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Figure 1: Controllable generation using CAR under various conditions, with each pair showing the
condition on the left and the corresponding generated image on the right. Results are 512× 512.

ABSTRACT

Controllable generation, which enables fine-grained control over generated out-
puts, has emerged as a critical focus in visual generative models. Currently,
there are two primary technical approaches in visual generation: diffusion models
and autoregressive models. Diffusion models, as exemplified by ControlNet and
T2I-Adapter, offer advanced control mechanisms, whereas autoregressive models,
despite showcasing impressive generative quality and scalability, remain under-
explored in terms of controllability and flexibility. In this study, we introduce
Controllable AutoRegressive Modeling (CAR), a novel, plug-and-play frame-
work that integrates conditional control into multi-scale latent variable modeling,
enabling efficient control generation within a pre-trained visual autoregressive
model. CAR progressively refines and captures control representations, which
are injected into each autoregressive step of the pre-trained model to guide the
generation process. Our approach demonstrates excellent controllability across
various types of conditions and delivers higher image quality compared to previ-
ous methods. Additionally, CAR achieves robust generalization with significantly
fewer training resources compared to those required for pre-training the model.
To the best of our knowledge, we are the first to propose a control framework for
pre-trained autoregressive visual generation models.
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1 INTRODUCTION

Controllable generation represents a pivotal aspect of visual generative models, enabling precise and
fine-grained control over generated outputs. This capability is indispensable for tasks that demand
a high degree of precision and adaptability, positioning it as a significant area of focus within the
domain. Currently, there are mainly two primary paradigms that have substantially advanced the
field of visual generation: diffusion models (Rombach et al., 2022; Saharia et al., 2022) and autore-
gressive models (Tian et al., 2024; Esser et al., 2021). While the diffusion paradigm has already
given rise to numerous widely adopted methods for controllable generation, the autoregressive ap-
proach remains underexplored, particularly in how to empower the strengths of this paradigm for
controllable generation, which constitutes the central emphasis of this work.

Diffusion models utilize iterative denoising processes based on Markov chains to produce high-
quality outputs. These models have inspired the development of widely used controllable generation
techniques such as ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024), which can
provide granular control over the generation images by incorporating additional signals such as
edge maps and human poses. However, challenges arise when integrating diffusion models into
multimodal frameworks, particularly when interfacing with large language models (LLMs) (Chiang
et al., 2023; Touvron et al., 2023). The representations in diffusion models are inconsistent with the
embeddings used by LLMs, complicating their seamless integration. This discrepancy might hinder
visual generation tasks that require direct collaboration between vision and language models in the
future. As a result, these shortcomings necessitate the exploration of more unified approaches to
controllable generative modeling.

On the other hand, autoregressive models, drawing inspiration from autoregressive language mod-
els (Radford et al., 2019; Brown, 2020), offer a compelling alternative for visual generation tasks.
These approaches model image generation as a sequence prediction problem, which align with the
representation used in LLMs and offer lower computational costs compared to diffusion models. By
employing intricate and scalable designs, recent autoregressive models (Sun et al., 2024; Tian et al.,
2024) have demonstrated generative capabilities comparable to those of diffusion models. However,
existing autoregressive models have not yet fully explored the potential of controllable visual gen-
eration. In an earlier attempt, IQ-VAE (Zhan et al., 2022) introduced condition patches as prefix
tokens to generate subsequent image patches. This approach results in overly long sequences, which
significantly reduces efficiency. More recently, ControlVAR (Li et al., 2024) models conditions and
images simultaneously to guide the generation process. However, it restricts the ability to effectively
utilize pre-trained models, thereby increasing the training resources needed and reducing flexibility
and adaptability. These inefficiencies underscore the necessity for more versatile and streamlined
methods for controllable autoregressive generation.

To address the challenges mentioned above, we propose Controllable AutoRegressive Modeling
(CAR), a novel, end-to-end, plug-and-play framework designed to facilitate controllable visual au-
toregressive generation by leveraging pre-trained models. The core design of our framework in-
volves integrating multi-scale latent variable modeling, where the control representation is progres-
sively refined and injected into each step of a pre-trained autoregressive model. Specifically, we
employ the “next-scale prediction” autoregressive model VAR (Tian et al., 2024) as our pre-trained
base, and we freeze its weights to maintain its strong generative capabilities. Inspired by Control-
Net (Zhang et al., 2023), we have also designed a parallel control branch to autoregressively model
multi-scale control representation, which utilizes both the input condition signal and the embed-
ding from the pre-trained base model. The prediction of each scale’s image token map depends on
the previous image tokens and the extracted control information. Through this approach, our CAR
framework successfully captures multi-scale control representations and injects them into the frozen
base model, ensuring that the generated image adheres to the specified visual conditions.

Contributions of this work can be summarized as follows:

1. To the best of our knowledge, our proposed CAR is the first flexible, efficient and plug-
and-play controllable framework designed for the family of autoregressive models. We
hope that our work will contribute to accelerating the development of this field.

2. CAR builds on pre-trained autoregressive models, not only preserving the original genera-
tive capabilities but also enabling controlled generation with limited resources—using less
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than 10% of the data required for pre-training. We design a general framework to capture
multi-scale control representations, which are robust and can be seamlessly integrated into
the pre-trained base models.

3. Extensive experiments demonstrate that our CAR achieves precise fine-grained visual con-
trol across various condition signals. CAR effectively learns the semantics of these condi-
tions, enabling robust generalization even to unseen categories outside the training set.

2 RELATED WORK

Diffusion Models Diffusion models have attracted significant attention for their ability to generate
high-fidelity images through iterative noise reduction processes. These models operate by progres-
sively transforming Gaussian noise into a data distribution, with each step in the Markov chain re-
fining the image (Sohl-Dickstein et al., 2015; Song et al., 2020). The introduction of the Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) marked a breakthrough, achieving state-
of-the-art results in image synthesis. Following this, several approaches have aimed to improve the
efficiency and quality of diffusion models (Nichol & Dhariwal, 2021; Rombach et al., 2022; Watson
& Johnson, 2023). In the past two years, diffusion models have nearly become the de facto approach
in the realm of text-to-image and text-to-video generation (Saharia et al., 2022; Singer et al., 2022;
Peebles & Xie, 2023; Podell et al., 2023; Dai et al., 2023; Blattmann et al., 2023a;b; Esser et al.,
2023; 2024). More recently, some works have increasingly focused on integrating diffusion models
into multimodal tasks (Nichol et al., 2021; Lu et al., 2022; 2024; Xie et al., 2024; Zhou et al., 2024).

Autoregressive Models Autoregressive models have emerged as a scalable alternative to diffusion
models in generative tasks, offering a more efficient architecture for image synthesis. Inspired by
the success of autoregressive models in language tasks, such as GPT (Radford et al., 2019; Brown,
2020), their visual counterparts like DALL-E (Ramesh et al., 2021) model image generation as a
sequence prediction problem. This paradigm shift allows autoregressive models to generate high-
quality images while circumventing the iterative nature of diffusion models, thereby reducing com-
putational overhead. A number of excellent works adhering to this paradigm have emerged (Ge
et al., 2023; Ma et al., 2024; Lu et al., 2024; 2022; Tian et al., 2024; Team, 2024; Chern et al., 2024;
Liu et al., 2024; Dong et al., 2023; Ge et al., 2024).

One of the major developments in this field is the application of discrete latent spaces, introduced by
VQ-VAE (Van Den Oord et al., 2017) and VQ-GAN (Esser et al., 2021), enabling efficient encoding
and decoding of image data. Subsequent works have further enhanced the representational capacity
of discrete visual encoders (Yu et al., 2023a;b; Luo et al., 2024). More recently, VAR (Tian et al.,
2024) provides a scaling-up modeling approach for discrete latent spaces, significantly enhancing
generation. Nonetheless, while these models exhibit better efficiency and comparable generation
quality to diffusion models, they still lack sophisticated controllable generation mechanisms. This
limitation restricts their applicability in tasks requiring user-driven or signal-driven generation. Ap-
proaches such as ControlVAR (Li et al., 2024) have made some progress; however, they remain
inflexible and fail to fully exploit pre-trained models, often necessitating fine-tuning.

Controllable Generation Controllable generation, where the model is guided by various condi-
tions during the generative process, has been an active area of research. Early works focused on
conditional GANs (Mirza & Osindero, 2014) and VAEs (Kingma & Welling, 2013), where control
was imposed through explicit conditioning variables such as class labels. However, the challenge
of maintaining both high-quality generation and precise control persists across different generative
frameworks. Diffusion-based methods like ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou
et al., 2024) have incorporated external control signals, such as pose or sketch, to achieve detailed
manipulation of generated content. In contrast, controllable generation methods for autoregressive
models, especially efficient ones similar to ControlNet or T2I-Adapter in the diffusion context, have
not been fully explored. Actually, prior to our work, it was unknown whether similar capabilities
could be achieved with purely autoregressive models. While methods such as IQ-VAE (Zhan et al.,
2022) and ControlVAR (Li et al., 2024) allow for fine-grained control over the visual autoregres-
sive generation process by integrating conditional tokens or patches, they cannot flexibly leverage
pre-trained models, and increase computational complexity. Therefore, this paper aims to develop a
more efficient and flexible controllable framework for autoregressive visual generation.
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Figure 2: Overview of the proposed Controllable AutoRegressive Modeling (CAR) framework.
CAR integrates multi-scale latent variable modeling, where control representation is progressively
refined and injected into the generation process of a pre-trained autoregressive model. Previous
image tokens are accumulated and upsampled to form bk, which serves as the input token for scale
k. Each scale’s token map rk is predicted based on previous tokens and the corresponding control
input ck, ensuring that the generated image I adheres to the specified visual conditions C.

3 METHODOLOGY

We propose Controllable AutoRegressive Modeling (CAR) to explore the potential of autoregres-
sive models in handling controllable image generation task. We define the task as follows: given a
conditional control image C ∈ R3×H×W , where H and W represent the height and width, our goal
is to generate a controllable image I ∈ R3×H×W that aligns with the specified visual conditions.
The overall objective can be formulated as modeling the conditional distribution p(I | C).
In Section 3.1, we introduce the preliminary foundational concepts of the “next-scale prediction”
paradigm in visual autoregressive modeling. Following this, in Section 3.2, we explain how our
proposed CAR framework controls visual generation through multi-scale latent variable modeling.
By applying Bayesian inference, we identify that the learning objective of CAR is to obtain a robust
control representation. Finally, in Section 3.3, we thoroughly discuss the control representation
expression and the network optimization strategy.

3.1 PRELIMINARY KNOWLEDGE OF AUTOREGRESSIVE MODELING

Traditional autoregressive models Van Den Oord et al. (2017); Esser et al. (2021) use a “next-token
prediction” approach, tokenizing and flattening images into sequences (x1, x2, . . . , xT ). Here, T
is the product of the height and width of the image feature map. Each token xt is predicted based
on the preceding tokens (x1, x2, . . . , xt−1). The final token sequence is quantized and decoded to
produce images.

However, a recent study (Tian et al., 2024) notes that this paradigm can lead to mathematical incon-
sistencies and structural degradation, which is less optimal for generating highly-structured images.
To resolve this, it introduces a novel visual autoregressive modeling paradigm (VAR), shifting from
“next-token prediction” to “next-scale prediction”. In VAR, each unit predicts an entire token map
at a different scale. Starting with a 1 × 1 token map r1, VAR predicts a sequence of multi-scale
token maps (r2, . . . , rK), increasing in resolution. The generation process is expressed as:

p(r1, r2, . . . , rK) =

K∏
k=1

p(rk | r1, r2, . . . , rk−1), (1)
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where rk ∈ [V ]hk×wk represents the token map at scale k, with dimensions hk and wk, conditioned
on previous maps (r1, r2, . . . , rk−1). Each token in rk is an index from the VQVAE codebook V ,
which is trained through multi-scale quantization and shared across scales.

3.2 CONTROLLABLE VISUAL AUTOREGRESSIVE MODELING

As illustrated in Figure 2, our proposed CAR framework addresses controllable image generation by
modeling the conditional distribution p(I | C). The objective is to maximize the likelihood p(I | C),
ensuring that the generated image I conforms to the visual conditions specified by C.

Following the “next-scale prediction” paradigm of VAR, the CAR model adopts a multi-scale latent
variable framework, where latent variables (token maps) at each scale capture image structures at
progressively higher resolutions. The control information provides additional observations to aid in
inferring the latent variables at each scale.

Multi-scale Conditional Probability Modeling Suppose the total number of scales in the latent
framework is K, our CAR model generates an image I in a multi-scale fashion by factorizing the
conditional distribution p(I | C) as a product of conditional probabilities at each scale:

p(I | C) = p(r1, r2, . . . , rK | c1, c2, . . . , cK)

=

K∏
k=1

p(rk | (c1, r1), (c2, r2), . . . , (ck−1, rk−1), ck)

=

K∏
k=1

p(rk | {(ri, ci)}k−1
i=1 , ck), (2)

where rk ∈ Rhk×wk is the image token map at scale k, and ck ∈ Rhk×wk is the corresponding
control map derived from the control image C. Each token map rk is generated conditioned on
the previous token maps (r1, r2, . . . , rk−1) and the control information (c1, c2, . . . , ck). This multi-
scale conditional modeling ensures that the control information at each scale guides the generation
process in a recursive and hierarchical manner, progressively refining the latent representations of
the image token maps across scales.

Posterior Approximation In the CAR framework, as formulated in Equation 2, the previous
scales’ image and control token maps, {ri, ci}k−1

i=1 , along with the current scale’s control token
map ck, serve as a posterior approximation for the current scale’s image token map. This means that
rk is generated by leveraging the information from this posterior approximation. From a Bayesian
perspective, the goal of the CAR model is to approximate the posterior distribution of the image
tokens given the control information at each scale:

p(rk | {(ri, ci)}k−1
i=1 , ck) ∝ p(rk | {ri, ci}k−1

i=1 )p(ck | rk), (3)

where p(rk | {ri, ci}k−1
i=1 ) represents the autoregressive prior learned across scales from previous

token maps, and p(ck | rk) captures the likelihood of observing the control token map ck given the
current image token map rk.

Based on the above Bayesian inference, we can clearly identify that the learning objective of CAR
is to optimize ck so that this control representation aligns with the image representation rk. This ob-
jective can be learned through a neural network, supervised by the ground truth rk from the provided
image dataset, allowing the network to progressively approximate the posterior distribution.

3.3 CONTROL REPRESENTATION AND OPTIMIZATION

Control Representation Expression VAR accumulates image tokens {ri}k−1
i=1 from all previous

scales, interpolates them to match the resolution of hk × wk, and forms the input for inference at
scale k, denoted as bk. Then in our CAR framework, at each scale k, the control information is
injected by fusing the input image token map bk ∈ Rhk×wk×d and the control map ck ∈ Rhk×wk×d

to form a combined representation:

sk = F(bk, ck; θF ), (4)

5
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where F(·) is a fusion function parameterized by θF . This fusion mechanism ensures that sk encap-
sulates both generated image features and the control conditions. By utilizing sk to predict rk, the
control information is incorporated into the generation process, ensuring that the generated token
map adheres to the control conditions ck, providing fine-grained guidance.

To ensure effective extraction of control representation and integration of control information, the
fused representation sk is vectorized and transformed via a series of Transformer layers, yielding
a refined conditional prior that guides the image generation at each scale k. Formally, sk is trans-
formed into a vectorized representation ŝk through a learned mapping T (·) as follows:

ŝk = T (sk; θT ), (5)

where T (·) is parameterized by the CAR’s Transformer θT , which is designed as a parallel branch
alongside the VAR’s Transformer. The blocks in T (·) perform self-attention on the vectorized con-
trol representations, extracting relevant condition priors by modeling dependencies within the con-
trol information.

Once the refined conditional prior ŝk is extracted, it is injected into the image token map rk, which is
predicted by the pre-trained VAR and represents the latent image features at scale k. This injection
is achieved through a injection function G(·) parameterized by θG , which combines ŝk and rk to
ensure that the control information modulates the generated image tokens:

r̂k = G(ŝk, rk; θG), (6)

where r̂k represents the updated token map incorporating the control information. This mechanism
enables the model to progressively condition the generation process on multi-scale control infor-
mation, thereby producing images that are coherent across scales and adhere to the external visual
condition specified by C.

Network Optimization To align the generated image I with the control conditions C, we mini-
mize the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) between the model’s condi-
tional distribution p(I | C; θcar) and the true data distribution pdata(I | C):

LKL = EI,C∼pdata [log pdata(I | C)− log p(I | C; θcar)] , (7)

where θcar represents the learnable parameters in our CAR framework, specifically {θF , θT , θG}.
Since pdata(I | C) is constant with respect to θcar, minimizing LKL is equivalent to maximizing the
log-likelihood log p(I | C; θcar).

Using the fused representations sk, the conditional distribution p(I | C; θcar) can be factorized as:

log p(I | C; θcar) =

K∑
k=1

log p(r̂k | sk; θcar). (8)

Maximizing this log-likelihood during training ensures that the generated token maps r̂k closely
match the ground truth rk, remaining consistent with both previous tokens and the control conditions
encapsulated in sk. This process facilitates the learning of more effective control representations, as
outlined in the posterior approximation in Equation 3, ensuring that the generated images adhere to
the control conditions C while preserving the original generative capabilities of pre-trained VAR.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Model Architecture Design We employ the pre-trained VAR (Tian et al., 2024) as the base model,
freezing it during training to preserve its generative ability and reduce training costs. For the learn-
able modules {θF , θT , θG}, we experiment with various choices and empirically select the optimal
design choices. For the fusion function F(·), we use a convolutional encoder to extract semantic
features from the control input ck, and add them to the base model input bk. For T (·), we design a
series of GPT-2-style Transformer (Radford et al., 2019) blocks, with the depth being half of that of
the pre-trained base model. For G(·), we inject ŝk into the base model output rk through concatena-
tion, which is followed by a LayerNorm (Ba, 2016) to normalize the distribution of the two domain
features, and a linear transformation to adjust the channel dimension.

6
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Table 1: Comparison with previous controllable generation approaches on ImageNet. Our CAR sur-
passes these works by delivering higher image quality while being much more efficient in inference.

Methods Canny Edge Depth Map Normal Map HED Map Sketch Time (s) ↓FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
T2I-Adapter 10.2 156.6 9.9 133.6 9.5 142.8 9.3 141.6 16.2 156.0 2.3
ControlNet 11.6 172.7 9.2 150.3 8.9 155.3 8.6 150.3 15.3 162.5 1.7
CAR (Ours) 8.3 167.3 6.9 178.6 6.6 175.9 5.6 182.2 10.2 161.6 0.3
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Figure 3: Scaling laws of our CAR model. It can be observed that as the model depth increases, the
four image quality metrics improve across the five conditions.

Dataset We conduct experiments on the ImageNet (Russakovsky et al., 2015) dataset. First, we
pseudo-label five conditions for the training set: Canny edge (Canny, 1986), Depth map (Ranftl
et al., 2020), Normal map (Vasiljevic et al., 2019), HED map (Xie & Tu, 2015), and Sketch (Su
et al., 2021), allowing CAR to be trained separately on different conditional controls. We randomly
select 100 categories from the total 1000 for training CAR, and evaluate it on the remaining 900
unseen categories to assess its generalizable controllability.

Evaluation Metrics We utilize Fréchet Inception Distance (FID) (Heusel et al., 2017), Inception
Score (IS) (Salimans et al., 2016), Precision and Recall (Kynkäänniemi et al., 2019) metrics to assess
the quality of the generated results. We also compare the inference speed with existing controllable
generation methods, such as ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024).

Training Details We set the depth of the pre-trained VAR to 16, 20, 24, or 30, and initialize the
control Transformer T (·) using the weights from the first half of the VAR to accelerate convergence.
The CAR model is trained for 100 epochs with the Adam optimizer on 8 NVIDIA V100 GPUs, and
the inference speed is evaluated on a single NVIDIA 4090 GPU.

4.2 QUANTITATIVE EVALUATION

Comparison with Previous Methods We compare our CAR model with two classic controllable
generation baselines, ControlNet and T2I-Adapter. For a fair comparison, we retrained both models
on the ImageNet dataset and trained each model separately on all five condition annotations. As
shown in Table 1, our CAR demonstrates significant improvements, with FID reductions of 3.3,
2.3, 2.3, 3.0, and 5.1 on Canny, Depth, Normal, HED, and Sketch, respectively, compared to Con-
trolNet. Similar improvements are observed in the IS metric. We attribute these gains to recent
advancements in autoregressive models, which have surpassed diffusion models in image genera-
tion by progressively scaling up the resolution during generation. In addition to image quality, we
also compare inference speed, with our CAR running over five times faster than both ControlNet and
T2I-Adapter, further highlighting the efficiency advantage of CAR in practical applications. Over-
all, these promising quantitative results indicate that CAR can serve as a more efficient and scalable
controllable generative paradigm than diffusion-based models like ControlNet.

As for different types of conditions, it is worth noting that HED Maps, Depth Maps, and Normal
Maps demonstrate relatively superior metrics, likely due to the clarity of input conditions and well-
defined objectives. These factors provide the model with more precise guidance, enhancing the
generation of high-quality images. In contrast, the Sketch condition is often simplistic, consisting

7
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Figure 4: Results are presented for five distinct conditions, where the top row shows the input
conditions, and the following rows display the generated images. These categories are excluded from
the training set, demonstrating that the CAR learns the general semantics from the input conditions.

of basic outlines with fewer visual details compared to other conditions, making it less controllable
and leading the model to generate more freely. This may result in fluctuations in image quality.

Scaling Laws We assess the image quality of our CAR model as its depth increases. As illus-
trated in Figure 3, with increasing model depth, the CAR produces higher-quality images across five
different conditions, demonstrating a lower FID metric alongside elevated IS, Precision, and Recall
scores, which align with the scaling laws of autoregressive generative modeling (Kaplan et al., 2020;
Henighan et al., 2020; Hoffmann et al., 2022). The most high metrics are observed in HED Maps,
Depth Maps, and Normal Maps, and Canny Edge and Sketch are relatively low, which is consistent
with the observation in Table 1.

Table 2: User studies are conducted to evaluate
three controllable generative approaches based on
three criteria: 1) IQ: image quality, 2) CF: condi-
tion fidelity, and 3) ID: image diversity.

Methods IQ ↑ CF ↑ ID ↑
T2I-Adapter 23% 27% 19%
ControlNet 26% 31% 36%

CAR (Ours) 51% 42% 45%

User Studies We conduct the user studies
with 30 participants to evaluate the genera-
tion performance of our CAR in comparison
with previous methods, ControlNet and T2I-
Adapter. For each of the five types of condi-
tions, we input 30 condition images and gener-
ate corresponding results for each method, pro-
ducing 150 results per method. For each condi-
tional input, participants are required to choose
the best one based on three criteria: 1) image
quality, 2) condition fidelity, and 3) image di-
versity. As demonstrated in Table 2, our CAR
outperforms ControlNet and T2I-Adapter in all three aspects, demonstrating the effectiveness of
proposed Controllable Autoregressive Modeling.

4.3 QUALITATIVE RESULTS

Overall Controllability and Image Quality Figure 4 qualitatively demonstrates that our CAR
model generates high-quality and diverse results based on the given conditional controls. The visual
details of various conditional inputs are effectively reflected in the generated images, ensuring a
strong alignment between the images and their corresponding conditions. Notably, the categories
shown are not among the 100 categories used during training, yet CAR still achieves precise control
over these unseen categories, demonstrating that our CAR learns the general semantic information
from the given conditional controls, rather than overfitting to the training set. This advantage high-
lights the cross-category generalization and robust controllability of our CAR framework.
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Table 3: Comparisons of IS metrics for different function choices, including F(·), T (·), and G(·).

Settings Canny Depth Normal HED Sketch

F(·) Pre-trained VQ-VAE Encoder 131.3 139.2 141.0 149.7 123.5
Learnable Convolutional Encoder 166.2 177.9 173.0 181.9 159.3

T (·) Convolutional Network 145.7 156.8 153.2 159.6 142.6
Transformer Network 166.2 177.9 173.0 181.9 159.3

G(·)
Zero Convolution & Add 161.9 170.3 168.7 173.5 153.8

Cross Normalization & Add 160.7 170.1 169.3 173.1 154.2
Concat & LayerNorm & Linear 166.2 177.9 173.0 181.9 159.3

40 20 0 20 40
x

20

0

20

40

60

80

y

Ground Truth
Controllable Autoregressive
Vanilla Autoregressive

Figure 5: T-SNE visualization of the
distribution of generation results from
our CAR model and the vanilla model.

Analysis of Data Distribution We analyze the control-
lability of CAR from the perspective of data distribution.
Specifically, HED Maps are used as a type of condition
to guide the image generation process, with this condi-
tion extracted from ground truth images. An uncontrol-
lable vanilla autoregressive model (Tian et al., 2024) is
employed to generate comparison samples. We apply t-
SNE (Van der Maaten & Hinton, 2008) to visualize the
first two principal components of the embedding features
from all generated images. These embedding features are
extracted using the backbone of the HED Map extraction
method (Xie & Tu, 2015).

As illustrated in Figure 5, there is a significant misalign-
ment between the generation distribution of the vanilla
autoregressive model and the ground truth, as the vanilla
model lacks condition control information. In contrast,
the distribution of the CAR model’s generated results closely aligns with the ground truth, demon-
strating that our samples accurately capture the visual details of the HED Map, bringing the HED
embedding features closer to the ground truth. This highlights that our CAR model enhances both
the controllability and accuracy of generated results I based on the provided condition control C.

4.4 ABLATION STUDIES

We conduct ablation studies on the ImageNet validation set to explore the different function choices
for each component in the CAR framework, including F(·), T (·), and G(·).

Different Function Choices for F(·) We explore the impact of different methods for introducing
conditional control ck to form sk in F(·). Specifically, we compare two strategies: 1) using the
pre-trained VQ-VAE encoder from the VAR model to directly map the condition image to token
maps at various scales; 2) our approach, which resizes the condition images to different scales at
the pixel level and employs a shared, learnable convolutional encoder for control feature extraction.
The results are shown in Table 3, where the learnable encoder shows significant improvements in IS
scores, indicating enhanced image quality. We hypothesize that the pre-trained VQ-VAE encoder,
being designed for image reconstruction, may not effectively capture image semantics, making it
less suitable for extracting control semantics. Similar visualization results are illustrated in Figure 6,
where using the VQ-VAE encoder results in image distortion and poor quality.

Different Function Choices for T (·) We design an encoder for T (·) to extract accurate and
effective control representations ŝk. Specifically, we compare two architectures: 1) a simple con-
volutional network, and 2) a GPT-2-style Transformer. As shown in Table 3 and Figure 6, the
Transformer shows significantly higher image quality compared to the simple convolutional net-
work baseline, due to its powerful representation ability. Meanwhile, the Transformer-based en-
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(a) Control (b) VQ in (c) Conv in (f) Ours(d) ZC in (e) CN in

Figure 6: Comparison of different function choices given (a) control input: (b) using a pre-trained
VQ-VAE encoder in F(·), (c) designing a convolutional network in T (·), (d) applying zero convo-
lution in G(·), (e) using cross normalization in G(·), and (f) our final architecture.

coder aligns with the architecture of the pre-trained autoregressive model, which may result in a
closer distribution, enhancing the subsequent injection process.

Different Function Choices for G(·) We compare different injection functions G(·), where the
control representation ŝk is injected into the image representation rk of a pre-trained autoregressive
model to update the image representation r̂k. Specifically, we compare three techniques: 1) applying
zero convolutions (Zhang et al., 2023) to the control representation, followed by the addition of
control and image features; 2) applying cross normalization (Peng et al., 2024), which normalizes the
control representation using the mean and variance of the image representation, then adds these two
features; 3) our method, which concatenates the two representations, applies a learnable LayerNorm
to normalize the distributions, followed by a linear transformation to adjust the channel dimension.

As shown in Table 3, adding the image and control features leads to a decrease in the IS metric, re-
gardless of whether zero convolution and cross normalization are applied before the addition. This
indicates that these operations result in a reduction in image quality compared to our approach. The
generation results in Figure 6 also demonstrate that these two baselines perform worse than our ap-
proach in terms of image quality and naturalness. We attribute this to the incompatibility of two
different domain representations. Although cross normalization tries to align the distribution across
the domain gap, such an operation is insufficient. Therefore, concatenating the two representations,
followed by LayerNorm, more effectively harmonizes the conditional and backbone features, ad-
dressing discrepancies in data distribution.

5 CONCLUSION

In this paper, we propose Controllable AutoRegressive Modeling (CAR), which establishes a novel
paradigm for controlling VAR generation. CAR captures robust multi-scale control representations,
which can be seamlessly integrated into pre-trained autoregressive models. Our experimental re-
sults demonstrate that CAR outperforms existing methods in both controllability and image quality,
while also reducing the required computational costs. CAR represents a significant step forward
in autoregressive visual generation, offering a flexible, efficient, and scalable solution for various
controllable generation tasks.

Discussion and Future Works While the proposed CAR framework demonstrates advancements
in controllable visual generation, it still faces certain limitations inherent in the underlying VAR
model. Specifically, the reliance on sequential token prediction can sometimes limit the model’s ef-
ficiency, especially when dealing with long image sequences or when requiring precise fine-grained
control at high resolutions. The multi-scale injection mechanism used in CAR could also be ex-
tended to explore alternative injection strategies, such as attention-based or adaptive injection, to
further enhance control precision. Additionally, although the current design excels at injecting con-
trol signals in a recursive manner, extending the framework to handle more complex tasks, such as
video generation, remains an open challenge for future work.
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