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ABSTRACT

Catastrophic forgetting is one of the main obstacles for Online Continual Graph
Learning (OCGL), where nodes arrive one by one, distribution drifts may occur
at any time and offline training on task-specific subgraphs is not feasible. In this
work, we explore a surprisingly simple yet highly effective approach for OCGL:
we use a fixed, randomly initialized encoder to generate robust and expressive
node embeddings by aggregating neighborhood information, training online only
a lightweight classifier. By freezing the encoder, we eliminate drifts of the rep-
resentation parameters, a key source of forgetting, obtaining embeddings that are
both expressive and stable. When evaluated across several OCGL benchmarks,
despite its simplicity and lack of memory buffer, this approach yields consistent
gains over state-of-the-art methods, with surprising improvements of up to 30%
and performance often approaching that of the joint offline-training upper bound.
These results suggest that in OCGL, catastrophic forgetting can be minimized
without complex replay or regularization by embracing architectural simplicity
and stability.

1 INTRODUCTION

In Online Continual Graph Learning (OCGL), nodes arrive sequentially, are observed only once, and
undergo drifts in both distribution and task to solve (Donghi et al., 2025). Therefore, models must
adapt to new operating conditions on the fly, while making anytime predictions and retaining past
knowledge from limited observations, and under strict memory and latency constraints. This makes
OCGL one of the most challenging continual learning scenarios. This setting poses several addi-
tional requirements to the traditional Continual Learning (CL) (Parisi et al., 2019 De Lange et al.,
20225 Van De Ven et al.,|2022), Online CL (Mai et al.,[2022), and Continual Graph Learning (CGL)
(Zhang et al.| [2022a), enabling applications that require fast adaptations and anytime predictions
(Koh et al., 2021) such as in healthcare (Le Baher et al.| [2023)), IoT intrusion detection (Lin et al.}
2024 and financial markets (Weber et al., 2019), other than modeling citation networks (Liu et al.,
2021} Zhou & Cao, 2021)), transportation networks (Chen et al., 2021) and recommender systems
(Caroprese et al.| [2025).

In this paper, we introduce a simple, yet surprisingly effective approach for node-level OCGL, de-
coupling node representations from the predictive model, and yielding excellent prediction accuracy
while taming the forgetting of previously learned concepts. Our approach leverages the effectiveness
of randomized and over-parametrized architectures to provide rich, untrained representations, com-
bined with a lightweight trained classifier on top (Rahimi & Recht, 2008} |Rudi & Rosasco, 2017b;
Scardapane & Wang|, 2017). As demonstrated in related literature, fixed representations from pre-
trained models help prevent forgetting at the feature extraction level even when used in CL for image
classification (Hayes & Kananl, [2020; [Pelosinl [2022; Mehta et al.l [2023)). The beneficial effect ap-
pears to be even more striking in graphs, where stable neighborhood embeddings eliminate the need
to retain the entire topological information for replay strategies (Zhang et al.| 2024a). Additionally,
the literature on randomized models provides us results that ensure good approximation and gen-
eralization properties for this family of models, given that we use a sufficiently large embedding
dimension (Scardapane & Wang, [2017). Coupled with a Streaming Linear Discriminant Analy-
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sis (SLDA) classifier (Hayes & Kanan, 2020)), this approach generally outperforms state-of-the-art
OCGL methods, without need for a memory buffer.

Our main contributions are the following.

1. We propose a surprisingly strong OCGL method. A simple, yet effective method coupling
principled untrained features with a lightweight streaming classifier, granting both expressivity
and forgetting-resilience.

2. We demonstrate how the approach achieves generally best results across seven OCGL bench-
marks, in both class-incremental and time-incremental setups.

3. We theoretically motivate our research findings, opening to the development of new, simpler CL
methods without compromising on accuracy.

Beyond providing a strong new method with said advantages, our findings suggest that future OCGL
research should rethink model designs, emphasizing architectural simplicity and stability.

2 RELATED WORKS

In this section, we first outline the specifics of Online Continual Learning for graphs, the setting
used for our experiments, distinguishing it from related paradigms. We then discuss randomized
neural models and other fixed feature extraction strategies in Continual Learning. These concepts
provide context for the problem addressed in the paper and motivate our design choices.

Online continual learning for graphs Continual Learning has been studied mainly in domains
such as computer vision (Rebutffi et al.,|2017;|Lopez-Paz & Ranzato,|2017) or reinforcement learning
(Kirkpatrick et al., 2017; [Rolnick et al., 2019), with clearly defined task boundaries and no depen-
dencies between successive tasks. In contrast, working on a node level in a graph domain introduces
structural dependencies between data points, complicating the definition of the task. Continual
Graph Learning (CGL) (Febrinanto et al., 2023} Yuan et al., 2023 Zhang et al., [2024b) extends CL
to graph settings, and assumes that the graph is presented in blocks, that is, as subsets of nodes con-
nected in subgraphs (Zhang et al.|[2022a). Several methods for CL on graph data have been proposed
(Zhou & Cao| 2021} |L1u et al., 20215 [2023} Hoang et al., 2023} [Sun et al., [2023}; |Cui et al.| [2023)),
yet, similarly to traditional CL, state-of-the-art performance is achieved by replay-based methods
which leverage a memory buffer tailored to leverage graph topology (Zhang et al., [2022b} 2024a).
However, the use of Graph Neural Network (GNN) (Scarselli et al., 2009; Micheli, |2009; Kipf &
Welling| |2017) models poses an issue regarding task separation: nodes form connections also with
nodes that were observed in past tasks, thus requiring access to past information due to message
passing (Gilmer et al., |2017). This is sometimes addressed by ignoring inter-task edges (Zhang
et al., 2022a), yet it is an unrealistic solution since it assumes supervisory information in the form
of task identifiers also at test time. On the other hand, due to small-world nature of most real-world
graphs, accessing the entire neighborhood information of the nodes would likely mean using the
entirety of past data, rendering the use of the CL approach less meaningful. In this context, a more
principled setting is Online Continual Graph Learning (OCGL) (Donghi et al.,[2025), which bridges
the gap between existing research on online CL and CGL. This setting addresses the issue of access
to node neighborhoods with the use of neighborhood sampling, to keep a constant computational
footprint even as the graph gets denser over time. In particular, the online setting for CL entails a
single pass over the streaming data (Chaudhry et al.,2018; Mai et al.,2022; |Soutif—Cormerais et al.,
2023)), in contrast to traditional offline CL where training is done offline in a batched setting on
each task (De Lange et al.,[2022)). This constraint, together with stricter computational and memory
requirements, is motivated by applications where quick model adaptation is necessary, and anytime
predictions may be required (Koh et al.,[2021), thus impeding the task-wise offline training.

Randomized representations In the literature on neural networks, multiple approaches have
leveraged some form of randomization, due to training efficiency, and often theoretical guarantees
(Scardapane & Wang| [2017). Notable examples for vector data are Random Vector Functional-Link
networks (RVFL) (Pao & Takefuji, [1992; |Pao et al., |1994), Extreme Learning Machines (ELM)
(Huang et al., 2006; 2015) and Echo State Networks (ESN) (Jaeger & Haas| [2004). These fix most
network parameters randomly, from an appropriate distribution, training only lightweight readouts.
Theoretical results such as universal approximation properties and generalization guarantees have
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been proved for some these architectures (Liu et al.| [2012). Randomized strategies have also been
explored for kernel approximation, such as with Random Fourier Features (RFF) (Rahimi & Recht,
2007), a randomized projection that approximates the RBF kernel. Some works have also explored
randomized strategies for graph data, such as with GESN (Gallicchio & Micheli, |2010) or MRGNN
(Pasa et al.l 2022). Different instantiations of untrained Graph Convolutional Networks (Kipf &
Welling|, 2017) have been proposed in recent years: GCELM (Zhang et al.,[2020) uses a single GCN
layer, with randomly initialized and fixed parameters. GCN-RW (Huang et al., [2023) improves on
this approach by considering an increased receptive field, employing the square of the adjacency
matrix for aggregation. The more recent UGCN (Navarin et al.,|2023a) instead uses multiple GCN
layers, followed by non-differentiable pooling, as the network does not need to be trained. Inspired
by RFF, GRNF (Zambon et al., 2020) are derived from expressive GNN architectures, and constitute
a family that can separate graphs.

Fixed feature extraction for CL. Some works in the CL literature for image classification suggest
the use of a frozen CNN backbone, pre-trained on a different dataset, and then training continually
only a classifier such a simple MLP (Van De Ven et al., 2022} Mehta et al., [2023). In the context
of graph data, this approach is not currently feasible, as it is not trivial to obtain pre-trained GNNs
that can handle graphs with different input feature domains, even though there is ongoing promising
work on graph foundation models (Wang et al} 2025). Additionally, despite the many randomized
approaches for representation extraction, only a very limited number of CL papers rely on them,
and only with image classification tasks. CRNet (L1 & Zeng| 2023) uses a randomly initialized
network for feature extraction, training the classification head via closed-form solution on each
task. RanPAC (McDonnell et al.| 2023)) uses random projections of feature extracted with a pre-
trained model with the objective of increasing dimensionality to facilitate class separation. More
recently, RanDumb (Prabhu et al [2025) leverages Random Fourier Features (Rahimi & Recht,
2007) used with nearest class mean classification. On the other hand, there have been some works
that investigated theoretically the use of linear models in simple CL setups (Evron et al., 20222023
Ding et al.| 2024), leading us to adopt these simple classifiers. Furthermore, it has been observed
that prototype based classifiers, such as nearest class mean, are particularly suited for online CL,
due to being schedule-robust, i.e. independent from stream ordering (Wang et al., 2022]).

3 METHOD

The OCGL setting (Donghi et al, [2025) considers an incremental graph G, induced by a stream
of nodes v1,va,...,vs, ... that are added one by one. At each timestep ¢, the graph is updated
with neighborhood and attribute information about the incoming node (v¢, N'(v;), x), obtaining
an updated graph snapshot G = (V) E(®) X ®)), For example, in the Elliptic dataset (Weber
et al.,|2019), when a new transaction is processed, its information is captured as node features, and
payment flows indicate connections. The goal is to learn a model Fig to make node-level predictions
gjvt for given node v at time step ¢ given information coming from its neighboring nodes in G(*)
Specifically, models are tramed with a single pass over the node stream, using information from the
associated [-hop ego-graph QU ) The online setting requests bounded memo: (y and computational
cost at each time steps, even as the graph grows. Accordingly, only a subset G, ) of the ego-graph
may be allowed to produce prediction

90 = Fo (G00) . M

In the context of CL, the node stream can encompass diverse drift patterns, such as those triggered
by a class-incremental setting. Nonetheless, model predictions may be requested for nodes observed
in the past, therefore requesting the model not only to adapt to evolving graph conditions but also to
preserve previously learned knowledge.

3.1 PROPOSED SOLUTION

To address forgetting in the OCGL setting, we propose a decoupled approach to node prediction. In
this setup, model Fig = ® o ¥ decomposes as a node feature extractor ¥ followed by a node-level
predictor ®. Feature extraction is performed by a fixed (randomly initialized) backbone W:

0 = w (G0, @
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where zﬁt) € R9 denotes the node embedding that captures neighborhood information. As W is

untrained, it does not change over time and is inherently immune to forgetting. Secondly, it offers a

clear advantage for experience replay methods, as storing z( 25

is significantly more memory-efficient
than storing the entire sampled neighborhood gf,

Feature extractor ¥ also mitigates other sources of forgetting. Unlike trained models, which tend
to produce task-specific representations that remove task-irrelevant information, a well-chosen ¥
can produce rich node embeddings suitable for multiple tasks. Notably, theoretical results (Rudi &
Rosasco, [2017a) show that for some families of model architectures, a random initialization of W
yields linearly separable embeddings, allowing to effectively solve the downstream task by simple
linear predictive models

B = Py (2) = Wzl + b, 3

which are less prone to forgetting than deep networks (Mirzadeh et al.l 2022) and can be learned
efficiently.

3.2 RANDOMIZED FEATURE EXTRACTION

We consider two different types of graph feature extractors W, or backbones, for our experiments,
untrained GCN (Navarin et al., |2023a)) and Graph Random Neural Features (Zambon et al., 2020)
adapted to the node-level, which we discuss here. In general, any randomized graph network with
sufficient expressivity and robustness to limited structural shifts can be adopted for our decoupled
approach.

UGCN As first feature extractor, wee use the recent UGCN (Navarin et al., [2023a), which uses
multiple GCN layers H) = tanh(AH (1 ©), where A is the normalized adjacency matrix, with
H(© = X and with weights initialized with a Glorot uniform approach (Glorot & Bengio, 2010)
regulated by a gain hyperparameter, and successively left untrained. In our case, since we adopt it
for node-level predictions instead of graph-level ones, we do not use the entire adjacency matrix,
but the efficient forward propagation limited to the node ego-graph of (Hamilton et al., |2017). The
output of the different layers is then concatenated to obtain an embedding that reflects information
at multiple resolutions, i.e.

YyceN (Qvét,l)) = concat (H,Sl), . ,Hl(f)) . 4)

In an over-parameterized regime, this model performs competitively with trained GCN counterparts
on graph classification (Navarin et al.| | 2023b; |Donghi et al., 2024).

GRNF Graph Random Neural Features (Zambon et al., 2020) define expressive embeddings for
attributed graphs, derived from a GNN model which is a universal approximator of graph functions
(Maron et al., [2019; Keriven & Peyré, 2019). Each GRNF is a parametric maps (-, w) : T2 5 R
defined by the composition of equivariant and invariant affine maps, interleaved with non-linearity:

Yu(-) = 0o Hy(-,0p) oo o Fy (- 0F), (5)

where w = (k,0p, 0), and k represent tensor order (formal definitions of F; j, and Hj, and more
details can be found in (Zambon et al., |2020)). Interestingly, the family of GRNF can separate
graphs, meaning that for any non-isomorphic graphs Gy, Gs, there exists w such that ,,(G1) #
1,,(G2). Thus, under suitable assumptions on the distribution of w, the family of GRNF induces a
metric distance on graphs, with also results that hold in probability for a fixed number of features
(Zambon et al., [2020). To adapt GRNF to make node level predictions, we use them on g£ l),
and since the the output is permutation invariant over the entire ego-graph, we concatenate it to the
component relative to v of the output of the equivariant map, using d/2 independent draws of w,
resulting in a d-dimensional embedding (assuming even d).

3.3 LINEAR CLASSIFIER

As indicated in equation [3] the extracted features are fed to a linear layer, which can be trained
continually on the stream. Effectively, thanks to this strategy we have simplified the Continual Graph
Learning problem by eliminating the graph specificity, relegating it to the fixed feature extractor,
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and reducing the problem to Continual Learning on vectors. A linear layer may thus be trained with
gradient descent, supported by any standard CL learning strategy, such as experience replay which
can now leverage informative node embeddings.

Furthermore, we can also address forgetting in the linear classifier by adopting a specific form
which does not require gradients: we use Streaming Linear Discriminant Analysis (SLDA) (Hayes
& Kananl 2020), which learns by accumulating class means, independently for each class. This
choice makes training more efficient and provides further robustness against catastrophic forgetting
risk, as further discussed in Section Specifically, during training, SLDA keeps a cumulative
mean (i, for the features of each class y, and a shared covariance matrix 3 with streaming updates.
To make predictions, using precision matrix A = [(1 — €)X + eI]~! with € = 107*, the parameters
w, (rows of W) and b of equationare computed as

1
wy = Apy b, = _i(l‘g/\#y) . (6)

3.4 EFFECTIVENESS OF THE APPROACH

As the graph evolves, multiple sources of forgetting can impair the model’s prediction accuracy.
This section elaborates on our method’s effectiveness in mitigating forgetting while yielding high
anytime classification accuracy.

One is a common challenge in all CL setups and stems from the continual update of the model’s
parameters based on recent training signals, both for the feature extraction backbone (if trained) and
for the classifier. A second, graph-specific issue arises from the evolving nature of the graphs and
associated structural shifts (Su et al., [2023;2024): predictions made for the same node at different
time steps may rely on different and potentially inconsistent neighborhoods. To put our intuitions
more formally, we consider time interval §¢ and define the forgetting risk for node v at time ¢ as the
increase in the loss from time tg = t — 0t to time ¢:

AR, = AR, 1(0t) = ¢ (y, Dy, (\1'9t (gf,))) -/ (y, Py, (\I/@to (gio))) , @)
with loss function ¢ and where we made explicit the decomposition into feature extraction (¥g) and
linear classifier (P ); to avoid overwhelming notations, we omit the bias terms in ®vy and use G
to indicate G3"". Then, assuming that the loss is Lipschitz continuous with constant L,, and using
the triangle inequality, we can isolate three components of forgetting risk:

AR, < L, (||<I)Wt (\I/@t (gf})) — Dy, (\IJ@t (gff’))H structural drift ~ (8)
+ HCDWt (Yo, (GI)) — Pw, (\I/@to (G)) || backbone parameters drift  (9)

+ ||<I>Wt (\If@to (gfp)) — <I>Wt0 (\I'@to (QZO))H) . classifier parameters drift (10)

While the first term is inherent in the data-generating process, and therefore irreducible, a crucial
advantage of using a fixed feature extractor is that it eliminates the second term, as ©; = Oy,.
Furthermore, if we assume the norm of the embeddings to be bounded by B,, the third term is
bounded by B, |W; — W, ||. For SLDA, the term is expected to decrease as the number of observed
examples of a class increases, due to the update scheme through separate, class-specific cumulative
means; this is in contrast with SGD-based training, where weight updates are less separated by class.
Therefore, SLDA with fixed feature extraction provides high stability, with decreasing forgetting
risk as the node stream progresses. Higher stability compared to SGD-trained methods can be
empirically observed in Figures [2}{3] of Appendix[F

This analysis illustrates the robustness against forgetting of untrained feature extraction with SLDA.
However, stability is not sufficient for good CL performance: the model must also remain plas-
tic enough to acquire new knowledge as the node stream evolves. For this, we can rely on the
over-parameterized randomized feature extractors, which give us expressive and general topological
embedding independently of task, allowing for the training of just a simple linear classifier on top
(Scardapane & Wangl 2017).

4 EXPERIMENTAL SETTING

For our experiments we adopt the OCGL setting described in (Donghi et al.| |2025)). In particular,
we follow the requirement of neighborhood sampling, and we consider small mini-batches of nodes
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instead of individual ones. We compare the use of randomized feature extractors, UGCN and GRNF,
with linear classifier, either SLDA or coupled with CL strategies, across multiple benchmarks.

Benchmarks We use the same six node-classification graph datasets of (Donghi et al., [2025):
CoraFull (Bojchevski & Glinnemann, [2018]), Arxiv (Hu et al., 2021), Reddit (Hamilton et al.,|2017)),
Amazon Computer (Shchur et al.l|2019), Roman Empire (Platonov et al.|[2022) and Elliptic (Weber
et al., 2019). On all except Elliptic (as it only has two classes) we consider a class-incremental
stream: nodes in the graph arrive one by one in blocks consisting of two classes (each segment can
be identified with a task in the context of CL, even though the models in this setting are agnostic
to task boundaries). On Elliptic and Arxiv we consider a time-incremental stream: since real node
timestamps are available, we use them for a realistic node stream (dividing the stream into 10 blocks
simply for evaluation). We split the nodes in each graph into 60% for training, 20% for validation
and 20% for testing, and we use a transductive setting. We consider the same mini-batch sizes as
(Donghi et al.l [2025): 10 for the smaller CoraFull, Amazon Computer and Roman Empire, 50 for
Arxiv, Reddit and Elliptic.

Metrics To evaluate model predictions in the considered setting, we use three metrics: Average
Performance (AP), Average Forgetting (AF) (Lopez-Paz & Ranzato, 2017), and Average Anytime
Performance (AAP) (Caccia et al.L|2021). The performance metric is accuracy for all datasets except
for Elliptic, as it is highly unbalanced with only two classes, and therefore F1 score of the minority
class is used. For anytime predictions, we obtain AAP by evaluating the model on the validation
nodes after each training mini-batch. The metrics are described in detail in Appendix

Baselines In addition to the described SLDA, we couple the linear classifier with some popular
CL strategies: we consider A-GEM (Chaudhry et al., [2018), ER (Chaudhry et all 2019), EWC
(Kirkpatrick et al., [2017), LwF (L1 & Hoiem, [2018)) and MAS (Aljundi et al., 2018). Furthermore,
we consider the bare baseline which consists of simply finetuning the linear layer on the stream
without any CL method. We also provide the joint baseline consisting of jointly training the linear
layer offline on the embeddings from all the nodes in the entire final graph. We do not consider
graph-specific methods, as once the features are extracted with the untrained backbone they are no
longer relevant. However, we provide a comparison with recent state-of-the-art graph methods for
OCGL (Donghi et al.,[2025) in Appendix [E]and in summary in Table

Implementation details Following (Donghi et al.l 2025), we consider sparsified 2-hop node
neighborhoods, sampling recursively 10 neighbors per layer for each node. For UGCN, we therefore
use a 2-layer network with 1024 units per layer, resulting in a 2048-dimensional node embedding
due to layer concatenation. For GRNF, we use 1024 features, which amount to a 2048-dimensional
node embedding since we concatenate the equivariant and invariant components. In both cases,
magnitude of weight initialization is regulated by a tunable gain hyperparameter. We use Adam
optimizer (Kingma & Bal [2017) without weight decay nor dropout, tuning the learning rate as an
hyperparameter. Another hyperparameter is the number of passes on a mini-batch before passing to
the next, as suggested by Aljundi et al. (Aljundi et al.| |[2019). Hyperparameters are tuned follow-
ing the protocol outlined by Chaudhry et al. (Chaudhry et al., 2018): they are selected according to
validation performance (AP) only on a small section of the data stream. All training and method spe-
cific hyperparameters are reported in Appendix D] All experiments are performed with 5 different
random initializations, and results are reported as average and standard deviation over them.

5 RESULTS

The results of our experiments in the OCGL setting are reported in Table [T for benchmarks with
class-incremental node stream and Table 2] for those on which a time-incremental stream is defined.
Additionally, for comparison with results obtainable by a model trained end-to-end, we report in
Table E] the best AP reported in (Donghi et al.,[2025)) (Arxiv is reported only with class-incremental
stream as the time-incremental one is not considered in (Donghi et al., 2025)) by any OCGL strat-
egy, in most cases SSM (Zhang et al.| 2022b) and PDGNN (Zhang et al.| [2024al), together with
the respective joint upper bound, and we highlight the increase in performance using the proposed
decoupled approach of randomized feature extraction with SLDA.
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UGCN GRNF
METHOD AP% 1 AAP,1% T AF% 1 AP% 1 AAP,q1% 1 AF% 1
A-GEM  32.99+1.02 52.35+0.90 —50.53+1.19 33.33+0.42  48.04+0.80 —29.93+0.67
. ER 55.67+0.47 65.01+0.60 —24.90+0.71 52.53+0.60 59.79+0.56 —27.40+0.70
5 EwWC 34.46+1.28 52.2840.35 —49.31+1.82 30.53+0.52  46.66+0.92 —50.44+0.75
i, LWF 35.30+0.50 52.94+1.18 —46.41+0.74 30.70+0.85 45.87+0.98 —35.06+0.50
é MAS 34.44+1.30 52.59+0.36 —49.44+1.79 30.12+0.63 46.58+0.87 —51.28+0.73
8 SLDA 64.03+0.50 74.654+0.44 —14.48+0.39 62.05+0.27 72.42+0.31 —16.87+0.50
BARE 32.10+1.50 51.48+0.55 —51.85+1.62 28.18+0.71  44.82+1.11  —35.56+0.65
JOINT 66.10+0.28 - —8.91+0.36 65.23+0.78 - —8.05+0.54
A-GEM  60.35+4.86 58.12+3.18 —31.60+7.88 53.69+585 62.51+359 —39.10+8.55
& ER 80.71+2.83 83.30+0.51  —13.32+3.99 62.62+10.93 75.25+2.93 —20.04+11.26
[5 EWC 48.02+1.30  59.01+1.07 —30.29+1.55 30.80+5.50 49.10+t1.05 —44.21+2.34
& LwF 47.31+11.89 60.84+3.24 —30.40+13.68 40.59+5.37  53.53+1.97 —50.96+2.41
% MAS 41.81+2.06 62.90+0.87 —45.72+3.10 43.14+3.89  57.19+2.01 —44.81+3.95
O SLDA 86.65+0.48  90.64+0.13 —7.72+0.47 84.32+0.42 89.95+t0.23 —10.94+0.39
< BARE 43.98+3.39  50.21+1.26 —42.56+8.59 42.53+6.22  52.62+1.53 —49.47+2.49
JOINT 86.84+0.47 - —7.30+0.47 87.43+0.34 - —6.80+0.33
A-GEM  22.68+3.24 30.81+2.18 —59.57+1.86 14.32+1.82  32.39+1.80 —64.85+1.27
ER 15.12+4.06 32.36+3.98 —49.55+4.96 14.63+1.78  31.84+2.05 —57.71+1.41
> EWC 17.26+2.12  27.71+1.02 —56.43+2.11 17.31+1.06 26.33+0.66 —67.39+0.52
% LwF 19.52+1.49  27.04+0.88 —56.52+0.92 21.72+0.98 29.84+0.40 —60.04+1.71
~ MAS 18.77+2.44  28.92+1.27  —53.20+3.47 16.45+1.35  29.10+0.82 —67.50+1.20
< SLDA 55.71+0.08  64.554+0.03 —18.47+0.08 52.69+0.19  62.69+0.07 —27.67+0.16
BARE 21.38+3.37  24.28+1.69 —41.42+2.17 14.13+1.14 24.67+0.33 —75.06+1.31
JOINT 59.06+0.15 - —16.09+0.30 57.87+0.28 - —16.72+0.19
A-GEM  60.60+0.88 78.29+0.31 —36.77+0.89 46.51+0.91  61.06+0.20 —25.63+0.96
ER 80.40+1.04 89.75+0.05 —16.60+1.11 83.46+0.43 89.22+t0.12 —14.44+0.40
= EWC 40.91+1.22 61.13+1.0r —49.58+1.37 44.26+1.12  60.49+0.45 —29.80+1.18
2 LwF 13.60+0.43  49.00+0.85 —84.37+0.43 39.09+0.77  58.00+1.07 —35.99+0.87
2 MAS 11.93+0.66  50.54+0.48 —86.50+0.66 42.9940.99 58.22+0.50 —32.62+0.97
~ SLDA 89.31+0.03  95.17+0.03 —5.56+0.09 91.42+0.14  95.84+0.03 —3.81+0.15
BARE 41.35+1.27  60.55+1.05 —48.97+1.26 42.67+0.75  57.80+0.36 —33.13+0.41
JOINT 88.07+0.20 - —3.57+0.19 90.90+0.17 - —2.77+0.17
A-GEM  17.18+0.46 43.99+0.20 —69.65+0.42 31.19+0.98 37.77+1.42 —23.28+4.54
. ER 24.80+1.21  46.35+0.50 —32.56+0.84 40.45+1.18  46.83+1.46 —15.68+2.20
m EWC 15.82+1.00 37.30+0.50 —43.62+0.95 21.54+0.85 40.22+0.91 —22.71+2.53
<Zc LwF 21.51+0.65 45.51+0.37 —42.38+0.83 20.29+1.84  37.25+0.76 —46.63+2.02
s MAS 16.33+0.66  35.124+0.81  —28.71+1.77 22.47+0.58 40.52+0.42 —26.3840.60
éz SLDA 34.61+0.02 57.57+0.06 —34.38+0.20 52.71+0.09 72.07+0.03 —29.43+0.21
BARE 7.09+0.03 34.74+0.69 —T77.07+0.93 16.82+0.20 42.444+0.66 —068.56+1.54
JOINT 49.12+0.51 - —5.22+0.48 71.50+0.10 - —6.54+0.37

Table 1: Results for class-incremental node stream.

Class-incremental benchmarks We first observe from Table [I] that the upper bounds with ran-
domized features are comparable to those obtained with a trained GCN model, as reported in Table
[l This proves that the extracted features are expressive enough for these tasks, confirming our
approach’s viability. On Roman Empire specifically, which is highly heterophilic, we see a much
higher upper bound with GRNF: this is due to the implicit bias of the GCN design, which smooths
node embeddings with neighborhood information, while GRNF are more expressive, as they are de-
rived from a universal approximator of graph functions. We also note how AF for the joint baseline
represents the increasing difficulty of the classification task as new classes are added.

From the results the superior performance of SLDA also emerges clearly, as it outperforms all con-
sidered CL methods on a linear layer trained with gradient descent, and in most cases with a wide
margin. Additionally, the AP results of SLDA with both UGCN and GRNF closely approach their
respective upper bounds. The results of the randomized feature extractors coupled with SLDA also
significantly outperform the best results obtained with state-of-the-art replay methods tailored for
graphs, as seen in Table 3] despite SLDA not using any memory buffer. The differences between
UGCN and GRNF are in most case limited, especially for the SLDA classifier, with UGCN showing
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UGCN GRNF
METHOD AP% 1T AAP,u% T AF% 1 AP% 1T AAP,u% T AF% 1
A-GEM  42.43+0.99 40.72+0.57 —13.51+1.54 53.65+0.73  50.104+0.33 —12.08+1.16
ER 44.61+1.20 45.54+0.40 —9.17+1.82 57.30+1.69 53.36+1.29 —8.90+1.65
© EWC 36.62+1.23 34.64+0.20 —13.36+1.59 50.44+1.45 48.81+0.36 —13.77+1.16
£ LwF 37.88+1.52 34.63+0.30 —11.43+1.39 55.16+1.26  50.15+0.59 —10.45+0.88
o MAS 36.80+0.84 34.47+0.21 —13.21+1.30 50.26+1.19 48.30+0.36 —14.29+0.97
@ SLDA 55.49+0.64 54.13+0.28 —1.85+1.17 65.92+0.71  65.43+0.53 —3.21+1.90
BARE 37.33+0.68 34.97+0.32 —12.21+1.01 50.14+1.44 48.81+0.45 —13.23+1.11
JOINT 59.29+0.82 - —4.94+0.62 70.23+0.76 - —3.59+1.00
A-GEM 67.66+0.12 64.97+0.07 0.98+0.17 67.73+0.06 63.07+0.11 2.3240.09
ER 68.67+0.18 65.26+0.05 2.12+0.18 68.30+0.04 63.56+0.09 2.93+0.09
. EWC 67.65+0.07 64.9640.03 0.94+0.08 67.65+0.08 63.93+0.12 1.48+0.10
% LWF 68.21+0.00 65.22+0.08 1.37+0.09 67.56+0.12  62.94+0.12 2.22+0.11
x MAS 67.65+0.07 64.96+0.03 0.94+0.08 67.64+0.00 63.93+0.12 1.47+0.10
< SLDA 66.69+0.07 61.97+0.04 2.29+0.17 65.09+0.21  60.14+0.10 2.42+0.20
BARE 67.59+0.20 64.98+0.04 0.97+0.18 67.68+0.09 63.89+0.04 1.57+0.10
JOINT 70.35+0.16 - 2.6740.30 69.53+0.12 - 2.89+0.09
Table 2: Results for time-incremental node stream.
METHOD CORAFULL A.COMPUTER ARXIV (CL.-INCR.) REDDIT ROMAN E. ELLIPTIC
BEST OCGL 40.45+0.77 70.45+3.66 35.86+1.20 58.08+8.04 14.20+0.87 51.13+1.74
JOINT 67.55+0.05 83.07+1.30 58.58+0.28 90.02+0.12 39.47+0.33 71.97+0.83
UGCN+SLDA +23.6 +16.2 +19.9 +31.2 +20.4 +4.4
GRNF+SLDA +21.6 +13.9 +16.8 +33.3 +38.5 +14.8

Table 3: Top rows: best AP results from Table |5| of Appendix [E| for CL strategies with trained
GCN and joint offline training upper bound. Bottom rows: increase in AP of the proposed approach
(Tables[I}2)) compared to the best performing method with trained GCN. All the increases in perfor-
mance show statistical significance with p-value < 0.005 with a one-sided Mann—Whitney U test.

a slight advantage on CoraFull, Amazon Computer and Arxiv benchmarks, while GRNF appears
superior on Reddit and more significantly on Roman Empire, due to the heterophily of the graph as
discussed above.

In general, compared to the full results in Appendix [E] also most other CL strategies in most bench-
marks report performance improvements compared to the use of a trained GCN, confirming the
benefits of keeping a frozen feature extractor immune to forgetting. ER specifically is significantly
better when coupled with randomized features compared to a trained GCN, in some cases approach-
ing SLDA, due to the fact that in this setting the memory buffer is much more informative, as stored
examples contain neighborhood information, albeit subject to structural shift.

Time-incremental benchmarks The time-incremental setting naturally possesses more docile
shifts in distribution, compared to the abrupt class changes of the class-incremental benchmark.
Nonetheless, on Elliptic CL methods are still beneficial, with SLDA still outperforming all base-
lines, also compared to the trained GCN state-of-the-art (Table [3). Importantly, our results on El-
liptic, which is a dataset of real Bitcoin transactions, highlight the feasibility and benefits of the
proposed approach on realistic data streams, beyond the academic class-incremental setting. On the
other hand, for the Arxiv time-incremental benchmark, we see little difference in the results of the
various strategies, with SLDA no longer over-performing. In fact, we even see positive AF values for
all methods, indicating that the classification becomes easier, rather than harder, as the node stream
goes on. This is because Arxiv does not present a significant drift in class distribution throughout
time. Therefore, a CL learning approach here is less meaningful, as the bare baseline is already close
to the upper bound. Nevertheless, ER proves beneficial, and these high results are further proof that
the feature extractors are robust to structural shifts that still remain.
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Figure 1: Comparison of AP of SLDA with different number of features extracted with GRNF,
UGCN, and a 50/50 mix of the two. The shaded area covers one standard deviation.

Impact of number of features Given the overwhelming over-performance of randomized feature
extraction with SLDA, we investigate the impact of the number of extracted features on model
performance. In Figure E], we see that, with a lower number of features AP decreases as well, even
though on most benchmarks even as few as 64 randomized features are sufficient to obtain results
on par with the state-of-the-art CL methods on trained GCN of Table 3| Also, for many benchmarks
performance seems to not have reached saturation even at 4096 features, indicating that further gains
could be achieved with a larger feature extractor.

Finally, since UGCN and GRNF appear to have different strengths over the multiple benchmarks, we
consider a hybrid feature extractor that extracts half of the features with UGCN, and half with GRNF.
This mixed feature extractor shows a generally more robust performance over the benchmarks, with
performance that is never lower than the individual two, except for one single point. Generally the
hybrid extractor also does not improve over the best single one, indicating that the two types of
feature do not benefit from integration. However, this strategy could be used to obtain a reliable
feature extractor without the need to evaluate the two strategies.

6 CONCLUSION

This work introduces a simple, yet surprisingly effective approach for Online Continual Graph
Learning, addressing forgetting by decoupling representation learning from classification. We use
randomized, fixed node feature extractors that encode neighborhood information, coupled with a
lightweight linear classifier trained incrementally on the node stream. By leveraging two types of
untrained feature extractors — UGCN and GRNF - the proposed method provides robust and ex-
pressive node embeddings, resistant to catastrophic forgetting. Extensive experiments in the OCGL
setting demonstrate that when paired with SLDA, this approach significantly outperforms other Con-
tinual Learning strategies, including state-of-the-art replay-based methods tailored for graph data.
The method achieves performance close to joint offline training across various benchmarks. Beyond
strong performance, its efficient streaming updates and no reliance on memory buffers make it a
scalable and practical approach to deal with real-time classification on graph node streams.

Limitations and future directions While we provide motivation and empirical evidence of the
improved resistance to forgetting and higher prediction accuracy of our approach, a thorough theo-
retical analysis is yet to be developed. Secondly, we highlight how our results are specific for the
challenging OCGL scenario, while for different, offline settings other methods can perform more fa-
vorably. Finally, we focus on node-level classification, as graph-level is less interesting for OCGL,
and leave regression and edge-level tasks as future research.
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A BENCHMARKS

The benchmarks for out experiments are obtained from six node-level classification graph datasets.
The CoraFull dataset Bojchevski & Giinnemann|(2018) is a citation network where nodes represent
research papers and edges denote citation links between them, with labels corresponding to paper
topics. Amazon Computer |Shchur et al| (2019) is a co-purchase graph, with nodes representing
products and edges indicating frequent co-purchases in the computer category on Amazon. Arxiv
Hu et al.[(2021)) is a larger citation network based on arXiv submissions in the Computer Science do-
main. The Reddit datasetHamilton et al.|(2017)) comprises posts from various Reddit communities,
where each node represents a post, and edges connect posts that were commented on by the same
user, capturing user interaction patterns. Roman Empire |Platonov et al.| (2022) is an heterophilous
dataset constructed from the corresponding Wikipedia page, where nodes are words linked through
syntactic relationships or adjacency in the text. Lastly, the Elliptic dataset|Weber et al.| (2019) is a
graph of Bitcoin transactions, with edges representing the flow of funds. Only a subset of nodes are
labeled as either licit (42,019 nodes) or illicit (4,545 nodes) transactions. Summary statistics for the
six datasets are provided in Table [

Dataset CoraFull Amazon Computer  Arxiv Reddit Roman Empire Elliptic
#nodes 19,793 13,752 169,343 227,853 22,662 203,769
#edges 130,622 491,722 1,166,243 114,615,892 32,927 234,355
# classes 70 10 40 40 18 2

Table 4: Dataset statistics.

B METRICS

Due to the way the node stream is built, with a definition of task boundaries, we can make use of
two commonly adopted continual learning (CL) metrics: Average Performance (AP) and Average
Forgetting (AF)|Lopez-Paz & Ranzato|(2017). These metrics are both derived from the more general
performance matrix M € R***, where T denotes the total number of tasks, and each element M, ;
corresponds to the test performance on task j after training on task .

The Average Performance is given by AP = % ZiT:1 M ;, representing the model’s performance
on all tasks after completing the full training stream. The Average Forgetting is computed as

AF = ﬁ Zz:ll My ; — M; ;, and quantifies how much the model’s performance on each task
has deteriorated between its initial learning and the end of training. For evaluating performance, we
rely on classification accuracy across all datasets, except for Elliptic, which is significantly imbal-

anced. For this dataset, we instead report the F1 score specific to the illicit class.

To track model behavior throughout the node stream, we also employ anytime evaluation: the model
is evaluated on validation nodes after each mini-batch update |[Koh et al.|(2021). This provides a
fine-grained view of model performance over time, revealing its adaptability to distributional shifts.
We quantify this using the Average Anytime Performance (AAP) metric Caccia et al.[(2021), a gen-
eralization of average incremental accuracy for the online scenario. Letting APt denote the average
accuracy after processing the ¢-th mini-batch, and n be the total number of mini-batches, AAP is
defined as AAP = % >t = 1"AP;. This metric can be interpreted as the area under the accuracy
curve across the training process |Koh et al.| (2021).

C ONLINE FEATURE CENTERING TRICK

As in our experiments we consider also using a standard linear layer trained continually with gradient
descent instead of SLDA, in this case it is beneficial to have featured centered in the origin. This is
especially true due to the online setting, as having centered features can make the learning of bias
parameters for newly observed classes faster, since we initialize the weights symmetrically around
zero. Therefore, we adopt an online centering procedure, which allows us to keep the features
centered at any point during the stream. Specifically, we maintain an updated global cumulative
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mean m of node embeddings, so that

(t—1)mt=1 4+ 20

m® — ,
t

Y

where for ease of notation we use z() = zgi). With this, we then feed the centered embeddings

zy) —m® in equation (3) of the paper. To ensure consistency of model predictions with online
feature centering under updates of the embedding mean as in equation [T} we want to correct the
bias term b — b’ to ensure that for any z € RY predictions don’t change, that is

Wz-—m®)+b =W(z-—m'V)+b. (12)

Simplifying and using the definition of the update of m(®) in equation|11| we obtain:

—Wm® 5 = WD 1 b, (1)
_(t%l)Wm(t—l) - %Wz(t) +b =-Wm'Y +b, (14
b _%Wm(t—l) n %Wzm +b, (15)
b — %W(zm —mD) + b, (16)

This is the bias update formula, and a similar one can be derived for mini-batch updates. We high-
light how this bias correction is performed only for seen classes, as we grow the classification head
when new classes are encountered. Also, this online centering procedure is not performed with
SLDA, since it is a prototype-based classifier and is thus indifferent to feature centering. Empiri-
cally, we have observed that this trick greatly improves performance when the node embeddings are
not centered, which is often the case with GRNF.

D HYPERPARAMETERS

We perform model selection using a limited section of the node stream, approximately 20% of
the tasks. Therefore, for class-incremental stream we validate over 7 out 35 tasks for CoraFull, 2
out of 5 for Amazon Computer (as considering 20% of the tasks would mean using only 1, thus
without any CL aspect), 4 out of 20 for Arxiv and Reddit, and 2 out of 9 for Roman Empire. For
the time-incremental stream, we validate over the first 20% of the nodes (i.e., 2 out of 10 tasks).
The hyperparameters are selected by running a standard grid search, over the search space that we
illustrate here. For all experiments and both backbones, we consider the gain hyperparameter for
weight initialization in {0.1, 1, 10}. For all methods, except SLDA, we select the learning rate from
the set {0.01,0.001,0.0001,0.00001}, and the number of passes on each batch before going to
the next one between 1 and 5. For ER and A-GEM, we consider the proportion of memories to
use with respect to each training batch in {1,2,3}. Additionally, we set the same memory buffer
size as [Donghi et al| (2025): 4000 for CoraFull, Amazon Computer, Roman Empire and Elliptic,
16000 for Arxiv and Reddit. The regularization hyperparameter for EWC and MAS is selected in
{10°,102,10%,1065,108,10'°}. For LWF, we consider lambda_dist in {1, 10}, T in {0.2,2} and the
number of mini-batches after which to update the teacher model in {10, 100}.

We highlight how the only hyperparameter considered for SLDA is the gain of the backbone, making
it even easier to use than other methods, avoiding expensive hyperparameter search.

E RESULTS WITH TRAINED GCN

In Table [5] we report the AP of CL strategies when used with a trained GCN in the OCGL setting
Donghi et al.|(2025). These results are obtained in the same configurations used for the experiments
in the main paper, only with a trained 2-layer GCN with 256 hidden units instead of an untrained
feature extractor. The results on Arxiv are provided only for the class-incremental stream. For
the full results with the other metrics (AAP and AF), we point the reader to the original paper
introducing the setting.
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METHOD CORAFULL A. COMPUTER ARXIV REDDIT ROMAN E. ELLIPTIC

EwWC 28.10+2.76 14.86+6.00 4.81+0.08 4.33+2.77 8.85+0.05 51.08+1.10
LwF 15.74+1.56 19.33+0.14 4.79+0.08 13.13+1.92 8.81+0.01 50.79+1.36
MAS 8.40+0.62 12.68+8.28 3.35+0.99 10.21+1.03 11.02+1.36  51.08+1.10
TWP 13.98+1.66 19.8043.41 4.74+0.05 12.79+2.51 8.99+0.06 51.13+1.74
ER 20.65+2.33 38.53+2.93 23.43+1.65 22.34+2.46 10.43+0.20 43.94+0.52
A-GEM 40.45+0.77 38.49+2.80 17.16+1.45 58.08+8.04 9.07+0.15 47.06+1.18
PDGNN 38.48+1.15 68.91+0.33 35.86+1.20 53.98+0.44 14.20+0.87 49.91+1.44
SSM-ER 23.23+2.69 70.45+3.66 31.28+1.01  50.48+1.69 11.71+o0.51 24.45+2.97
SSM-A-GEM 36.63+4.63 50.01+9.12 13.12+2.46  22.54+4.51 9.00+0.09 40.48+0.82
BARE 12.59+0.82 20.51+4.26 4.74+0.08 12.5942.59 8.78+0.10 51.28+2.37
JOINT 67.55+0.05 83.07+1.30 58.58+0.28  90.02+0.12  39.47+0.33 71.97+0.83

Table 5: AP results in the OCGL setting from (Donghi et al.| [2025) of CL strategies with trained
GCN and joint offline training upper bound. In particular, TWP (Liu et al.,|[2021), PDGNN (Zhang
et al., 2024a), SSM-ER and SSM-A-GEM (Zhang et al., [2022b) are graph-specific CL baselines.
Best performing method for each dataset is highlighted in bold. For Arxiv class-incremental stream
is considered.

F PERFORMANCE PLOTS

We report here plots that show model performance along the node stream, to provide a more detailed
understanding of the dynamics of training and forgetting. In Figures [2| and |3| we plot for each
benchmark a comparison of the performance using the considered methods, for UGCN and GRNF
backbones respectively. We highlight the task boundaries with dotted vertical lines, with the thicker
dashed one indicating the threshold at which hyperparameter selection is performed. The upper
bound of joint training on data up to the present task is represented as an horizontal line over the
batches of each task.

In Figures we instead illustrate a more detailed breakdown of model performance: for each
benchmark, backbone and considered method, we plot the results of anytime evaluation broken
down on individual tasks, allowing a better understanding of when and where forgetting occours.

G LLM USAGE

Large Language Models were used for the purpose of text editing.
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Figure 2: Anytime evaluation performance for the different datasets with UGCN Backbone. We
highlight with vertical lines the task boundaries and the hyperparameter selection threshold.
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Figure 3: Anytime evaluation performance for the different datasets with GRNF backbone. We
highlight with vertical lines the task boundaries and the hyperparameter selection threshold.
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Anytime evaluation by task for the Arxiv dataset with UGCN backbone with time-

Figure 16:

incremental stream. We note how the very homogeneous performance compared to other bench-

marks suggests the absence of significant distribution drifts between tasks.
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Figure 17: Anytime evaluation by task for the Arxiv dataset with GRNF backbone with time-
incremental stream. We note how the very homogeneous performance compared to other bench-

marks suggests the absence of significant distribution drifts between tasks.
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