently achieves high efficiency, particularly in cross-domain scenarios, indi-
cating that the model effectively balances streamlined task execution with robust generalization to
unseen environments.

5.3 ABLATION STUDY

To empirically validate the effectiveness of our Web-CogKnowledge Framework, we conduct a two-
fold ablation study. First, we evaluate the cumulative gains of our curriculum learning strategy
(Table[7). Second, to address specific inquiries regarding the necessity of each knowledge layer and
the reasoning mechanism, we provide a detailed component analysis on both Web-CogBench and
WebVoyager (Tables [ and [9).

Table 7: Cumulative Gains: Impact of progressive knowledge training on Web-CogBench.

Model Configuration Memorizing Understanding  Exploring  Overall
Qwen2.5-VL-7B (Base Model) 67.6 61.0 77.9 69.8
+ Factual Knowledge (S1) 85.5 (+17.9) 64.2 60.1 72.1
+ Conceptual Knowledge (S2) 88.1 75.5 (+11.3) 65.8 78.3
+ Procedural Knowledge (S3) 90.8 74.1 85.0 (+19.2) 844

Cumulative Impact of Curriculum Learning We evaluate the roles of Factual, Conceptual, and
Procedural knowledge through an ablation study that incrementally augments the base Qwen2.5-VL-
7B model and measures performance on Web-CogBench. Factual Knowledge provides the percep-
tual grounding needed for accurate element recognition, strengthening the Memorizing dimension.
Conceptual Knowledge introduces semantic structure and functional understanding, improving the
Understanding dimension and enabling basic multi-step behaviors. Procedural Knowledge adds
goal-directed planning and execution, yielding major gains in the Exploring dimension. Qualitative
examples illustrating how perception, interpretation, and planning evolve across stages are presented
in Appendix Together, the results show that each knowledge layer is essential, and their inte-
gration is key to Web-CogReasoner’s cognitive robustness and performance.

Hierarchical Dependency of Knowledge To demonstrate that our stages are not merely isolated
skills but hierarchically dependent layers, we present a detailed breakdown in Table[§and Table[9]

* Low-level Knowledge is a Prerequisite: As seen in Table[§] single-stage models (S2 only,
S3 only) perform poorly on comprehensive metrics. Crucially, adding Factual training (S1)
significantly boosts the performance of higher-level stages. For example, on WebVoyager
(Table P), combining S1 with S3 nearly doubles the success rate compared to S3 alone
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Table 8: Component Analysis on Web-CogBench: Validating hierarchical dependency.

Model Memorizing Understanding Exploring Overall
Base model 67.6 61.0 77.9 69.81
S1 only 85.5 64.2 60.1 70.65
S2 only 59.88 68.03 60.00 61.96
S3 only 52.82 46.40 78.00 60.66
S1+S2 88.1 75.5 65.8 76.59
S1+S3 85.11 53.53 82.31 76.17
S2+S3 64.87 69.74 81.41 72.29
S1+S2+S3 (Full) 90.8 74.1 85.0 84.45

Table 9: Impact of Knowledge & KCoT on WebVoyager, real-world online tasks.

Model Amazon Cambridge Coursera GitHub Overall
S1 only 12.19% 25.58% 14.28% 7.14% 12.67%
S3 only 17.07% 11.62% 16.66% 14.28% 13.14%
S1+S3 29.26% 34.88% 28.57% 16.66% 23.47%
S1+S2+S3 (w/o KCoT) 19.51% 51.16% 26.19% 23.80% 25.35%
S1+S2+S3 (w/ KCoT) 31.7% 55.8% 54.8% 29.3% 42.9%

(23.47% vs. 13.14%). This proves that procedural exploration (S3) cannot function effec-
tively without accurate factual grounding (S1).

 Integration is Critical: While specific stages excel at their corresponding metrics (e.g., S3
on Exploring), only the fully integrated model (S1+S2+S3) achieves robust performance
across all dimensions, confirming that complex web agents require a complete cognitive
stack.

Reasoning Activation via KCoT Finally, we investigate the role of our reasoning framework.
While the full combination of data (S1+S2+S3) builds a strong latent representation, explicit reason-
ing is required to utilize it. As shown in Table[9] removing the Knowledge-driven Chain-of-Thought
(w/o KCoT) causes a sharp drop in online success rate from 42.9% to 25.35%. This indicates that
KCoT acts as a crucial activator, bridging the gap between possessing knowledge and applying it
dynamically for decision-making.

6 CONCLUSION

We present Web-CogReasoner, a cognitive-inspired framework for web agents that systematically
instills Factual, Conceptual, and Procedural Knowledge, following Bloom’s Taxonomy. By coupling
the Web-CogKnowledge Framework with the Web-CogDataset and Web-CogBench, our approach
enables interpretable, step-wise reasoning through knowledge-driven Chain-of-Thoughts, yielding
strong performance on complex web navigation and instruction-following tasks. Ablation and qual-
itative analyses confirm the indispensability of each knowledge stage, demonstrating how a struc-
tured curriculum produces robust perceptual and cognitive capabilities. While current results rely
on imitation learning, future work aims to integrate reinforcement learning to enhance exploration,
generalization, and autonomous discovery of procedural knowledge, advancing toward truly adap-
tive and self-directed web agents.

7 ETHICS STATEMENT

This work does not involve human subjects, private or sensitive data, or any personally identifiable
information. All datasets employed in our experiments are publicly available and have been used
in accordance with their respective licenses. We acknowledge the potential societal risks associated
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with large language models, including issues of fairness, bias, and misuse. While these concerns are
not the primary focus of this work, we have taken steps to ensure responsible experimentation, in-
cluding transparent reporting of datasets, models, and evaluation protocols. The release of our code
and models will be accompanied by appropriate documentation and usage guidelines to mitigate
unintended applications.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that our results are fully reproducible. All relevant de-
tails—including the proposed methodology, model architecture, training objectives, evaluation pro-
tocols, hyperparameter settings, ablation configurations, and data preprocessing pipeline—are thor-
oughly documented in the appendix. All datasets used in our experiments are publicly accessible,
and instructions for reproducing our experiments are clearly provided. To further support inde-
pendent verification and extension of our work, we will release the source code, trained model
checkpoints, and experiment scripts in the near future.

9 LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper, The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

In our research, LLMs were used to assist in generating training tasks. Specifically, in Section
we used the LLM infer the functions of web page elements based on web page screenshots and
structured text. We then used these results to build training data, which helped improve the target
model’s understanding and prediction capabilities.

It is important to note that the LLM was not involved in developing the research concepts, designing
the research methodology, or formulating the experimental protocols. All research concepts, ideas,
and analyses were independently developed and implemented by the authors. The authors bear full
responsibility for the content of the manuscript, including any text generated or polished by the
LLM. We have ensured that the text generated by the LLM complies with ethical guidelines and
does not involve plagiarism or scientific misconduct.
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A APPENDIX

A.1 WEB COGNITION AND DATA DETAILS
A.1.1 BLOOM’S TAXONOMY

1. Factual Knowledge: The foundational layer, encompassing the basic, discrete elements of
a discipline that a student must know, such as essential terminology and specific, isolated
details.

2. Conceptual Knowledge: The synthesis of factual elements into a coherent, organized
structure. This level focuses on the interrelationships between basic elements, including
knowledge of classifications, principles, generalizations, theories, and models.

3. Procedural Knowledge: The knowledge of how to perform a task or inquiry. This involves
an understanding of specific skills, algorithms, techniques, and methods, representing a
shift from “knowing-what” to “knowing-how.”

Table 10: Action space of Web-CogReasoner for web interaction.

Instruction Description

click [id] Click an element

type [1id] [content] Input specified content into an element
scroll [id or WINDOW] [up/down] Scroll an element or the page up/down
dbclick [id] Double-click an element

go_back Navigate to the previous webpage
go_-forward Navigate to the next webpage

stop [content] Submit the final answer

Restart Restart the current task

Wait Wait for one second before proceeding

A.1.2 ACTION SPACE OVERVIEW

Table[T0]summarizes the action space of Web-CogReasoner for web interaction tasks. The table cat-
egorizes actions into two groups: (1) element-specific operations, such as clicking, typing, double-
clicking, and scrolling individual elements; and (2) page-level control actions, including navigation
commands, task restart, waiting, and final answer submission. This structured action space enables
the agent to perform a diverse set of interactions, facilitating comprehensive exploration and manip-
ulation of web pages in a controlled and systematic manner.

A.1.3 STAGES OF HUMAN KNOWLEDGE AND COGNITIVE DEVELOPMENT

Cognitive science typically classifies human knowledge into three categories—factual, conceptual,
and procedural—which correspond to different stages of cognitive development: perceiving, under-
standing, and executing. This taxonomy captures the natural trajectory of human learning: starting
with the perception of concrete facts and data (factual knowledge), progressing toward abstract
comprehension of concepts and relationships (conceptual knowledge), and ultimately acquiring the
ability to carry out complex, goal-oriented behaviors through practiced routines and strategies (pro-
cedural knowledge). An illustrative example is shown in Figurdd).

A.1.4 WEB DATA INTRODUCTION

Figure [5] presents the statistics of the selected websites, grouped by category. The visualization
highlights the relative proportions of different types of websites included in our study, providing
an overview of the dataset composition. Such a distribution analysis is crucial for understanding
potential biases, ensuring coverage across diverse web domains, and evaluating the generalizability
of models trained or tested on these websites.
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Data Composition and Balance To avoid domain overfitting and ensure both interaction depth
and broad generalization, Web-CogDataset employs a strategic hybrid data composition:

1. Depth via Self-Collected Data: We selected 14 complex websites for high-depth interac-
tion mining to capture intricate logic often missed by general crawls. As shown in Figure[d}
we strictly maintained category balance across E-commerce, Finance, Developer Tools, and
Social Media within this subset to prevent bias toward any single domain.

o

Breadth via Open-Source Augmentation: To address the concern of limited domain di-
versity (e.g., lack of News, Education, or Forums), we incorporated and enhanced large-
scale open-source datasets, including MultiUI (Liu et al}[2024a)), Mind2Web (Deng et al]
[023), and OpenWebVoyager (He et al] 2024b). Notably, MultiUI is derived from
FineWeb (Common Crawl), providing massive coverage of general-purpose webpages.
This combination ensures our model generalizes to the “wild” web and is not overfitted
to specific interaction styles like financial trading or shopping.

Annotation Reliability We validated our automated annotations via double-blind human verifica-
tion and cross-model consistency checks (e.g., using GPT-40). As shown in Table[IT] the error rate
is minimal.

Table 11: Reliability Check of Web-CogDataset Annotations.

Annotation Task ~ Human Verification (Acc) Cross-Model Consistency

Element Attribute 99.2% 98.5%
Page Change Pred 97.5% 96.8%
Sub-element Pred 96.8% 95.4%
Average 97.8% 96.9 %

A.1.5 DATA SOURCING

To collect comprehensive metadata from web pages, we developed a data collection tool based
on Playwright. This tool performs deep traversal and interaction by systematically clicking on all
elements within each page. We define each round of interaction (i.e., one click) as a layer, and using
this iterative approach, we collected Layer 1 to Layer 6 data from 14 different websites (for complete
website information, refer to Table E|)

Table 12: Web elements’s meta-data.

Data Description

css element‘s CSS selectors

allcss CSS selector sequence of preceding elements
ourterhtml element’s outerhtml

location element’s boundingbox

role element’s role

name element’s name

Data precessing For each web element, we capture its standalone screenshot, as well as screen-
shots taken before clicking (both with and without a red bounding box), after hovering, and after
clicking. See Figure[6|for an example. We also collect the following metadata: CSS, allCSS, outer-
HTML, and location. Additionally, we extract semantic information from each element based on its
outerHTML. If a role attribute is explicitly defined, we use its value directly as the element’s seman-
tic role. Otherwise, we infer the role by mapping the tag name using the WAI-ARIA specification.
Similarly, to determine the element’s semantic name, we extract the value of the aria-label if present;
otherwise, we get its textual content. See Table@for detailed metadata of the web elements.

After collecting both the visual and semantic metadata, we present the corresponding screenshots of
each clickable element to Qwen-VL 72B. The model is instructed to:
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base_rect.png hover.png

Booking.com

Find deals for any season

From cozy bed & breakfasts to luxury hotels

Figure 6: Example visual states of a web element (“USD”) we captured. Shown are: the element
highlighted in the full-page view (base_rect.png), the hover state (hover.png), and the click state
(click.png). These screenshots illustrate how the element’s visual context evolves through user in-
teractions.

* analyze the visual changes on the page after hovering over and clicking the target element;

* identify and list any sub-elements that appear upon interaction (e.g., when a dropdown
menu is triggered by clicking);

* infer and generalize the functional purpose of the element.

For the functional purpose prediction, the model is additionally required to provide a confidence
score. If this score remains below 0.5 after three retries, the prediction is excluded from evaluation.

A.2 TASK DEFINITION

A.2.1 WEB-COGDATASET

Table 13: Statistics of Web-CogDataset.

Knowledge Task Statistics
Subtotal  Total
Element Attribute Recognition 37K

Sub-element Prediction 1K
Factual Web Knowledge Page Change Prediction 24K 81K
Next Page Prediction 18K
Source Element Prediction IK
Element Understanding 40K
Conceptual Web Knowledge WebPage Understanding 7K 62K
Caption & QA 15K
User’s Intention Prediction 2K
Procedural Web Knowledge Popup Close 1K 27K
Single-Step Web Task 17K
Noisy Multi-Step Web Task 7K
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A.2.2 WEB-COGBENCH

* Element Attribute Recognition: Given a screenshot with a highlighted interactive ele-
ment, the model predicts its semantic role (e.g., button, link) and accessible name (e.g.,
”Submit”, ”Search”), relying solely on visual cues.

* Next Page Prediction: The model predicts the subsequent page that results from interact-
ing with a specific element on the current page. To enhance generalization, we designs two
types of tasks: multiple-choice questions and open-ended responses.

* Source Element Prediction: Given two screenshots, the current page and the resulting
target page, then the model identifies which of the visually marked elements on the current
page leads to the target, simulating visual cause-and-effect reasoning.

* Element Understanding: For a specific interactive element, the model generates an open-
ended paragraph that comprehensively describes the element’s Visible Traits (e.g., text,
shape, styling), its On-page Location (e.g., header, sidebar, main content), and its likely
User-facing Function (e.g., playing a video, navigating to a new page), relying solely on
visual context.

* WebPage Understanding: Given a full-page screenshot, the model generates a compre-
hensive overview describing the webpage’s Layout Organization (e.g., header, event in-
formation, seating chart, filter panel), Key Element Analysis (e.g., element attribute, de-
scription, function, interaction, expected outcome), and a Summary of the WebPage. This
enables a thorough understanding of the webpage’s structure and functionality.

* User’s Intention Prediction: The model infers high-level user intent from a sequence of
webpage screenshots representing an interaction trajectory, requiring visual understanding
and temporal reasoning. The task is built on the MultiModal-Mind2Web (Deng et al.,[2023)
dataset, mapping screenshot sequences to natural language instructions.

* Popup Close: The model identifies and dismisses popups (e.g., notification modals, login
forms) on synthesized webpage screenshots, using a dataset of 51 popup components from
JS Desig overlaid on OpenWebVoyager (He et al., 2024b) webpages, with combinatorial
augmentation of closing strategies for diverse training.

* Single Step Exploration: This task is derived from a multi-step trajectory exploration
task and has been decomposed into single-step exploration subtasks. For each step, the
model receives as input the corresponding accessibility tree (AxTree) and a screenshot
of the current webpage. Based on these observations, the model performs reasoning to
generate the appropriate action along with the target object, effectively simulating a realistic
single-step web navigation scenario. By breaking down complex multi-step interactions
into atomic actions, this setup allows for fine-grained evaluation of the agent’s decision-
making capabilities and supports systematic analysis of its performance in web exploration
tasks.

Table [13| summarizes the overall statistics of Web-CogDataset. The dataset covers three layers of
knowledge—Factual, Conceptual, and Procedural— each corresponding to distinct families of web
reasoning tasks. Factual Web Knowledge focuses on recognizing attributes, predicting element re-
lationships, and modeling page transitions, totaling 81K instances. Conceptual Web Knowledge
emphasizes semantic understanding and cross-element comprehension, with 62K instances. Proce-
dural Web Knowledge involves action-oriented reasoning tasks, such as predicting user intentions
and executing goal-directed interactions, comprising 27K instances. Together, these task distribu-
tions reflect the hierarchical design of Web-CogDataset and ensure balanced coverage from low-
level perception to high-level reasoning.

A.2.3 FACTUAL WEB KNOWLEDGE

Element Attribute Recognition We define the Element Attribute Recognition task to assess a
model’s capability to infer the interactive semantics of web elements exclusively from visual input.
Given a full-page screenshot with a specific interactive element marked by a red bounding box, the
model is tasked with predicting two key attributes:

3https://js.design/.
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* the semantic role of the highlighted element (e.g., "button”, "’link”, ’checkbox’),

* the semantic name, which refers to the element’s accessible textual description (e.g., ”Sub-
mit”, ”Search”, "Next”).

The ground truth for both attributes is derived from the element-level metadata collected as de-
scribed in Section[A.1.5] This task simulates the human cognitive ability to interpret the function of
web interface components through visual perception alone, without relying on HTML structure or
programmatic representations.

Sub-elements Prediction We define the Element Sub-element Prediction task to evaluate a
model’s ability to infer the hierarchical structure of web interfaces—specifically, to identify the
sub-elements that become visible upon interaction with a given parent element, using only visual
information. In each task instance, the model is presented with a full-page screenshot in which a
specific interactive element is highlighted by a red bounding box. The model is instructed to predict
the set of sub-elements (e.g., menu items, dropdown options) that appear as a direct result of inter-
acting with the highlighted element, such as clicking or hovering.The ground truth annotations for
sub-elements are derived from the element-level metadata collected during the dynamic interaction
process, as detailed in SectiofA.T1.5] This task simulates the human cognitive process of under-
standing interactive dependencies in a graphical interface—recognizing not only that a component
is clickable, but also predicting its dynamic expansion behavior.

Page Change Prediction We define the Page Change Prediction task to evaluate a model’s ca-
pability to infer the visual consequences of interacting with a specific web element, relying solely
on visual input. In this task, the model is presented with a full-page screenshot in which a target
interactive element is highlighted by a red bounding box. The model is required to in an open-
ended format to predict the visual changes that are likely to occur on the page after the element is
clicked.The ground truth for this task is obtained from the generated responses of Qwen-VL-72B,
which were produced based on visual metadata, as detailed in Sectio/A.T.5] This task is designed to
simulate the human cognitive ability to anticipate the dynamic behavior of web interfaces through
perception alone—without access to the underlying source code or prior knowledge of the page
logic.

Next Page Prediction We define the Next Page Prediction task to evaluate a model’s ability to
forecast navigation outcomes. Given a full-page screenshot with a highlighted interactive element,
the model must predict the subsequent page that would result from interacting with that element. To
ensure generalization capability, we implement two evaluation formats: multiple-choice selection
(choosing from 4-5 possible next pages) and open-ended generation (describing the expected next
page). Ground truth is derived from actual navigation sequences recorded during web interactions.
This task assesses the agent’s understanding of functional relationships between interface elements
and destination pages.

Source element Prediction We define the Source Element Prediction task to assess a model’s
ability to identify which element on a webpage leads to a specific target page, using only visual
input. The model is given two screenshots: one showing the current webpage with 4-10 candidate
elements marked by bounding boxes, and another showing the resulting target page. Based on visual
cues alone, the model should determine which candidate element would trigger the transition to the
target page when interacted with. This task simulates the human ability to reason about visual
cause-and-effect relationships in web navigation, without relying on code or prior knowledge of
page logic.

A.2.4 UNDERSTANDING WEB KNOWLEDGE

Element Understanding This task requires the model to produce a comprehensive, open-ended
description of a highlighted element’s visual appearance, functional semantics, and placement on the
webpage. Specifically, the output should cover: (1) Visual Traits (text, shape, iconography); (2) Lo-
cation (e.g., top—-right, footer); and (3) Function (e.g., navigates to user profile).
This task simulates abstract comprehension from concrete element appearance.
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WebPage Understanding In this task, the model must generate a detailed and structured overview
of the entire page. The response includes layout segmentation (e.g., header, sidebar, content area),
key modules (e.g., search panel, product gallery), and a summary of page purpose and interactivity.
This facilitates understanding of page-wide structure and intent.

Caption & QA We define the Caption & QA task to evaluate a model’s capability to comprehend
and reason over both image and non-image content embedded within webpages. This task comprises
four subtasks:

* Embedded Image Captioning: Given a full-page screenshot containing one or more em-
bedded images, the model is required to generate a detailed and semantically meaningful
caption for each image, describing its visual content and its contextual relevance within the
surrounding webpage layout.

* Embedded Image QA: Given a question grounded in the content of an embedded image
within a webpage screenshot, the model must produce an accurate, context-aware answer
using only visual information. These questions may refer to image content (e.g., "What
brand is shown in the ad?”) or its function in the UI.

* Webpage Captioning: The model is tasked with generating an open-ended description
of the webpage’s content, layout, and interactive purpose, treating the entire screenshot as
input. The generated caption should reflect both structural composition and the inferred
user intent of the webpage.

* Webpage QA: Given a full-page screenshot and a natural language question referring to
any aspect of the page (e.g., title, layout, purpose, textual content), the model must generate
a grounded and precise answer based on visual and spatial information.

All four subtasks are derived from the Multi-UI (Liu et al.l 2024a)) dataset, which provides rich an-
notations for webpage visual elements and user-facing semantics. Together, these subtasks measure
a model’s ability to perform grounded visual-language understanding at both local (element-level)
and global (page-level) scales.

A.2.5 PROCEDURAL WEB KNOWLEDGE

User’s intention Prediction Built on the MultiModal-Mind2Web dataset—which provides nat-
ural language instructions, action trajectories, and aligned web page screenshots—we introduce a
novel multi-modal task: inferring the user’s high-level intent from a sequence of visual observations.
Unlike traditional imitation learning or instruction-following tasks, our setting requires the model to
infer why a trajectory occurred, rather than how to execute it. Solving this task demands both visual
understanding and temporal reasoning. The details of this task are as follows:

1. Task Definition: Given a sequence of web page screenshots py, po, . .., p, representing a
user’s interaction trajectory, the objective is to predict the original user instruction y that
guided the sequence. Each screenshot p, corresponds to the visual observation at step ¢ of
a successful task execution. Formally, the model learns a mapping: f : {p1,p2,...,Dn} —
@ where @ is the natural language instruction.

2. Dataset Construction: We construct our dataset by processing the original MultiModal-
Mind2Web corpus. For each task, we extract only the visual observations—i.e., the se-
quence of web page screenshots corresponding to each step in the execution trajectory. We
then pair each screenshot sequence with the original natural language instruction as the
supervision signal.

Popup Close We curated a collection of 51 popup components from JS Design website, encom-
passing a diverse range of visual styles and functional categories, such as notification modals, alert
dialogs, and login forms. This diversity ensures comprehensive coverage of real-world popup use
cases. For background webpages, we utilized the OpenWebVoyager(He et al.,|2024b) dataset, which
contains a large number of authentic webpage screenshots with varied layouts and content, provid-
ing a rich foundation for synthesizing realistic popup-injected webpages. To construct the training
data for this task, we employed the following procedure:
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1. Synthesizing Webpage Screenshots with Popups: We randomly overlaid popup images
onto background webpage screenshots to simulate webpages containing popups. During
synthesis, we introduced variability by randomly adjusting the popup’s size and position
and modifying the brightness and sharpness of the background images, thereby enhancing
visual diversity and realism.

2. Generating Popup AX Tree: Each popup image was processed using Qwen-VL-2.5-32B to
generate an ARIA-compliant AX Tree. To simulate diverse structural configurations, we
randomly modified the index values of popup AX Tree elements and inserted the popup
AX Tree into different locations within the original webpage’s AX Tree, resulting in a
combined AX Tree that reflects realistic variations in webpage structure.

3. Generating Popup Closing Strategies: We then instructed Qwen-VL-2.5-32B to identify all
n possible methods for closing the popup, based on the popup image and its correspond-
ing AX Tree. Recognizing that, in practical settings, any correct method is sufficient, we
applied combinatorial augmentation to the n methods. Specifically, we enumerated all non-
empty subsets of the n strategies, yielding a total of 2" — 1 distinct answer combinations.
This expansion significantly broadens the training distribution and increases the model’s
exposure to diverse correct solutions.

4. Constructing the Training Dataset: Using the synthesized webpage screenshots and the
enriched AX Tree, we constructed a dataset for training models on popup dismissal. Each
data point comprises:

* Input: a webpage screenshot with an embedded popup and the corresponding AX
Tree;

* Output: valid methods for closing the popup.

Single-Step Web Task We define the Single-Step Web Task to evaluate a model’s ability to ground
high-level user intentions in visual webpage elements. Each task instance includes a full-page
screenshot from a real-world webpage, a concise natural language instruction (e.g., ”Search for a
product”, ”Log into the system”), and several candidate elements marked by red bounding boxes.

The model must identify which element, if clicked, would successfully fulfill the given task. This
setup simulates perceptual grounding of user intent—matching natural language goals to actionable
UI targets based solely on visual cues.

All samples are directly sourced from the Multi-UI (Liu et al., [2024a)) dataset, which provides rich,
annotated webpage screenshots paired with task descriptions and labeled ground-truth targets. No
trajectory-level annotation or external instruction rewriting is involved. This task offers a reliable
benchmark for evaluating atomic web interaction capabilities in a static, visually grounded setting.

Noisy Multi Step Web Task To further enhance the original OpenWebVoyager (He et al.,2024b)
dataset, we incorporate Knowledge-driven Chain-of-Thought (CoT) Reasoning to improve the
model’s stepwise understanding and execution, details see Section @] In addition, to simulate
realistic interruptions during multi-step web interactions, we propose the Noisy Multi-Step Web
Task by augmenting interaction trajectories from OpenWebVoyager. Specifically, for each sample
in our Popup Close dataset, a popup window is injected at a specific step (e.g., step ¢) of an existing
task trajectory.

This modification introduces a prerequisite interaction: the agent must first detect and dismiss the
popup before resuming progress toward the original task goal. By explicitly modeling such interrup-
tive Ul elements, this task formulation captures a more realistic web interaction paradigm in which
user flows are frequently obstructed. It also provides a challenging benchmark for evaluating agents’
robustness to Ul-level noise and their capacity for error recovery.

A.3 TRAIN DETAILS
A.3.1 TRAINING

We employ a multi-phase Imitation Learning strategy to train our model on Web-CogDataset, uti-
lizing Qwen2.5-VL-7B (Bai et al., [2025)) as the base model. Each phase is aligned with a distinct
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layer of the Web-CogKnowledge Framework: (1) the first knowledge content learning focuses on
acquiring Factual Knowledge and Conceptual Knowledge, enabling the model to interpret web con-
tent and semantics; (2) the second cognitive process emphasizes Procedural Knowledge, training the
model to plan and execute multi-step web interactions. To accommodate the increased complexity
of the final phase, which involves multi-image inputs and extended reasoning, we configure training
with a maximum sequence length of 8K and a batch size of 1 with gradient accumulation of 16 steps.
All experiments are conducted on a cluster of 8 x NVIDIA A800 80GB GPUs.

A.3.2 PERFORMANCE UNDER DIFFERENT TRAINING STRATEGIES

We could feed these SFT datasets into models with different training strategies. In this section, We
investigate how they influence the model’s performance.

1. Curriculum Learning Strategy: We fine-tune the model following a curriculum learning
paradigm.

2. Mixed Multi-task Learning: We directly mix different tasks and apply SFT.

Through comparative analysis, we find that: Under the same task scenario, models trained via cur-
riculum learning conduct multiple rounds of exploration continuously and do not cease exploration
prematurely. In contrast, when retrieving task - related data, models trained via mixed training
terminate the search within a limited number of attempts if they fail to find results.

As shown in Figure[7] when faced with the user’s instruction “Open the most helpful 5 - star reviews
of Alpine Ridge”, models trained via mixed training deviate from the domain of task - specific in-
formation retrieval and autonomously generate an instruction to ”’switch to forums for information”.

Based on these observations, we conjecture: Curriculum learning trains models incrementally from
simple to complex task, which enables them to develop a fundamental understanding of the prob-
lem structure. They continue to carry out multiple rounds of exploration to ensure comprehensive
comprehension and accurate processing, thus avoiding the premature termination of exploration.
In contrast, mixed training models may be trained on multiple tasks simultaneously. The poten-
tial interference among different tasks can make models easily influenced by irrelevant tasks when
processing a specific one, thereby undermining their ability to focus on task - specific information
retrieval and processing.

Casel: Open the most helpful 5 star reviews of Alpine Ridge.

History »we (( Vised Mutiasklarning_ | History s e

Observation: Observation:

You v i o utdetd b

RECREATH®Nse. o0 = RECREATH®N gox

a

Modsl Qutput:

Step Summary: The user has attempted to search for Alpine Rid;
i

ed. Once the reviews section is loaded, the user can identify the most helpful 5-star

reviews. e
Final Action: Action: stop Final Action: Action: click [21]

Figure 7: Comparison between mixed and curriculum strategies.
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A.4 EVALUATION DETAILS

A.4.1 LVM EVALUATION PROTOCOL

For open-ended generation tasks in Web-CogBench (i.e., Element Understanding, WebPage Under-
standing, and User Intent Prediction), we utilize a high-capability LVM (GPT-40) as an automated
evaluator. The evaluation process involves a strict comparison between the Candidate Model’s
Answer and the verified Ground Truth based on image provided in the dataset.

To ensure fine-grained assessment, we decompose the evaluation into specific cognitive dimensions
rather than relying on a single holistic score:

* Element Understanding: Assessed on Appearance (visual fidelity), Position (structural
context), and Function (interaction purpose).

* WebPage Understanding: Assessed on Structure & Layout, Key Element Analysis, and
Summary Coherence.

e User Intent Prediction: Assessed on Evidence Alignment (visual cue detection), Intent
Accuracy, and Reasoning Quality.

We employ a rigorous 1-5 Likert Scale and normalized to 0—100 for scoring. A score of 5 denotes
that the candidate fully and accurately captures all relevant information present in the Ground
Truth,” while lower scores reflect varying degrees of omissions or inaccuracies. The evaluator out-
puts a structured JSON object containing both integer scores and text justifications for each dimen-
sion, ensuring the traceability of the results.

For instance, the Element Understanding task is assessed on:

System Instruction: You are a meticulous and impartial Al evaluator for a web UI understanding benchmark. Your task is to assess
the quality of a candidate model’s answer by comparing it strictly against a ground truth and provided image reference.

Your evaluation must be based exclusively on the information provided in the “Ground Truth Answer” and “Image”.

Evaluate the candidate answer on three specific aspects: Appearance, Position, and Function.

[Ground Truth Answer]

{ground_truth}

[Candidate Model’s Answer]
{model_answer}

Evaluation Criteria & Scoring:

¢ Score 1: Completely incorrect or missing.

« Score 2: Mostly incorrect, with a minor element of truth.

¢ Score 3: Partially correct, but misses significant details mentioned in the ground truth.

* Score 4: Mostly correct, with only minor inaccuracies or omissions compared to the ground truth.

* Score 5: Fully and accurately captures all relevant information present in the ground truth.

Your response MUST be a single, valid JSON object, adhering to the following structure. Do not add any text before or after the JSON
object.

{

“appearance_score”: jinteger.score;,

“appearance_justification”: ”’j Your brief justification... referencing the ground truth;”,
“position_score”: jinteger-score;,

“position_justification”: ”’j Your brief justification... referencing the ground truth;”,
“function_score”: jinteger_score;,

“function_justification”: ”; Your brief justification... referencing the ground truth;”,
“overall_score”: jA final holistic integer score from 1 to 5;,

“overall_justification”: ”’jA final summary of the model’s performance;”

}

A.4.2 LVM JUDGE RELIABILITY

To mitigate potential biases from a single evaluator, we employed multiple distinct LVMs (in-
cluding GPT-40, Claude Sonnet 4, and Gemini 2.5 Pro) to conduct a rigorous inter-rater reliability
analysis. We calculate the ”Within-1-Point Agreement”, defined as the percentage of instances
where scores assigned by different LVM judges differ by no more than 1 point.

As shown in Table[T4] the high agreement rates across different models confirm that our evaluation
criteria are robust and model-agnostic. Furthermore, the strong correlation with Human Proxy Anal-
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ysis suggests that our Ground-Truth Anchored protocol effectively aligns automated judgment with
human evaluation standards.

Table 14: Inter-Rater Reliability Analysis of LVM Judge.

Task Within-1-Point Agreement Human Proxy Analysis
Element Understanding 98.7% 96.7%
WebPage Understanding 97.0% 95.4%
User Intent Prediction 96.0% 94.4%

A.5 QUALITATIVE ANALYSIS

To provide deeper insights into Web-CogReasoner’s capabilities, we present a two-part qualitative
analysis. First, we examine the evolution of cognitive abilities across training stages to validate
our curriculum. Second, we present a comparative case study on a complex real-world task to
demonstrate how our model overcomes knowledge blind spots that trap baseline models.

A.5.1 EVOLUTION OF COGNITIVE ABILITIES

Beyond the quantitative improvements shown in our ablation study, a qualitative analysis of the
agent’s behavior at each stage offers deeper insights into how our curriculum shapes its cognitive
abilities. We examine the agents’ performance on a representative task: “Find and add a laptop
under $1000 to the shopping cart on an e-commerce website.”

Base Model (Qwen2.5-VL-7B) Without any specialized training, the base model struggles to
formulate a coherent plan. Its reasoning is often generic and untethered from the specific UL It might
correctly identify a ’search bar” but fails to execute a meaningful action, or hallucinates actions that
are not possible. For instance, its thought process might be: ”I should search for a laptop,” but its
action is an ungrounded ‘click ’Categories” because it lacks the procedural knowledge to connect
intent to a multi-step sequence of actions.

Stage 1 Agent (+ Factual Knowledge) After training on Factual Knowledge, the agent’s per-
ceptual abilities are significantly enhanced. It can now accurately identify and label key elements
with their correct attributes. Its thought process becomes grounded in the facts of the page: "I see
a search bar [ID: 25] with the name ’Search products’. I see a button [ID: 28] with the name
"Search’.” However, it still struggles with planning. It understands “what” is on the page but not
”why” or "how” to use it. It might correctly type “laptop” into the search bar but then get stuck, not
understanding that the next logical step is to click the search button to submit the query.

Stage 2 Agent (+ Conceptual Knowledge) With the addition of Conceptual Knowledge, the agent
begins to understand the relationships between elements and their purpose. Its reasoning graduates
from simple identification to semantic interpretation. The thought process now reflects this under-
standing: "The search bar [ID: 25] is for inputting queries. The search button [ID: 28] is function-
ally linked to it and will trigger the search. This group of elements forms a ’search component’.”
This allows it to reliably complete the search and navigate to the result page. However, on the result

page, it may still struggle with complex procedural logic, such as applying a price filter.

Full Model (Web-CogReasoner + Procedural Knowledge) The final agent, equipped with Pro-
cedural Knowledge, demonstrates goal-oriented planning and execution. It seamlessly translates the
high-level task into a concrete action sequence. Its thought process is now a strategic plan: ”"Goal:
Add laptop under $1000 to cart. Step 1: Type ’laptop’ into search bar [ID: 25]. Step 2: Click search
button [ID: 28]. Step 3: On the results page, locate the ’Price Range’ filter. Step 4: Input *1000’
into the 'max price’ field [ID: 57]. Step 5: Identify a suitable product from the filtered list and click
its "Add to Cart’ button [ID: 83].” This demonstrates a complete cognitive loop from perception and
understanding to successful action, validating the necessity of the final procedural training stage.
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A.5.2 COMPARATIVE CASE STUDY
To validate the necessity of foundational knowledge in handling complex real-world scenarios, we

compare the Base Model with Web-CogReasoner on a specific Amazon task.

Task: “Find a gaming desktop with Windows 11 Home and 1TB disk.”

Base Model Failure: The Knowledge Blind Spot Lacking explicit knowledge of page layout and
element functions, the Base Model literally “sees” the pixels but “misses” the affordance.

* Observation: The model sees the search results but fails to recognize the sidebar filters as
the mechanism to refine the query.

* Error: It misinterprets the page state, assuming a re-search is necessary. It enters a logical
dead loop of repeatedly clicking the search button.

e Action: click [1470] (Search Button) — Stuck.

Web-CogReasoner Success: Knowledge-Driven Grounding Leveraging learned Factual and
Conceptual knowledge, our agent explicitly identifies the functional role of UI components.

* Reasoning: The agent identifies the sidebar as a filter section. It conceptually maps the
user’s ”1TB” requirement to the specific filter element, predicting that clicking it will nar-
row the results without leaving the page.

e Action: click [95] (Filter Link "1 TB") — Success.

This comparison highlights that success in complex tasks is not just about planning (Procedural),
but requires strictly accurate recognition of element functions (Factual/Conceptual) to ground those
plans.

A.6 GUIDELINE FOR REVIEWERS

In the revised manuscript, different font colors are used to highlight the modifications made in
response to each reviewer’s comments, as detailed below.

* Reviewer ri9L: ® and ®

* Reviewer HEcV: ® and @
* Reviewer PZyc: ® and ®
* Reviewer YsZ8: ®
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