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(a) Image tokenization with Product Quantization (PQ) (b) Autoregressive (AR) modeling with folded tokens

Figure 1: Illustration of ImageFolder tokenizer and its corresponding autoregressive (AR) modeling
with parallel prediction. (a) ImageFolder utilizes product quantization to obtain two sets of spatially
aligned tokens that capture distinct aspects of images. (b) With the tokens from ImageFolder, AR
models can predict two tokens from one logit thus significantly shortening the sequence length and
benefiting the performance.

ABSTRACT

Image tokenizers are crucial for visual generative models, e.g., diffusion models
(DMs) and autoregressive (AR) models, as they construct the latent representation
for modeling. Increasing token length is a common approach to improve the im-
age reconstruction quality. However, tokenizers with longer token lengths are not
guaranteed to achieve better generation quality. There exists a trade-off between
reconstruction and generation quality regarding token length. In this paper, we in-
vestigate the impact of token length on both image reconstruction and generation
and provide a flexible solution to the tradeoff. We propose ImageFolder, a seman-
tic tokenizer that provides spatially aligned image tokens that can be folded during
autoregressive modeling to improve both generation efficiency and quality. To en-
hance the representative capability without increasing token length, we leverage
dual-branch product quantization to capture different contexts of images. Specifi-
cally, semantic regularization is introduced in one branch to encourage compacted
semantic information while another branch is designed to capture the remaining
pixel-level details. Extensive experiments demonstrate the superior quality of im-
age generation and shorter token length with ImageFolder tokenizer.

1 INTRODUCTION

Image generation (Chang et al., 2022; Dhariwal & Nichol, 2021; He et al., 2024; Esser et al., 2021;
Yu et al., 2024d; Weber et al., 2024) has achieved notable progress empowered by diffusion models
(DMs) (Dhariwal & Nichol, 2021; Rombach et al., 2022b; Peebles & Xie, 2023b) and autoregres-
sive (AR) models/large language models (LLMs) (Vaswani et al., 2023). Different from diffusion
models that leverage a continuous image representation (Li et al., 2024c; Dhariwal & Nichol, 2021;
Rombach et al., 2022b; Peebles & Xie, 2023b), AR models and LLMs typically discretize image
features into tokens (Yu et al., 2024b; Li et al., 2024d; Tian et al., 2024) and conduct the autore-
gressive modeling in the discrete space. Therefore, the performance of AR models/LLMs is largely
influenced by the properties of the image tokenizers. This motivates the community to push the edge
of image tokenizers for high-quality and efficient visual generation with large language models.
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VQGAN (Esser et al., 2021) is a pioneer work on image tokenization that leverages a vector quanti-
zation (Gray, 1984) operation to map the continuous image feature to discrete tokens with a learnable
codebook. Recently, several improvements from different perspectives have been made to the origi-
nal VQGAN (Lee et al., 2022a; Yu et al., 2023b; Mentzer et al., 2023; Zhu et al., 2024a; Takida et al.,
2023; Huang et al., 2023; Zheng et al., 2022; Yu et al., 2023a; Weber et al., 2024; Yu et al., 2024a;
Luo et al., 2024). For example, VAR (Tian et al., 2024) proposes a multi-scale vector quantization
(MSVQ) which quantizes images into a series of multi-scale tokens and conducts the autoregressive
modeling in a scale-based manner, leading to a remarkable latency reduction and reconstruction im-
provement. However, in a trade-off of the speed and reconstruction quality, the sequence length of
the quantized tokens is much longer compared to other models which could result in a larger training
cost and difficulty of incorporating in LLMs with long contexts (Jin et al., 2024; Ding et al., 2024).
SEED (Ge et al., 2023) and TiTok (Yu et al., 2024d) improve the VQGAN by injecting semantics
into the quantized codewords. Since the semantic tokens can convey more compacted information
about the image, they can achieve a much smaller token number to represent an image compared to
the VQGAN. Nevertheless, a smaller token number typically leads to information loss. SEED (Ge
et al., 2023) tokenizer discards all pixel-level details and only retains semantics to achieve a smaller
token number. TiTok (Yu et al., 2024d) conducts concatenated tokenization with multiple quantiza-
tion operations to achieve a higher compression rate while still suffering from detail distortion during
reconstruction. Based on previous arts, we can summarize a trade-off between reconstruction and
generation: (1) a longer token number can lead to a better reconstruction performance while mak-
ing the sequence length too long for autoregressive generation (e.g., requiring larger model capacity
(Sun et al., 2024), suffering more error propagation during AR sampling (Kaiser et al., 2018) and
more training costs (Tian et al., 2024)), and (2) a smaller token number can lead to inferior recon-
struction performance while benefit generation. Motivated by this, we aim to explore whether it is
possible to retain a sufficient number of tokens for high-quality reconstruction without lengthening
the sequence length for generation.

Vector Quantization Product Quantization

Low DependencyHigh Dependency

Figure 2: Token dependency.

While it is possible to predict multiple tokens parallelly
from one logit (Alexey, 2020; Peebles & Xie, 2023a)
as shown in Fig. 1 (b). This predicting scheme ignores
the dependency between tokens predicted in parallel in
the AR modeling. However, as the vector quantization
(Esser et al., 2021) is typically conducted on the spatial-
preserved image features, each quantized token repre-
sents a spatial region of the original image, leading to
high spatial dependency among tokens as shown in Fig. 2.
To address this problem, we aim to maintain spatial de-
pendency in AR modeling while constructing distinct tokens within each spatial location to obtain
token pairs with low dependency using product quantization (Jegou et al., 2010).

In this paper, we propose ImageFolder, a semantic image tokenizer that provides spatially aligned
image tokens, which can be folded for a shorter token length during autoregressive modeling. We
demonstrate that even if the overall token number remains the same, the folded tokens demonstrate
a better generation performance compared to unfolded ones. Specifically, different from previous
tokenizers (Lee et al., 2022a; Yu et al., 2023b; Mentzer et al., 2023; Zhu et al., 2024a; Takida
et al., 2023; Huang et al., 2023; Zheng et al., 2022), we leverage product quantization to separately
capture different information of images, i.e., semantics and pixel-level details, with two branches.
Within each branch, we use the multi-scale residual quantization as our quantizer. A quantizer
dropout is further proposed to force each residual layer to represent an image with different bitrates,
thus compensating the unmodeled dependency in the next-scale AR modeling (Tian et al., 2024).
With the above designs, the spatially aligned tokens from ImageFolder can be folded for a parallel
prediction during AR modeling as shown in Fig. 1 (b), which leads to half of the modeling token
length while achieving a better generation quality. Our contribution can be summarized in three-
fold:

• We present ImageFolder, a novel image tokenizer that enables shorter token length during
autoregressive modeling while not losing reconstruction/generation quality.

• We explore the product quantization in the image tokenizer. Moreover, we introduce se-
mantic regularization and quantizer dropout to enhance the representation capability of the
quantized image tokens.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We investigate the trade-off between the generation and reconstruction regarding token
length with extensive experiments, facilitating the understanding of image generation with
AR modeling.

2 RELATED WORKS

2.1 IMAGE TOKENIZERS

Image tokenizer has seen significant progress in multiple image-related tasks. Traditionally, autoen-
coders (Hinton & Salakhutdinov, 2006; Vincent et al., 2008) have been used to compress images into
latent spaces for downstream work such as (1) generation and (2) understanding. In the case of gen-
eration, VAEs (Van Den Oord et al., 2017; Razavi et al., 2019a) learn to map images to probabilistic
distributions; VQGAN (Esser et al., 2021; Razavi et al., 2019b) and its subsequent variants (Lee
et al., 2022a; Yu et al., 2023b; Mentzer et al., 2023; Zhu et al., 2024a; Takida et al., 2023; Huang
et al., 2023; Zheng et al., 2022; Yu et al., 2023a; Weber et al., 2024; Yu et al., 2024a; Luo et al.,
2024; Zhu et al., 2024b) introduce a discrete latent space for better compression for generation. On
the other hand, understanding tasks, such as CLIP (Radford et al., 2021), DINO (Oquab et al., 2023;
Darcet et al., 2023; Zhu et al., 2024c), rely heavily on LLM (Vaswani et al., 2023; Dosovitskiy et al.,
2021) to tokenize images into semantic representations (Dong et al., 2023; Ning et al.). These repre-
sentations are effective for tasks like classification (Dosovitskiy et al., 2021), object detection (Zhu
et al., 2010), segmentation (Wang et al., 2021), and multi-modal application (Yang et al., 2024). For
a long time, image tokenizers have been divided between methods tailored for generation and those
optimized for understanding. After the appearance of (Yu et al., 2024c), which proved the feasibility
of using LLM as a tokenizer for generation, some works (Wu et al., 2024) are dedicated to unify the
tokenizer for generation and understanding due to the finding in (Gu et al., 2023).

2.2 AUTOREGRESSIVE VISUAL GENERATION

Autoregressive models have shown remarkable success in generating high-quality images by mod-
eling the distribution of pixels or latent codes in a sequential manner. Early autoregressive models
such as PixelCNN (Van den Oord et al., 2016) pioneered the approach of predicting pixel values
conditioned on previously generated pixels. The transformer architecture (Vaswani et al., 2023),
first proposed in NLP, has spread rapidly to image generation (Shi et al., 2022; Mizrahi et al., 2024)
because of its scalability and efficiency. MaskGIT (Chang et al., 2022) accelerated the generation by
predicting tokens in parallel, while MAGE (Li et al., 2023) applied MLLM (Bao et al., 2022; Peng
et al., 2022) to unify the visual understanding and the generation task. Recently, autoregressive
models continued to show their scalability power in larger datasets and multimodal tasks (He et al.,
2024); models like LlamaGen (Sun et al., 2024) adapting Llama (Touvron et al., 2023) architectures
for image generation. New directions such as VAR (Tian et al., 2024; Li et al., 2024d), MAR (Li
et al., 2024c) and Mamba (Li et al., 2024a) have further improved flexibility and efficiency in image
synthesis. Currently, more and more unified multimodal models like SHOW-O (Xie et al., 2024),
Transfusion (Zhou et al., 2024) and Lumina-mGPT (Liu et al., 2024) continue to push the bound-
aries of autoregressive image generation, demonstrating scalability and efficiency in diverse visual
tasks.

2.3 DIFFUSION MODELS FOR IMAGE GENERATION

Diffusion models, initially introduced by Sohl-Dickstein et al. (Sohl-Dickstein et al., 2015) as a gen-
erative process and later expanded into image generation by progressively infusing fixed Gaussian
noise into an image as a forward process. A model, such as U-Net (Ronneberger et al., 2015), is
then employed to learn the reverse process, gradually denoising the noisy image to recover the orig-
inal data distribution. In recent years, this method has witnessed significant advancements driven
by various research efforts. Nichol et al. (Nichol & Dhariwal, 2021), Dhariwal et al. (Dhari-
wal & Nichol, 2021), and Song et al. (Song et al., 2022) proposed various techniques to enhance
the effectiveness and efficiency of diffusion models, paving the way for improved image genera-
tion capabilities. Notably, the paradigm shift towards modeling the diffusion process in the latent
space of a pre-trained image encoder as a strong prior (Van Den Oord et al., 2017; Esser et al.,
2021) rather than in raw pixel spaces (Vahdat et al., 2021; Rombach et al., 2022b) has proven to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝒟
Semantic Regularization

Input

ℇ

DINO

Detail
Quantizer

Semantic
Quantizer

Reconstruction

	⋮

1

21

	⋮

90

77

	⋮

	⋮

	⋮

	⋮ 	⋮C

Contrastive Loss

Token Quantization

𝐾×𝐾
Learnable Tokens

𝐾×𝐾
Learnable Tokens

Encoder Decoder
Frozen

𝐿×𝐿

C Concat.

ℇ 𝒟 Vision Transformer

𝑧!

𝑧"

𝑧!#

𝑧"#

Figure 3: Overview of ImageFolder. ImageFolder leverages vision transformers (Alexey, 2020) to
encode and decode images. Given an image, two sets of K×K learnable tokens are used to generate
spatially-aligned low-resolution features from the image. After that, a product quantization is used
to obtain discrete image representation. A semantic regularization is applied in one of the quantizers
to inject semantic constraints. The quantized tokens are concatenated to serve as input for the image
decoder to reconstruct images.

be a more efficient and instrumental method for high-quality image generation. Moreover, a lot
of research on the model architecture replaces or integrates the vanilla U-Net with a transformer
(Peebles & Xie, 2023b) to further improve the capacity and efficiency of multi-model synthesis on
diffusion model. Inspired by these promising advancements in diffusion models, numerous founda-
tional models have emerged, driving innovation in both image quality and flexibility. For instance,
Glide (Nichol et al., 2021) introduced a diffusion model for text-guided image generation, combin-
ing diffusion techniques with text encoders to control the generated content. Cogview (Ding et al.,
2021) leveraged transformer architectures alongside diffusion methods to enhance image generation
tasks. Make-A-Scene (Gafni et al., 2022) and Imagen (Saharia et al., 2022) focused on high-fidelity
image synthesis conditioned on textual inputs, showcasing the versatility of diffusion models across
modalities. DALL-E (Ramesh et al., 2021) and Stable Diffusion (Rombach et al., 2022a) brought
diffusion models to mainstream applications, demonstrating their ability to generate high-resolution
photorealistic images. Additionally, recent models such as MidJourney (MidJourney Inc., 2022) and
SORA (OpenAI, 2024) have further refined the use of diffusion models in creative and commercial
contexts, illustrating the growing influence and adaptability of these models in a range of domains.
Even though the performance of image generation in diffusion models has shown impressive re-
sults, the training cost and inference speed remain bottlenecks, motivating the exploration of more
efficient approaches such as leveraging large language models (LLMs) for image generation.

3 METHOD

Preliminaries. Product quantization (PQ) (Jegou et al., 2010; Guo et al., 2024) aims to quantize
a high-dimension vector to a combination of several low-dimension tokens, which has shown a
promising capability to capture different contexts across sub-quantizers (Baevski et al., 2020). Given
a continuous feature z, product quantization performs as:

P(z) = Q1(z1)⊕ · · · ⊕ QP (zP ),Qp ∼ Cp, (1)

where ⊕ denotes channel-wise concatenation (cartesian product), ∼ denotes that vector quantizer
Qp is associated with the codebook Cp = {ej}Jj=1, i.e., Qp maps a feature zp to a codeword
ep = argminej∈Cp

∥zp − ej∥22 that minimizes the distance between zp and ej ∈ Cp. P is the
product number, i.e., sub-vector number and zp is a sub-vector from z having z = ⊕P

p=1zp. Product
quantization first divides the target vector into several sub-vectors and then quantizes them sepa-
rately. After the quantization, the quantized vectors resemble the original vector by concatenation.

3.1 IMAGEFOLDER

4
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# Tokens 10×10 12×12 14×14
rFID 4.15 3.21 2.40
gFID 5.22 5.34 6.24

Table 1: Performance against #Tokens.

Imagefolder is a semantic image tokenizer that tok-
enizes an image into spatially aligned semantic and
detail tokens with product quantization. The Image-
folder is designed based on two preliminary obser-
vations. (1) As preliminary experiments shown in
Tab 1, increasing the token number generally leads to better reconstruction quality. However, gen-
eration behaves differently — longer token sequences can result in inferior outcomes.

(2) Semantic tokenizers, e.g., SEED (Ge

SEED TiTok Ours Input

Details Preserving

Figure 4: Image reconstruction.

et al., 2023) and Titok (Yu et al., 2024d) can
encode an image into only a few tokens (32
tokens). As shown in Fig. 4, even though
losing pixel-level structure/details of the im-
age, the reconstructed images are semanti-
cally correct spatially. This motivates us to
leverage semantics to obtain compacted im-
age representation while encoding the remaining image details with additional tokens.

Architecture. As shown in Fig. 3, given an input image I , we first patchify it into a set of L× L
tokens where L is the patch size. After that, the image tokens are concatenated with two sets of
K ×K learnable tokens and serve as the input to the transformer encoder E . The same spatial
positional encodings are added to the learnable tokens to inform the spatial alignment. A level
embedding is additionally used to convey the difference across K × K tokens. Let us denote the
encoded tokens corresponding to the learnable tokens as zd, zs. To discretize them, we use a detail
quantizer Qd and a semantic quantizer Qs to conduct product quantization. The quantized tokens
z′d and z′s are further concatenated with a set of L× L learnable tokens to decode the reconstructed
image with a decoder D.

Token quantization. As shown in Fig. 3, we leverage product quantization to quantize an image
with semantics and pixel-level details using two branches separately. Specifically, semantic regu-
larization is applied to the semantic branch to guide the semantics and distinguish it from the detail
branch. Moreover, a quantizer dropout strategy is used to facilitate the quantizer to learn multi-scale
image representation.

𝑧!" 𝑧#" 𝑧$" 𝑧%" 𝑧&" 𝑧"𝑧

Figure 5: Illustration of quantizer dropout in
multi-scale residual quantizer.

(1) Quantizer dropout: We use multi-scale
residual quantizer (MSRQ) (Tian et al., 2024)
for each branch, leading to multi-resolution to-
kens z′1, z

′
2, · · · , z′N where N denotes the num-

ber of residual steps. In the i-th residual step,
the MSRQ quantizer first downsamples the in-
put to a smaller Ki × Ki resolution and then
quantizes it by mapping it to its closest vec-
tor in the codebook C = {ej}Jj=1 as ẑi[a, b] =
argminej∈C ∥zi[a, b] − ej∥22, where [a, b] is the spatial coordinates. After the nearest-neighbor
look-up, the quantized representation ẑi is up-sampled back to the original resolution K ×K with a
convolution to handle the blurring as:

z′i = γ × conv(ẑi) + (1− γ)× ẑi, (2)
where γ is set to an constant scalar as 0.5. Specifically, to enhance the representation capability,
we notice that a quantizer dropout strategy (Kumar et al., 2024; Zeghidour et al., 2021) can largely
improve generation performance. During training, as shown in Fig. 5, we randomly drop out the last
several quantizers. The quantizer dropout happens with a ratio of p. With the quantizer dropout, the
final output of the MSVQ can be formulated as:

z′ =

n∑
i=1

z′i, Nstart ≤ n ≤ N. (3)

Applying quantizer dropout enables residual quantizers to encode images into different bitrates de-
pending on the residual steps. This will significantly smooth the next-scale autoregressive predic-
tion, as we will show in Fig. 7. To ensure training stability, the first Nstart = 3 quantizers with
extreme low resolution are never dropped out.
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(2) Product quantization: We quantize images with separate MSVQ to capture different informa-
tion. Denoting the output of detail and semantic quantizer as z′d and z′s respectively, we concatenate
them in a channel-wise manner z′d⊕z′s to form the final quantized token. It is worth noting that both
quantizers share the same quantizer dropout setting for each sample. The codebooks are updated
separately for each quantizer.

Input w./o. semantic w./o. detail
Figure 6: Visualization of zero out z′s or z′d.

Semantic regularization. To impose seman-
tics into the tokenized image representation, we
propose a semantic regularization term to the
quantized token z′s. A frozen pre-trained DI-
NOv2 model (Oquab et al., 2023) is utilized to
extract the semantic-rich visual feature fs of the
input image I . We first pool the quantized token
z′s to 1× 1. After that, a CLIP-style contrastive
loss (Radford et al., 2021) is used to perform
visual alignment: maximizing the similarity be-
tween the quantized tokens z′s and their corresponding DINO representation fs, while minimizing
the similarity between z′s and other representations fs from different images within one batch. To
facilitate semantic learning, we initialize the image encoder E with the same DINOv2 weight as the
frozen one. We notice that the tokens with quantizer dropout will lead to instability during train-
ing. In this way, the contrastive loss is only applied to the tokens without being applied dropout.
As shown in Fig. 6, we visualize reconstructed images with zero z′s or z′d to investigate the infor-
mation captured by different quantizers. When we zero out the semantic tokens z′s, we notice that
the boundary of the reconstructed image remains aligned with the input. In contrast, zeroing out
detail tokens reconstructs an image that is more similar to the input while the object identity is not
maintained (like what SEED (Ge et al., 2023) and TiTok (Yu et al., 2024d) perform).

Tuning Linear LORA Full
rFID >5 3.55 1.57

Table 2: rFID of DINOv2 as tokenizer.

We provide a more in-depth discussion here to facil-
itate the understanding of adopting semantic regular-
ization only in one branch. We notice a concurrent
work VILA-U (Wu et al., 2024) also aims to inject
semantics into the quantized tokens while their design results in performance degradation for image
generation. As shown in Tab 2, we compare the rFID with pre-trained DINOv2 (Oquab et al., 2023)
as an image encoder. We can find that the semantic-rich features from DINOv2 are not suitable for
image reconstruction. We consider this can be because the features only contain structural semantics
while discards pixel-level details. In this way, directly injecting semantics into all quantized tokens
will force the image tokenizer to ignore high-frequency details. To address this issue, we only use
semantic regularization in one branch and leave another branch to capture other information required
to reconstruct the image.

Loss function. The ImageFolder is trained with composite losses including reconstruction loss
Lrecon, vector quantization loss LV Q, adverserial loss Lad, Perceptual loss LP , and CLIP loss
Lclip:

L = λreconLrecon + λV QLV Q + λadLad + λPLP + λclipLclip. (4)
Specifically, the reconstruction loss measures the L2 distance between the reconstructed image and
the ground truth; vector quantization loss encourages the encoded features and its aligned codebook
vectors; adversarial loss, applied from a PatchGAN (Isola et al., 2018) discriminator trained simul-
taneously, ensures that the generated images are indistinguishable from real ones; perceptual loss
compares high-level feature representations from a pre-trained LPIPS (Zhang et al., 2018) to cap-
ture structural differences; and CLIP loss performs semantic regularization between semantic tokens
and the pre-trained DINOv2 (Oquab et al., 2023) features. A LeCam regularization (Tseng et al.,
2021) is applied to the adversarial loss to stabilize the training.

3.2 AUTOREGRESSIVE MODELING

To demonstrate the effectiveness of the proposed ImageFolder tokenizer, we train an autoregressive
(AR) model to perform image generation based on the tokens obtained from ImageFolder. We
follow VAR (Tian et al., 2024) to conduct the next-scale AR modeling for a faster inference speed.
Recall that, we leverage product quantization to achieve spatially aligned tokens. Different from

6
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ID Method Length Evaluation Metric
rFID↓ gFID↓

1 Multi-scale residual quantization (Tian et al., 2024) 680 1.92 7.52
2 + Quantizer dropout 680 1.71 6.03
3 + Smaller quantized token size K = 11 286 3.24 6.56
4 + Product quantization & Parallel decoding 286 2.06 5.96
5 + Semantic regularization on all branches 286 1.97 5.21
6 + Semantic regularization on one branch 286 1.57 3.53
7 + DINO discriminator 286 0.80 2.60

Table 3: Ablation study on the improvement of ImageFolder. We evaluate the rFID and gFID on the
ImageNet validation set. DINO discriminator denotes the discriminator used in VAR’s (Tian et al.,
2024) tokenizer. ↑ and ↓ denote the larger the better and the smaller the better, respectively.

regular AR modeling which predicts one token from one logit, as shown in Fig. 1, we predict two
tokens from the same logit with separate softmax operations. During training, the two predicted
tokens are separately supervised with the corresponding ground truth. During inference, the tokens
are sampled in parallel with a top-k-top-p sampling and then fed to the image decoder for image
reconstruction. With our parallel predicting scheme, the visual tokens can be folded as input to the
AR model, leading to half reduction of the original token length. We show that a shorter token length
can benefit the generation quality, even though the overall token number remains the same.

Parallel decoding. We discuss the nature and differences between parallel decoding and tradi-
tional AR modeling. In vanilla AR models, given two tokens x and y (Fig. 1 (b)), the joint distri-
bution p(x, y) is modeled through the conditional dependency p(x | y)p(y), meaning x is sampled
based on y. In contrast, our approach samples the joint distribution in parallel, assuming

p(x, y) = p(x)p(y), (5)

which imposes independence between tokens x and y. This independent assumption makes most
existing image tokenizers, such as (Esser et al., 2021; Tian et al., 2024), unsuitable for parallel de-
coding as the spatial dependency is strong. To address this, we introduce product quantization, a
technique commonly used to quantize high-dimensional spaces into several low-dimensional sub-
spaces to reduce the dependencies. Specifically, we apply semantic regularization to one quantiza-
tion branch while allowing the other branch to learn complementary information. This encourages
that tokens from different branches capture distinct aspects of the image, resulting in weaker depen-
dencies compared to the traditional spatial dependency among tokens.

In addition, with the quantizer dropout, each residual step can represent images with different bi-
trates. During the next-scale AR modeling, although the dependency within the current scale is
not considered, the conditional dependency can still be refered from the low-resolution tokens in
previous AR steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We test our ImageFolder tokenizer on the ImageNet 256x256 reconstruction and generation tasks.
Our tokenizer training recipe is based on LlamaGen (Sun et al., 2024). More results with advanced
training recipes (more iterations, stronger discriminator, and strong perceptual loss) will be updated
during the author-reviewer discussion.

Metrics. We utilize Fréchet Inception Distance (FID) (Heusel et al., 2017), Inception Score (IS)
(Salimans et al., 2016), Precision, and Recall as metrics for assessing the image generation.

Implementation details. For the ImageFolder tokenizer, if there is no other specification, we
follow the VQGAN training recipe of LlamaGen (Sun et al., 2024). We initialize the image encoder
with the weight of DINOv2-base. We use a cosine learning rate scheduler with a warmup for 1 epoch
and a start learning rate of 3e-5. We set the quantizer drop ratio to 0.1. We set λclip = 0.1, λrecon =
λV Q = λP = 1 and λad = 0.5. We set the residual quantizer scales to [1, 1, 2, 3, 3, 4, 5, 6, 8, 11] (in
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Type Method Tokenizer Generator
rFID↓ L.P.↑ gFID↓ IS↑ Pre↑ Rec↑ #Para Leng. Step

Diff. ADM (Dhariwal & Nichol, 2021) - - 10.94 101.0 0.69 0.63 554M - 1000
Diff. LDM-4 (Rombach et al., 2022b) 0.74 - 3.60 247.7 - - 400M - 250
Diff. DiT-L/2 (Peebles & Xie, 2023b) - - 5.02 167.2 0.75 0.57 458M - 250
Diff. MAR-B (Li et al., 2024c) 1.22 - 2.31 281.7 0.82 0.57 208M - 64
NAR MaskGIT (Chang et al., 2022) 2.28 - 6.18 182.1 0.80 0.51 227M 256 8
NAR RCG (cond.) (Li et al., 2024b) - - 3.49 215.5 - - 502M 256 250
NAR TiTok-S-128 (Yu et al., 2024d) 1.52 50.5 1.94 - - - 177M 128 64
NAR MAGVIT-v2 (Yu et al., 2024b) 0.90 - 1.78 319.4 - - 307M 256 64
AR. VQGAN (Esser et al., 2021) 7.94 - 18.65 80.4 0.78 0.26 227M 256 256
AR. RQ-Transformer (Lee et al., 2022b) 1.83 - 15.72 86.8 - - 480M 1024 64
AR. LlamaGen-L (Sun et al., 2024) 2.19 2.6 3.80 248.3 0.83 0.52 343M 256 256
AR. VAR∗ (Tian et al., 2024) 0.90 11.3 3.30 274.4 0.84 0.51 310M 680 10
AR. ImageFolder (ours) 0.80 58.0 2.60 295.0 0.75 0.63 362M 286 10

Table 4: Performance comparison on class-conditional ImageNet 256x256. Results with advanced
training recipes as other comparable methods will be updated soon. ∗ denotes the utilized image
tokenizer is trained on OpenImage (Kuznetsova et al., 2020). ↑ and ↓ denote the larger the better
and the smaller the better, respectively. L.P. denotes linear probing accuracy on the ImageNet val
set. The codebook utilization rate for the Imagefolder tokenizer is 100%.

total 286 tokens). The codebook size for each tokenizer is set to 4096. The residual quantization of
each branch shares the same codebook across scales. For the generator, we adopt VAR’s (Tian et al.,
2024) GPT-2-based (Radford et al., 2019) architecture. We double the channel of the output head to
predict two tokens in parallel.

4.2 PERFORMANCE ANALYSIS

Roadmap to improve the ImageFolder tokenizer. We first discuss the core designs of Image-
Folder. (1) We begin with our baseline using multi-scale residual quantization from VAR (Tian
et al., 2024) with a latent resolution of 16× 16 and incorporate the proposed modules step by step.
(2) As shown in Tab 3, with a quantizer dropout, gFID achieves a significant improvement of 1.49
FID. We consider this to be due to the smoother next-scale AR modeling as quantizer dropout will
force each scale to represent the images with different resodflutions. (3) After that, we adjust the
latent resolution to 11 × 11 which leads to a performance drop for both reconstruction and gener-
ation due to a smaller token number. (4) To reduce the token length without decreasing the token
number, we adopt a product quantization with corresponding parallel decoding. This modification
results in a rFID of 2.06 and a gFID of 5.96 which outperforms the 16 × 16 counterpart’s gFID
of 6.03. (5) We further employ semantic regularization to enrich the semantics in the latent space
for a more compact representation. (6) With the analysis of Tab 2, we realize that pure semantics
is not enough for image reconstruction. Therefore, we adjust the semantic regularization to only
one branch of the product quantization. Significant performance improvement is observed in both
reconstruction and generation. Regularization on a single branch encourages different branches to
capture different information about the image for a better reconstruction quality and reduces the
feature dependency thus leading to a more robust sampling during generation. With all components,
the VAR with ImageFolder achieves 3.53 gFID with only 286 token lengths.

Image generation comparison. As shown in Tab 4, we compare ImageFolder with state-of-the-art
generative models. We notice ImageFolder outperforms LlamaGen which shares a similar tokenizer
training scheme. Compared with VAR (with advanced tokenizer training recipe, e.g., OpenImage,
longer training, and stronger discriminator), our method achieves a comparable performance. In ad-
dition, the shorter token length of ImageFolder (286 length) also remarkably saves training/inference
costs compared to VAR (680 length) which is O(n2) to the length n. Since VAR (Tian et al., 2024)
did not release their tokenizer training code and recipe, we can not reproduce their result. With our
architecture and training recipe, the vanilla MSVQ (Tian et al., 2024) only leads to a rFID of 1.92
and a gFID of 7.52.
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w./o. Dropout

w. Dropout

Input
𝟏×𝟏 𝟏×𝟏 𝟐×𝟐 𝟑×𝟑 𝟑×𝟑 𝟒×𝟒 𝟓×𝟓 𝟔×𝟔 𝟖×𝟖 𝟏𝟏×𝟏𝟏

Figure 7: Visualization of reconstructed images from different residual quantization steps. The
residual scales used for this visualization is [1, 1, 2, 3, 3, 4, 5, 6, 8, 11]. The quantizer dropout starts
from the third scale 2× 2.

Nstart 1 3 5

rFID >20 1.57 1.69

(a) Start dropout.

p 0 0.1 0.5

rFID 1.73 1.57 1.94

(b) Dropout ratio.

P 1 2 4

rFID 2.74 1.57 0.97

(c) Branch number.

λclip 0 0.01 0.1

rFID 1.97 1.67 1.57

(d) Semantic Loss.

Table 5: Design choices for ImageFolder.

4.3 MORE ANALYSIS

Reconstruction of different residual steps. We demonstrate the visualization of reconstructed
images with different residual steps in Fig. 7. Without quantizer dropout, the core information is
mainly concentrated on the last several layers. In contrast, with quantizer dropout, the one residual
quantizer can perform image tokenization with different bitrates based on the residual step leading
to progressively improved representation for the next-scale AR modeling.

Ref. Image Ref. Token Gen. Image
Figure 8: Conditional image generation.

Conditional image generation. Inspired by
the teacher-forcing guidance proposed by Con-
trolVAR (Li et al., 2024d), we teacher-force de-
tail tokens of a reference image to conduct zero-
shot conditional image generation with an AR
model trained with ImageFolder. Specifically,
we first encode the reference image to obtain
the detail tokens. After that, we teacher-force
the detail token during the AR modeling to con-
duct the conditional image generation (Li et al.,
2024d). As shown in Fig. 8, we visualize the reference image, the reconstruction of the reference
detail token and the generated image. We notice that the generated image follows the spatial shapes
of the reference image while containing different visual contents, e.g., rocky mountain to frosty
mountain. This experiment demonstrates a promising novel usage of ImageFolder on conditional
image generation.

Linear probing. We further analyze the performance of the ImageFolder tokenizer by conducting
linear probing on the ImageNet val set. As shown in Tab 4, we compare the linear probing top-1
accuracy of ImageFolder with LlamaGen and VAR. We notice that ImageFolder achieves a signifi-
cantly superior linear probing accuracy compared to comparable methods. We notice that VAR also
demonstrates a decent linear probing accuracy which can be credited to its advanced training with
the DINO discriminator.

Method LlamaGen VAR Ours
Time (s) 8.851 0.134 0.130

Table 6: Inference latency with batchsize=1
on single A100 GPU.

Inference latency. We compare the inference
speed of LlamaGen, VAR, and our method, as sum-
marized in Tab 6. LlamaGen exhibits slower infer-
ence due to its next-token autoregressive (AR) mech-
anism. Our approach achieves comparable latency to
VAR, as both methods require the same number of AR steps (without CPU optimization). However,
it is important to highlight that our method operates with approximately 1

4 of the FLOPs compared
to VAR, indicating a significant computational efficiency.

Design choices. We further demonstrate the impact of several design choices for our Imagefolder.
As Tab 5 shown, (1) quantizer dropout can significantly improve the capacity of our tokenizer, but
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Figure 9: Visualization of 256× 256 image generation task within ImageNet classes.

if we drop too many quantizers during training, it will unstabilize the training of our tokenizer and
cause degradation. (2) Quantizer dropout will force the model to reconstruct the image with different
bitrates while a too-large ratio will make the model focus too much on the intermediate outputs thus
impacting the reconstruction of the last layer. (3) Increasing the number of branches can further
improve the reconstruction quality whereas too many branches in the product quantizer also harm
the quality of our generation, e.g., 5.24 gFID for 4 branch quantizer. (4) The use of semantic loss
can facilitate the image quality for our tokenizer.

Visualization. We demonstrate qualitative visualization of the generative model trained with Im-
ageFolder as shown in Fig. 9. The classes of generated images are among the ImageNet (Deng et al.,
2009) dataset with a resolution of 256× 256.

5 CONCLUSION

Limitations. Though the effectiveness of ImageFolder has been verified with extensive experiments,
the tokenizer performance can be further improved with a more advanced training scheme which will
be our focus in the short future.

In this paper, we introduced ImageFolder, a novel semantic image tokenizer designed to balance the
trade-off between token length and reconstruction quality in autoregressive modeling. By folding
spatially aligned tokens, ImageFolder achieves a shorter token sequence while maintaining high
generation and reconstruction performance. Through our innovative use of product quantization
and the introduction of semantic regularization and quantizer dropout, we demonstrated significant
improvements in the representation of image tokens. Our extensive experiments have validated the
effectiveness of these approaches, shedding light on the relationship between token length and visual
generation quality. ImageFolder offers a promising direction for more efficient integration of visual
generation tasks to AR models/large language models.
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APPENDIX

A WHY DO WE NEED TOP-K-TOP-P SAMPLING?

𝑝(𝑥)
𝑝(𝑦)

𝑝(𝑥, 𝑦)

top-𝑘 top-𝑝

top
-𝑘
top
-𝑝

Figure 10: Top-k top-p sampling visual-
ization

Top-k and top-p sampling have proven to be effective
methods for controlling randomness and diversity in the
output of autoregressive (AR) models. In transformer-
based image generation, top-k sampling selects tokens
from the top k most likely candidates at each step,
truncating the probability distribution to avoid low-
probability tokens that could degrade image quality. Top-
p sampling, on the other hand, dynamically adjusts the
sampling pool by selecting tokens whose cumulative
probability exceeds a predefined threshold, ensuring a
balance between flexibility and diversity in the generation
process.

In our approach, we separately sample the semantic and
detail tokens using top-k and top-p sampling from the
same logit. Since this method assumes the independence
of the two token types, we aim to prevent situations where
one token is selected from a high-probability region while the other comes from a low-probability
region. Specifically, as illustrated in Fig. 10, top-k and top-p sampling allows us to select tokens
from regions where both semantic and detail tokens have high probabilities, ensuring consistent
image quality.

B EVALUATION METRICS AND DATASET DETAILS

Fréchet Inception Distance (FID) (Heusel et al., 2017). FID measures the distance between real
and generated images in the feature space of an ImageNet-1K pre-trained classifier (Szegedy et al.,
2016), indicating the similarity and fidelity of the generated images to real images.

Inception Score (IS) (Salimans et al., 2016). IS also measures the fidelity and diversity of generated
images. It consists of two parts: the first part measures whether each image belongs confidently to
a single class of an ImageNet-1K pre-trained image classifier (Szegedy et al., 2016) and the second
part measures how well the generated images capture diverse classes.

Precision and Recall (Kynkäänniemi et al., 2019). The real and generated images are first converted
to non-parametric representations of the manifolds using k-nearest neighbors, on which the Precision
and Recall can be computed. Precision is the probability that a randomly generated image from
estimated generated data manifolds falls within the support of the manifolds of estimated real data
distribution. Recall is the probability that a random real image falls within the support of generated
data manifolds. Thus, precision measures the general quality and fidelity of the generated images,
and recall measures the coverage and diversity of the generated images.

ImageNet dataset. The ImageNet dataset (Deng et al., 2009) is a large-scale visual database de-
signed for use in visual object recognition research. It contains over 14 million images, which are
organized into thousands of categories based on the WordNet hierarchy. Each image is annotated
with one or more object labels, making it a valuable resource for training and evaluating machine
learning models in various computer vision tasks, such as image classification, object detection,
and image generation. Its training set contains approximately 1.28 million images spanning 1,000
classes. Its validation set contains 50,000 images, with 50 images per class across the same 1,000
classes.

C VISUALIZATIONS

We provide additional visualizations as shown in Fig. 11 and Fig. 12.
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Figure 11: More visualization for demonstrating the effectiveness of quantizer dropout.

Ref. Image Ref. Token Gen. Image Ref. Image Ref. Token Gen. Image

Figure 12: More visualization for zero-shot conditional image generation. During generation sam-
pling, we teacher forcing all detail tokens to referenced detail tokens.

D TEACHER FORCING GUIDANCE FOR CONDITIONAL GENERATION

Classifier-free guidance has been proven to be effective in AR models (Chang et al., 2023) which
take the same form as diffusion models as

p(I|C, c, ct) ∝ p(c|I, C, ct)p(ct|I, C)p(C|I)p(I).
In ControlVAR, we model the joint distribution of the controls and images. Therefore, we leverage
a different extension of the probabilities as

p(c|I, C, ct) =
p(I, C|c, ct)p(c, ct)
p(I, C|ct)p(ct)

=
p(I, C|c, ct)p(c)

p(I, C|ct)
where p(I, C|c, ct) and p(I, C|c, ct) can be found from the output of ControlVAR. We follow pre-
vious works (Esser et al., 2021) to ignore the constant probabilities p(c). By rewriting all terms with
Baysian rule, we have

log p(I|C, c, ct) ∝ log p(I)

+ log p(I, C|c, ct)− log p(I, C|ct)
+ log p(I, C|ct)− log p(I, C)

+ log p(I, C)− log p(I).
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This corresponds to the image logits as

x∗ = x(↱∅|∅, ∅) + γcls(x(↱C|c, ct)− x(↱C|∅, ct))
+ γtyp(x(↱C|∅, ct)− x(↱C|∅, ∅))
+ γpix(x(↱C|∅, ∅)− x(↱∅|∅, ∅))

(6)

where γcls, γtyp, γpix are guidance scales for controlling the generation.

E ADDITIONAL EXPERIMENTS

Length Scales rFID gFID
265 1,1,2,3,3,4,5,6,8,10 1.86 3.98
286 1,1,2,3,3,4,5,6,8,11 1.57 3.53
309 1,1,2,3,3,4,5,6,8,12 1.22 3.51

Table 7: Ablation study on token length.

Token length. We demonstrate an additional ablation study on token length where the patch size of
the last scale increases from 10 to 12 leading to 265 to 309 token length for autoregressive modeling.
We notice that the rFID keeps decreasing when the token length increases while the gFID is saturated
for a token length near 286. Therefore, we utilize 286 token lengths in our final setting.

Codebook size 4096 8192 16384
rFID 0.80 0.70 0.67

Table 8: Ablation study on codebook size.

Token length. We conduct an ablation study on the codebook size of the ImageFolder tokenizer.
We noticed that a large codebook size of 16384 makes a great improvement to the rFID to 0.67
which is comparable to the continuous tokenizers.

Method Branch rFID gFID
Single detail branch 1 3.24 6.56
Single semantic branch 1 2.79 5.81
Two semantic branches 2 1.97 5.21
Two detail branches 2 2.06 5.96
One semantic, one detail 2 1.57 3.53

Table 9: Comparison of different methods with the corresponding branch, rFID, and gFID values.

Branch setting. We provide additional experiments complimentary to Table 3 to analyze the
branch settings. We notice that in the setting of two branches with one for semantic information
and one for detail information, the model achieves the best performance.

F PRODUCT QUANTIZED SPACE

Product quantization divides the original space into subspaces and then conducts quantization on
the subspaces. As shown in Fig. 13, we demonstrate two scenarios of product quantized space with
different data sample layouts.

As the product quantization leverages the cartesian product to connect the separately quantized
subspaces, it will ensure a symmetric property of the quantized space (symmetric indicates the
quantized tokens are symmetric to the axes, showing a grid pattern). In this way, if the original data
sample is strictly asymmetric, considering a two-subspace case (Fig. 13), it will require 2×#sample
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Worst case
(strictly asymmetric)

Best case
(strictly symmetric)

Data sampleCodewords

Figure 13: A visualization of a product quantized space with 2 subspaces.

codewords to perfectly encode all the samples. Differently, if the data samples are arranged in a
symmetric manner, the required number of codewords can be largely reduced.

In this way, a potential improvement direction is to find subspaces that have desired properties to
be quantized. In the ImageFolder framework, this can be achieved by leveraging contrastive loss to
guide the latent space in different branches.
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