

WEB-COGRSEONER: TOWARDS KNOWLEDGE-INDUCED COGNITIVE REASONING FOR WEB AGENTS

Anonymous authors

Paper under double-blind review

Web-CogDataset & Web-CogBench

Impact of Knowledges

WebVoyager

Multimodal-Mind2Web

Web-CogBench

Figure 1: Visualization of the Web-CogKnowledge Framework along with the experimental results.

ABSTRACT

Multimodal large-scale models have significantly advanced the development of web agents, enabling them to perceive and interact with the digital environment in a manner analogous to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning¹. Therefore, we decompose a web agent’s capabilities into two essential phases: **knowledge content learning** and **cognitive processes**. To formalize this, we propose the **Web-CogKnowledge** Framework, which categorizes knowledge into Factual, Conceptual, and Procedural domains. In this framework, knowledge content learning corresponds to the agent’s processes of Memorizing and

¹Drawing inspiration from Bloom’s educational philosophy, a cornerstone of modern pedagogy.

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 Understanding, which rely on the first two types of knowledge respectively, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct **Web-CogDataset**, a structured resource curated from 14 real-world websites, designed to systematically instill the core knowledge necessary for a web agent. This dataset serves as the agent's conceptual grounding—the "nouns" upon which comprehension is built—as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, **Web-CogReasoner**. Extensive experimentation reveals its significant superiority over existing models, particularly in its capacity for generalization to unseen tasks where its structured knowledge proves decisive. To facilitate rigorous and systematic evaluation, we introduce **Web-CogBench**, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities.

1 INTRODUCTION

The advent of large-scale models marks a milestone in artificial intelligence, with Large Multimodal Models (LMMs) greatly expanding application horizons. AI agents have become the primary vehicle for deploying these models, enabling capabilities in code generation (Hui et al., 2024; Jiang et al., 2024), image and video synthesis (Huang et al., 2025; Bie et al., 2024; Assran et al., 2025; Liu et al., 2024c), and academic research (Li et al., 2025; Zhang et al., 2025). Recent progress has also highlighted the growing importance of web agents.

Web agents have evolved from early rule-based systems to modern approaches leveraging Large Language Models (LLMs) and Language Vision Models (LVMs) (Wang et al., 2024; Ning et al., 2025; Zhang et al., 2024; Sapkota et al., 2025). LLM-powered agents typically convert HTML or Accessibility Tree inputs into natural language prompts for reasoning and action. With LVMs, agents gain perceptual abilities akin to human vision, allowing them to process multimodal content on web pages. Broadly, web agents can be categorized as: (1) text-only (Zhou et al., 2023; Li et al., 2023), which miss visual cues; (2) vision-only (Qin et al., 2025), which lack structured data; and (3) hybrid (Koh et al., 2024; He et al., 2024b), which integrate both modalities.

LLMs and LVMs pre-trained on general-domain knowledge provide strong foundations but remain limited in specialized tasks, creating performance bottlenecks. Prior knowledge-enhancement methods often lack systematic or theoretical grounding. To address this, we draw inspiration from Bloom's Taxonomy (Ormell, 1974; Conklin, 2005), which divides learning into two phases: Knowledge Content Learning and Cognitive Processes.

In our paradigm, the first phase builds a multi-layered foundation: Factual Knowledge, covering basic concepts, and Conceptual Knowledge, capturing their interrelations. This equips the agent with core web knowledge and its application to familiar tasks. The second phase develops Procedural Knowledge, providing logical frameworks to synthesize prior knowledge for reasoning and exploration. This enables the agent to "learn how to learn," creatively leveraging self-knowledge to solve novel challenges. This mirrors the human learning trajectory: we first accumulate knowledge through education (Phase 1), and then based on that foundation of knowledge and experience, we learn to apply, innovate, and create (Phase 2).

To support this, we construct Web-CogDataset from 14 prominent websites with 12 fine-grained tasks, and design knowledge-guided reasoning templates combined with imitation learning to instill the required cognitive faculties. Rigorous evaluations on public and in-domain benchmarks show that our method consistently surpasses state-of-the-art baselines, with the performance advantage especially pronounced in knowledge-intensive tasks. These results confirm that structured knowledge acquisition is crucial for enabling agents to excel in complex, domain-specific scenarios.

In summary, our contributions are threefold:

1. Drawing inspiration from Bloom's taxonomy and established human educational paradigms, we propose the Web-CogKnowledge Framework, a systematic, two-phase train-

108 ing methodology designed to enhance the cognitive capabilities of web agents. As shown
 109 in Figure 1, built upon this framework, we develop **Web-CogReasoner**. Rigorous bench-
 110 marking demonstrates that agents trained under our framework achieve a significant per-
 111 formance improvement over current state-of-the-art models.
 112

- 113 2. We construct **Web-CogDataset**, a structured curriculum consisting of 12 fine-grained and
 114 progressively challenging tasks. These tasks are meticulously designed to incrementally
 115 build the agent’s web knowledge, cognition capability, and higher-order reasoning.
- 116 3. To enable comprehensive and robust evaluation, we introduce **Web-CogBench**, a novel
 117 benchmark specifically designed to assess whether a web agent possesses the requisite
 118 prior knowledge and cognitive capabilities for effective web navigation. This benchmark
 119 will be released publicly to foster further research in this area.

120 2 RELATED WORK

121 2.1 WEB AGENT

124 Early work on web understanding focused on structured HTML, addressing tasks like semantic clas-
 125 sification, description generation, and navigation (Gur et al., 2022), with AutoWebGLM (Lai et al.,
 126 2024) further applying curriculum learning for structure recognition, component understanding, and
 127 progressively complex task execution. More recent studies leverage visual signals: SeeClick (Cheng
 128 et al., 2024) linked elements to textual descriptions to enhance localization, CogAgent (Hong et al.,
 129 2024) combined high-resolution cross-module modeling with a large GUI dataset for VQA and
 130 navigation, OmniParser (Wan et al., 2024) unified text spotting, extraction, and table recognition,
 131 UI-TARS (Qin et al., 2025) directly maps screenshots to actions, and UGround (Gou et al., 2024)
 132 trained on 10M GUI elements for robust desktop and mobile performance. Multimodal approaches
 133 integrate text and vision: WebVoyager (He et al., 2024a) combines screenshots with bounding boxes
 134 and accessibility trees, SeeAct (Zheng et al., 2024) grounds text plans via GPT-4V, and TAG (Xu
 135 et al., 2025) exploits pretrained attention for grounding without fine-tuning.

136 2.2 WEB AGENT EVALUATION

138 Benchmarks are categorized into browsing and understanding. For browsing, offline datasets like
 139 Mind2Web (Deng et al., 2023), Multimodal-Mind2Web, AutoWebBench (Lai et al., 2024), and
 140 WebVLN-v1 (Chen et al., 2024) test multi-step task execution, while online environments such as
 141 Mini-WoB++ (Liu et al., 2018), Webshop (Yao et al., 2022), and WebArena (Zhou et al., 2023)
 142 allow real-time evaluation. Mini-WoB++ emphasizes low-level UI operations, whereas Webshop
 143 and WebArena simulate complex tasks. VisualWebArena (Koh et al., 2024) further adds multimodal
 144 inputs for dynamic interactions.

145 For web understanding, WEBQA (Chang et al., 2022) evaluates open-domain multi-hop reasoning.
 146 ScreenQA (Hsiao et al., 2022) and ScreenAI (Baechler et al., 2024) focus on screen comprehen-
 147 sion, with ScreenQA targeting UI recognition and contextual QA, while ScreenAI extends this into
 148 three subtasks: Screen Annotation, ScreenQA Short, and Complex ScreenQA. Together, they assess
 149 layout understanding, semantic interpretation, and reasoning in visually dense interfaces.

150 3 WEB-COGKNOWLEDGE FRAMEWORK

153 3.1 BLOOM’S TAXONOMY

155 The Bloom’s Taxonomy² (Anderson & Krathwohl, 2001) presents a two-dimensional framework:
 156 knowledge content learning and cognitive processes, embodying a ”shallow-to-deep” instructional
 157 methodology. It structures learning from foundational facts and concepts to complex procedures,
 158 ensuring a solid knowledge base before higher-level reasoning.

159 This progression can be formalized through four hierarchical types of knowledge: Factual, Concep-
 160 tual, and Procedural Knowledge. Further details are in Appendix A.1.1.

161 ²<https://fctl.ucf.edu/teaching-resources/course-design/blooms-taxonomy/>

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Figure 2: Illustration of Web-CogDataset.

3.2 WEB-COGKNOWLEDGE

Motivated by Bloom’s taxonomy, we propose a hierarchical web knowledge framework that structures web knowledge according to its taxonomy, collects corresponding knowledge at each level, and trains the model correspondingly. We refer to this knowledge as **Web-CogKnowledge**. This Web-CogKnowledge decomposes knowledge into three levels:

203
204
205
206
207
208
209
210
211
212
213
214
215

1. **Factual knowledge:** concrete information extracted from web contents, such as identifying the attributes of individual web elements and predicting the immediate, direct consequences of a single interaction.
2. **Conceptual knowledge:** semantic relationships and abstract patterns underlying webpage content and structures, such as inferring the function of interface components, comprehending the overall purpose and structure of a webpage, and interpreting its multimodal content.
3. **Procedural knowledge:** actionable know-how for accomplishing specific tasks through interaction, including planning, decision-making, and sequential execution. Such as executing goal-oriented action sequences, inferring user intent from observed behaviors, and handling unexpected interruptions to complete complex tasks.

This taxonomy aligns each knowledge type with a corresponding cognitive competency required for web-based reasoning and interaction.

216 To fully leverage the potential of **Web-CogKnowledge**, leading to the ultimate realization of the
 217 **Web-CogKnowledge Framework**, we first collect multimodal metadata from 14 real-world web-
 218 sites (see Figure 5) and then design **Web-CogDataset** with diverse sets of web tasks for web-agent
 219 training in Section 3.3, and finally construct **Web-CogBench** in Section 3.4, built from meticulously
 220 chosen subsets. Specifically, we curate **Web-CogReasoner** learning and training process in Section
 221 4 due to its importance and complexity. More details about data collection and cleaning process can
 222 be found in Appendix A.1.5.

223 **3.3 WEB-COGDATASET**

225 By selectively crawling metadata from 14 representative websites and aligning it with the hierar-
 226 chical design of Web-CogKnowledge, we construct **Web-CogDataset**, a large-scale, hierarchically
 227 structured dataset tailored for knowledge-centric web reasoning. The dataset spans three layers of
 228 knowledge: Factual, Conceptual, and Procedural. Each mapped to carefully designed task families
 229 that progressively cultivate perception, comprehension, and action-oriented reasoning.

230 As illustrated in Figure 2, these tasks together form a coherent pipeline that transitions agents from
 231 identifying elemental attributes, to grasping semantic patterns and page structures, and finally to
 232 executing complex, goal-directed interactions under realistic constraints. This organization mirrors
 233 human learning trajectories, ensuring that higher-order reasoning is built on solid perceptual and
 234 conceptual foundations.

235 Detailed task definitions, implementation protocols, and examples are provided in Appendix A.2.
 236 Dataset statistics are reported in Table 13. **To ensure data quality and diversity, we further analyze**
 237 **the dataset composition and annotation reliability in Appendix A.1.4.**

239 **3.4 WEB-COGBENCH**

241 To evaluate the cognitive capabilities enabled by our knowledge-centric framework, we introduce
 242 Web-CogBench. While our training dataset is organized by knowledge type (Factual, Concep-
 243 tual, Procedural), Web-CogBench measures agent performance across three corresponding abili-
 244 ties: Memorizing, Understanding, and Exploring. Curated from a representative subset of Web-
 245 CogDataset, it assesses how effectively an agent applies learned knowledge in complex web con-
 246 texts. Detailed statistics are in Table 1, and the evaluation dimensions align with our hierarchical
 247 knowledge framework. A complete definition of all tasks is provided in the appendix A.2.2.

248 **Table 1: Statistics of Web-CogBench.**

250 Task	251 Congition	252 Metric	253 #Num
254 Element Attribute Recognition		ROUGE-L	249
255 Next Page Prediction	Memorizing	Accuracy	93
256 Source Element Prediction		Accuracy	32
257 Element Understanding	Understanding	LVM Judge	200
258 WebPage Understanding		LVM Judge	77
259 User’s Intention Prediction	Exploring	LVM Judge	105
260 Popup Close		Accuracy	58
261 Single Step Exploration		Accuracy	62
262 Total	-	-	876

263 **Memorizing** Assessing the agent’s ability to recall and recognize concrete information, directly
 264 corresponding to the acquisition of Factual Knowledge. It evaluates whether the agent can accurately
 265 identify the attributes of web elements and the state of a webpage.

266 **Understanding** Measuring the agent’s capacity for semantic interpretation, aligning with the mas-
 267 tery of Conceptual Knowledge. It tests whether the agent can move beyond mere identification to
 268 comprehend the function of elements and the contextual relationships within a page.

270 **Exploring** Evaluating the agent's ability to plan and execute goal-oriented actions, reflecting the
 271 application of Procedural Knowledge. It assesses whether the agent can strategically navigate the
 272 web, handle interruptions, and complete multi-step tasks to fulfill user goals.
 273

274 4 WEB-COGRSEONER

275 4.1 PROBLEM SETUP

276 We model the interaction between Web-CogReasoner and the environment as a partially observable
 277 Markov decision process (POMDP): $P = (S, A, O, K, T, R)$, where S denotes the webpage state,
 278 A the action space (Table 10), O the observation space, K the internal knowledge, T the transition
 279 function, and R the reward function. At each step t , the agent receives a screenshot and its accessibility
 280 tree (AX Tree), forms a reasoning thought h_t , and selects an action a_t under policy π_θ . This
 281 process continues until task completion or step limits are reached, with binary rewards indicating
 282 success or failure.
 283

284 4.2 FRAMEWORK OVERVIEW

285 Web-CogReasoner is a knowledge-driven reasoning system built on LVMs and trained on Web-
 286 CogDataset (Section 3.3). As illustrated in Figure 3, it tackles complex web tasks by generating a
 287 **Knowledge-driven Chain-of-Thought (CoT)**, in which each reasoning stage is explicitly grounded
 288 in a layer of Web-CogKnowledge.
 289

320 Figure 3: Illustrating the Knowledge-driven Chain of Thought (CoT) process.
 321

322 **Knowledge-driven CoT Reasoning** The core of Web-CogReasoner is a structured chain-of-
 323 thought (CoT) reasoning process (Figure 3), decomposed into three layers: *Factual* (identify-

324 ing page elements and states: “What is on the page?”), *Conceptual* (inferring roles and interactions: “What does it mean?”), and *Procedural* (planning goal-directed steps: “How to accomplish the task?”). This layered reasoning maps task prompts to executable actions: **Task Prompt** → 325 **Knowledge-driven CoT** → **Plan** → **Action**. The agent initiates with a Task and observes the web- 326 page (Observation Space). This structured reasoning guides the Planning phase, which decomposes 327 the task and formulates a step-by-step strategy. The process culminates in a concrete Action to be 328 executed on the webpage. 329

331 332 5 EXPERIMENT

333 334 5.1 EXPERIMENTAL SETUP

335 **Models and Baselines** Our proposed **Web-CogReasoner** builds on **Qwen2.5-VL-7B** (Bai et al., 336 2025), extended with a knowledge-induced reasoning framework. Training details are provided 337 in Appendix A.3.1. For comparison, we include diverse baselines: the vanilla Qwen2.5-VL-7B 338 (zero/few-shot), **OpenWebVoyager** (He et al., 2024b) in IL and Max variants, the open-source 339 **UI-TARS-7B-SFT** (Qin et al., 2025), and two powerful commercial LVMs, **Claude Sonnet 4** and 340 **Gemini 2.5 Pro**. Together these cover foundational LLMs, end-to-end web agents, and general- 341 purpose multimodal models. 342

343 **Datasets** Web-CogReasoner is trained via supervised fine-tuning on the curated **Web-CogDataset** 344 (Sec. 3.3), which aligns samples with Factual, Conceptual, and Procedural knowledge using screen- 345 shots, accessibility trees, and reasoning trajectories. Evaluation is conducted on four datasets. Our 346 custom **Web-CogBench** (Sec. 3.4) assesses cognitive dimensions of Memorizing, Understanding, 347 and Exploring. **VisualWebBench** (Liu et al., 2024b) provides 1.5K curated tasks across 139 real 348 websites, testing grounding and reasoning in diverse settings. **WebVoyager** (He et al., 2024b) contains 349 643 queries across 15 seen sites, measuring performance in familiar environments. **Online** 350 **Multimodal-Mind2Web** (Deng et al., 2023) evaluates cross-task and cross-website generalization 351 with queries from both known and unseen domains. 352

353 354 5.2 MAIN RESULTS

355 Table 2: Performance evaluation on the Web-CogBench benchmark.

356 Model	357 Element Attribute Rec	358 Next Page Pre	359 Source Element Pre	360 Element Understanding
358 Claude Sonnet 4	79.7	93.5	62.5	62.8
359 Gemini 2.5 Pro	79.8	94.6	84.4	62.6
360 Qwen2.5-VL-7B	53.2	83.9	65.6	60.0
361 UI-TARS-7B-SFT	63.5	88.0	31.3	48.0
362 Web-CogReasoner (Ours)	91.4	93.5	87.5	69.2

364	365 WebPage Understanding	366 User Intent Pre	367 Popup Close	368 Single Step Exp	369 Overall
367 Claude Sonnet 4	54.3	64.7	100	96.8	76.8
368 Gemini 2.5 Pro	73.5	51.9	96.6	98.4	80.4
369 Qwen2.5-VL-7B	62.0	51.9	91.4	90.3	69.8
370 UI-TARS-7B-SFT	48.0	32.4	25.9	33.9	46.4
371 Web-CogReasoner (Ours)	79.0	61.4	98.3	95.2	84.4

373 **Results on Web-CogBench** We evaluate Web-CogReasoner on **Web-CogBench**, which assesses 374 foundational knowledge and cognitive reasoning across twelve web tasks. As Table 2 shows, 375 our model outperforms both commercial and open-source baselines, owing to the integration of 376 structured Web-CogKnowledge (factual, conceptual, procedural) with Knowledge-driven Chain-of- 377 Thought reasoning. This combination enables accurate perception of web elements and informed,

378 step-wise decision-making. The strong synergy between visual recognition and cognitive reasoning allows Web-CogReasoner to excel on diverse tasks and generalize effectively to web navigation scenarios. **We also provide a detailed LVM evaluation protocol and inter-rater reliability analysis in Appendix A.4 to validate the robustness of our scoring metrics.**

383 Table 3: Performance evaluation on the VisualWebBench benchmark.

Model	Perception-Oriented Tasks			Perception Avg	Reasoning-Oriented Tasks			Reasoning Avg	Overall Avg
	WebQA	HeadOCR	OCR		Element Ground	Action Prediction	Action Ground		
Claude Sonnet 4	73.3	72.6	96.2	80.7	81.1	96.1	96.3	91.2	85.9
Gemini 2.5 Pro	74.9	70.8	95.1	80.3	91.8	96.8	90.3	93.0	86.6
Qwen2.5-VL-7B	70.8	71.7	81.4	74.6	77.5	86.8	68.0	77.4	76.0
UI-TARs-7B-SFT	71.3	78.7	97.2	82.4	91.8	91.8	85.4	89.7	86.0
Web-CogReasoner (Ours)	67.2	72.6	97.0	79.0	96.4	96.1	88.4	93.6	86.3

392 **Results on VisualWebBench** We evaluate visual understanding on **VisualWebBench** (Liu et al., 393 2024b). As Table 3 shows, Web-CogReasoner achieves the highest average score (86.3%), slightly 394 above UI-TARs (86.0%). However, UI-TARs performs poorly on Web-CogBench (46.4%), highlighting 395 that strong visual perception alone does not ensure robust cognitive reasoning. In contrast, 396 Web-CogReasoner consistently excels across both visual and reasoning benchmarks, demonstrating 397 the effective integration of precise visual perception with structured knowledge-driven reasoning — 398 a dual capability essential for reliable web agents.

399 Table 4: Task success rates on the WebVoyager. The "Overall" score is the average success rate.

Agent	Allrecipes	Amazon	Apple	ArXiv	GitHub	Booking	ESPN	Coursera	Overall
Claude Sonnet 4	26.7%	87.8%	48.8%	69.8%	68.3%	2.3%	45.5%	83.3%	
Gemini 2.5 Pro	60.0%	63.4%	62.8%	67.4%	68.3%	9.1%	56.8%	73.8%	
Qwen2.5-VL-7B	0.0%	0.0%	0.0%	4.7%	0.0%	0.0%	0.0%	2.3%	
OpenWebVoyager _{IL}	17.8%	12.2%	20.9%	14.0%	14.6%	9.1%	9.1%	31.0%	
OpenWebVoyager _{Max}	22.2%	29.3%	32.6%	20.9%	26.8%	11.4%	11.4%	42.9%	
Web-CogReasoner (Ours)	26.7%	31.7%	32.6%	34.9%	29.3%	2.3%	15.9%	54.8%	
	BBC News	Cambridge Dictionary	Google Flights	Google Map	Huggingface	Wolfram Alpha		Overall	
Claude Sonnet 4	23.8%	37.2%	4.8%	80.5%	48.8%	82.6%		47.7%	
Gemini 2.5 Pro	52.3%	76.7%	4.8%	75.6%	58.1%	82.6%		54.9%	
Qwen2.5-VL-7B	0.0%	11.6%	0.0%	2.4%	7.0%	2.2%		2.2%	
OpenWebVoyager _{IL}	9.5%	37.2%	9.5%	22.0%	20.9%	26.1%		18.1%	
OpenWebVoyager _{Max}	14.3%	34.9%	21.4%	29.3%	32.6%	37.0%		26.2%	
Web-CogReasoner (Ours)	14.3%	55.8%	9.5%	39.0%	37.2%	39.1%		30.2%	

417 Table 5: Performance comparison on the Online-Mind2Web under cross-task and cross-websites

Agent	Cross-task (Unseen Task)				Cross-web (Unseen Websites)				Overall
	Entertainment	Shopping	Travel	Overall	Entertainment	Shopping	Travel	Overall	
Claude Sonnet 4	44.9%	35.3%	40.0%	40.2%	45.5%	6.7%	14.0%	21.7%	
Gemini 2.5 Pro	46.9%	35.3%	28.3%	37.5%	42.4%	10.0%	23.3%	25.5%	
OpenWebVoyager _{Max}	22.4%	29.4%	15.2%	20.5%	3.0%	8.7%	23.3%	11.7%	
Qwen2.5-VL-7B	2.2%	0.0%	0.0%	1.0%	3.0%	0.0%	0.0%	1.0%	
OpenWebVoyager _{IL}	8.2%	5.9%	4.3%	6.3%	3.0%	5.8%	4.7%	6.6%	
Web-CogReasoner (Ours)	16.3%	23.5%	15.2%	17.0%	12.1%	7.7%	9.3%	10.1%	

427 **Results on Online Web Tasks** We evaluate Web-CogReasoner on live web tasks using **WebVoyager** and **Online Multimodal-Mind2Web** to assess practical utility and generalization to 428 unseen websites and multi-step tasks, excluding UI-TARs-7B-SFT due to missing online inference 429 scripts. Web-CogReasoner achieves state-of-the-art performance among open-source agents, 430 demonstrating that integrating structured Web-CogKnowledge with Chain-of-Thought reasoning 431 enhances accurate perception and informed task execution. On Mind2Web, which tests cross-task

and cross-web generalization, OpenWebVoyager_{Max} appears competitive but uses additional sample collection and retraining on high-error sites, making direct comparison unfair. Without task-specific fine-tuning, Web-CogReasoner outperforms OpenWebVoyager_{IL} and remains competitive with OpenWebVoyager_{Max}, highlighting that structured knowledge and cognitive reasoning provide robust, broadly applicable generalization.

Table 6: Average steps per successful task across different benchmarks.

Agent	WebVoyager	Mind2Web Cross-Task	Mind2Web Cross-Web	Final Avg
Claude	7.35	10.89	11.04	9.76
Gemini	6.68	7.74	10.30	8.24
OpenWebVoyager _{Max}	5.07	7.59	6.91	6.52
Qwen2.5-VL-7B	7.69	12.00	13.00	10.9
OpenWebVoyager _{IL}	5.26	7.00	9.29	7.18
Ours	4.73	7.37	8.89	7.00

Results on Average Steps Table 6 reports the average number of steps for successful online tasks. Our approach consistently achieves high efficiency, particularly in cross-domain scenarios, indicating that the model effectively balances streamlined task execution with robust generalization to unseen environments.

5.3 ABLATION STUDY

To empirically validate the effectiveness of our Web-CogKnowledge Framework, we conduct a two-fold ablation study. First, we evaluate the cumulative gains of our curriculum learning strategy (Table 7). Second, to address specific inquiries regarding the necessity of each knowledge layer and the reasoning mechanism, we provide a detailed component analysis on both Web-CogBench and WebVoyager (Tables 8 and 9).

Table 7: Cumulative Gains: Impact of progressive knowledge training on Web-CogBench.

Model Configuration	Memorizing	Understanding	Exploring	Overall
Qwen2.5-VL-7B (Base Model)	67.6	61.0	77.9	69.8
+ Factual Knowledge (S1)	85.5 (+17.9)	64.2	60.1	72.1
+ Conceptual Knowledge (S2)	88.1	75.5 (+11.3)	65.8	78.3
+ Procedural Knowledge (S3)	90.8	74.1	85.0 (+19.2)	84.4

Cumulative Impact of Curriculum Learning We evaluate the roles of Factual, Conceptual, and Procedural knowledge through an ablation study that incrementally augments the base Qwen2.5-VL-7B model and measures performance on Web-CogBench. Factual Knowledge provides the perceptual grounding needed for accurate element recognition, strengthening the Memorizing dimension. Conceptual Knowledge introduces semantic structure and functional understanding, improving the Understanding dimension and enabling basic multi-step behaviors. Procedural Knowledge adds goal-directed planning and execution, yielding major gains in the Exploring dimension. Qualitative examples illustrating how perception, interpretation, and planning evolve across stages are presented in Appendix A.5. Together, the results show that each knowledge layer is essential, and their integration is key to Web-CogReasoner’s cognitive robustness and performance.

Hierarchical Dependency of Knowledge To demonstrate that our stages are not merely isolated skills but hierarchically dependent layers, we present a detailed breakdown in Table 8 and Table 9.

- **Low-level Knowledge is a Prerequisite:** As seen in Table 8, single-stage models (S2 only, S3 only) perform poorly on comprehensive metrics. Crucially, adding Factual training (S1) significantly boosts the performance of higher-level stages. For example, on WebVoyager (Table 9), combining S1 with S3 nearly doubles the success rate compared to S3 alone

486

487

Table 8: Component Analysis on Web-CogBench: Validating hierarchical dependency.

488

489

Model	Memorizing	Understanding	Exploring	Overall
Base model	67.6	61.0	77.9	69.81
S1 only	85.5	64.2	60.1	70.65
S2 only	59.88	68.03	60.00	61.96
S3 only	52.82	46.40	78.00	60.66
S1+S2	88.1	75.5	65.8	76.59
S1+S3	85.11	53.53	82.31	76.17
S2+S3	64.87	69.74	81.41	72.29
S1+S2+S3 (Full)	90.8	74.1	85.0	84.45

497

498

499

500

Table 9: Impact of Knowledge & KCoT on WebVoyager, real-world online tasks.

501

502

Model	Amazon	Cambridge	Coursera	GitHub	Overall
S1 only	12.19%	25.58%	14.28%	7.14%	12.67%
S3 only	17.07%	11.62%	16.66%	14.28%	13.14%
S1+S3	29.26%	34.88%	28.57%	16.66%	23.47%
S1+S2+S3 (w/o KCoT)	19.51%	51.16%	26.19%	23.80%	25.35%
S1+S2+S3 (w/ KCoT)	31.7%	55.8%	54.8%	29.3%	42.9%

507

508

509

510

(**23.47% vs. 13.14%**). This proves that procedural exploration (S3) cannot function effectively without accurate factual grounding (S1).

511

512

513

514

- **Integration is Critical:** While specific stages excel at their corresponding metrics (e.g., S3 on Exploring), only the fully integrated model (S1+S2+S3) achieves robust performance across all dimensions, confirming that complex web agents require a complete cognitive stack.

515

516

517

518

519

520

521

Reasoning Activation via KCoT Finally, we investigate the role of our reasoning framework. While the full combination of data (S1+S2+S3) builds a strong latent representation, explicit reasoning is required to utilize it. As shown in Table 9, removing the Knowledge-driven Chain-of-Thought (w/o KCoT) causes a sharp drop in online success rate from **42.9% to 25.35%**. This indicates that KCoT acts as a crucial activator, bridging the gap between *possessing* knowledge and *applying* it dynamically for decision-making.

522

523

6 CONCLUSION

524

525

526

527

528

529

530

531

532

533

534

We present Web-CogReasoner, a cognitive-inspired framework for web agents that systematically instills Factual, Conceptual, and Procedural Knowledge, following Bloom’s Taxonomy. By coupling the Web-CogKnowledge Framework with the Web-CogDataset and Web-CogBench, our approach enables interpretable, step-wise reasoning through knowledge-driven Chain-of-Thoughts, yielding strong performance on complex web navigation and instruction-following tasks. Ablation and qualitative analyses confirm the indispensability of each knowledge stage, demonstrating how a structured curriculum produces robust perceptual and cognitive capabilities. While current results rely on imitation learning, future work aims to integrate reinforcement learning to enhance exploration, generalization, and autonomous discovery of procedural knowledge, advancing toward truly adaptive and self-directed web agents.

535

536

7 ETHICS STATEMENT

537

538

539

This work does not involve human subjects, private or sensitive data, or any personally identifiable information. All datasets employed in our experiments are publicly available and have been used in accordance with their respective licenses. We acknowledge the potential societal risks associated

540 with large language models, including issues of fairness, bias, and misuse. While these concerns are
 541 not the primary focus of this work, we have taken steps to ensure responsible experimentation, in-
 542 cluding transparent reporting of datasets, models, and evaluation protocols. The release of our code
 543 and models will be accompanied by appropriate documentation and usage guidelines to mitigate
 544 unintended applications.

546 8 REPRODUCIBILITY STATEMENT

548 We have made every effort to ensure that our results are fully reproducible. All relevant de-
 549 tails—including the proposed methodology, model architecture, training objectives, evaluation pro-
 550 tocols, hyperparameter settings, ablation configurations, and data preprocessing pipeline—are thor-
 551oughly documented in the appendix. All datasets used in our experiments are publicly accessible,
 552 and instructions for reproducing our experiments are clearly provided. To further support inde-
 553 pendent verification and extension of our work, we will release the source code, trained model
 554 checkpoints, and experiment scripts in the near future.

556 9 LLM USAGE

558 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 559 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 560 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 561 grammar checking, and enhancing the overall flow of the text.

562 In our research, LLMs were used to assist in generating training tasks. Specifically, in Section 13,
 563 we used the LLM infer the functions of web page elements based on web page screenshots and
 564 structured text. We then used these results to build training data, which helped improve the target
 565 model’s understanding and prediction capabilities.

566 It is important to note that the LLM was not involved in developing the research concepts, designing
 567 the research methodology, or formulating the experimental protocols. All research concepts, ideas,
 568 and analyses were independently developed and implemented by the authors. The authors bear full
 569 responsibility for the content of the manuscript, including any text generated or polished by the
 570 LLM. We have ensured that the text generated by the LLM complies with ethical guidelines and
 571 does not involve plagiarism or scientific misconduct.

572 REFERENCES

575 Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
 576 mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
 577 models enable understanding, prediction and planning. *arXiv preprint arXiv:2506.09985*, 2025.

578 Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Vic-
 579 tor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
 580 model for ui and infographics understanding. *arXiv preprint arXiv:2402.04615*, 2024.

581 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 582 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 583 2025.

584 Fengxiang Bie, Yibo Yang, Zhongzhu Zhou, Adam Ghanem, Minjia Zhang, Zhewei Yao, Xiaoxia
 585 Wu, Connor Holmes, Pareesa Golnari, David A Clifton, et al. Renaissance: A survey into ai
 586 text-to-image generation in the era of large model. *IEEE Transactions on Pattern Analysis and
 587 Machine Intelligence*, 2024.

588 Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
 589 Webqa: Multihop and multimodal qa. In *Proceedings of the IEEE/CVF conference on computer
 590 vision and pattern recognition*, pp. 16495–16504, 2022.

592 Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze Zhou, Hsiang-Ting Chen, and Qi Wu. We-
 593 bvl: Vision-and-language navigation on websites. In *Proceedings of the AAAI Conference on
 Artificial Intelligence*, volume 38, pp. 1165–1173, 2024.

594 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. *arXiv preprint*
 595 *arXiv:2401.10935*, 2024.

596

597 Jack Conklin. A taxonomy for learning, teaching, and assessing: A revision of bloom's taxonomy
 598 of educational objectives complete edition, 2005.

599

600 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
 601 Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing*
 602 *Systems*, 36:28091–28114, 2023.

603

604 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 605 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
 606 *arXiv preprint arXiv:2410.05243*, 2024.

607

608 Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
 609 Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
 610 models. *arXiv preprint arXiv:2210.03945*, 2022.

611

612 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
 613 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
 614 *arXiv preprint arXiv:2401.13919*, 2024a.

615

616 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
 617 Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world
 618 exploration, feedback and optimization. *arXiv preprint arXiv:2410.19609*, 2024b.

619

620 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 621 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 622 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 623 14281–14290, 2024.

624

625 Yu-Chung Hsiao, Fedir Zubach, Gilles Baechler, Victor Carbune, Jason Lin, Maria Wang, Srinivas
 626 Sunkara, Yun Zhu, and Jindong Chen. Screenqa: Large-scale question-answer pairs over mobile
 627 app screenshots. *arXiv preprint arXiv:2209.08199*, 2022.

628

629 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong,
 630 He Zhang, Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey.
 631 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

632

633 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 634 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 635 2024.

636

637 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
 638 models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

639

640 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 641 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 642 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

643

644 Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
 645 Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web
 646 navigating agent. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
 647 and Data Mining*, pp. 5295–5306, 2024.

648

649 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 650 municative agents for "mind" exploration of large language model society. *Advances in Neural
 651 Information Processing Systems*, 36:51991–52008, 2023.

652

653 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 654 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 655 *arXiv preprint arXiv:2504.21776*, 2025.

648 Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
 649 learning on web interfaces using workflow-guided exploration. *arXiv preprint arXiv:1802.08802*,
 650 2018.

651

652 Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhui Chen, Gra-
 653 ham Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. *arXiv*
 654 *preprint arXiv:2410.13824*, 2024a.

655 Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
 656 Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
 657 grounding? *arXiv preprint arXiv:2404.05955*, 2024b.

658

659 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
 660 Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
 661 opportunities of large vision models. *arXiv preprint arXiv:2402.17177*, 2024c.

662 Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong Wei,
 663 Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation ai agents
 664 for web automation with large foundation models. *arXiv preprint arXiv:2503.23350*, 2025.

665

666 CHRISTOPHER P Ormell. Bloom’s taxonomy and the objectives of education. *Educational Re-
 667 search*, 17(1):3–18, 1974.

668

669 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 670 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 671 agents. *arXiv preprint arXiv:2501.12326*, 2025.

672 Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A con-
 673 ceptual taxonomy, applications and challenge. *arXiv preprint arXiv:2505.10468*, 2025.

674

675 Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai,
 676 Cong Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting key information
 677 extraction and table recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition*, pp. 15641–15653, 2024.

678

679 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 680 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

681

682 Hai-Ming Xu, Qi Chen, Lei Wang, and Lingqiao Liu. Attention-driven gui grounding: Leveraging
 683 pretrained multimodal large language models without fine-tuning. In *Proceedings of the AAAI
 Conference on Artificial Intelligence*, volume 39, pp. 8851–8859, 2025.

684

685 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 686 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-
 687 cessing Systems*, 35:20744–20757, 2022.

688

689 Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
 690 Liu, Qingwei Lin, et al. Large language model-brained gui agents: A survey. *arXiv preprint
 691 arXiv:2411.18279*, 2024.

692

693 Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Jiabin
 694 Luo, Yijiang Li, Shuo Yin, et al. aixiv: A next-generation open access ecosystem for scientific
 695 discovery generated by ai scientists. *arXiv preprint arXiv:2508.15126*, 2025.

696

697 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
 698 agent, if grounded. *arXiv preprint arXiv:2401.01614*, 2024.

699

700 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 701 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

A APPENDIX

A.1 WEB COGNITION AND DATA DETAILS

A.1.1 BLOOM'S TAXONOMY

- 1. Factual Knowledge:** The foundational layer, encompassing the basic, discrete elements of a discipline that a student must know, such as essential terminology and specific, isolated details.
- 2. Conceptual Knowledge:** The synthesis of factual elements into a coherent, organized structure. This level focuses on the interrelationships between basic elements, including knowledge of classifications, principles, generalizations, theories, and models.
- 3. Procedural Knowledge:** The knowledge of how to perform a task or inquiry. This involves an understanding of specific skills, algorithms, techniques, and methods, representing a shift from "knowing-what" to "knowing-how."

Table 10: Action space of Web-CogReasoner for web interaction.

Instruction	Description
click [id]	Click an element
type [id] [content]	Input specified content into an element
scroll [id or WINDOW] [up/down]	Scroll an element or the page up/down
dblclick [id]	Double-click an element
go_back	Navigate to the previous webpage
go_forward	Navigate to the next webpage
stop [content]	Submit the final answer
Restart	Restart the current task
Wait	Wait for one second before proceeding

A.1.2 ACTION SPACE OVERVIEW

Table 10 summarizes the action space of Web-CogReasoner for web interaction tasks. The table categorizes actions into two groups: (1) element-specific operations, such as clicking, typing, double-clicking, and scrolling individual elements; and (2) page-level control actions, including navigation commands, task restart, waiting, and final answer submission. This structured action space enables the agent to perform a diverse set of interactions, facilitating comprehensive exploration and manipulation of web pages in a controlled and systematic manner.

A 1.3 STAGES OF HUMAN KNOWLEDGE AND COGNITIVE DEVELOPMENT

Cognitive science typically classifies human knowledge into three categories—factual, conceptual, and procedural—which correspond to different stages of cognitive development: perceiving, understanding, and executing. This taxonomy captures the natural trajectory of human learning: starting with the perception of concrete facts and data (factual knowledge), progressing toward abstract comprehension of concepts and relationships (conceptual knowledge), and ultimately acquiring the ability to carry out complex, goal-oriented behaviors through practiced routines and strategies (procedural knowledge). An illustrative example is shown in Figure4.

A 1.4 WEB DATA INTRODUCTION

Figure 5 presents the statistics of the selected websites, grouped by category. The visualization highlights the relative proportions of different types of websites included in our study, providing an overview of the dataset composition. Such a distribution analysis is crucial for understanding potential biases, ensuring coverage across diverse web domains, and evaluating the generalizability of models trained or tested on these websites.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

Figure 4: How people handle unfamiliar web pages. People learn factual, conceptual, and procedural knowledge to memorize, understand, and explore the web, ultimately completing specific tasks.

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 5: Statistics of selected websites by category.

E-commerce	Finance	Developer Tools	Social & Media
Amazon	Binance	Github	Zhihu
Ebay	Coinglass	Stack Overflow	Weibo
12306	Eastmoney	Stack Exchange	Bilibili
Airbnb			Apple Music

810
811 **Data Composition and Balance** To avoid domain overfitting and ensure both interaction depth
812 and broad generalization, Web-CogDataset employs a strategic hybrid data composition:

813
814 1. **Depth via Self-Collected Data:** We selected 14 complex websites for high-depth interac-
815 tion mining to capture intricate logic often missed by general crawls. As shown in Figure 5,
816 we strictly maintained category balance across E-commerce, Finance, Developer Tools, and
817 Social Media within this subset to prevent bias toward any single domain.
818
819 2. **Breadth via Open-Source Augmentation:** To address the concern of limited domain di-
820 versity (e.g., lack of News, Education, or Forums), we incorporated and enhanced large-
821 scale open-source datasets, including **MultiUI** (Liu et al., 2024a), **Mind2Web** (Deng et al.,
822 2023), and **OpenWebVoyager** (He et al., 2024b). Notably, MultiUI is derived from
823 FineWeb (Common Crawl), providing massive coverage of general-purpose webpages.
824 This combination ensures our model generalizes to the "wild" web and is not overfitted
825 to specific interaction styles like financial trading or shopping.
826

827 **Annotation Reliability** We validated our automated annotations via double-blind human verifica-
828 tion and cross-model consistency checks (e.g., using GPT-4o). As shown in Table 11, the error rate
829 is minimal.

830 **Table 11: Reliability Check of Web-CogDataset Annotations.**

Annotation Task	Human Verification (Acc)	Cross-Model Consistency
Element Attribute	99.2%	98.5%
Page Change Pred	97.5%	96.8%
Sub-element Pred	96.8%	95.4%
Average	97.8%	96.9%

830 A.1.5 DATA SOURCING

831 To collect comprehensive metadata from web pages, we developed a data collection tool based
832 on Playwright. This tool performs deep traversal and interaction by systematically clicking on all
833 elements within each page. We define each round of interaction (i.e., one click) as a layer, and using
834 this iterative approach, we collected Layer 1 to Layer 6 data from 14 different websites (for complete
835 website information, refer to Table 5)

836 **Table 12: Web elements's meta-data.**

Data	Description
css	element's CSS selectors
allcss	CSS selector sequence of preceding elements
outerhtml	element's outerhtml
location	element's boundingbox
role	element's role
name	element's name

837 **Data precessing** For each web element, we capture its standalone screenshot, as well as screen-
838 shots taken before clicking (both with and without a red bounding box), after hovering, and after
839 clicking. See Figure 6 for an example. We also collect the following metadata: CSS, allCSS, outer-
840 HTML, and location. Additionally, we extract semantic information from each element based on its
841 outerHTML. If a role attribute is explicitly defined, we use its value directly as the element's semantic
842 role. Otherwise, we infer the role by mapping the tag name using the WAI-ARIA specification.
843 Similarly, to determine the element's semantic name, we extract the value of the aria-label if present;
844 otherwise, we get its textual content. See Table 12 for detailed metadata of the web elements.

845 After collecting both the visual and semantic metadata, we present the corresponding screenshots of
846 each clickable element to Qwen-VL 72B. The model is instructed to:

Figure 6: Example visual states of a web element (“USD”) we captured. Shown are: the element highlighted in the full-page view (base_rect.png), the hover state (hover.png), and the click state (click.png). These screenshots illustrate how the element’s visual context evolves through user interactions.

- analyze the visual changes on the page after hovering over and clicking the target element;
- identify and list any sub-elements that appear upon interaction (e.g., when a dropdown menu is triggered by clicking);
- infer and generalize the functional purpose of the element.

For the functional purpose prediction, the model is additionally required to provide a confidence score. If this score remains below 0.5 after three retries, the prediction is excluded from evaluation.

A.2 TASK DEFINITION

A.2.1 WEB-COGDATASET

Table 13: Statistics of Web-CogDataset.

Knowledge	Task	Statistics	
		Subtotal	Total
Factual Web Knowledge	Element Attribute Recognition	37K	
	Sub-element Prediction	1K	
	Page Change Prediction	24K	81K
	Next Page Prediction	18K	
	Source Element Prediction	1K	
Conceptual Web Knowledge	Element Understanding	40K	
	WebPage Understanding	7K	62K
	Caption & QA	15K	
Procedural Web Knowledge	User’s Intention Prediction	2K	
	Popup Close	1K	
	Single-Step Web Task	17K	27K
	Noisy Multi-Step Web Task	7K	

918 A.2.2 WEB-COGBENCH
919

- 920 • **Element Attribute Recognition:** Given a screenshot with a highlighted interactive ele-
921 ment, the model predicts its semantic role (e.g., button, link) and accessible name (e.g.,
922 “Submit”, “Search”), relying solely on visual cues.
- 923 • **Next Page Prediction:** The model predicts the subsequent page that results from interact-
924 ing with a specific element on the current page. To enhance generalization, we designs two
925 types of tasks: multiple-choice questions and open-ended responses.
- 926 • **Source Element Prediction:** Given two screenshots, the current page and the resulting
927 target page, then the model identifies which of the visually marked elements on the current
928 page leads to the target, simulating visual cause-and-effect reasoning.
- 929 • **Element Understanding:** For a specific interactive element, the model generates an open-
930 ended paragraph that comprehensively describes the element’s Visible Traits (e.g., text,
931 shape, styling), its On-page Location (e.g., header, sidebar, main content), and its likely
932 User-facing Function (e.g., playing a video, navigating to a new page), relying solely on
933 visual context.
- 934 • **WebPage Understanding:** Given a full-page screenshot, the model generates a com-
935 prehensive overview describing the webpage’s Layout Organization (e.g., header, event in-
936 formation, seating chart, filter panel), Key Element Analysis (e.g., element attribute, de-
937 scription, function, interaction, expected outcome), and a Summary of the WebPage. This
938 enables a thorough understanding of the webpage’s structure and functionality.
- 939 • **User’s Intention Prediction:** The model infers high-level user intent from a sequence of
940 webpage screenshots representing an interaction trajectory, requiring visual understanding
941 and temporal reasoning. The task is built on the MultiModal-Mind2Web (Deng et al., 2023)
942 dataset, mapping screenshot sequences to natural language instructions.
- 943 • **Popup Close:** The model identifies and dismisses popups (e.g., notification modals, login
944 forms) on synthesized webpage screenshots, using a dataset of 51 popup components from
945 JS Design³ overlaid on OpenWebVoyager (He et al., 2024b) webpages, with combinatorial
946 augmentation of closing strategies for diverse training.
- 947 • **Single Step Exploration:** This task is derived from a multi-step trajectory exploration
948 task and has been decomposed into single-step exploration subtasks. For each step, the
949 model receives as input the corresponding accessibility tree (AxTree) and a screenshot
950 of the current webpage. Based on these observations, the model performs reasoning to
951 generate the appropriate action along with the target object, effectively simulating a realistic
952 single-step web navigation scenario. By breaking down complex multi-step interactions
953 into atomic actions, this setup allows for fine-grained evaluation of the agent’s decision-
954 making capabilities and supports systematic analysis of its performance in web exploration
955 tasks.

956 Table 13 summarizes the overall statistics of Web-CogDataset. The dataset covers three layers of
957 knowledge—Factual, Conceptual, and Procedural—each corresponding to distinct families of web
958 reasoning tasks. Factual Web Knowledge focuses on recognizing attributes, predicting element re-
959 lationships, and modeling page transitions, totaling 81K instances. Conceptual Web Knowledge
960 emphasizes semantic understanding and cross-element comprehension, with 62K instances. Pro-
961 cedural Web Knowledge involves action-oriented reasoning tasks, such as predicting user intentions
962 and executing goal-directed interactions, comprising 27K instances. Together, these task distribu-
963 tions reflect the hierarchical design of Web-CogDataset and ensure balanced coverage from low-
964 level perception to high-level reasoning.

965 A.2.3 FACTUAL WEB KNOWLEDGE
966

967 **Element Attribute Recognition** We define the Element Attribute Recognition task to assess a
968 model’s capability to infer the interactive semantics of web elements exclusively from visual input.
969 Given a full-page screenshot with a specific interactive element marked by a red bounding box, the
970 model is tasked with predicting two key attributes:

971 ³<https://js.design/>.

972 • the semantic role of the highlighted element (e.g., "button", "link", "checkbox"),
 973
 974 • the semantic name, which refers to the element's accessible textual description (e.g., "Sub-
 975 mit", "Search", "Next").
 976

977 The ground truth for both attributes is derived from the element-level metadata collected as de-
 978 scribed in Section A.1.5. This task simulates the human cognitive ability to interpret the function of
 979 web interface components through visual perception alone, without relying on HTML structure or
 980 programmatic representations.
 981

982 **Sub-elements Prediction** We define the Element Sub-element Prediction task to evaluate a
 983 model's ability to infer the hierarchical structure of web interfaces—specifically, to identify the
 984 sub-elements that become visible upon interaction with a given parent element, using only visual
 985 information. In each task instance, the model is presented with a full-page screenshot in which a
 986 specific interactive element is highlighted by a red bounding box. The model is instructed to predict
 987 the set of sub-elements (e.g., menu items, dropdown options) that appear as a direct result of inter-
 988 acting with the highlighted element, such as clicking or hovering. The ground truth annotations for
 989 sub-elements are derived from the element-level metadata collected during the dynamic interaction
 990 process, as detailed in Section A.1.5. This task simulates the human cognitive process of under-
 991 standing interactive dependencies in a graphical interface—recognizing not only that a component
 992 is clickable, but also predicting its dynamic expansion behavior.
 993

994 **Page Change Prediction** We define the Page Change Prediction task to evaluate a model's ca-
 995 pability to infer the visual consequences of interacting with a specific web element, relying solely
 996 on visual input. In this task, the model is presented with a full-page screenshot in which a target
 997 interactive element is highlighted by a red bounding box. The model is required to in an open-
 998 ended format to predict the visual changes that are likely to occur on the page after the element is
 999 clicked. The ground truth for this task is obtained from the generated responses of Qwen-VL-72B,
 1000 which were produced based on visual metadata, as detailed in Section A.1.5. This task is designed to
 1001 simulate the human cognitive ability to anticipate the dynamic behavior of web interfaces through
 1002 perception alone—without access to the underlying source code or prior knowledge of the page
 1003 logic.
 1004

1005 **Next Page Prediction** We define the Next Page Prediction task to evaluate a model's ability to
 1006 forecast navigation outcomes. Given a full-page screenshot with a highlighted interactive element,
 1007 the model must predict the subsequent page that would result from interacting with that element. To
 1008 ensure generalization capability, we implement two evaluation formats: multiple-choice selection
 1009 (choosing from 4-5 possible next pages) and open-ended generation (describing the expected next
 1010 page). Ground truth is derived from actual navigation sequences recorded during web interactions.
 1011 This task assesses the agent's understanding of functional relationships between interface elements
 1012 and destination pages.
 1013

1014 **Source element Prediction** We define the Source Element Prediction task to assess a model's
 1015 ability to identify which element on a webpage leads to a specific target page, using only visual
 1016 input. The model is given two screenshots: one showing the current webpage with 4-10 candidate
 1017 elements marked by bounding boxes, and another showing the resulting target page. Based on visual
 1018 cues alone, the model should determine which candidate element would trigger the transition to the
 1019 target page when interacted with. This task simulates the human ability to reason about visual
 1020 cause-and-effect relationships in web navigation, without relying on code or prior knowledge of
 1021 page logic.
 1022

1023 A.2.4 UNDERSTANDING WEB KNOWLEDGE

1024 **Element Understanding** This task requires the model to produce a comprehensive, open-ended
 1025 description of a highlighted element's visual appearance, functional semantics, and placement on the
 1026 webpage. Specifically, the output should cover: (1) Visual Traits (text, shape, iconography); (2) Lo-
 1027 cation (e.g., top-right, footer); and (3) Function (e.g., navigates to user profile).
 1028 This task simulates abstract comprehension from concrete element appearance.
 1029

1026 **WebPage Understanding** In this task, the model must generate a detailed and structured overview
 1027 of the entire page. The response includes layout segmentation (e.g., header, sidebar, content area),
 1028 key modules (e.g., search panel, product gallery), and a summary of page purpose and interactivity.
 1029 This facilitates understanding of page-wide structure and intent.
 1030

1031 **Caption & QA** We define the Caption & QA task to evaluate a model’s capability to comprehend
 1032 and reason over both image and non-image content embedded within webpages. This task comprises
 1033 four subtasks:
 1034

- 1035 • **Embedded Image Captioning:** Given a full-page screenshot containing one or more em-
 1036 bedded images, the model is required to generate a detailed and semantically meaningful
 1037 caption for each image, describing its visual content and its contextual relevance within the
 1038 surrounding webpage layout.
- 1039 • **Embedded Image QA:** Given a question grounded in the content of an embedded image
 1040 within a webpage screenshot, the model must produce an accurate, context-aware answer
 1041 using only visual information. These questions may refer to image content (e.g., "What
 1042 brand is shown in the ad?") or its function in the UI.
- 1043 • **Webpage Captioning:** The model is tasked with generating an open-ended description
 1044 of the webpage’s content, layout, and interactive purpose, treating the entire screenshot as
 1045 input. The generated caption should reflect both structural composition and the inferred
 1046 user intent of the webpage.
- 1047 • **Webpage QA:** Given a full-page screenshot and a natural language question referring to
 1048 any aspect of the page (e.g., title, layout, purpose, textual content), the model must generate
 1049 a grounded and precise answer based on visual and spatial information.

1050 All four subtasks are derived from the Multi-UI (Liu et al., 2024a) dataset, which provides rich an-
 1051 notations for webpage visual elements and user-facing semantics. Together, these subtasks measure
 1052 a model’s ability to perform grounded visual-language understanding at both local (element-level)
 1053 and global (page-level) scales.
 1054

1055 A.2.5 PROCEDURAL WEB KNOWLEDGE 1056

1057 **User’s intention Prediction** Built on the MultiModal-Mind2Web dataset—which provides nat-
 1058 ural language instructions, action trajectories, and aligned web page screenshots—we introduce a
 1059 novel multi-modal task: inferring the user’s high-level intent from a sequence of visual observations.
 1060 Unlike traditional imitation learning or instruction-following tasks, our setting requires the model to
 1061 infer why a trajectory occurred, rather than how to execute it. Solving this task demands both visual
 1062 understanding and temporal reasoning. The details of this task are as follows:
 1063

- 1064 1. Task Definition: Given a sequence of web page screenshots p_1, p_2, \dots, p_n representing a
 1065 user’s interaction trajectory, the objective is to predict the original user instruction y that
 1066 guided the sequence. Each screenshot p_t corresponds to the visual observation at step t of
 1067 a successful task execution. Formally, the model learns a mapping: $f : \{p_1, p_2, \dots, p_n\} \rightarrow Q$ where Q is the natural language instruction.
 1068
- 1069 2. Dataset Construction: We construct our dataset by processing the original MultiModal-
 1070 Mind2Web corpus. For each task, we extract only the visual observations—i.e., the se-
 1071 quence of web page screenshots corresponding to each step in the execution trajectory. We
 1072 then pair each screenshot sequence with the original natural language instruction as the
 1073 supervision signal.

1074 **Popup Close** We curated a collection of 51 popup components from JS Design website, encom-
 1075 passing a diverse range of visual styles and functional categories, such as notification modals, alert
 1076 dialogs, and login forms. This diversity ensures comprehensive coverage of real-world popup use
 1077 cases. For background webpages, we utilized the OpenWebVoyager(He et al., 2024b) dataset, which
 1078 contains a large number of authentic webpage screenshots with varied layouts and content, provid-
 1079 ing a rich foundation for synthesizing realistic popup-injected webpages. To construct the training
 data for this task, we employed the following procedure:

- 1080 1. Synthesizing Webpage Screenshots with Popups: We randomly overlaid popup images
1081 onto background webpage screenshots to simulate webpages containing popups. During
1082 synthesis, we introduced variability by randomly adjusting the popup’s size and position
1083 and modifying the brightness and sharpness of the background images, thereby enhancing
1084 visual diversity and realism.
- 1085 2. Generating Popup AX Tree: Each popup image was processed using Qwen-VL-2.5-32B to
1086 generate an ARIA-compliant AX Tree. To simulate diverse structural configurations, we
1087 randomly modified the index values of popup AX Tree elements and inserted the popup
1088 AX Tree into different locations within the original webpage’s AX Tree, resulting in a
1089 combined AX Tree that reflects realistic variations in webpage structure.
- 1090 3. Generating Popup Closing Strategies: We then instructed Qwen-VL-2.5-32B to identify all
1091 n possible methods for closing the popup, based on the popup image and its correspond-
1092 ing AX Tree. Recognizing that, in practical settings, any correct method is sufficient, we
1093 applied combinatorial augmentation to the n methods. Specifically, we enumerated all non-
1094 empty subsets of the n strategies, yielding a total of $2^n - 1$ distinct answer combinations.
1095 This expansion significantly broadens the training distribution and increases the model’s
1096 exposure to diverse correct solutions.
- 1097 4. Constructing the Training Dataset: Using the synthesized webpage screenshots and the
1098 enriched AX Tree, we constructed a dataset for training models on popup dismissal. Each
1099 data point comprises:
 - 1100 • Input: a webpage screenshot with an embedded popup and the corresponding AX
1101 Tree;
 - 1102 • Output: valid methods for closing the popup.

1104 **Single-Step Web Task** We define the Single-Step Web Task to evaluate a model’s ability to ground
1105 high-level user intentions in visual webpage elements. Each task instance includes a full-page
1106 screenshot from a real-world webpage, a concise natural language instruction (e.g., ”Search for a
1107 product”, ”Log into the system”), and several candidate elements marked by red bounding boxes.
1108

1109 The model must identify which element, if clicked, would successfully fulfill the given task. This
1110 setup simulates perceptual grounding of user intent—matching natural language goals to actionable
1111 UI targets based solely on visual cues.

1112 All samples are directly sourced from the Multi-UI (Liu et al., 2024a) dataset, which provides rich,
1113 annotated webpage screenshots paired with task descriptions and labeled ground-truth targets. No
1114 trajectory-level annotation or external instruction rewriting is involved. This task offers a reliable
1115 benchmark for evaluating atomic web interaction capabilities in a static, visually grounded setting.

1116 **Noisy Multi Step Web Task** To further enhance the original OpenWebVoyager (He et al., 2024b)
1117 dataset, we incorporate **Knowledge-driven Chain-of-Thought (CoT) Reasoning** to improve the
1118 model’s stepwise understanding and execution, details see Section 4.2. In addition, to simulate
1119 realistic interruptions during multi-step web interactions, we propose the **Noisy Multi-Step Web**
1120 **Task** by augmenting interaction trajectories from OpenWebVoyager. Specifically, for each sample
1121 in our **Popup Close** dataset, a popup window is injected at a specific step (e.g., step t) of an existing
1122 task trajectory.

1123 This modification introduces a prerequisite interaction: the agent must first detect and dismiss the
1124 popup before resuming progress toward the original task goal. By explicitly modeling such interrup-
1125 tive UI elements, this task formulation captures a more realistic web interaction paradigm in which
1126 user flows are frequently obstructed. It also provides a challenging benchmark for evaluating agents’
1127 robustness to UI-level noise and their capacity for error recovery.

1129 A.3 TRAIN DETAILS

1130 A.3.1 TRAINING

1131 We employ a multi-phase Imitation Learning strategy to train our model on **Web-CogDataset**, util-
1132 izing Qwen2.5-VL-7B (Bai et al., 2025) as the base model. Each phase is aligned with a distinct

layer of the Web-CogKnowledge Framework: (1) the first knowledge content learning focuses on acquiring Factual Knowledge and Conceptual Knowledge, enabling the model to interpret web content and semantics; (2) the second cognitive process emphasizes Procedural Knowledge, training the model to plan and execute multi-step web interactions. To accommodate the increased complexity of the final phase, which involves multi-image inputs and extended reasoning, we configure training with a maximum sequence length of 8K and a batch size of 1 with gradient accumulation of 16 steps. All experiments are conducted on a cluster of 8 x NVIDIA A800 80GB GPUs.

A.3.2 PERFORMANCE UNDER DIFFERENT TRAINING STRATEGIES

We could feed these SFT datasets into models with different training strategies. In this section, We investigate how they influence the model’s performance.

1. Curriculum Learning Strategy: We fine-tune the model following a curriculum learning paradigm.
2. Mixed Multi-task Learning: We directly mix different tasks and apply SFT.

Through comparative analysis, we find that: Under the same task scenario, models trained via curriculum learning conduct multiple rounds of exploration continuously and do not cease exploration prematurely. In contrast, when retrieving task - related data, models trained via mixed training terminate the search within a limited number of attempts if they fail to find results.

As shown in Figure 7, when faced with the user’s instruction “Open the most helpful 5 - star reviews of Alpine Ridge”, models trained via mixed training deviate from the domain of task - specific information retrieval and autonomously generate an instruction to “switch to forums for information”.

Based on these observations, we conjecture: Curriculum learning trains models incrementally from simple to complex task, which enables them to develop a fundamental understanding of the problem structure. They continue to carry out multiple rounds of exploration to ensure comprehensive comprehension and accurate processing, thus avoiding the premature termination of exploration. In contrast, mixed training models may be trained on multiple tasks simultaneously. The potential interference among different tasks can make models easily influenced by irrelevant tasks when processing a specific one, thereby undermining their ability to focus on task - specific information retrieval and processing.

Figure 7: Comparison between mixed and curriculum strategies.

1188 A.4 EVALUATION DETAILS
11891190 A.4.1 LVM EVALUATION PROTOCOL
11911192 For open-ended generation tasks in Web-CogBench (i.e., Element Understanding, WebPage Under-
1193 standing, and User Intent Prediction), we utilize a high-capability LVM (GPT-4o) as an automated
1194 evaluator. The evaluation process involves a strict comparison between the **Candidate Model’s**
1195 **Answer** and the verified **Ground Truth** based on image provided in the dataset.
11961197 To ensure fine-grained assessment, we decompose the evaluation into specific cognitive dimensions
1198 rather than relying on a single holistic score:
11991200

- **Element Understanding:** Assessed on *Appearance* (visual fidelity), *Position* (structural
1201 context), and *Function* (interaction purpose).
- **WebPage Understanding:** Assessed on *Structure & Layout*, *Key Element Analysis*, and
1202 *Summary Coherence*.
- **User Intent Prediction:** Assessed on *Evidence Alignment* (visual cue detection), *Intent
1203 Accuracy*, and *Reasoning Quality*.

12041205 We employ a rigorous **1-5 Likert Scale** and normalized to 0–100 for scoring. A score of 5 denotes
1206 that the candidate “fully and accurately captures all relevant information present in the Ground
1207 Truth,” while lower scores reflect varying degrees of omissions or inaccuracies. The evaluator out-
1208 puts a structured JSON object containing both integer scores and text justifications for each dimen-
1209 sion, ensuring the traceability of the results.
12101211 For instance, the *Element Understanding* task is assessed on:
1212

System Instruction: You are a meticulous and impartial AI evaluator for a web UI understanding benchmark. Your task is to assess the quality of a candidate model’s answer by comparing it strictly against a ground truth and provided image reference. Your evaluation must be based *exclusively* on the information provided in the “Ground Truth Answer” and “Image”. Evaluate the candidate answer on three specific aspects: Appearance, Position, and Function.

[Ground Truth Answer]
{ground_truth}
—

[Candidate Model’s Answer]
{model_answer}
—

Evaluation Criteria & Scoring:

- **Score 1:** Completely incorrect or missing.
- **Score 2:** Mostly incorrect, with a minor element of truth.
- **Score 3:** Partially correct, but misses significant details mentioned in the ground truth.
- **Score 4:** Mostly correct, with only minor inaccuracies or omissions compared to the ground truth.
- **Score 5:** Fully and accurately captures all relevant information present in the ground truth.

Your response MUST be a single, valid JSON object, adhering to the following structure. Do not add any text before or after the JSON object.

```
{
  "appearance_score": [integer_score],
  "appearance_justification": "Your brief justification... referencing the ground truth",
  "position_score": [integer_score],
  "position_justification": "Your brief justification... referencing the ground truth",
  "function_score": [integer_score],
  "function_justification": "Your brief justification... referencing the ground truth",
  "overall_score": [A final holistic integer score from 1 to 5],
  "overall_justification": "A final summary of the model's performance"
}
```

1234 A.4.2 LVM JUDGE RELIABILITY
12351236 To mitigate potential biases from a single evaluator, we employed **multiple distinct LVMs** (in-
1237 cluding GPT-4o, Claude Sonnet 4, and Gemini 2.5 Pro) to conduct a rigorous inter-rater reliability
1238 analysis. We calculate the **”Within-1-Point Agreement”**, defined as the percentage of instances
1239 where scores assigned by different LVM judges differ by no more than 1 point.
12401241 As shown in Table 14, the high agreement rates across different models confirm that our evaluation
1242 criteria are robust and model-agnostic. Furthermore, the strong correlation with Human Proxy Anal-

ysis suggests that our *Ground-Truth Anchored* protocol effectively aligns automated judgment with human evaluation standards.

Table 14: Inter-Rater Reliability Analysis of LVM Judge.

Task	Within-1-Point Agreement	Human Proxy Analysis
Element Understanding	98.7%	96.7%
WebPage Understanding	97.0%	95.4%
User Intent Prediction	96.0%	94.4%

A.5 QUALITATIVE ANALYSIS

To provide deeper insights into Web-CogReasoner’s capabilities, we present a two-part qualitative analysis. First, we examine the **evolution of cognitive abilities** across training stages to validate our curriculum. Second, we present a **comparative case study** on a complex real-world task to demonstrate how our model overcomes knowledge blind spots that trap baseline models.

A.5.1 EVOLUTION OF COGNITIVE ABILITIES

Beyond the quantitative improvements shown in our ablation study, a qualitative analysis of the agent’s behavior at each stage offers deeper insights into how our curriculum shapes its cognitive abilities. We examine the agents’ performance on a representative task: “Find and add a laptop under \$1000 to the shopping cart on an e-commerce website.”

Base Model (Qwen2.5-VL-7B) Without any specialized training, the base model struggles to formulate a coherent plan. Its reasoning is often generic and untethered from the specific UI. It might correctly identify a “search bar” but fails to execute a meaningful action, or hallucinates actions that are not possible. For instance, its thought process might be: *“I should search for a laptop,”* but its action is an ungrounded ‘click “Categories” because it lacks the procedural knowledge to connect intent to a multi-step sequence of actions.

Stage 1 Agent (+ Factual Knowledge) After training on Factual Knowledge, the agent’s perceptual abilities are significantly enhanced. It can now accurately identify and label key elements with their correct attributes. Its thought process becomes grounded in the facts of the page: *“I see a search bar [ID: 25] with the name ‘Search products’. I see a button [ID: 28] with the name ‘Search’.”* However, it still struggles with planning. It understands “what” is on the page but not “why” or “how” to use it. It might correctly type “laptop” into the search bar but then get stuck, not understanding that the next logical step is to click the search button to submit the query.

Stage 2 Agent (+ Conceptual Knowledge) With the addition of Conceptual Knowledge, the agent begins to understand the relationships between elements and their purpose. Its reasoning graduates from simple identification to semantic interpretation. The thought process now reflects this understanding: *“The search bar [ID: 25] is for inputting queries. The search button [ID: 28] is functionally linked to it and will trigger the search. This group of elements forms a ‘search component’.”* This allows it to reliably complete the search and navigate to the result page. However, on the result page, it may still struggle with complex procedural logic, such as applying a price filter.

Full Model (Web-CogReasoner + Procedural Knowledge) The final agent, equipped with Procedural Knowledge, demonstrates goal-oriented planning and execution. It seamlessly translates the high-level task into a concrete action sequence. Its thought process is now a strategic plan: *“Goal: Add laptop under \$1000 to cart. Step 1: Type ‘laptop’ into search bar [ID: 25]. Step 2: Click search button [ID: 28]. Step 3: On the results page, locate the ‘Price Range’ filter. Step 4: Input ‘1000’ into the ‘max price’ field [ID: 57]. Step 5: Identify a suitable product from the filtered list and click its ‘Add to Cart’ button [ID: 83].”* This demonstrates a complete cognitive loop from perception and understanding to successful action, validating the necessity of the final procedural training stage.

1296 A.5.2 COMPARATIVE CASE STUDY
12971298 To validate the necessity of foundational knowledge in handling complex real-world scenarios, we
1299 compare the **Base Model** with **Web-CogReasoner** on a specific Amazon task.1300 **Task:** "Find a gaming desktop with Windows 11 Home and 1TB disk."
13011302 **Base Model Failure: The Knowledge Blind Spot** Lacking explicit knowledge of page layout and
1303 element functions, the Base Model literally "sees" the pixels but "misses" the affordance.
1304

- **Observation:** The model sees the search results but fails to recognize the sidebar filters as the mechanism to refine the query.
- **Error:** It misinterprets the page state, assuming a re-search is necessary. It enters a logical dead loop of repeatedly clicking the search button.
- **Action:** click [1470] (Search Button) → **Stuck**.

1311 **Web-CogReasoner Success: Knowledge-Driven Grounding** Leveraging learned Factual and
1312 Conceptual knowledge, our agent explicitly identifies the functional role of UI components.
1313

- **Reasoning:** The agent identifies the sidebar as a filter section. It conceptually maps the user's "1TB" requirement to the specific filter element, predicting that clicking it will narrow the results without leaving the page.
- **Action:** click [95] (Filter Link "1 TB") → **Success**.

1319 This comparison highlights that success in complex tasks is not just about planning (Procedural),
1320 but requires strictly accurate recognition of element functions (Factual/Conceptual) to ground those
1321 plans.1322 A.6 GUIDELINE FOR REVIEWERS
13231324 In the revised manuscript, different font colors are used to highlight the modifications made in
1325 response to each reviewer's comments, as detailed below.

- Reviewer ri9L: ● and ●
- Reviewer HEcV: ● and ●
- Reviewer PZyc: ● and ●
- Reviewer YsZ8: ●

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349