Under review as a conference paper at ICLR 2026

THE UNREASONABLE EFFECTIVENESS OF
RANDOMIZED REPRESENTATIONS IN ONLINE
CONTINUAL GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Catastrophic forgetting is one of the main obstacles for Online Continual Graph
Learning (OCGL), where nodes arrive one by one, distribution drifts may occur
at any time and offline training on task-specific subgraphs is not feasible. In this
work, we explore a surprisingly simple yet highly effective approach for OCGL:
we use a fixed, randomly initialized encoder to generate robust and expressive
node embeddings by aggregating neighborhood information, training online only
a lightweight classifier. By freezing the encoder, we eliminate drifts of the rep-
resentation parameters, a key source of forgetting, obtaining embeddings that are
both expressive and stable. When evaluated across several OCGL benchmarks,
despite its simplicity and lack of memory buffer, this approach yields consistent
gains over state-of-the-art methods, with surprising improvements of up to 30%
and performance often approaching that of the joint offline-training upper bound.
These results suggest that in OCGL, catastrophic forgetting can be minimized
without complex replay or regularization by embracing architectural simplicity
and stability.

1 INTRODUCTION

In Online Continual Graph Learning (OCGL), nodes arrive sequentially, are observed only once, and
undergo drifts in both distribution and task to solve (Donghi et al., 2025). Therefore, models must
adapt to new operating conditions on the fly, while making anytime predictions and retaining past
knowledge from limited observations, and under strict memory and latency constraints. This makes
OCGL one of the most challenging continual learning scenarios. This setting poses several addi-
tional requirements to the traditional Continual Learning (CL) (Parisi et al., 2019 De Lange et al.,
20225 Van De Ven et al.,|2022), Online CL (Mai et al.,[2022), and Continual Graph Learning (CGL)
(Zhang et al.| [2022a), enabling applications that require fast adaptations and anytime predictions
(Koh et al., 2021) such as in healthcare (Le Baher et al.| [2023)), IoT intrusion detection (Lin et al.}
2024 and financial markets (Weber et al., 2019), other than modeling citation networks (Liu et al.,
2021} Zhou & Cao, 2021)), transportation networks (Chen et al., 2021) and recommender systems
(Caroprese et al.| [2025).

In this paper, we introduce a simple, yet surprisingly effective approach for node-level OCGL, de-
coupling node representations from the predictive model, and yielding excellent prediction accuracy
while taming the forgetting of previously learned concepts. Our approach leverages the effectiveness
of randomized and over-parametrized architectures to provide rich, untrained representations, com-
bined with a lightweight trained classifier on top (Rahimi & Recht, 2008} |Rudi & Rosasco, 2017b;
Scardapane & Wang|, 2017). As demonstrated in related literature, fixed representations from pre-
trained models help prevent forgetting at the feature extraction level even when used in CL for image
classification (Hayes & Kananl, [2020; [Pelosinl [2022; Mehta et al.l [2023)). The beneficial effect ap-
pears to be even more striking in graphs, where stable neighborhood embeddings eliminate the need
to retain the entire topological information for replay strategies (Zhang et al.| 2024a). Additionally,
the literature on randomized models provides us results that ensure good approximation and gen-
eralization properties for this family of models, given that we use a sufficiently large embedding
dimension (Scardapane & Wang, [2017). Coupled with a Streaming Linear Discriminant Analy-

Under review as a conference paper at ICLR 2026

sis (SLDA) classifier (Hayes & Kanan, 2020)), this approach generally outperforms state-of-the-art
OCGL methods, without need for a memory buffer.

Our main contributions are the following.

1. We propose a surprisingly strong OCGL method. A simple, yet effective method coupling
principled untrained features with a lightweight streaming classifier, granting both expressivity
and forgetting-resilience.

2. We demonstrate how the approach achieves generally best results across seven OCGL bench-
marks, in both class-incremental and time-incremental setups.

3. We theoretically motivate our research findings, opening to the development of new, simpler CL
methods without compromising on accuracy.

Beyond providing a strong new method with said advantages, our findings suggest that future OCGL
research should rethink model designs, emphasizing architectural simplicity and stability.

2 RELATED WORKS

In this section, we first outline the specifics of Online Continual Learning for graphs, the setting
used for our experiments, distinguishing it from related paradigms. We then discuss randomized
neural models and other fixed feature extraction strategies in Continual Learning. These concepts
provide context for the problem addressed in the paper and motivate our design choices.

Online continual learning for graphs Continual Learning has been studied mainly in domains
such as computer vision (Rebutffi et al.,|2017;|Lopez-Paz & Ranzato,|2017) or reinforcement learning
(Kirkpatrick et al., 2017; [Rolnick et al., 2019), with clearly defined task boundaries and no depen-
dencies between successive tasks. In contrast, working on a node level in a graph domain introduces
structural dependencies between data points, complicating the definition of the task. Continual
Graph Learning (CGL) (Febrinanto et al., 2023} Yuan et al., 2023 Zhang et al., [2024b) extends CL
to graph settings, and assumes that the graph is presented in blocks, that is, as subsets of nodes con-
nected in subgraphs (Zhang et al.|[2022a). Several methods for CL on graph data have been proposed
(Zhou & Cao| 2021} |L1u et al., 20215 [2023} Hoang et al., 2023} [Sun et al., [2023}; |Cui et al.| [2023)),
yet, similarly to traditional CL, state-of-the-art performance is achieved by replay-based methods
which leverage a memory buffer tailored to leverage graph topology (Zhang et al., [2022b} 2024a).
However, the use of Graph Neural Network (GNN) (Scarselli et al., 2009; Micheli, |2009; Kipf &
Welling| |2017) models poses an issue regarding task separation: nodes form connections also with
nodes that were observed in past tasks, thus requiring access to past information due to message
passing (Gilmer et al., |2017). This is sometimes addressed by ignoring inter-task edges (Zhang
et al., 2022a), yet it is an unrealistic solution since it assumes supervisory information in the form
of task identifiers also at test time. On the other hand, due to small-world nature of most real-world
graphs, accessing the entire neighborhood information of the nodes would likely mean using the
entirety of past data, rendering the use of the CL approach less meaningful. In this context, a more
principled setting is Online Continual Graph Learning (OCGL) (Donghi et al.,[2025), which bridges
the gap between existing research on online CL and CGL. This setting addresses the issue of access
to node neighborhoods with the use of neighborhood sampling, to keep a constant computational
footprint even as the graph gets denser over time. In particular, the online setting for CL entails a
single pass over the streaming data (Chaudhry et al.,2018; Mai et al.,2022; |Soutif—Cormerais et al.,
2023)), in contrast to traditional offline CL where training is done offline in a batched setting on
each task (De Lange et al.,[2022)). This constraint, together with stricter computational and memory
requirements, is motivated by applications where quick model adaptation is necessary, and anytime
predictions may be required (Koh et al.,[2021), thus impeding the task-wise offline training.

Randomized representations In the literature on neural networks, multiple approaches have
leveraged some form of randomization, due to training efficiency, and often theoretical guarantees
(Scardapane & Wang| [2017). Notable examples for vector data are Random Vector Functional-Link
networks (RVFL) (Pao & Takefuji, [1992; |Pao et al., |1994), Extreme Learning Machines (ELM)
(Huang et al., 2006; 2015) and Echo State Networks (ESN) (Jaeger & Haas| [2004). These fix most
network parameters randomly, from an appropriate distribution, training only lightweight readouts.
Theoretical results such as universal approximation properties and generalization guarantees have

Under review as a conference paper at ICLR 2026

been proved for some these architectures (Liu et al.| [2012). Randomized strategies have also been
explored for kernel approximation, such as with Random Fourier Features (RFF) (Rahimi & Recht,
2007), a randomized projection that approximates the RBF kernel. Some works have also explored
randomized strategies for graph data, such as with GESN (Gallicchio & Micheli, |2010) or MRGNN
(Pasa et al.l 2022). Different instantiations of untrained Graph Convolutional Networks (Kipf &
Welling|, 2017) have been proposed in recent years: GCELM (Zhang et al.,[2020) uses a single GCN
layer, with randomly initialized and fixed parameters. GCN-RW (Huang et al., [2023) improves on
this approach by considering an increased receptive field, employing the square of the adjacency
matrix for aggregation. The more recent UGCN (Navarin et al.,|2023a) instead uses multiple GCN
layers, followed by non-differentiable pooling, as the network does not need to be trained. Inspired
by RFF, GRNF (Zambon et al., 2020) are derived from expressive GNN architectures, and constitute
a family that can separate graphs.

Fixed feature extraction for CL. Some works in the CL literature for image classification suggest
the use of a frozen CNN backbone, pre-trained on a different dataset, and then training continually
only a classifier such a simple MLP (Van De Ven et al., 2022} Mehta et al., [2023). In the context
of graph data, this approach is not currently feasible, as it is not trivial to obtain pre-trained GNNs
that can handle graphs with different input feature domains, even though there is ongoing promising
work on graph foundation models (Wang et al} 2025). Additionally, despite the many randomized
approaches for representation extraction, only a very limited number of CL papers rely on them,
and only with image classification tasks. CRNet (L1 & Zeng| 2023) uses a randomly initialized
network for feature extraction, training the classification head via closed-form solution on each
task. RanPAC (McDonnell et al.| 2023)) uses random projections of feature extracted with a pre-
trained model with the objective of increasing dimensionality to facilitate class separation. More
recently, RanDumb (Prabhu et al [2025) leverages Random Fourier Features (Rahimi & Recht,
2007) used with nearest class mean classification. On the other hand, there have been some works
that investigated theoretically the use of linear models in simple CL setups (Evron et al., 20222023
Ding et al.| 2024), leading us to adopt these simple classifiers. Furthermore, it has been observed
that prototype based classifiers, such as nearest class mean, are particularly suited for online CL,
due to being schedule-robust, i.e. independent from stream ordering (Wang et al., 2022]).

3 METHOD

The OCGL setting (Donghi et al, [2025) considers an incremental graph G, induced by a stream
of nodes v1,va,...,vs, ... that are added one by one. At each timestep ¢, the graph is updated
with neighborhood and attribute information about the incoming node (v¢, N'(v;), x), obtaining
an updated graph snapshot G = (V) E(®) X ®)), For example, in the Elliptic dataset (Weber
et al.,|2019), when a new transaction is processed, its information is captured as node features, and
payment flows indicate connections. The goal is to learn a model Fig to make node-level predictions
gjvt for given node v at time step ¢ given information coming from its neighboring nodes in G(*)
Specifically, models are tramed with a single pass over the node stream, using information from the
associated [-hop ego-graph QU) The online setting requests bounded memo: (y and computational
cost at each time steps, even as the graph grows. Accordingly, only a subset G,) of the ego-graph
may be allowed to produce prediction

90 = Fo (G00) . M

In the context of CL, the node stream can encompass diverse drift patterns, such as those triggered
by a class-incremental setting. Nonetheless, model predictions may be requested for nodes observed
in the past, therefore requesting the model not only to adapt to evolving graph conditions but also to
preserve previously learned knowledge.

3.1 PROPOSED SOLUTION

To address forgetting in the OCGL setting, we propose a decoupled approach to node prediction. In
this setup, model Fig = ® o ¥ decomposes as a node feature extractor ¥ followed by a node-level
predictor ®. Feature extraction is performed by a fixed (randomly initialized) backbone W:

0 = w (G0, @

Under review as a conference paper at ICLR 2026

where zﬁt) € R9 denotes the node embedding that captures neighborhood information. As W is

untrained, it does not change over time and is inherently immune to forgetting. Secondly, it offers a

clear advantage for experience replay methods, as storing z(25

is significantly more memory-efficient
than storing the entire sampled neighborhood gf,

Feature extractor ¥ also mitigates other sources of forgetting. Unlike trained models, which tend
to produce task-specific representations that remove task-irrelevant information, a well-chosen ¥
can produce rich node embeddings suitable for multiple tasks. Notably, theoretical results (Rudi &
Rosasco, [2017a) show that for some families of model architectures, a random initialization of W
yields linearly separable embeddings, allowing to effectively solve the downstream task by simple
linear predictive models

B = Py (2) = Wzl + b, 3

which are less prone to forgetting than deep networks (Mirzadeh et al.l 2022) and can be learned
efficiently.

3.2 RANDOMIZED FEATURE EXTRACTION

We consider two different types of graph feature extractors W, or backbones, for our experiments,
untrained GCN (Navarin et al., |2023a)) and Graph Random Neural Features (Zambon et al., 2020)
adapted to the node-level, which we discuss here. In general, any randomized graph network with
sufficient expressivity and robustness to limited structural shifts can be adopted for our decoupled
approach.

UGCN As first feature extractor, wee use the recent UGCN (Navarin et al., [2023a), which uses
multiple GCN layers H) = tanh(AH (1 ©), where A is the normalized adjacency matrix, with
H(© = X and with weights initialized with a Glorot uniform approach (Glorot & Bengio, 2010)
regulated by a gain hyperparameter, and successively left untrained. In our case, since we adopt it
for node-level predictions instead of graph-level ones, we do not use the entire adjacency matrix,
but the efficient forward propagation limited to the node ego-graph of (Hamilton et al., |2017). The
output of the different layers is then concatenated to obtain an embedding that reflects information
at multiple resolutions, i.e.

YyceN (Qvét,l)) = concat (H,Sl), . ,Hl(f)) . 4)

In an over-parameterized regime, this model performs competitively with trained GCN counterparts
on graph classification (Navarin et al.| | 2023b; |Donghi et al., 2024).

GRNF Graph Random Neural Features (Zambon et al., 2020) define expressive embeddings for
attributed graphs, derived from a GNN model which is a universal approximator of graph functions
(Maron et al., [2019; Keriven & Peyré, 2019). Each GRNF is a parametric maps (-, w) : T2 5 R
defined by the composition of equivariant and invariant affine maps, interleaved with non-linearity:

Yu(-) = 0o Hy(-,0p) oo o Fy (- 0F), (5)

where w = (k,0p, 0), and k represent tensor order (formal definitions of F; j, and Hj, and more
details can be found in (Zambon et al., |2020)). Interestingly, the family of GRNF can separate
graphs, meaning that for any non-isomorphic graphs Gy, Gs, there exists w such that ,,(G1) #
1,,(G2). Thus, under suitable assumptions on the distribution of w, the family of GRNF induces a
metric distance on graphs, with also results that hold in probability for a fixed number of features
(Zambon et al., [2020). To adapt GRNF to make node level predictions, we use them on g£ l),
and since the the output is permutation invariant over the entire ego-graph, we concatenate it to the
component relative to v of the output of the equivariant map, using d/2 independent draws of w,
resulting in a d-dimensional embedding (assuming even d).

3.3 LINEAR CLASSIFIER

As indicated in equation [3] the extracted features are fed to a linear layer, which can be trained
continually on the stream. Effectively, thanks to this strategy we have simplified the Continual Graph
Learning problem by eliminating the graph specificity, relegating it to the fixed feature extractor,

Under review as a conference paper at ICLR 2026

and reducing the problem to Continual Learning on vectors. A linear layer may thus be trained with
gradient descent, supported by any standard CL learning strategy, such as experience replay which
can now leverage informative node embeddings.

Furthermore, we can also address forgetting in the linear classifier by adopting a specific form
which does not require gradients: we use Streaming Linear Discriminant Analysis (SLDA) (Hayes
& Kananl 2020), which learns by accumulating class means, independently for each class. This
choice makes training more efficient and provides further robustness against catastrophic forgetting
risk, as further discussed in Section Specifically, during training, SLDA keeps a cumulative
mean (i, for the features of each class y, and a shared covariance matrix 3 with streaming updates.
To make predictions, using precision matrix A = [(1 — €)X + eI]~! with € = 107*, the parameters
w, (rows of W) and b of equationare computed as

1
wy = Apy b, = _i(l‘g/\#y) . (6)

3.4 EFFECTIVENESS OF THE APPROACH

As the graph evolves, multiple sources of forgetting can impair the model’s prediction accuracy.
This section elaborates on our method’s effectiveness in mitigating forgetting while yielding high
anytime classification accuracy.

One is a common challenge in all CL setups and stems from the continual update of the model’s
parameters based on recent training signals, both for the feature extraction backbone (if trained) and
for the classifier. A second, graph-specific issue arises from the evolving nature of the graphs and
associated structural shifts (Su et al., [2023;2024): predictions made for the same node at different
time steps may rely on different and potentially inconsistent neighborhoods. To put our intuitions
more formally, we consider time interval §¢ and define the forgetting risk for node v at time ¢ as the
increase in the loss from time tg = t — 0t to time ¢:

AR, = AR, 1(0t) = ¢ (y, Dy, (\1'9t (gf,))) -/ (y, Py, (\I/@to (gio))) , @)
with loss function ¢ and where we made explicit the decomposition into feature extraction (¥g) and
linear classifier (P); to avoid overwhelming notations, we omit the bias terms in ®vy and use G
to indicate G3"". Then, assuming that the loss is Lipschitz continuous with constant L,, and using
the triangle inequality, we can isolate three components of forgetting risk:

AR, < L, (||<I)Wt (\I/@t (gf})) — Dy, (\IJ@t (gff’))H structural drift ~ (8)
+ HCDWt (Yo, (GI)) — Pw, (\I/@to (G)) || backbone parameters drift (9)

+ ||<I>Wt (\If@to (gfp)) — <I>Wt0 (\I'@to (QZO))H) . classifier parameters drift (10)

While the first term is inherent in the data-generating process, and therefore irreducible, a crucial
advantage of using a fixed feature extractor is that it eliminates the second term, as ©; = Oy,.
Furthermore, if we assume the norm of the embeddings to be bounded by B,, the third term is
bounded by B, |W; — W, ||. For SLDA, the term is expected to decrease as the number of observed
examples of a class increases, due to the update scheme through separate, class-specific cumulative
means; this is in contrast with SGD-based training, where weight updates are less separated by class.
Therefore, SLDA with fixed feature extraction provides high stability, with decreasing forgetting
risk as the node stream progresses. Higher stability compared to SGD-trained methods can be
empirically observed in Figures [2}{3] of Appendix[F

This analysis illustrates the robustness against forgetting of untrained feature extraction with SLDA.
However, stability is not sufficient for good CL performance: the model must also remain plas-
tic enough to acquire new knowledge as the node stream evolves. For this, we can rely on the
over-parameterized randomized feature extractors, which give us expressive and general topological
embedding independently of task, allowing for the training of just a simple linear classifier on top
(Scardapane & Wangl 2017).

4 EXPERIMENTAL SETTING

For our experiments we adopt the OCGL setting described in (Donghi et al.| |2025)). In particular,
we follow the requirement of neighborhood sampling, and we consider small mini-batches of nodes

Under review as a conference paper at ICLR 2026

instead of individual ones. We compare the use of randomized feature extractors, UGCN and GRNF,
with linear classifier, either SLDA or coupled with CL strategies, across multiple benchmarks.

Benchmarks We use the same six node-classification graph datasets of (Donghi et al., [2025):
CoraFull (Bojchevski & Glinnemann, [2018]), Arxiv (Hu et al., 2021), Reddit (Hamilton et al.,|2017)),
Amazon Computer (Shchur et al.l|2019), Roman Empire (Platonov et al.|[2022) and Elliptic (Weber
et al., 2019). On all except Elliptic (as it only has two classes) we consider a class-incremental
stream: nodes in the graph arrive one by one in blocks consisting of two classes (each segment can
be identified with a task in the context of CL, even though the models in this setting are agnostic
to task boundaries). On Elliptic and Arxiv we consider a time-incremental stream: since real node
timestamps are available, we use them for a realistic node stream (dividing the stream into 10 blocks
simply for evaluation). We split the nodes in each graph into 60% for training, 20% for validation
and 20% for testing, and we use a transductive setting. We consider the same mini-batch sizes as
(Donghi et al.l [2025): 10 for the smaller CoraFull, Amazon Computer and Roman Empire, 50 for
Arxiv, Reddit and Elliptic.

Metrics To evaluate model predictions in the considered setting, we use three metrics: Average
Performance (AP), Average Forgetting (AF) (Lopez-Paz & Ranzato, 2017), and Average Anytime
Performance (AAP) (Caccia et al.L|2021). The performance metric is accuracy for all datasets except
for Elliptic, as it is highly unbalanced with only two classes, and therefore F1 score of the minority
class is used. For anytime predictions, we obtain AAP by evaluating the model on the validation
nodes after each training mini-batch. The metrics are described in detail in Appendix

Baselines In addition to the described SLDA, we couple the linear classifier with some popular
CL strategies: we consider A-GEM (Chaudhry et al., [2018), ER (Chaudhry et all 2019), EWC
(Kirkpatrick et al., [2017), LwF (L1 & Hoiem, [2018)) and MAS (Aljundi et al., 2018). Furthermore,
we consider the bare baseline which consists of simply finetuning the linear layer on the stream
without any CL method. We also provide the joint baseline consisting of jointly training the linear
layer offline on the embeddings from all the nodes in the entire final graph. We do not consider
graph-specific methods, as once the features are extracted with the untrained backbone they are no
longer relevant. However, we provide a comparison with recent state-of-the-art graph methods for
OCGL (Donghi et al.,[2025) in Appendix [E]and in summary in Table

Implementation details Following (Donghi et al.l 2025), we consider sparsified 2-hop node
neighborhoods, sampling recursively 10 neighbors per layer for each node. For UGCN, we therefore
use a 2-layer network with 1024 units per layer, resulting in a 2048-dimensional node embedding
due to layer concatenation. For GRNF, we use 1024 features, which amount to a 2048-dimensional
node embedding since we concatenate the equivariant and invariant components. In both cases,
magnitude of weight initialization is regulated by a tunable gain hyperparameter. We use Adam
optimizer (Kingma & Bal [2017) without weight decay nor dropout, tuning the learning rate as an
hyperparameter. Another hyperparameter is the number of passes on a mini-batch before passing to
the next, as suggested by Aljundi et al. (Aljundi et al.| |[2019). Hyperparameters are tuned follow-
ing the protocol outlined by Chaudhry et al. (Chaudhry et al., 2018): they are selected according to
validation performance (AP) only on a small section of the data stream. All training and method spe-
cific hyperparameters are reported in Appendix D] All experiments are performed with 5 different
random initializations, and results are reported as average and standard deviation over them.

5 RESULTS

The results of our experiments in the OCGL setting are reported in Table [T for benchmarks with
class-incremental node stream and Table 2] for those on which a time-incremental stream is defined.
Additionally, for comparison with results obtainable by a model trained end-to-end, we report in
Table E] the best AP reported in (Donghi et al.,[2025)) (Arxiv is reported only with class-incremental
stream as the time-incremental one is not considered in (Donghi et al., 2025)) by any OCGL strat-
egy, in most cases SSM (Zhang et al.| 2022b) and PDGNN (Zhang et al.| [2024al), together with
the respective joint upper bound, and we highlight the increase in performance using the proposed
decoupled approach of randomized feature extraction with SLDA.

Under review as a conference paper at ICLR 2026

UGCN GRNF
METHOD AP% 1 AAP,1% T AF% 1 AP% 1 AAP,q1% 1 AF% 1
A-GEM 32.99+1.02 52.35+0.90 —50.53+1.19 33.33+0.42 48.04+0.80 —29.93+0.67
. ER 55.67+0.47 65.01+0.60 —24.90+0.71 52.53+0.60 59.79+0.56 —27.40+0.70
5 EwWC 34.46+1.28 52.2840.35 —49.31+1.82 30.53+0.52 46.66+0.92 —50.44+0.75
i, LWF 35.30+0.50 52.94+1.18 —46.41+0.74 30.70+0.85 45.87+0.98 —35.06+0.50
é MAS 34.44+1.30 52.59+0.36 —49.44+1.79 30.12+0.63 46.58+0.87 —51.28+0.73
8 SLDA 64.03+0.50 74.654+0.44 —14.48+0.39 62.05+0.27 72.42+0.31 —16.87+0.50
BARE 32.10+1.50 51.48+0.55 —51.85+1.62 28.18+0.71 44.82+1.11 —35.56+0.65
JOINT 66.10+0.28 - —8.91+0.36 65.23+0.78 - —8.05+0.54
A-GEM 60.35+4.86 58.12+3.18 —31.60+7.88 53.69+585 62.51+359 —39.10+8.55
& ER 80.71+2.83 83.30+0.51 —13.32+3.99 62.62+10.93 75.25+2.93 —20.04+11.26
[5 EWC 48.02+1.30 59.01+1.07 —30.29+1.55 30.80+5.50 49.10+t1.05 —44.21+2.34
& LwF 47.31+11.89 60.84+3.24 —30.40+13.68 40.59+5.37 53.53+1.97 —50.96+2.41
% MAS 41.81+2.06 62.90+0.87 —45.72+3.10 43.14+3.89 57.19+2.01 —44.81+3.95
O SLDA 86.65+0.48 90.64+0.13 —7.72+0.47 84.32+0.42 89.95+t0.23 —10.94+0.39
< BARE 43.98+3.39 50.21+1.26 —42.56+8.59 42.53+6.22 52.62+1.53 —49.47+2.49
JOINT 86.84+0.47 - —7.30+0.47 87.43+0.34 - —6.80+0.33
A-GEM 22.68+3.24 30.81+2.18 —59.57+1.86 14.32+1.82 32.39+1.80 —64.85+1.27
ER 15.12+4.06 32.36+3.98 —49.55+4.96 14.63+1.78 31.84+2.05 —57.71+1.41
> EWC 17.26+2.12 27.71+1.02 —56.43+2.11 17.31+1.06 26.33+0.66 —67.39+0.52
% LwF 19.52+1.49 27.04+0.88 —56.52+0.92 21.72+0.98 29.84+0.40 —60.04+1.71
~ MAS 18.77+2.44 28.92+1.27 —53.20+3.47 16.45+1.35 29.10+0.82 —67.50+1.20
< SLDA 55.71+0.08 64.554+0.03 —18.47+0.08 52.69+0.19 62.69+0.07 —27.67+0.16
BARE 21.38+3.37 24.28+1.69 —41.42+2.17 14.13+1.14 24.67+0.33 —75.06+1.31
JOINT 59.06+0.15 - —16.09+0.30 57.87+0.28 - —16.72+0.19
A-GEM 60.60+0.88 78.29+0.31 —36.77+0.89 46.51+0.91 61.06+0.20 —25.63+0.96
ER 80.40+1.04 89.75+0.05 —16.60+1.11 83.46+0.43 89.22+t0.12 —14.44+0.40
= EWC 40.91+1.22 61.13+1.0r —49.58+1.37 44.26+1.12 60.49+0.45 —29.80+1.18
2 LwF 13.60+0.43 49.00+0.85 —84.37+0.43 39.09+0.77 58.00+1.07 —35.99+0.87
2 MAS 11.93+0.66 50.54+0.48 —86.50+0.66 42.9940.99 58.22+0.50 —32.62+0.97
~ SLDA 89.31+0.03 95.17+0.03 —5.56+0.09 91.42+0.14 95.84+0.03 —3.81+0.15
BARE 41.35+1.27 60.55+1.05 —48.97+1.26 42.67+0.75 57.80+0.36 —33.13+0.41
JOINT 88.07+0.20 - —3.57+0.19 90.90+0.17 - —2.77+0.17
A-GEM 17.18+0.46 43.99+0.20 —69.65+0.42 31.19+0.98 37.77+1.42 —23.28+4.54
. ER 24.80+1.21 46.35+0.50 —32.56+0.84 40.45+1.18 46.83+1.46 —15.68+2.20
m EWC 15.82+1.00 37.30+0.50 —43.62+0.95 21.54+0.85 40.22+0.91 —22.71+2.53
<Zc LwF 21.51+0.65 45.51+0.37 —42.38+0.83 20.29+1.84 37.25+0.76 —46.63+2.02
s MAS 16.33+0.66 35.124+0.81 —28.71+1.77 22.47+0.58 40.52+0.42 —26.3840.60
éz SLDA 34.61+0.02 57.57+0.06 —34.38+0.20 52.71+0.09 72.07+0.03 —29.43+0.21
BARE 7.09+0.03 34.74+0.69 —T77.07+0.93 16.82+0.20 42.444+0.66 —068.56+1.54
JOINT 49.12+0.51 - —5.22+0.48 71.50+0.10 - —6.54+0.37

Table 1: Results for class-incremental node stream.

Class-incremental benchmarks We first observe from Table [I] that the upper bounds with ran-
domized features are comparable to those obtained with a trained GCN model, as reported in Table
[l This proves that the extracted features are expressive enough for these tasks, confirming our
approach’s viability. On Roman Empire specifically, which is highly heterophilic, we see a much
higher upper bound with GRNF: this is due to the implicit bias of the GCN design, which smooths
node embeddings with neighborhood information, while GRNF are more expressive, as they are de-
rived from a universal approximator of graph functions. We also note how AF for the joint baseline
represents the increasing difficulty of the classification task as new classes are added.

From the results the superior performance of SLDA also emerges clearly, as it outperforms all con-
sidered CL methods on a linear layer trained with gradient descent, and in most cases with a wide
margin. Additionally, the AP results of SLDA with both UGCN and GRNF closely approach their
respective upper bounds. The results of the randomized feature extractors coupled with SLDA also
significantly outperform the best results obtained with state-of-the-art replay methods tailored for
graphs, as seen in Table 3] despite SLDA not using any memory buffer. The differences between
UGCN and GRNF are in most case limited, especially for the SLDA classifier, with UGCN showing

Under review as a conference paper at ICLR 2026

UGCN GRNF
METHOD AP% 1T AAP,u% T AF% 1 AP% 1T AAP,u% T AF% 1
A-GEM 42.43+0.99 40.72+0.57 —13.51+1.54 53.65+0.73 50.104+0.33 —12.08+1.16
ER 44.61+1.20 45.54+0.40 —9.17+1.82 57.30+1.69 53.36+1.29 —8.90+1.65
© EWC 36.62+1.23 34.64+0.20 —13.36+1.59 50.44+1.45 48.81+0.36 —13.77+1.16
£ LwF 37.88+1.52 34.63+0.30 —11.43+1.39 55.16+1.26 50.15+0.59 —10.45+0.88
o MAS 36.80+0.84 34.47+0.21 —13.21+1.30 50.26+1.19 48.30+0.36 —14.29+0.97
@ SLDA 55.49+0.64 54.13+0.28 —1.85+1.17 65.92+0.71 65.43+0.53 —3.21+1.90
BARE 37.33+0.68 34.97+0.32 —12.21+1.01 50.14+1.44 48.81+0.45 —13.23+1.11
JOINT 59.29+0.82 - —4.94+0.62 70.23+0.76 - —3.59+1.00
A-GEM 67.66+0.12 64.97+0.07 0.98+0.17 67.73+0.06 63.07+0.11 2.3240.09
ER 68.67+0.18 65.26+0.05 2.12+0.18 68.30+0.04 63.56+0.09 2.93+0.09
. EWC 67.65+0.07 64.9640.03 0.94+0.08 67.65+0.08 63.93+0.12 1.48+0.10
% LWF 68.21+0.00 65.22+0.08 1.37+0.09 67.56+0.12 62.94+0.12 2.22+0.11
x MAS 67.65+0.07 64.96+0.03 0.94+0.08 67.64+0.00 63.93+0.12 1.47+0.10
< SLDA 66.69+0.07 61.97+0.04 2.29+0.17 65.09+0.21 60.14+0.10 2.42+0.20
BARE 67.59+0.20 64.98+0.04 0.97+0.18 67.68+0.09 63.89+0.04 1.57+0.10
JOINT 70.35+0.16 - 2.6740.30 69.53+0.12 - 2.89+0.09
Table 2: Results for time-incremental node stream.
METHOD CORAFULL A.COMPUTER ARXIV (CL.-INCR.) REDDIT ROMAN E. ELLIPTIC
BEST OCGL 40.45+0.77 70.45+3.66 35.86+1.20 58.08+8.04 14.20+0.87 51.13+1.74
JOINT 67.55+0.05 83.07+1.30 58.58+0.28 90.02+0.12 39.47+0.33 71.97+0.83
UGCN+SLDA +23.6 +16.2 +19.9 +31.2 +20.4 +4.4
GRNF+SLDA +21.6 +13.9 +16.8 +33.3 +38.5 +14.8

Table 3: Top rows: best AP results from Table |5| of Appendix [E| for CL strategies with trained
GCN and joint offline training upper bound. Bottom rows: increase in AP of the proposed approach
(Tables[I}2)) compared to the best performing method with trained GCN. All the increases in perfor-
mance show statistical significance with p-value < 0.005 with a one-sided Mann—Whitney U test.

a slight advantage on CoraFull, Amazon Computer and Arxiv benchmarks, while GRNF appears
superior on Reddit and more significantly on Roman Empire, due to the heterophily of the graph as
discussed above.

In general, compared to the full results in Appendix [E] also most other CL strategies in most bench-
marks report performance improvements compared to the use of a trained GCN, confirming the
benefits of keeping a frozen feature extractor immune to forgetting. ER specifically is significantly
better when coupled with randomized features compared to a trained GCN, in some cases approach-
ing SLDA, due to the fact that in this setting the memory buffer is much more informative, as stored
examples contain neighborhood information, albeit subject to structural shift.

Time-incremental benchmarks The time-incremental setting naturally possesses more docile
shifts in distribution, compared to the abrupt class changes of the class-incremental benchmark.
Nonetheless, on Elliptic CL methods are still beneficial, with SLDA still outperforming all base-
lines, also compared to the trained GCN state-of-the-art (Table [3). Importantly, our results on El-
liptic, which is a dataset of real Bitcoin transactions, highlight the feasibility and benefits of the
proposed approach on realistic data streams, beyond the academic class-incremental setting. On the
other hand, for the Arxiv time-incremental benchmark, we see little difference in the results of the
various strategies, with SLDA no longer over-performing. In fact, we even see positive AF values for
all methods, indicating that the classification becomes easier, rather than harder, as the node stream
goes on. This is because Arxiv does not present a significant drift in class distribution throughout
time. Therefore, a CL learning approach here is less meaningful, as the bare baseline is already close
to the upper bound. Nevertheless, ER proves beneficial, and these high results are further proof that
the feature extractors are robust to structural shifts that still remain.

Under review as a conference paper at ICLR 2026

92 %
S 85 —§-=0-- = S S
o . e] o = o e S s
Vi i 50 . =i
50 v 80 &)’”’ 88 y 2
o7 ‘o (3
4 o V4 £
/ 45 v
/ 75 W 4 7,
404 /7 7 4 Y 861 /f
o/ 4 ¢ Lz
oL 0l %0 old
64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096
Number of Features Number of Features Number of Features Number of Features
(a) CoraFull (b) Amazon Computer (c) Arxiv (class-incr.) (d) Reddit
o—— 70
50 o g Vel t’/:
Pl 60 B) 65 e
- s f:__,A.,_-r = -@- GRNF
40 /';" 50 ,,::,7’ 60 P UGCN
5157 [V 4 -@- 50/50
L4 0T 554/
30 7 L2
s &
30 1% 0
64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096
Number of Features Number of Features Number of Features
(e) Roman Empire (f) Elliptic (g) Arxiv (time-incr.)

Figure 1: Comparison of AP of SLDA with different number of features extracted with GRNF,
UGCN, and a 50/50 mix of the two. The shaded area covers one standard deviation.

Impact of number of features Given the overwhelming over-performance of randomized feature
extraction with SLDA, we investigate the impact of the number of extracted features on model
performance. In Figure E], we see that, with a lower number of features AP decreases as well, even
though on most benchmarks even as few as 64 randomized features are sufficient to obtain results
on par with the state-of-the-art CL methods on trained GCN of Table 3| Also, for many benchmarks
performance seems to not have reached saturation even at 4096 features, indicating that further gains
could be achieved with a larger feature extractor.

Finally, since UGCN and GRNF appear to have different strengths over the multiple benchmarks, we
consider a hybrid feature extractor that extracts half of the features with UGCN, and half with GRNF.
This mixed feature extractor shows a generally more robust performance over the benchmarks, with
performance that is never lower than the individual two, except for one single point. Generally the
hybrid extractor also does not improve over the best single one, indicating that the two types of
feature do not benefit from integration. However, this strategy could be used to obtain a reliable
feature extractor without the need to evaluate the two strategies.

6 CONCLUSION

This work introduces a simple, yet surprisingly effective approach for Online Continual Graph
Learning, addressing forgetting by decoupling representation learning from classification. We use
randomized, fixed node feature extractors that encode neighborhood information, coupled with a
lightweight linear classifier trained incrementally on the node stream. By leveraging two types of
untrained feature extractors — UGCN and GRNF - the proposed method provides robust and ex-
pressive node embeddings, resistant to catastrophic forgetting. Extensive experiments in the OCGL
setting demonstrate that when paired with SLDA, this approach significantly outperforms other Con-
tinual Learning strategies, including state-of-the-art replay-based methods tailored for graph data.
The method achieves performance close to joint offline training across various benchmarks. Beyond
strong performance, its efficient streaming updates and no reliance on memory buffers make it a
scalable and practical approach to deal with real-time classification on graph node streams.

Limitations and future directions While we provide motivation and empirical evidence of the
improved resistance to forgetting and higher prediction accuracy of our approach, a thorough theo-
retical analysis is yet to be developed. Secondly, we highlight how our results are specific for the
challenging OCGL scenario, while for different, offline settings other methods can perform more fa-
vorably. Finally, we focus on node-level classification, as graph-level is less interesting for OCGL,
and leave regression and edge-level tasks as future research.

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory Aware Synapses: Learning what (not) to forget. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pp. 139-154, 2018.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online Continual Learning with Maximal Interfered Retrieval. In Ad-
vances in Neural Information Processing Systems, volume 32, 2019.

Aleksandar Bojchevski and Stephan Giinnemann. Deep Gaussian Embedding of Graphs: Unsuper-
vised Inductive Learning via Ranking. In International Conference on Learning Representations,
February 2018.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New Insights on Reducing Abrupt Representation Change in Online Continual Learning. In In-
ternational Conference on Learning Representations, October 2021.

Luciano Caroprese, Francesco Sergio Pisani, Bruno Miguel Veloso, Matthias Konig, Giuseppe
Manco, Holger Hoos, and Joao Gama. Modelling concept drift in dynamic data streams for
recommender systems. ACM Trans. Recomm. Syst., 3(2), March 2025. doi: 10.1145/3707693.
URL https://doi.org/10.1145/3707693!

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
Lifelong Learning with A-GEM. In /ICLR, September 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’ Aurelio Ranzato. On Tiny Episodic Memories in Continual
Learning, 2019. arXiv:1902.10486.

Xu Chen, Junshan Wang, and Kunqing Xie. Trafficstream: A streaming traffic flow forecasting
framework based on graph neural networks and continual learning. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 3620-3626. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/498.

Yuanning Cui, Yuxin Wang, Zequn Sun, Wenqgiang Liu, Yiqgiao Jiang, Kexin Han, and Wei Hu.
Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(4):4217-4224, June 2023. doi: 10.1609/aaai.
v37i4.25539.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale§ Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A Continual Learning Survey: Defying Forgetting in Classifica-
tion Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366-3385,
July 2022. doi: 10.1109/TPAMI.2021.3057446.

Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
linear regression. In Proceedings of the 41st International Conference on Machine Learning,

volume 235, pp. 10978-11001, 2024.

Giovanni Donghi, Luca Pasa, Luca Oneto, Claudio Gallicchio, Alessio Micheli, Davide Anguita,
Alessandro Sperduti, and Nicold Navarin. Investigating over-parameterized randomized graph
networks. Neurocomputing, 606, November 2024. doi: 10.1016/j.neucom.2024.128281.

Giovanni Donghi, Luca Pasa, Daniele Zambon, Cesare Alippi, and Nicold Navarin. Online Contin-
ual Graph Learning, 2025. arXiv:2508.03283.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Proceedings of Thirty Fifth Conference on
Learning Theory, volume 178, pp. 4028-4079. PMLR, Jul 2022.

Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, and
Daniel Soudry. Continual learning in linear classification on separable data. In Proceedings of
the 40th International Conference on Machine Learning, volume 202, pp. 9440-9484, 2023.

10

https://doi.org/10.1145/3707693

Under review as a conference paper at ICLR 2026

Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Aggarwal. Graph
Lifelong Learning: A Survey. IEEE Computational Intelligence Magazine, 18(1):32-51, Febru-
ary 2023. doi: 10.1109/MCI1.2022.3222049.

Claudio Gallicchio and Alessio Micheli. Graph Echo State Networks. In The 2010 International
Joint Conference on Neural Networks (IJCNN), July 2010. doi: 10.1109/IJCNN.2010.5596796.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning, pp. 1263—1272. PMLR, July 2017. ISSN: 2640-3498.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In International Conference on Artificial Intelligence and Statistics, 2010.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Advances in Neural Information Processing Systems, volume 30, 2017.

Tyler L. Hayes and Christopher Kanan. Lifelong Machine Learning with Deep Streaming Lin-
ear Discriminant Analysis. In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pp. 887-896, Seattle, WA, USA, June 2020. doi:
10.1109/CVPRW50498.2020.00118.

Thanh Duc Hoang, Do Viet Tung, Duy-Hung Nguyen, Bao-Sinh Nguyen, Huy Hoang Nguyen, and
Hung Le. Universal Graph Continual Learning. Transactions on Machine Learning Research,
2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs, February
2021. arXiv:2005.00687.

C. Huang, M. Li, FE. Cao, H. Fujita, Z. Li, X. Wu, and M. Li. Are Graph Convolutional Networks
With Random Weights Feasible? [EEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(3):2751-2768, 2023.

Gao Huang, Guang-Bin Huang, Shiji Song, and Keyou You. Trends in extreme learning machines:
A review. Neural Networks, 61:32-48, January 2015. doi: 10.1016/j.neunet.2014.10.001.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1-3):489-501, December 2006. doi: 10.1016/j.neucom.2005.
12.126.

Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science, 304(5667):78-80, 2004.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems,
2019.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
arXiv:1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526, March
2017. doi: 10.1073/pnas.1611835114.

Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online Continual Learning on Class
Incremental Blurry Task Configuration with Anytime Inference. In International Conference on
Learning Representations, October 2021.

11

Under review as a conference paper at ICLR 2026

Hugo Le Baher, Jérome Azé, Sandra Bringay, Pascal Poncelet, Nancy Rodriguez, and Caroline
Dunoyer. Patient Electronic Health Record as Temporal Graphs for Health Monitoring. Studies
in Health Technology and Informatics, 302:561-565, May 2023. ISSN 1879-8365. doi: 10.3233/
SHTI230205.

Depeng Li and Zhigang Zeng. CRNet: A Fast Continual Learning Framework With Random Theory.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10731-10744, Septem-
ber 2023. doi: 10.1109/TPAMI.2023.3262853.

Zhizhong Li and Derek Hoiem. Learning without Forgetting. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 40(12):2935-2947, December 2018. doi: 10.1109/TPAMI.2017.
2773081.

Lieqing Lin, Qi Zhong, Jiasheng Qiu, and Zhenyu Liang. E-GRACL: an IoT intrusion detection
system based on graph neural networks. The Journal of Supercomputing, 81(1):42, October 2024.
ISSN 1573-0484. doi: 10.1007/s11227-024-06471-5. URL |https://doi.org/10.1007/
s11227-024-06471-5,

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming Catastrophic Forgetting in Graph Neural
Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8653-8661,
May 2021. doi: 10.1609/aaai.v35i10.17049.

Xueyi Liu, Chuanhou Gao, and Ping Li. A comparative analysis of support vector machines and
extreme learning machines. Neural Networks, 33:58-66, 2012. doi: https://doi.org/10.1016/j.
neunet.2012.04.002.

Yilun Liu, Ruihong Qiu, and Zi Huang. CaT: Balanced Continual Graph Learning with Graph
Condensation. In 2023 IEEFE International Conference on Data Mining (ICDM), pp. 1157-1162,
2023. doi: 10.1109/ICDM58522.2023.00141.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient Episodic Memory for Continual Learning.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28-51,
January 2022. doi: 10.1016/j.neucom.2021.10.021.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In Proceedings of the 36th International Conference on Machine Learning, pp. 4363—
4371, Jun 2019.

Mark D. McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hen-
gel. RanPAC: Random Projections and Pre-trained Models for Continual Learning. Advances in
Neural Information Processing Systems, 36:12022-12053, December 2023.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An Empirical Investi-

gation of the Role of Pre-training in Lifelong Learning. Journal of Machine Learning Research,
24(214):1-50, 2023.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. [EEE Trans-
actions on Neural Networks, 20(3):498-511, March 2009. doi: 10.1109/TNN.2008.2010350.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Wide Neural Networks Forget Less Catastrophically. In Proceedings of the
39th International Conference on Machine Learning, pp. 15699-15717, June 2022.

N. Navarin, L. Pasa, C. Gallicchio, and A. Sperduti. An untrained neural model for fast and accurate
graph classification. In International Conference on Artificial Neural Networks, 2023a.

Nicolo Navarin, Luca Pasa, Luca Oneto, and Alessandro Sperduti. An Empirical Study of Over-
Parameterized Neural Models based on Graph Random Features. In ESANN 2023 proceesdings,
pp- 17-22, 2023b. doi: 10.14428/esann/2023.ES2023-145.

12

https://doi.org/10.1007/s11227-024-06471-5
https://doi.org/10.1007/s11227-024-06471-5

Under review as a conference paper at ICLR 2026

Y.-H. Pao and Y. Takefuji. Functional-link net computing: theory, system architecture, and func-
tionalities. Computer, 25(5):76-79, 1992. doi: 10.1109/2.144401.

Yoh-Han Pao, Gwang-Hoon Park, and Dejan J. Sobajic. Learning and generalization characteristics
of the random vector functional-link net. Neurocomputing, 6(2):163-180, 1994. ISSN 0925-2312.
doi: https://doi.org/10.1016/0925-2312(94)90053- 1. Backpropagation, Part IV.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54-71, May 2019. doi:
10.1016/j.neunet.2019.01.012.

Luca Pasa, Nicolo Navarin, and Alessandro Sperduti. Multiresolution reservoir graph neural net-
work. IEEE Transactions on Neural Networks and Learning Systems, 33(6):2642-2653, 2022.
doi: 10.1109/TNNLS.2021.3090503.

Francesco Pelosin. Simpler is Better: off-the-shelf Continual Learning Through Pretrained Back-
bones, May 2022. arXiv:2205.01586.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress? In
International Conference on Learning Representations, 2022.

Ameya Prabhu, Shiven Sinha, Ponnurangam Kumaraguru, Philip Torr, Ozan Sener, and Puneet
Dokania. RanDumb: Random Representations Outperform Online Continually Learned Rep-
resentations. Advances in Neural Information Processing Systems, 37:37988-38006, January
2025.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20, 2007.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing min-
imization with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou (eds.), Advances in Neural Information Processing Systems, volume 21. Curran
Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper_files/
paper/2008/f11le/0efe32849d230d7f53049ddc4ad4b0c60-Paper.pdf.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental Classifier and Representation Learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5533-5542, Honolulu, HI, July 2017. IEEE. doi:
10.1109/CVPR.2017.587.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence Replay for Continual Learning. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
In Advances in Neural Information Processing Systems, volume 30, 2017a.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random fea-
tures. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017b. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/61b1fb3f59e28c67£3925f3c79be8lal-Paper.pdf.

Simone Scardapane and Dianhui Wang. Randomness in neural networks: an overview. WIREs Data
Mining and Knowledge Discovery, 7(2), 2017. doi: 10.1002/widm.1200.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61-80, January
2009. doi: 10.1109/TNN.2008.2005605.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of Graph Neural Network Evaluation, June 2019. arXiv:1811.05868.

13

https://proceedings.neurips.cc/paper_files/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf

Under review as a conference paper at ICLR 2026

Albin Soutif—-Cormerais, Antonio Carta, Andrea Cossu, Julio Hurtado, Vincenzo Lomonaco, Joost
Van De Weijer, and Hamed Hemati. A Comprehensive Empirical Evaluation on Online Continual
Learning. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
pp- 3510-3520, October 2023. doi: 10.1109/ICCVW60793.2023.00378.

Junwei Su, Difan Zou, Zijun Zhang, and Chuan Wu. Towards robust graph incremental learning
on evolving graphs. In Proceedings of the 40th International Conference on Machine Learning,
volume 202, pp. 32728-32748, 2023.

Junwei Su, Difan Zou, and Chuan Wu. On the Limitation and Experience Replay for GNNs in
Continual Learning, July 2024. arXiv:2302.03534.

Li Sun, Junda Ye, Hao Peng, Feiyang Wang, and Philip S. Yu. Self-Supervised Continual Graph
Learning in Adaptive Riemannian Spaces. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(4):4633-4642, June 2023. doi: 10.1609/aaai.v37i4.25586.

Gido M. Van De Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental
learning. Nature Machine Intelligence, 4(12):1185-1197, December 2022. doi: 10.1038/
s42256-022-00568-3.

Ruohan Wang, Marco Ciccone, Giulia Luise, Andrew Yapp, Massimiliano Pontil, and Carlo Cilib-
erto. Schedule-Robust Online Continual Learning, October 2022. arXiv:2210.05561 [cs].

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, Qingkai Zeng, Xiusi Chen, Jianan Zhao, Jundong Li,
Meng Jiang, Pietro Lio, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Graph Foundation Mod-
els: A Comprehensive Survey, May 2025. arXiv:2505.15116 [cs].

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl 1. Weidele, Claudio Bellei, Tom Robin-
son, and Charles E. Leiserson. Anti-Money Laundering in Bitcoin: Experimenting with Graph
Convolutional Networks for Financial Forensics, 2019. arXiv:1908.02591.

Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong, and Victor Chang.
Continual Graph Learning: A Survey, 2023. arXiv:2301.12230.

Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Graph Random Neural Features for Distance-
Preserving Graph Representations. In Proceedings of the 37th International Conference on Ma-
chine Learning, pp. 10968-10977, November 2020.

Xikun Zhang, Dongjin Song, and Dacheng Tao. CGLB: Benchmark Tasks for Continual Graph
Learning. Advances in Neural Information Processing Systems, 35:13006-13021, December
2022a.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Sparsified Subgraph Memory for Continual Graph
Representation Learning. In 2022 IEEE International Conference on Data Mining (ICDM), pp.
1335-1340, 2022b.

Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao. Topology-aware Embedding Mem-
ory for Continual Learning on Expanding Networks. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4326-4337, 2024a. doi: 10.1145/
3637528.3671732.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Continual Learning on Graphs: Challenges, Solu-
tions, and Opportunities, February 2024b. arXiv:2402.11565.

Zijia Zhang, Yaoming Cai, Wenyin Gong, Xiaobo Liu, and Zhihua Cai. Graph Convolutional Ex-
treme Learning Machine. In 2020 International Joint Conference on Neural Networks (IJCNN),
July 2020. doi: 10.1109/1IJCNN48605.2020.9206649.

Fan Zhou and Chengtai Cao. Overcoming Catastrophic Forgetting in Graph Neural Networks with
Experience Replay. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4714—
4722, May 2021. doi: 10.1609/aaai.v35i5.16602.

14

Under review as a conference paper at ICLR 2026

A BENCHMARKS

The benchmarks for out experiments are obtained from six node-level classification graph datasets.
The CoraFull dataset Bojchevski & Giinnemann|(2018) is a citation network where nodes represent
research papers and edges denote citation links between them, with labels corresponding to paper
topics. Amazon Computer |Shchur et al| (2019) is a co-purchase graph, with nodes representing
products and edges indicating frequent co-purchases in the computer category on Amazon. Arxiv
Hu et al.[(2021)) is a larger citation network based on arXiv submissions in the Computer Science do-
main. The Reddit datasetHamilton et al.|(2017)) comprises posts from various Reddit communities,
where each node represents a post, and edges connect posts that were commented on by the same
user, capturing user interaction patterns. Roman Empire |Platonov et al.| (2022) is an heterophilous
dataset constructed from the corresponding Wikipedia page, where nodes are words linked through
syntactic relationships or adjacency in the text. Lastly, the Elliptic dataset|Weber et al.| (2019) is a
graph of Bitcoin transactions, with edges representing the flow of funds. Only a subset of nodes are
labeled as either licit (42,019 nodes) or illicit (4,545 nodes) transactions. Summary statistics for the
six datasets are provided in Table [

Dataset CoraFull Amazon Computer Arxiv Reddit Roman Empire Elliptic
#nodes 19,793 13,752 169,343 227,853 22,662 203,769
#edges 130,622 491,722 1,166,243 114,615,892 32,927 234,355
classes 70 10 40 40 18 2

Table 4: Dataset statistics.

B METRICS

Due to the way the node stream is built, with a definition of task boundaries, we can make use of
two commonly adopted continual learning (CL) metrics: Average Performance (AP) and Average
Forgetting (AF)|Lopez-Paz & Ranzato|(2017). These metrics are both derived from the more general
performance matrix M € R***, where T denotes the total number of tasks, and each element M, ;
corresponds to the test performance on task j after training on task .

The Average Performance is given by AP = % ZiT:1 M ;, representing the model’s performance
on all tasks after completing the full training stream. The Average Forgetting is computed as

AF = ﬁ Zz:ll My ; — M; ;, and quantifies how much the model’s performance on each task
has deteriorated between its initial learning and the end of training. For evaluating performance, we
rely on classification accuracy across all datasets, except for Elliptic, which is significantly imbal-

anced. For this dataset, we instead report the F1 score specific to the illicit class.

To track model behavior throughout the node stream, we also employ anytime evaluation: the model
is evaluated on validation nodes after each mini-batch update |[Koh et al.|(2021). This provides a
fine-grained view of model performance over time, revealing its adaptability to distributional shifts.
We quantify this using the Average Anytime Performance (AAP) metric Caccia et al.[(2021), a gen-
eralization of average incremental accuracy for the online scenario. Letting APt denote the average
accuracy after processing the ¢-th mini-batch, and n be the total number of mini-batches, AAP is
defined as AAP = % >t = 1"AP;. This metric can be interpreted as the area under the accuracy
curve across the training process |Koh et al.| (2021).

C ONLINE FEATURE CENTERING TRICK

As in our experiments we consider also using a standard linear layer trained continually with gradient
descent instead of SLDA, in this case it is beneficial to have featured centered in the origin. This is
especially true due to the online setting, as having centered features can make the learning of bias
parameters for newly observed classes faster, since we initialize the weights symmetrically around
zero. Therefore, we adopt an online centering procedure, which allows us to keep the features
centered at any point during the stream. Specifically, we maintain an updated global cumulative

15

Under review as a conference paper at ICLR 2026

mean m of node embeddings, so that

(t—1)mt=1 4+ 20

m® — ,
t

Y

where for ease of notation we use z() = zgi). With this, we then feed the centered embeddings

zy) —m® in equation (3) of the paper. To ensure consistency of model predictions with online
feature centering under updates of the embedding mean as in equation [T} we want to correct the
bias term b — b’ to ensure that for any z € RY predictions don’t change, that is

Wz-—m®)+b =W(z-—m'V)+b. (12)

Simplifying and using the definition of the update of m(®) in equation|11| we obtain:

—Wm® 5 = WD 1 b, (1)
_(t%l)Wm(t—l) - %Wz(t) +b =-Wm'Y +b, (14
b _%Wm(t—l) n %Wzm +b, (15)
b — %W(zm —mD) + b, (16)

This is the bias update formula, and a similar one can be derived for mini-batch updates. We high-
light how this bias correction is performed only for seen classes, as we grow the classification head
when new classes are encountered. Also, this online centering procedure is not performed with
SLDA, since it is a prototype-based classifier and is thus indifferent to feature centering. Empiri-
cally, we have observed that this trick greatly improves performance when the node embeddings are
not centered, which is often the case with GRNF.

D HYPERPARAMETERS

We perform model selection using a limited section of the node stream, approximately 20% of
the tasks. Therefore, for class-incremental stream we validate over 7 out 35 tasks for CoraFull, 2
out of 5 for Amazon Computer (as considering 20% of the tasks would mean using only 1, thus
without any CL aspect), 4 out of 20 for Arxiv and Reddit, and 2 out of 9 for Roman Empire. For
the time-incremental stream, we validate over the first 20% of the nodes (i.e., 2 out of 10 tasks).
The hyperparameters are selected by running a standard grid search, over the search space that we
illustrate here. For all experiments and both backbones, we consider the gain hyperparameter for
weight initialization in {0.1, 1, 10}. For all methods, except SLDA, we select the learning rate from
the set {0.01,0.001,0.0001,0.00001}, and the number of passes on each batch before going to
the next one between 1 and 5. For ER and A-GEM, we consider the proportion of memories to
use with respect to each training batch in {1,2,3}. Additionally, we set the same memory buffer
size as [Donghi et al| (2025): 4000 for CoraFull, Amazon Computer, Roman Empire and Elliptic,
16000 for Arxiv and Reddit. The regularization hyperparameter for EWC and MAS is selected in
{10°,102,10%,1065,108,10'°}. For LWF, we consider lambda_dist in {1, 10}, T in {0.2,2} and the
number of mini-batches after which to update the teacher model in {10, 100}.

We highlight how the only hyperparameter considered for SLDA is the gain of the backbone, making
it even easier to use than other methods, avoiding expensive hyperparameter search.

E RESULTS WITH TRAINED GCN

In Table [5] we report the AP of CL strategies when used with a trained GCN in the OCGL setting
Donghi et al.|(2025). These results are obtained in the same configurations used for the experiments
in the main paper, only with a trained 2-layer GCN with 256 hidden units instead of an untrained
feature extractor. The results on Arxiv are provided only for the class-incremental stream. For
the full results with the other metrics (AAP and AF), we point the reader to the original paper
introducing the setting.

16

Under review as a conference paper at ICLR 2026

METHOD CORAFULL A. COMPUTER ARXIV REDDIT ROMAN E. ELLIPTIC

EwWC 28.10+2.76 14.86+6.00 4.81+0.08 4.33+2.77 8.85+0.05 51.08+1.10
LwF 15.74+1.56 19.33+0.14 4.79+0.08 13.13+1.92 8.81+0.01 50.79+1.36
MAS 8.40+0.62 12.68+8.28 3.35+0.99 10.21+1.03 11.02+1.36 51.08+1.10
TWP 13.98+1.66 19.8043.41 4.74+0.05 12.79+2.51 8.99+0.06 51.13+1.74
ER 20.65+2.33 38.53+2.93 23.43+1.65 22.34+2.46 10.43+0.20 43.94+0.52
A-GEM 40.45+0.77 38.49+2.80 17.16+1.45 58.08+8.04 9.07+0.15 47.06+1.18
PDGNN 38.48+1.15 68.91+0.33 35.86+1.20 53.98+0.44 14.20+0.87 49.91+1.44
SSM-ER 23.23+2.69 70.45+3.66 31.28+1.01 50.48+1.69 11.71+o0.51 24.45+2.97
SSM-A-GEM 36.63+4.63 50.01+9.12 13.12+2.46 22.54+4.51 9.00+0.09 40.48+0.82
BARE 12.59+0.82 20.51+4.26 4.74+0.08 12.5942.59 8.78+0.10 51.28+2.37
JOINT 67.55+0.05 83.07+1.30 58.58+0.28 90.02+0.12 39.47+0.33 71.97+0.83

Table 5: AP results in the OCGL setting from (Donghi et al.| [2025) of CL strategies with trained
GCN and joint offline training upper bound. In particular, TWP (Liu et al.,|[2021), PDGNN (Zhang
et al., 2024a), SSM-ER and SSM-A-GEM (Zhang et al., [2022b) are graph-specific CL baselines.
Best performing method for each dataset is highlighted in bold. For Arxiv class-incremental stream
is considered.

F PERFORMANCE PLOTS

We report here plots that show model performance along the node stream, to provide a more detailed
understanding of the dynamics of training and forgetting. In Figures [2| and |3| we plot for each
benchmark a comparison of the performance using the considered methods, for UGCN and GRNF
backbones respectively. We highlight the task boundaries with dotted vertical lines, with the thicker
dashed one indicating the threshold at which hyperparameter selection is performed. The upper
bound of joint training on data up to the present task is represented as an horizontal line over the
batches of each task.

In Figures we instead illustrate a more detailed breakdown of model performance: for each
benchmark, backbone and considered method, we plot the results of anytime evaluation broken
down on individual tasks, allowing a better understanding of when and where forgetting occours.

G LLM USAGE

Large Language Models were used for the purpose of text editing.

17

Under review as a conference paper at ICLR 2026

s A-GEM s EWC . s MAS I bare
m ER ___ g s SLDA W joint
107 1.0
0.8 o ———i 0.8
e A
i T A
506 %\ﬂmﬂqm mm%mﬁ 306
sl "
204l . <04
A
0.2 0.2
0.0+ — - 0.0+
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250
Batch Index Batch Index
(a) CoraFull (b) Amazon Computer
1.0 1.0
(\v f”ﬂ
0.8 | 0.8 rfq_ﬂf\' W
306 | _—"""\——-‘,———1,__—“ 5 0.6 REAN
SV
<04 % <04 % ATAVaN
0.2 %%% 02 ! X, &E
0.0 0.0
1000 1500 2000 2500 3000 0 1000 2000 3000 4000
Batch Index Batch Index
(c) Arxiv (d) Reddit
T 1.0 ;
]
|
|
0.8 :
|
|
» 0.6 H
3 — 8
2 /V,_J’\ o4
|
%@ i
|
|
|
H |
1500 2000 *0% 500 1000 1500 2000 2500 3000 3500 4000
Batch Index Batch Index
(e) Roman Empire (f) Elliptic (time-incremental)
1.0 -
0.8
g — e
506 14
< 04 i
0.2
0.0
0 500 1000 1500 2000 2500 3000
Batch Index

(g) Arxiv (time-incremental)

Figure 2: Anytime evaluation performance for the different datasets with UGCN Backbone. We
highlight with vertical lines the task boundaries and the hyperparameter selection threshold.

18

Under review as a conference paper at ICLR 2026

s A-GEM s EWC s MAS . bare
m ER | WF B SLDA mmmm joint

- i EEREIN
¥ Y'vr vy o————
Piod ’V’"\‘ Y
" TN TN
£ 04 ! / - % g
| i i -
0.2 | |
0.0 — - - - - .0 1
0 250 500 750 1000 1250 1500 1750 750 1000
Batch Index Batch Index
(a) CoraFull (b) Amazon Computer
1.0 T . 1.0
| T
o d Vi o / m T]
! i
06 | — > 0.6 i \
! 1 |
< 04 < 04 ; @ﬁ& %%m
0.2 i v V] 0.2 3 3
| <
i I o ‘ I
I L i oo ; ‘
0 500 1000 1500 2000 2500 3000 0 1000 2000 3000 4000
Batch Index Batch Index
(c) Arxiv (d) Reddit
1.0 T 1.0 T
|
0.8 0.8 i A
> 0.6 v 06 f
e : %
: &
< 04 € 0.4
@ /o i
0.2 == 02 |
!
‘ '
0.0+ - 0.0 I
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500 4000
Batch Index Batch Index
(e) Roman Empire (f) Elliptic (time-incremental)
1.0 T
0.8
> 0.6
< 04 E
0.2
0.0
0 500 1000 1500 2000 2500 3000

Batch Index

(g) Arxiv (time-incremental)

Figure 3: Anytime evaluation performance for the different datasets with GRNF backbone. We
highlight with vertical lines the task boundaries and the hyperparameter selection threshold.

19

Under review as a conference paper at ICLR 2026

1026
1027
1028
1029
1030
1031

0 €9 6 ZISIBITIZHZLZOEEE
seL

0 € 9 6 ZISTBITZHZLZOEEE

seL

0 €9 6 ZISIBTTZHZLZOEEE
sseL

Batch index

(c) EWC

Batch index

Batch index

(a) A-GEM

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

(b) ER

0 € 9 6 ZISTBTTZHZLTOEEE

siseL

€ 9 6 ZISTBITZHZLTOEEE

AseL

0 € 9 6 ZISTBTTZHZLTOEEE
siseL

(f) SLDA

(e) MAS

(d) LwF

1042
1043
1044

Figure 4: Anytime evaluation by task for the CoraFull dataset with UGCN backbone.

0 £ 9 6 ZISTBLTZHZLZOEEE

n o
S <
o o
- -

-

6

SfseL

TST8TTZHZ LT OE €€

yseL

1048
1049
1050
1051

(c) EWC

Batch index

Batch index

(a) A-GEM

(b) ER

1052
1053
1054

S

08

|

0.6

04
02

0 € 9 6 ZISTBITZYZLZOEEE

-

siseL

Lm0

ZISTBITZHZ LT OE€EE

seL

,,,,,,,,,,, -0
0 € 9 6 ZISTBTTZHZLTOEEE
siseL

n O N~
0N 1w
o O o
- -

1058
1059
1060
1061

(f) SLDA

(e) MAS

(d) LwF

Figure 5: Anytime evaluation by task for the CoraFull dataset with GRNF backbone.

1062
1063
1064

1066
1067
1068
1069
1070
1071

Batch index

(c) EWC

Batch index

Batch index

(b) ER

-GEM

(a) A

=
0

1072

1074
1075
1076
1077
1078
1079

2
2
8

Batch index

(f) SLDA

(e) MAS

Batch index

(d) LwF

Figure 6: Anytime evaluation by task for the Amazon Computer dataset with UGCN backbone.

20

Under review as a conference paper at ICLR 2026

-10

08
06
0.4

l

02
0.0

(c) EWC

Batch index

Batch index

(a) A-GEM

(b) ER

Batch index

(f) SLDA

(e) MAS

Batch index

(d) LwF

by task for the Amazon Computer dataset with GRNF backbone.

0on

i luati

1me eva

Anyt

Figure 7

0zvv 9

8 0T 2T ¥1 9T 8T
Aser

- otT
-0

L |

0 Z v 9 8 OTZI ¢ 9T 8T
yseL

o @ © = N o

- S o o c o

b —

0zv 9

8 0T ZT #T 9T 81
AseL

(c) EWC

s
0 ¢ v 9 8 OZIYLOTST
AseL
2 ® 9 % o 9
3 38 8§ 3 8 3

[

-
a4 z
m H
~ -
i) z
= -

0z o B oTasaTe

el

2 =% 9 % 9 9

3 8 3 3 8 o

b —
= 4
@ .
- z
~ z
< z
~ N

0 ¢ v 9 8 OLZIYLOTST
AseL

(f) SLDA

(e) MAS

(d) LwF

dataset with UGCN backbone.

v

by task for the Arxi

10n

luat

Anytime eva

Figure 8

zZv 9

8 0T 2T ¥1 9T 8T
Fser

- otT
-0

T e T0

0 Z v 9 8 OTZI ¢TI 9T 8T
seL

o @ © * ~ o

- S S S o o

L e——

0zv 9

8 0T 2T ¥1 9T 8T
Fser

(c) EWC

(b) ER

(a) A-GEM

u
0 ¢ v 9 8 OZIHLOTST
AseL
2 ® 9 % 8 9
3 38 s 3 8 3

[

0ztv 9

OT 2T +T 9T 8T

8 0T 2T ¥1 9T 8T
AseL

(f) SLDA

(e) MAS

(d) LwF

dataset with GRNF backbone.

v

luation by task for the Arx

Anytime eva

Figure 9

21

Under review as a conference paper at ICLR 2026

2 =% © % o 9 g ® 9 3 o 9 2 =% 9 % 9 9
3 s 8 S5 8 3 2 3 8 s s 3 3 s 3 3 8 o
- 00st - 00st - 00st
- ozey ozey - ozey
- ovw - ovTy - ovw
- ooee . - 096€ - 096
= - oace - o8Le = -oace N
u - 009€ Q - 00%€ B - 009 Q
o - 0zbE = | | - 0zpE . - 0ZvE =
- - ovze - ovze - - ovze
Q - 090€ < Q - 090€ @] - 090€ < o @]
| | - 0887 a) o - 0887] - 0887 a e
- 002§ v - 002§ - 002 § 2
4. 3} -o0zsz g -ozszg
m - -ovecs M - Q m
= Coores < Zoors = Coores <
~ - 0861 & o -ogeTE N - 0861 % ~
o Toomd G Sooma O Cooma g O o
~ - ozot < - ozor ~ - ozot = ~
_ - ovpT - 0vpT _a - ovoT ol
- 0921 C - - 0921 - 0921 N
- 0801 s - 080T - 0801
- 006 ! - 006 - 006
-0z @) - -0zt -0z a7
- ovs - ovs - ovs G
- 09€ o - 09t - 09€
- 08T - ost - o8t
L I R AT G -0 = T a0 G -0 =
0 Z b 9 8 OLZIYIoOTST 0 Z v 9 8 0OTZIYTOTEL = 0Z b 98 oTZPLOTE 0 Z v 9 8 OTZI4TOTEL =
AseL Aser m Aser Aser z
- -
15} Q
175} 172}
< <
o ® © ¢ o o - o ® © ¢ o o o o o « & o - o
2 s 8 oS o o < 4 6 6 o o o & 6 &8 & & o < S
b — o b — » L eee— 1=}
=
5 B - oosy =1 g 00sv = - osee
E & - 0ZEy - - ozey ho} 0912
& —-ovy) - ovTy S 020z
'l - 096€ = - - 096€ - 0861
| - 08LE 5] | | - 08LE [P) - 0681
|] - 009€ - 009€ R - 008T
- ozvE a4 B - ozvE - o1
= Loy - ovze | el - ovze - 0zot
w- - 090€ w [| | - 090 w (0] - O£ST
== | -osse (4 < = | i a4 oser = Sowt (Y
| is B —] m 00L2 § — oty M
| gk > = i - e S o Jpme
CoEsE | - g - £
= BE Sooes 7S o g B0 I - 001z o St S
- 0861 5 a 3 - 0861 7% a “ - 066 B
-oogr® o ~ - oogT® o -o0s @~
- 0291 ~ v - 0291 ~ M -o18
= - ovpT -— - ovpT 7 -0z
= - o9zt «x = - o9zt < - 0€9
- 080t < - 080t - ors
o - 006 +~ - - 006 - - osy
-0zt -0z - 09t
~ovs > ~ 0w = “ore
IO o B ot = o6
Vom0 G0 =} I IR T a0 = -0
0 Z v 9 8 0TZIYIOTST 0 Z v 9 8 OLZIYlOTSL o 0z v 9 8Ol HIOTS 0 Z v 9 8 OLZIYLOTST o
AseL FseL 1 ¥seL AseL =
= =
E E
-—_ —
=] <
2 e @ e s o o o @ e s o o 5
[2 3 8 s o 3 3 8 3 3 8 o o
(D) D — D e— ()
m 00st - 00st m
o= ozey - ocev =
= - ovTy - ovTy
> - 096¢ - 096€)
= - o8Le - o8t =
- 00%€ - 009
A - ozbE - ozvE A
3 - ovze - ovze 3
.. - 090E - 090E .o
[Sa] S - 0882 [Sa] - 088¢ — [a]
@) 3 Sozy 15 - 002 § 3 G)
— — -o0zszg -0zsz® — —
! - ovezs ! -ovezs !
<« —_ [5) Sz < -091ZE o~ () <
= - - 0861 % -086l% my =
—~ < = - 00818 - 0081 @ =) —~
< - ozor < - ozot B0 <
~ on - ovbT ~ - ovvT ~
- - 0921 - 0921 Pl
I - 080T - 080T (e
- 006 - 006
-0zt -0z
- ovs - ovS
- - 09 o - 09€
- ogt - o8t
T -0 G -0 S0 -0 S -0
0 Z v 9 8 0TZIYIOTEL 0 Z v 9 8 0TZI4LOTSL 0 Z b 98 0TZPLOTE 0 Z v 9 8 OTZI4TOTSL
Aser Aser AseL Hser

Batch index

(f) SLDA

dataset with UGCN backbone.

1re

22

(e) MAS
by task for the Roman Emp

10n

luat

Anytime eva

Batch index

(d) LwF

Figure 12

Under review as a conference paper at ICLR 2026

-10

Batch index

(c) EWC

Batch index

Batch index

(a) A-GEM

-10

-10

(b) ER

-10

08
0.6
0.4
02
EEEEEEEEEN 0.0

08
0.6
0.4
02
EEEEEEEERE 0.0

Z €y S 9L 8
sseL
© © v o o
S o S o o
T e—

9
8
Ed

Batch index

(f) SLDA

(e) MAS

Batch index

(d) LwF

dataset with GRNF backbone.

1re

luation by task for the Roman Emp

Anytime eva

Figure 13

(c) EWC

(b) ER

-GEM

(a) A

(f) SLDA

(e) MAS

(d) LwF

by task for the Elliptic dataset with UGCN backbone.

10n

Anytime evaluati

Figure 14

(c) EWC

(b) ER

(a) A-GEM

(f) SLDA

(e) MAS

(d) LwF

luation by task for the Elliptic dataset with GRNF backbone.

Anytime eva

Figure 15

23

Under review as a conference paper at ICLR 2026

1242
1243
1244
1245
1246
1247

1249
1250
1251

1252
1253

(c) EWC

(b) ER

(a) A-GEM

< v
0 10
AN N
-

1257
1258
1259
1260
1261

(f) SLDA

(e) MAS

(d) LwF

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

Anytime evaluation by task for the Arxiv dataset with UGCN backbone with time-

Figure 16:

incremental stream. We note how the very homogeneous performance compared to other bench-

marks suggests the absence of significant distribution drifts between tasks.

1272
1273
1274
1275

0T ZEYS9LBE
AseL

1276
1277
1278
1279

(c) EWC

(b) ER

(a) A-GEM

1280
1281

N
o]
N
-

1285
1286
1287
1288
1289
1290
1291

(f) SLDA

(e) MAS

(d) LwF

Figure 17: Anytime evaluation by task for the Arxiv dataset with GRNF backbone with time-
incremental stream. We note how the very homogeneous performance compared to other bench-

marks suggests the absence of significant distribution drifts between tasks.

1292
1293
1294
1295

24

	Introduction
	Related works
	Method
	Proposed solution
	Randomized feature extraction
	Linear classifier
	Effectiveness of the approach

	Experimental setting
	Results
	Conclusion
	Benchmarks
	Metrics
	Online feature centering trick
	Hyperparameters
	Results with trained GCN
	Performance plots
	LLM usage

