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ABSTRACT

Determining the structure of a protein has been a decades-long open question.
A protein’s three-dimensional structure often poses nontrivial computation costs,
when classical simulation algorithms are utilized. Advances in the transformer neu-
ral network architecture –such as AlphaFold2– achieve significant improvements
for this problem, by learning from a large dataset of sequence information and
corresponding protein structures. Yet, such methods only focus on sequence infor-
mation; other available prior knowledge, such as protein crystallography and partial
structure of amino acids, could be potentially utilized. To the best of our knowledge,
we propose the first transformer-based model that directly utilizes protein crystal-
lography and partial structure information to predict the electron density maps of
proteins. Via two new datasets of peptide fragments (2-residue and 15-residue) , we
demonstrate our method, dubbed CrysFormer, can achieve accurate predictions,
based on a much smaller dataset size and with reduced computation costs.

1 INTRODUCTION

Proteins, the biological molecular machines, play a central role in the majority of cellular processes
(Tanford & Reynolds, 2004). The investigation of a protein’s structure is a classic challenge in biology,
given that its function is dictated by its specific conformation. Proteins comprise long chains of
linked, relatively small organic molecules called amino acids, with a set of twenty of them considered
as standard. However, these underlying polypeptide chains fold into complex three-dimensional
structures, as well as into larger assemblies thereof. Consequently, biologists aim to establish a
standardized approach for experimentally determining and visualizing the overall structure of a
protein at a low cost.

In the past decades, there have been three general approaches to the protein structure problem: i)
ones that rely on physical experimental measurements, such as X-ray crystallography, NMR, or
cryo-electron microscopy; see (Drenth, 2007) for more details; ii) protein folding simulation tools
based on thermodynamic or kinetic simulation of protein physics (Brini et al., 2020; Sippl, 1990); and,
iii) evolutionary programs based on bioinformatics analysis of the evolutionary history of proteins
(Šali & Blundell, 1993; Roy et al., 2010).

Recent advances in machine learning (ML) algorithms have inspired a fourth direction which is to
train a deep neural network model on a combination of a large-scale protein structure data set (i.e.,
the Protein Data Bank (wwPDB consortium, 2019)) and knowledge of the amino acid sequences of a
vast number of homologous proteins, to directly predict the protein structure from the protein’s amino
acid sequence. Recent research projects –such as Alphafold2 (Jumper et al., 2021)– further show that,
with co-evolutionary bioinformatic information (e.g., multiple sequence alignments), deep learning
can achieve highly accurate predictions in most cases.

Our hypothesis and contributions. While it is true that computational methods of predicting
structures without experimentally confirming data are improving, they are not yet complete –in terms
of the types of structures that can be predicted– and suffer from lack of accuracy in many of the
details (Terwilliger et al., 2023). X-ray crystallographic data continues to be a gold standard for
critical details describing chemical interactions of proteins.
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Having a robust and accurate way of going directly from an X-ray diffraction pattern to a solved
structure would be a strong contribution to the field of X-ray crystallography. Such approaches
are missing from the literature, with the exception of Pan et al. (2023), a recent effort on the same
problem based on residual convolutional autoencoders.

Here, we present the first transformer-based model that utilizes protein crystallography and partial
structure information to directly predict the electron density maps of proteins, going one step beyond
such recent approaches. While not yet ready to solve real problems, we demonstrate success on a
simplified problem. As a highlight, using a new dataset of small peptide fragments of variable unit
cell sizes –a byproduct of this work– we demonstrate that our method, named CrysFormer, can
achieve more accurate predictions than state of the art (Pan et al., 2023) with less computations.

Some of our findings and contributions are:

• CrysFormer is able to process the global information in Patterson maps to infer electron density
maps; to the best of our knowledge, along with Pan et al. (2023), these are the first works to attempt
this setting.

• CrysFormer can incorporate “partial structure” information, when available; we also show
that such information could be incorporated in existing solutions that neglected this feature, like
the convolutional U-Net-based architectures in Pan et al. (2023). However, the CrysFormer
architecture still leads to better reconstructions.

• In practice, CrysFormer achieves a significant improvement in prediction accuracy in terms of
both Pearson coefficient and mean phase error, while requiring both a smaller number of epochs to
converge and less time taken per epoch.

• This work introduces a new dataset of variable-cell dipeptide fragments, where all of the input
Patterson and output electron density maps were derived from the Protein Databank (PDB) (wwPDB
consortium, 2019), solved by X-ray Crystallography. We will make this dataset publicly available.

2 PROBLEM SETUP AND RELATED WORK

X-ray crystallography and the crystallographic phase problem. X-ray crystallography has been
the most commonly used method to determine a protein’s electron density map1 for over 100 years
(Lattman & Loll, 2008). However, there is an open question, called the crystallographic phase
problem, that prevents researchers from utilizing it to predict true structures/electron density maps.

In review, each spot (known as a reflection) in an X-ray crystallography diffraction pattern is denoted
by three indices h, k, l, known as Miller indices (Ashcroft & Mermin, 2022). These correspond to
sets of parallel planes within the protein crystal’s unit cell that contribute to producing the reflections.
The set of possible h, k, l values is determined by the radial extent of the observed diffraction pattern.
Any reflection has an underlying mathematical representation, known as a structure factor, dependent
on the locations and scattering factors of all the atoms within the crystal’s unit cell. In math:

F (h, k, l) =

n∑
j=1

fj · e2πi(hxj+kyj+lzj), (1)

where the scattering factor and location of atom j are fj and (xj , yj , zj), respectively.

A structure factor F (h, k, l) has both an amplitude and a phase component (denoted by ϕ) and
thus can be considered a complex number. Furthermore, suppose we knew both components of the
structure factors corresponding to all of the reflections within a crystal’s diffraction pattern. Then, in
order to produce an accurate estimate of the electron density at any point (x, y, z) within the crystal’s
unit cell, we would only need to take a Fourier transform of all of these structures, as in:

ρ(x, y, z) = 1
V ·

∑
h,k,l

|F (h, k, l)| · e−2πi(hx+ky+lz−ϕ(h,k,l)), (2)

where V is the volume of the unit cell. The amplitude |F (h, k, l)| of any structure factor is easy to
determine, as it is simply proportional to the square root of the measured intensity of the corresponding
reflection. However, it is impossible to directly determine the phase ϕ(h, k, l) of a structure factor,
and this is what is well-known as the crystallographic phase problem (Lattman & Loll, 2008).

1The electron density is a measure of the probability of an electron being present just around a particular
point in space; a complete electron density map can be used to obtain a molecular model of the unit cell.
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Solving the phase problem. Various methods have been developed to solve the crystallography phase
problem. The three commonly used methods are isomorphous replacement, anomalous scattering, and
molecular replacement (Lattman & Loll, 2008; Jin et al., 2020). Also, what is known as direct methods
have been successful for small molecules that diffract to atomic resolution, but they rarely work
for protein crystallography, due to the difficulty of resolving atoms as separate objects. Alternative
methods have been developed to solve the phase problem based on intensity measurements alone,
known as phase retrieval (Guo et al., 2021; Kappeler et al., 2017; Rivenson et al., 2018). However,
these methods have not been widely used in X-ray crystallography, because they assume different
sampling conditions or were designed for non-crystallographic fields of physics. The iterative non-
convex Gerchberg–Saxton algorithm (Fienup, 1982; Zalevsky et al., 1996) is a well-known example
of such methods, but requires more measurements than is available in crystallography.

Although adaptations of the Gerchberg–Saxton algorithm have been proposed for crystallography-like
settings, they have not been used to solve the phase problem except in special cases where crystals
have very high solvent content (He & Su, 2015; He et al., 2016; Kingston & Millane, 2022). More
recently, Candes et al. (2013) introduced the Phaselift method, a convex, complex semidefinite
programming approach, and Candes et al. (2015) the Wirtinger flow algorithm (Candes et al., 2015),
a non-convex phase retrieval method; both these methods have not been applied practically, due to
their computationally intensive nature.

3 CRYSFORMER : USING 3D MAPS AND PARTIAL STRUCTURE ATTENTION

Inspired by (Hurwitz, 2020), we rely on deep learning solutions to directly predict the electron density
map of a protein. Later in the text, we demonstrate that such a data-centric method achieves both
better accuracy and reduced computational cost.

The Patterson function. We utilize the Patterson function (Patterson, 1934), a simplified variation
of the Fourier transform from structure factors to electron density, in which all structure factor
amplitudes are squared, and all phases are set to zero (i.e., ignored), as in:

p(u, v, w) = 1
V ·

∑
h,k,l

|F (h, k, l)|2 · e−2πi(hu+kv+lw). (3)

It is important to note the Patterson map can be directly obtained from raw diffraction data without
the need for additional experiments, or any other information.

Due to the discrete size of the input and output layers in deep learning models, we can discretize and
reformulate the electron density map –and its corresponding Patterson map– as follows: Suppose
the electron density map of a molecule in interest is discretized into a N1 ×N2 ×N3 3d grid. The
electron density map can then be denoted as e ∈ RN1×N2×N3 . The Patterson map is then formulated
as follows, where ⊙ means matrix element-wise multiplication:

p = ℜ
(
F−1 (F(e)⊙F(ê))

)
≈ ℜ

(
F−1

(
|F(e)|2

))
.

Breaking down the above expression, F(e)⊙F(ê) ≈ |F(e)|2 denotes only the magnitude part of
the complex signals, as measured through the Fourier transform of the input signal e. Here, ê denotes
an inverse-shifted version of e, where its entries follow the shifted rule as in êi,j,k = eN−i,N−j,N−k.

Using deep learning. We follow a data-centric approach and train a deep learning model, abstractly
represented by g(θ, ·), such that given a Patterson map p as input, it generates an estimate of an
electron density map, that resembles closely the true map e. Formally, given a data distribution D
and {pi, ei}ni=1 ∼ D, where pi ∈ RN1×N2×N3 is the Patterson map that corresponds to the true data
electron density map, ei ∈ RN1×N2×N3 , deep learning training aims in finding θ⋆ as in:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

ℓ(θ; g, {pi, ei}) = 1
n

n∑
i=1

∥g(θ,pi)− ei∥22

}
.

Since we have a regression problem, we use mean squared error as the loss function L(θ).
Using partial protein structures. Due to the well-studied structure of amino acids, we aim to
optionally utilize standardized partial structures to aid prediction, when they are available. For
example, let uj

i ∈ RN1×N2×N3 be the known standalone electron density map of the j-th amino acid
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of the i-th protein sample, in a standardized conformation. Abstractly, we then aim to optimize:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

ℓ(θ; g, {pi, ei,u
j
i}) = 1

n

n∑
i=1

∥g(θ,pi,u
j
i )− ei∥22

}
.

Challenges and Design Principles. We face the difficult learning problem to infer electron density
maps e from Patterson maps p, which involves Fourier transformations. These transformations can
be intuitively considered as transforming local information to global information, which is rare in
common deep model use cases. Secondly, it is nontrivial to incorporate the partial structure density
maps uj

i to aid prediction. Thirdly, the 3d data format of both our inputs and outputs often increases
substantially the computational requirements. Finally, since part of our contributions is novel datasets
on this problem, we need to be data efficient due to the expensive dataset creation cost. Thus, the
main design principles for our model can be summarized as:

• Design Principle #1: Be able to process the global information in Patterson maps to correctly infer
the corresponding electron density maps;

• Design Principle #2: Be able to incorporate partial structure information, when available;
• Design Principle #3: Learn to fulfill the above, with reduced computational and data-creation costs.

Gap in current knowledge. As an initial attempt, the well-established convolution-based U-Net
model (Ronneberger et al., 2015) could be utilized for this task. This is the path followed in (Pan
et al., 2023). However, classical U-Nets cannot fulfill the design principles above, since: i) they
mostly rely on local information within CNN layers; such a setup is not suitable when Patterson
maps are available, since the latter do not have meaningful local structures. ii) It is not clear (or, at
best, non-trivial) to incorporate any partial protein structures prior information, since the latter is in a
different representation domain, compared to Patterson maps. Finally, iii) a large 3d U-Net model
is computationally expensive and inefficient, due to the 3d filter convolution computation.

Our proposal: CrysFormer. We propose CrysFormer, a novel, 3d Transformer model (Vaswani
et al., 2017; Chen et al., 2021) with a new self-attention mechanism to process Patterson maps and
partial protein structures, to directly infer electron density maps with reduced costs.

Inspired by recent research on the potential connection between Fourier transforms and the self-
attention mechanism, found in the Transformer model (Lee-Thorp et al., 2022), CrysFormer
captures the global information in Patterson maps and “translates” it into correct electron density map
predictions, via our proposed self-attention mechanism (Design Principle #1). CrysFormer does
not need an encoder-decoder structure (Vaswani et al., 2017) and artificial information bottlenecks
(Cheng et al., 2019) –as in the U-Net architecture– to force the learning of global information.

By definition, CrysFormer is able to handle additional partial structure information, which comes
from a different domain than the Patterson maps (Design Principle #2; more details below).

Finally, by using efficient self-attention between 3d image patches, we can significantly reduce the
overall computation cost. Detaching our model from an encoder-decoder architecture further reduces
the required depth of the model and, thus, the overall training cost (Design Principle #3).

The architecture of the CrysFormer. We follow ideas of a 3d visual Transformer (Chen et al.,
2021) by partitioning the whole input 3d Patterson map pi ∈ RN1×N2×N3 input into a set of smaller
3d patches. We embed them into one-dimensional “word tokens”, and feed them into a multi-layer,
encoder-only Transformer module. If partial structures uj

i are also available, we will partition them
into 3d patches and embed them into additional tokens that are sent to each self-attention layer. This
way, the tokens in each layer can also “attend” the election density of partial structures, as a reference
for final global electron density map predictions. Finally, we utilize a 3d convolutional layer to
transform “word-tokens” back into a 3d electron density map.2 See Figure 1.

Mathematically, we report the following: The first part is the preprocessing and partitioning of input
Patterson maps p and additional partial structures uj into 3d patches of size d1 × d2 × d3. We embed
those patches into one-dimensional tokens with dimension dt, using of a small MLP, and add them
with a learned positional embedding; this holds for both Patterson maps and structures, as below:

2We also utilize 3d convolutional layer(s) at the very beginning of the execution to expand the number of
channels of the Patterson map (and potentially partial structure) inputs.
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3D CNN

Patterson Map 

3D CNN

Partial Structure 1 Electron Density

3D CNN

Partial Structure 2 Electron Density 

Transformer 
Layer 1

Predicted Electron Density

3D CNN

Transformer 
Layer 2

Figure 1: Abstract depiction of the Crysformer, which utilizes a one-way attention mechanism (red and
purple arrows) to incorporate the partial structure information. The tokens from the additional partial structure
all come from initial 3d CNN embedding and are not passed to the next layer.

Patterson maps p

X0 = 3DCNNWc(p) ∈ Rc×N1×N2×N3

X0 = Partition(X0) ∈ R
N1
d1

×N2
d2

×N3
d3

×(cd1d2d3)

X0 = Flatten(X0) ∈ R
N1N2N3
d1d2d3

×(cd1d2d3)

X0 = MLPWc(X
0) ∈ R

N1N2N3
d1d2d3

×dt

X0 = X0 + PosEmbedding(N1N2N3
d1d2d3

)

Partial structures uj

Uj = 3DCNNWp(u
j) ∈ Rc×N1×N2×N3

Uj = Partition(Uj) ∈ R
N1
d1

×N2
d2

×N3
d3

×(cd1d2d3)

Uj = Flatten(Uj) ∈ R
N1N2N3
d1d2d3

×(cd1d2d3)

Uj = MLPWp(U
j) ∈ R

N1N2N3
d1d2d3

×dt

Uj = Uj + PosEmbedding(N1N2N3
d1d2d3

)

As shown in Figure 1, we design an efficient attention mechanism such that i) only tokens from
Patterson maps attend tokens from the partial structures; ii) the tokens from the additional partial
structures are not passed to the next layer. This is based on that the partial structure electron density
information should be used by the model as a stable reference to attend to in each layer.

This one-way attention also greatly reduces the overall communication cost. In particular, let the token
sequence length be S = N1N2N3

d1d2d3
and let dh denote the dimension of the attention head. Assuming

we have H attention heads and L layers, CrysFormer uses the following attention mechanism:

U = ConcatJ
j=1(U

j) ∈ R(SJ)×dt

Ah = Softmax
(
(Wh

qX
ℓ)⊤(Concat(Wh

kX
ℓ,Wh

k′U)
)
∈ RS×(S+SJ);

V̂h = Ah
(
Concat(Wh

vX
ℓ,Wh

v′U)
)
∈ RS×dh ;

O = WoConcat
(
V̂0, V̂1, . . . , V̂H

)
∈ RS×dt ;

Xℓ+1 = Wff2(ReLU(Wff1O)),

where, omitting the layer index, Wh
q , Wh

k , Wh
v are the trainable query, key, and value projection

matrices of the h-th attention head for tokens from the Patterson map, and Wh
k′ , Wh

v′ are the
corresponding matrices for tokens from the partial structure, each with dimension dh. Further, Wff1
and Wff2 are the trainable parameters of the fully-connected layers. We omit skip connections and
layer normalization modules just to simplify notation, but these are included in practice.

As a final step, we transform the output embedding back to a 3d electron density map, as follows:

g(θ,p) = tanh(3DCNNWo
(Rearrange(MLP(XL)))) ∈ RN1×N2×N3 ,
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and, as stated previously, we use as our loss function the standard mean squared error loss.

4 NEW DATASETS

We generate datasets of protein fragments, where input Patterson and output electron density maps are
derived from Protein Databank (PDB) entries of proteins solved by X-ray Crystallography (wwPDB
consortium, 2019). We start from a curated basis of ∼ 24, 000 such protein structures. Then from a
random subset of about half of these structures, we randomly select and store segments of adjacent
amino acid residues. These examples are consisted of dipeptides (two residues) and 15-residues,
leading to two datasets that we introduce with this work. The latter dataset contains 15 residues,
where at most 3 residues could be shared between different examples. Using the pdbfixer Python
API (Eastman et al., 2017), we remove all examples that either contain nonstandard residues or have
missing atoms from our initial set. We also apply a few standardized modifications.

For our dipeptide dataset, we then iteratively expand the unit cell dimensions for each example,
starting from the raw max−min ranges in each of the three axis directions, attempting to create a
minimal-size unit cell where the minimum atomic contact is at least 2.75 Angstroms (Å).3 For our
15-residue dataset, we instead place atoms in fixed unit cells of size 41 Å x 30 Å x 24 Å to simplify
the now much harder problem. After this, all examples that still contain atomic contacts of less than
2.75 Å are discarded. The examples are then reoriented via a reindexing operation, such that the first
axis is always the longest and the third axis is always the shortest.

One issue leading to potential ambiguity in interpreting Patterson maps is their invariance to translation
of the entire corresponding electron density (Hurwitz, 2020). To tackle this, we center all atomic
coordinates such that the center of mass is in the center of the corresponding unit cell. This means
that our model’s predicted electron densities would always be more or less centered in the unit cell.
We note that this is also the case for the majority of actual protein crystals.

Structure factors for each remaining example, as well as those for the corresponding partial structures
for each of the present amino acids, are generated using the gemmi sfcalc program (Wojdyr,
2022) to a resolution of 1.5 Å. An electron density and Patterson map for each example are then
obtained from those structure factors with the fft program of the CCP4 program suite (Read &
Schierbeek, 1988; Winn et al., 2011); partial structure densities are obtained in the same manner. We
specify a grid oversampling factor of 3.0, resulting in a 0.5 Å grid spacing in the produced maps.
All these maps are then converted into PyTorch tensors. We then normalize the values in each of
the tensors to be in the range [−1, 1]. Since, in our PyTorch implementation, all examples within
a training batch are of the same size, we remove all examples from the tensor-size bins containing
fewer examples than a specified minimum batch size.

5 EXPERIMENTS

Baselines. There are no readily available off-the-self solutions for our setting, as our work is one of
the first of this kind. As our baseline, we use a CNN-based U-Net model (Pan et al., 2023); this
architecture is widely used in image transformation tasks (Ronneberger et al., 2015; Yan et al., 2021).

For comparison, we have further enhanced this vanilla U-Net with i) additional input channels to
incorporate the partial structure information, despite being evidently unsound; and ii) a refining
model procedure, which retrains the U-Net using previous model predictions as additional input
channels. Both of these extensions are shown to greatly improve the performance of the vanilla
U-Net. We refer the reader to the appendix for more details on our baseline model architecture.

Metrics. During testing, we calculate the Pearson correlation coefficient between the ground truth
targets e and model predictions g(θ,p); the larger this coefficient is, the better. Let us denote a
model prediction as e′. We define ē = 1

N1N2N3

∑
i,j,k ei,j,k and ē′ = 1

N1N2N3

∑
i,j,k e

′
i,j,k. Then,

the Pearson correlation coefficient between e and e′ is as below:

PC(e, e′) =

∑N1,N2,N3

i,j,k=1 (e′i,j,k − ē′)(ei,j,k − ē)√∑N1,N2,N3

i,j,k=1 (e′i,j,k − ē′) + ϵ ·
√∑N1,N2,N3

i,j,k=1 (ei,j,k − ē) + ϵ

, (4)

3An Angstrom is a metric unit of length equal to 10−10m.
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where ϵ is a small constant to prevent division by zero. To demonstrate how well our methods solve
the phase problem, we also perform phase error analysis on our models’ final post-training predictions
using the cphasematch program of the CCP4 program suite (Cowtan, 2011). We report the mean
phase errors of our predictions in degrees, as reported by cphasematch, where a smaller phase
error is desirable. Finally, we compare the convergence speed and computation cost of both methods.

Method Mean PC(e, e′) Mean Phase Error Epochs Time per epoch (mins.)

U-Net (Pan et al., 2023) 0.735 67.40◦ 50 28.93
U-Net+R (This work) 0.775 58.67◦ 90 29.06

U-Net+PS+R (This work) 0.839 51.34◦ 90 29.31
CrysFormer (This work) 0.939 35.16◦ 35 12.37

Table 1: CrysFormer versus baselines on the dipeptide dataset. U-Net+R refers to adding the refining
procedure to U-Net training; U-Net+PS+R refers to adding further partial structures as additional channels.

Results on two-residues. A summary of our results on our dipeptide dataset, which consisted of
1, 894, 984 training and 210, 487 test cases, is provided in Table 1. Overall, CrysFormer achieves
a significant improvement in prediction accuracy in terms of both the Pearson coefficient and phase
error, while requiring a shorter time (in epochs) to converge. CrysFormer also incurs much less
computation cost which results in significantly reduced wall clock time per epoch.

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer

Serine + Tryptophan

(d) U-Net+R (e) U-Net+PS+R (f) CrysFormer

Alanine + Methionine

Figure 2: Visualization of electron density predictions for baselines and CrysFormer: Ground truth density
maps are shown in blue, while predictions are shown in red. The model used to generate the ground truth electron
density is shown in stick representation for reference.

We further visualize some of the predictions in Figure 2, comparing side by side those made by the
baselines and the CrysFormer. CrysFormer produces more accurate predictions in terms of
both global and local structures. This verifies our hypothesis that i) the self-attention mechanism
can better capture the global information in Patterson maps, and ii) the removal of the U-Net’s
encoder-decoder structure prevents loss of information and improves the reproduction of finer details.

E.g., the top row of Figure 2 represents a class of examples containing a large aromatic residue, Trypto-
phan. U-Net+R models consistently produce poor predictions in this case, while the CrysFormer
better handles such residues. U-Net+PS+R shows that both providing additional input channels and
using the refining procedure improves results even for U-Net architectures; yet, CrysFormer still
provides better reconstruction. More visualizations can be found in the appendix.
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We further plot the calculated average mean phase errors of the predictions of our models against
reflection resolution, see left panel of Figure 3. The predictions made by CrysFormer have lower
mean phase error, compared to baselines. This means that the CrysFormer predictions, on average,
can reproduce better the general shape, as well as finer details of the ground truth electron densities.

Finally, we generate a chart of the fraction of our models’ predictions for which the calculated mean
phase error is < 60◦ at various ranges of resolution. We consider such predictions to accurately
reproduce the level of detail specified by that resolution range. This is shown on the right panel
in Figure 3. At all resolution ranges, CrysFormer predictions are clearly better than that of the
U-Net-based models. In particular, for CrysFormer, we still have a majority of predictions with
phase error < 60◦ even at the highest ranges of resolution.

Figure 3: Dipeptide dataset. Left: Average phase error of model predictions against reflection resolution. Right:
Fraction of model predictions for which phase error is < 60◦ at various ranges of resolution.

Results on 15-residues. On our dataset of 15-residue examples, which consisted of only 165, 858
training and 16, 230 test cases (less than one-tenth the size of our dipeptide dataset), we trained
for 80 epochs to a final average test set Pearson correlation of about 0.747. We then performed a
refining training run of 20 epochs, incorporating the original training run’s predictions as additional
input channels when training the CrysFormer, and obtained an improved average test set Pearson
correlation of about 0.77 and phase error of about 67.66. On both of these runs, we used the Nyström
approximate attention mechanism (Xiong et al., 2021) when incorporating our partial structure
information to reduce time and space costs. Even still, each training epoch still took about 6.28 hours
to complete. Thus due to time considerations, we decided not to attempt to train a U-Net on this
dataset for purposes of comparison.

(a) 5E4V_1_25 (b) 3HN7_1_133

Figure 4: Visualization of two successful predictions
after a refining training run; ground truth density maps
shown in blue and predictions shown in green.

We provide visualizations of some model pre-
dictions in Figure 4; more can again be found
in the appendix. We also plot the average mean
phase errors of the predictions of our models
against reflection resolution, as well as the frac-
tion of our models’ predictions for which the
calculated mean phase error is < 60◦ at various
ranges of resolution in Figure 5. These results
show that this is a more difficult dataset with
reduced sample size; yet CrysFormer predic-
tions tend to accurately reproduce details of the
desired electron densities.

We used the Autobuild program within the
PHENIX suite (Terwilliger et al., 2008; Lieb-
schner et al., 2019) to perform automated model
building and crystallographic refinement on a randomly selected subset of 302 test set predictions
after the refining training run. We found that 281 out of 302 (∼ 93%) refined to a final atomic model
with a crystallographic R-factor of less than 0.38, indicating success, when solvent flattening was
applied. Without solvent flattening, 258 out of 302 (∼ 85%) refined to such an R-factor (performing
solvent flattening is known to be especially effective for unit cells with high solvent content, i.e.
a large amount of empty space around the atoms). Figure 6 shows these results as scatterplots;
clearly only a small fraction of the subset of predictions did not refine successfully. And even if no
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Figure 5: Left: Average phase error of model predictions on 15-residue dataset against reflection resolution.
Right: Fraction of model predictions on 15-residue dataset for which phase error is < 60◦ at various ranges of
resolution.

refinement was performed at all, and instead an atomic model was repeatedly fit to our predicted
electron densities, we found that 229 out of 302 (∼ 76%) of the best such atomic models still had a
crystallographic R-factor of less than 0.38.

Figure 6: Left Panel: Scatterplot of post-refinement model R-factors, with solvent flattening applied. Right
Panel: Scatterplot of post-refinement model R-factors, without solvent flattening applied

Furthermore, after automatic map interpretation using the autobuilding routines in shelxe (Usón &
Sheldrick, 2018) to obtain a poly-alanine chain from each of the 16230 test set predictions, we found
that almost 74% of the resulting models had calculated amplitudes with a Pearson correlation of at
least 0.25 to the true underlying data. Historical results indicate that further refinement would very
likely produce a "correct" model if the initial poly-alanine model has at least such a correlation.

6 DISCUSSION

We have shown that CrysFormer outperforms state of the art models for predicting electron
density maps from corresponding Patterson maps in all metrics on a newly introduced dataset
(dipeptide). Overall, CrysFormer requires fewer epochs to reasonably converge and has a smaller
computational footprint. Furthermore, our “refining” procedure greatly improves training for the
vanilla U-Net architecture on our dipeptide dataset, as well as for training CrysFormer on our
both dipeptide and 15-residues dataset.

Limitations and next steps. Following successful results on our initial 15-residue dataset, we also
suggest training our model on variable unit cells at that problem size as future work. Eventually, we
also prefer handling variable cell angles as well, moving beyond the orthorhombic crystal system.
We will explore changing the formulation of our partial structures to have more than one amino acid
residue in a structure, as having each partial structure representing only a single residue may no
longer be reasonable, both computationally and from a practical perspective.

Broader Impacts. Solving the crystallographic phase problem for proteins would dramatically
reduce the time and expense of determining a new protein structure, especially if there are no close
homologs already in the Protein Data Bank. There exist some methods that sometimes work under
special conditions Jiang et al. (2018), or that work sometimes but only at very low resolutions David
& Subbiah (1994). The recent line of work on AlphaFold Jumper et al. (2021); Tunyasuvunakool
et al. (2021) definitely helps in these problems; we note though that this is true mostly in cases where
reliable predictions are possible due to strong homologs and/or extensive sequence data.
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