
Condensing Multilingual Knowledge
with Lightweight Language-Specific Modules

Haoran Xu, Weiting Tan*, Shuyue Stella Li*, Yunmo Chen*,
Benjamin Van Durme, Philipp Koehn, Kenton Murray

Johns Hopkins University
{hxu64,wtan12,sli136,yunmo,phi,kenton}@jhu.edu

Abstract
Incorporating language-specific (LS) modules
or Mixture-of-Experts (MoE) are proven
methods to boost performance in multilingual
model performance, but the scalability of
these approaches to hundreds of languages
or experts tends to be hard to manage. We
present Language-specific Matrix Synthesis
(LMS), a novel method that addresses the
issue. LMS utilizes parameter-efficient and
lightweight modules, reducing the number
of parameters while outperforming existing
methods, e.g., +1.73 BLEU over Switch
Transformer on OPUS-100 multilingual
translation. Additionally, we introduce Fuse
Distillation (FD) to condense multilingual
knowledge from multiple LS modules
into a single shared module, improving
model inference and storage efficiency. Our
approach demonstrates superior scalability
and performance compared to state-of-the-art
methods.1

1 Introduction

Multilingual models confer the benefit of
facilitating cross-lingual learning; however, they
also grapple with the issue of language interference
(Conneau et al., 2020; Wang et al., 2020a;
Shaham et al., 2022). Recent studies aim to
alleviate negative language interference through
the introduction of language-specific (LS) modules
(Zhang et al., 2020; Fan et al., 2020; Zhang et al.,
2021; Fan et al., 2021; Pires et al., 2023). In this
setup, each language batch is processed through
its designated module rather than a shared module.
Although this approach is promising and barely
inflates the number of FLOPs like Mixture-of-
Experts (MoE) (Shazeer et al., 2017; Lepikhin
et al., 2021),2 the number of parameters becomes

* Equal contribution
1We release our code at: https://github.com/fe1ixxu/

LMS_FD.
2Each pass through the model utilizes only the

corresponding language-specific component. The additional

Figure 1: We show the BLEU gains between the LMS
method and the Switch Transformer as the model’s
parameters increase in our multilingual translation
ablation study. The LMS method notably outperforms
the Switch Transformer with similar extra LS (expert)
parameter counts, achieving comparable performance
even with four to five times fewer parameters.

difficult to manage and sometimes impractical
when working with a large variety of languages.
This is because the fundamental element forming
LS or MoE modules is typically the full-rank
weight matrix derived from a densely connected
layer, which causes a rapid increase in the number
of parameters with a large number of languages or
experts.3

In this paper, we first scrutinize the parameter
efficiency of language-specific modules from
the perspective of using fewer parameters.
Consequently, a necessary question arises (RQ1):
can we approximate the original dense weight
matrix using substantially fewer parameters? To
answer this question, we propose novel and
parameter-efficient method, Language-Specific

computational cost may only come from communication
among devices (such as ALLToALL) or gate routing.

3Although MoE employs a routing mechanism to keep the
number of experts smaller than the number of languages, the
parameter cost remains substantial.

https://github.com/fe1ixxu/LMS_FD
https://github.com/fe1ixxu/LMS_FD


Matrix Synthesis (LMS), which can achieve
similar performance to switch transformer even
with three to four times smaller LS parameters (as
shown in Figure 1).

Then, we further investigate parameter efficiency
from the perspective of knowledge density in each
LS module. Given recent discoveries that the
performance improvement of sparsely activated
models diminishes with an increase in the number
of experts (Hoffmann et al., 2022; Gao et al., 2022;
Xu et al., 2023), we hypothesize that knowledge
in these experts (or LS modules) is over-estimated.
Hence, we propose another question (RQ2): Could
a single shared module encapsulate the same level
of knowledge as language-specific modules? In
addressing this question, we introduce the Fuse
Distillation (FD) method to examine the feasibility
of condensing the multilingual knowledge into a
single module.

Our main contributions are summarized as
follows:

• We propose the parameter-efficient and
lightweight LMS method, which substantially
outperforms previous LS methods or MoE with
fewer than or the same number of parameters,
e.g., +1.73 BLEU over Switch Transformer on
OPUS-100 multilingual translation.

• We introduce FD to condense multilingual
knowledge from LS modules into a shared
module. FD is able to use only 2M more
parameters (1% increase) to achieve the 65%
of performance gains from Switch Transformer
which use 760M more parameters (314%
increase) during inference.

• LMS and FD show strong generalization
performance among multiple tasks, including
multilingual machine translation (MMT)
(Zhang et al., 2020), multilingual named-entity
recognition (MNER) (Pan et al., 2017), and
multilingual question answering (MQA) (Artetxe
et al., 2020).

2 Lightweight LS Modules

In this section, we address RQ1 by constructing LS
modules with significantly fewer parameters.

2.1 Language-Specific Matrix Synthesis

Language-specific modules are typically composed
of linear projections, whose weights are full-
rank matrices in previous studies. We propose

the Language-specific Matrix Synthesis (LMS)
method to form low-rank matrices to approximate
the full-rank ones. This is inspired by the concept
of “intrinsic dimension” in pre-trained language
models (Aghajanyan et al., 2021; Hu et al., 2021)
and “intrinsic rank” in trainable matrices, leading
to the idea that features are learned in a subspace.
Specifically, as shown in Figure 2, our LS matrix is
derived from the multiplication of an LS ‘vertical’
matrix with an LS ‘flat’ matrix. Formally speaking,
let W ∈ Rr×c be a weight matrix in the model
and we want to build parallel LS matrices which
have the same size. Hence, for each language
li, i ∈ {1, 2, · · · , L} with L being the number
of languages, there exists an LS vertical matrix
W li

v ∈ Rr×d and an LS flat matrix W li
f ∈ Rd×c

(d ≪ min(r, c)) that we use to approximate the
full-rank matrix. Here, we propose two synthesis
methods: language-wise and pair-wise synthesis.

Figure 2: The difference between pair- and language-
wise synthesis. Language-wise synthesis constructs a
low-rank matrix using both the vertical and flat matrices
derived from the same language. Conversely, pair-
wise synthesis formulates the matrix by combining the
vertical matrix from the source language with the flat
matrix from the target language.

Language-Wise Synthesis Most multilingual
tasks, such as conventional multilingual question-
answering, are characterized by a language-
monolithic nature: a single example only pertains
to a single language, and examples from different



languages build the multilingual data. Under
such circumstances, a naive way to assemble a
language-specific matrix for a given language, li, is
straightforwardly using its corresponding vertical
and flat matrices, such that W li = W li

v W
li
f .

Pair-Wise Synthesis Cross-lingual tasks like
MMT can also be accomplished using language-
wise synthesis, wherein the encoder uses the source
language matrix and the decoder uses the target
language matrix. However, we posit that this is not
the optimal strategy for MMT tasks due to the lack
of learning bilingual information. Motivated by
this, we introduce a pair-wise synthesis method to
accommodate the bilingual context in each example
in MMT. In this strategy, the language-specific
matrix is a composition of the vertical matrix from
the source language li and the flat matrix from
the target language lj : W li→lj = W li

v W
lj
f . The

difference between the language-wise and pairwise
synthesis approaches is depicted in Figure 2. In
Section 5, we will demonstrate that the pair-wise
synthesis approach is more effective.

After deriving a language-specific matrix, we
incorporate it into the original full-rank matrix, as
opposed to performing an isolated forward pass of
the model like MoE and conventional LS methods.
This approach stems from our hypothesis that
the employment of low-rank matrices alone may
not sufficiently facilitate the learning of features.
Therefore, given an input xi associated with a
source language li and a target language lj (li and
lj are the same for language-monolithic tasks), our
modified forward pass yields the output xo:

xo = (W +W li→lj )xi = (W +W li
v W

lj
f )xi. (1)

2.2 Where to Implement?
We primarily focus on incorporating language-
specific matrices generated using the LMS method
into the linear projection of each feedforward
network (FFN) layer in every transformer layer.
Recall from earlier that r and c are the number
of rows and columns in the matrix, and L is the
number of languages. Thus, the total number
of language-specific parameters added is given
by 2L · N · d · (c + r), where N represents
the number of layers. We also conduct an
ablation study to examine the performance when
implementing LMS in attention layers in Section 6.
For initialization, we employ a random Gaussian
distribution for vertical matrices and zeros for flat
matrices suggested by Hu et al. (2021).

3 Can We Fuse Multilingual Knowledge
in A Single Module?

In this section, we introduce Fuse Distillation
(FD) and use a preliminary experiment to answer
RQ2: whether we can condense the multilingual
knowledge from language-specific modules into a
single module.

3.1 Fuse Distillation
Let us first consider a language- (or task-) level
MoE (Kudugunta et al., 2021), where we replace
a single FFN layer with L FFN modules. L is
the number of languages, as defined previously.
The slight difference from the original design
is we discard the routing gate and make each
expert language-specific, i.e., an expert only serves
batches in its corresponding language. Given
recent findings that model improvements diminish
with an increasing number of experts (Hoffmann
et al., 2022; Gao et al., 2022; Xu et al., 2023), we
hypothesize that information contained in experts is
sparse and can be condensed into a shared module.
To fuse knowledge from L FFN layers to the shared
one, we propose the following training scheme and
name this method Fuse Distillation:

We first add an additional shared FFN parallel
to an existing model with L FFN layers as shown
in Figure 3. During training, each batch undergoes
two forward passes and one backward pass. In the
first forward pass, the batch is processed through its
language-specific FFN module; in the second pass,
the batch is routed through the shared FFN. To fuse
the language-specific knowledge contained within
the L FFN modules into the shared FFN module, a
distillation loss between the outputs from the two
forward passes is also incorporated:

Lfd = KL(g(pl) ∥ ps). (2)

where pl denotes the probability output for the LS
pass, and ps represents the shared pass output. The
function g(·) signifies that gradients will not be
traced back, so only the shared module learns from
LS modules but LS ones do not learn from this loss.
The backward pass also involves optimizing the
model by minimizing the Cross-Entropy loss (CE)
between the target and predicted values (the regular
training loss). Thus, the total loss is:

L =
1

2
(CE(y ∥ pl) +CE(y ∥ ps)) + Lfd, (3)

where y denotes gold labels.



Then, during the inference stage, we discard
the LS modules. The model only forward passes
the shared FFN for inference. To evaluate whether
the shared FFN has effectively learned all LS
information, we conduct a comparison between its
results and those obtained via the routing through
LS modules instead.

3.2 Preliminary Experiments

Our preliminary experiments are conducted under
three settings:
(1) Naive MMT: A basic multilingual translation
model is trained without any modifications.
(2) FD: This setting utilizes our proposed fuse
distillation method.
(3) FD-LS: We train the model with the FD
method, but during the inference stage, the input
is processed through its language-specific FFN
module instead of the shared module as the original
language-level MoE did.

We carry out our experiments using the IWSLT
benchmarks, focusing on the many-to-many
translation model paradigm. Following Lin et al.
(2021); Xu et al. (2022), we collect 8 English-
centric language pairs from the IWSLT’14 dataset,
with sizes ranging from 89K to 169K sentences.
We train all methods with the same number of steps
and leave detailed training settings in Appendix
A. We report sacreBLEU scores (Papineni et al.,
2002; Post, 2018) with the FLORES-200 tokenizer
(NLLB Team et al., 2022).

3.3 Results and Analysis

Overview results of these 4 settings are shown in
Table 1. The reported scores are the average of both
xx→en and en→xx directions. As anticipated, after
applying language-specific modules for each FFN
layer, FD-LS has considerable enhancements over
the naive MMT (+1.50 BLEU gains). Importantly,
after discarding LS modules, FD only performs
slightly worse than FD-LS (+1.17 vs. +1.50) with
much fewer parameters for inference (48M vs.
149M). This observation underscores the feasibility
of condensing multilingual knowledge into a single
FFN module, thereby reducing the need of a large
number of LS parameters for inference.

4 Combining LMS and FD

We have shown the success of multilingual
information condensation by fuse distillation. We
are interested in further reducing the parameters

Figure 3: We utilize a language-level MoE architecture
to verify the feasibility of fusing multilingual knowledge
from all language-specific modules into a single shared
module. During training, each batch goes through the
LS module in the first forward pass and goes through
the shared module in the second pass. Then, we
conduct distillation between two outputs to condense the
knowledge into the shared module. For inference, we
discard the LS module and only use the shared module.

needed by utilizing the language-specific matrix
synthesis method during inference, so we then
attempt to incorporate the FD method within
LMS. Similar to Section 3.1, apart from the LS
vertical and flat matrices, we introduce shared
vertical and flat matrices, denoted as W shared

v

and W shared
f , respectively. To employ the fuse

distillation method, each batch is required to
undergo two forward passes. The initial pass
navigates through the LS matrix W + W li

v W
lj
f ,

while the subsequent pass traverses the shared
matrix W + W shared

v W shared
f . These two passes

generate two respective outputs, pl and ps. Given
the common parameter W shared across both paths,
we utilize symmetric KL divergence (Jiang et al.,
2020) for distillation, as opposed to the traditional
KL divergence:

L′
fd =

1

2
(KL(pl ∥ ps) +KL(ps ∥ pl)). (4)

Thus, the backward pass optimizes both the
standard prediction loss and the fuse distillation



Methods ar de es fa he it nl pl avg.
#params

Training Inference
Naive MMT 25.03 32.59 39.98 18.76 33.39 34.00 36.71 22.37 30.35 48M 48M
FD +1.01 +1.15 +1.43 +0.64 +1.44 +1.19 +1.22 +1.22 +1.17 161M 48M
FD-LS +1.30 +1.45 +1.72 +0.77 +2.08 +1.48 +1.41 +1.73 +1.50 161M 149M

Table 1: Average BLEU on IWSLT’14 many-to-many translation. Our proposed FD is able to fuse the majority of
knowledge into a single module (+1.17 vs. +1.50) with the same parameters as the naive model during inference.

Figure 4: Suppose we incorporate additional language-specific (LS) linear projections into a layer. We compare the
space complexity of the extra LS parameters (or experts) needed across all methods for both training and inference
phases. Let’s denote L = 15 as the number of languages, r = 4096 as the output dimension, c = 1024 as the input
dimension, E = 8 represents the number of experts for Mixture-of-Experts (MoE), and d = 32 signifies the rank
for low-rank matrices. The number adjacent to the dashed line is the number of parameters calculated based on the
given sample numbers. In this case, one can observe that the Language-Specific Matrix Synthesis (LMS) requires a
significantly lower quantity of LS parameters compared to other methods during training, and fuse distillation (FD)
demands a substantially reduced number of additional parameters during the inference stage.

loss.
In Figure 4, we provide a comprehensive

comparison of space complexity for generating
extra LS (or expert) modules, among conventional
LS modules, Mixture-of-Experts, and our proposed
methods. Notably, our methods demonstrate
substantial reductions in parameter usage during
both training and inference.

5 Experiments

We evaluate our LMS and LMS+FD methods
using three tasks: MMT, MNER, and MQA.
Similar to Section 3.2, we have two routing
options for the LMS+FD method during inference
time: 1) evaluating the model by passing the
shared route (denoted as LMS+FD-Share, the
default setting), or 2) passing the language-specific
module (denoted as LMS+FD-LS). We present
results for both routes to show the performance
difference between using the condensed module
and the original LS modules. Considering the
computational cost for MMT, we run all methods
once with the same random seed. For the other
two tasks, we run experiments with 3 different
random seeds and report the average scores. For
ease of implementation, we build homogeneous

batches (i.e., a batch only containing sentences in
one language or one language direction) and only
activate the corresponding LS module.4

5.1 Baselines

We compare our approaches against two strong
baselines that incorporate additional parameters to
mitigate language interference.

CLSR: The first baseline is Conditional
Language-Specific Routing (CLSR) (Zhang et al.,
2021), which employs LS linear projections
following FFN or attention layer. Following their
best settings, we set the budget p = 0.3 for LS
routing. The original setting used shared LS
projections across all encoder or decoder sublayers.
We also consider a non-shared version, where each
sublayer has its own LS projection, and denote it
as CLSR*.

Switch Transformer: We also consider Switch
Transformer (Fedus et al., 2021) as the second
strong baseline, which uses similar FLOPs as our
methods.5 We use 16 experts for every two layers

4This does not apply to Switch Transformer.
5The design of the Switch Transformer, which employs

top-1 routing, bears similarity to our model in that it processes



Methods ar de es fa he it nl pl avg.
#params

Training Inference
Naive MMT 25.03 32.59 39.98 18.76 33.39 34.00 36.71 22.37 30.35 48M 48M
Switch Transformer +0.28 +0.40 +0.45 +0.04 +0.60 +0.59 +0.34 +0.67 +0.42 149M 149M
CLSR +0.00 +0.48 +0.51 -0.23 +0.31 +0.50 +0.42 +0.30 +0.28 53M 53M
CLSR* +0.66 +0.87 +1.16 +0.53 +0.99 +1.00 +0.87 +0.94 +0.88 105M 105M
LMS, lang-wise +0.48 +0.53 +0.88 +0.83 +0.86 +0.91 +0.81 +0.91 +0.78 58M 58M
LMS +0.87 +1.08 +1.04 +0.62 +1.37 +1.20 +1.04 +1.16 +1.05 58M 58M
LMS+FD-Share +0.82 +0.93 +1.06 +0.34 +1.23 +0.92 +0.87 +0.83 +0.88 60M 49M
LMS+FD-LS +1.23 +1.34 +1.44 +0.77 +1.51 +1.36 +1.24 +1.15 +1.26 60M 58M

Table 2: Overall BLEU results of on IWSLT’14 many-to-many translation. LMS outperforms all baselines. At
inference, LMS+FD-Share utilizes extra 1M parameters to exceed baselines that enlarge the model size 2 or 3 times.

Methods
en→xx xx→en #params

high med low all WR (%) high med low all WR (%) Training Inference
Naive MMT 23.89 31.17 29.76 27.37 - 29.40 31.85 31.49 30.60 - 242M 242M
Switch Transformer +1.87 +3.29 +3.51 +2.66 100 +1.18 +1.15 -0.31 +0.84 83 1002M 1002M
CLSR +0.02 +0.00 +0.01 +0.02 52 +1.33 +2.00 +2.71 +1.83 91 443M 443M
LMS, lang-wise, d = 64 +2.12 +2.28 +1.77 +2.09 95 +1.85 +2.34 +2.30 +2.09 94 989M 989M
LMS, d = 64 +3.60 +3.82 +3.32 +3.60 99 +2.75 +3.74 +4.16 +3.35 95 989M 989M
LMS+FD-Share, d = 64 +0.49 +0.75 +1.29 +0.74 88 +0.64 +1.52 +2.08 +1.22 98 996M 250M
LMS+FD-LS, d = 64 +1.72 +2.03 +2.60 +2.01 100 +1.64 +2.82 +4.03 +2.52 99 996M 996M
LMS, d = 16 +2.45 +2.62 +2.56 +2.53 99 +1.75 +2.68 +3.40 +2.39 96 429M 429M
LMS+FD-Share, d = 16 +0.54 +1.13 +2.20 +1.09 94 +0.81 +1.26 +1.85 +1.17 94 431M 244M
LMS+FD-LS, d = 16 +1.28 +1.84 +2.74 +1.77 100 +1.35 +2.25 +3.53 +2.10 100 431M 431M
LMS, d = 4 +1.72 +2.05 +2.31 +1.95 99 +1.33 +1.80 +1.71 +1.55 93 289M 289M

Table 3: BLEU scores on OPUS-100 many-to-many translation. LMS with d = 64 outperforms all baselines on
average. LMS+FD-Share with d = 16 uses 1% more parameters, and achieves 65% BLEU gains averaged by all
directions, compared to the Switch Transformer which uses 314% more parameters.

with a gate balance loss with a weight of 0.01.

5.2 Multilingual Machine Translation

Data and Training settings We concentrate
on the many-to-many translation setting, with
results reported from two benchmarks. The
first is the English-centric IWSLT’14 dataset, as
aforementioned in Section 3.2. Additionally, we
examine the OPUS-100 dataset (Zhang et al.,
2020), which encompasses 100 languages in total,
including 94 development/test language pairs. We
preprocess the data by sentencepiece (Kudo and
Richardson, 2018), establishing a vocabulary size
of 32K for the IWSLT’14 dataset and 64K for the
OPUS-100 dataset. We utilize transformersmall
and transformerbig for IWSLT’14 and OPUS-100,
respectively. We fix the training steps for all
methods for a fair comparison. For IWSLT’14,
we use d = 32 as the rank for low-rank matrices.
For OPUS-100, we consider three settings: (i)
d = 64 to match the parameter size of the
Switch Transformer, (ii) d = 16 to match the
parameter size of CLSR, and (iii) d = 4 for very

through a single module in each expert layer.

lightweight LS model construction. The default
LMS setting for MMT tasks is pair-wise unless
otherwise specified. We discuss more training
details in Appendix A.

Evaluation We report results in terms of
sacreBLEU (Post, 2018), tokenized by FLORES-
200 tokenizer (NLLB Team et al., 2022), and
win ratio (WR) (Zhang et al., 2020) which is the
proportion of language pairs on which our method
beats the baseline. For IWSLT’14, we report the
scores averaged by xx→en and en→xx directions.
For OPUS-100, we split the 94 test language pairs
into three groups based on their training data size
suggested by Zhang et al. (2020): high-resource
(> 0.9M, 45 languages), low-resource (< 0.1M,
21 languages) and medium-resource (others, 28
languages), and report the averaged scores in each
category. We use beam search with a width of 5
and use a length penalty of 1.

LMS performance: Light and Effective LS
Module The primary results for IWSLT’14 and
OPUS-100 are presented in Table 2 and Table
3, respectively. In the IWSLT’14 dataset, LMS



significantly surpasses both the Switch Transformer
and CLSR, despite having considerably fewer
parameters. For OPUS-100, our methods and
the baselines are evaluated with approximately
equal extra parameters (e.g., 1002M in the Switch
Transformer and 989M in LMS with d = 64).
Compared with the gains from Switch transformer
(+2.66 for en→xx and +0.84 for xx→en), our pair-
wise LMS method achieves substantially higher
gains (+3.60 and +3.35). Similarly, our LMS
method also outperforms CLSR (+0.02 and +1.83)
with a comparable number of extra parameters.
These results show the strong parameter efficiency
of LMS for the MMT tasks. With merely 47M
parameters (d = 4), our LMS method matches the
Switch Transformer’s performance for en→xx and
the CLSR’s performance for xx→en.

Language-Wise or Pair-Wise? We compare
language- and pair-wise synthesis in both
IWSLT’14 and OPUS-100 (d = 64) datasets. On
average, pair-wise synthesis outperforms language-
wise synthesis by 0.27 BLEU points on IWSLT’14
(+1.05 vs. +0.78). Moreover, the pair-wise
method (+3.60 and +3.35) also shows superior
performance on the OPUS-100 dataset compared
with the language-wise one (+2.09 and + 2.09).
Notably, pair-wise synthesis with d = 16 surpassed
the performance of language-wise synthesis with
d = 64, even though the latter has 4 times more
extra parameters. Hence, this discovery strongly
advocates for the use of pair-wise synthesis over
the language-wise approach.

FD performance: Can FD Fuse 95 Languages?
On the IWSLT’14 8-language MMT dataset,
we observe negligible differences between LMS
and LMS+FD (+1.05 vs. +0.88), suggesting
successful condensation of information from
various language-specific modules into the shared
module. In the 95-language (94 languages plus
English) scenario of OPUS-100, FD with a
dimensionality of 16 utilizes only an additional
2M parameters (less than 1% increase compared
to the 242M naive model) to attain 65% of
the performance improvements from Switch
Transformer (+1.13 vs. +1.75 on average),
which requires 760M additional parameters (a
314% increase). While FD may not condense
all multilingual information due to restricted
parameter capacity, its parameter efficiency is
commendable.

Methods
Sampled Language

avg. WR (%)
#params

qu vi Tra. Inf.
Naive MNER 76.79 92.60 89.20 - 270M 270M
LMS +3.61 +0.28 +0.55 96 340M 340M
LMS+FD-Share +3.22 +0.45 +0.33 88 343M 273M
LMS+FD-LS +3.96 +0.57 +0.67 100 343M 340M

Table 4: The overall MNER results (F1 score) between
baseline and our three proposed methods.

5.3 Multilingual Named-Entity Recognition

Data and Settings We evaluate our methods on
Wikiann Named-Entity Recognition (Pan et al.,
2017) dataset. We randomly select 24 languages
to conduct experiments. The model architecture
is based on pre-trained XLM-Rbase, attached with
a feed-forward token-level classifier. We set the
dropout rate as 0.1 and run 20 epochs for all
methods. We set d = 32 for low-rank matrices
and report F1 scores.

Results The overall results are shown in Table
4. When applying LMS to each FFN layer
for 24 languages, the model size increases by
only 70M, while yielding a 0.55 F1 improvement.
After implementing LMS+FD, the performance
improves by 0.67 with the LS route and achieves
a 0.33 gain with the shared route, which requires
only an additional 3M parameters. Full results are
shown in Appendix B.

5.4 Multilingual Question Answering

Data and Settings We pick 6 languages
from TyDiQA (Typologically Diverse Question
Answering)-Gold Passage to conduct the MQA
experiments (Artetxe et al., 2020). Following
Xu and Murray (2022), the representations of
subwords in XLM-Rbase are input to a span
classification head; a linear layer computing the
answer’s start and end. We set d = 32 for low-rank
matrices, dropout rate = 0.1, and run 20 epochs.

Results The overall results are shown in Table
5. Upon the application of LMS and LMS+FD,
all methods exhibit improved performance with a
slight increase in parameters. Notably, LMS+FD-
Share outperforms LMS+FD-LS. This suggests
that FD may be more effective in fusing knowledge
when the number of languages is relatively small.
Full results are shown in Appendix C.



Methods
Sampled Language

avg. WR (%)
#params

bn sw Tra. Inf.
Naive MQA 77.69 80.97 75.31 - 270M 270M
LMS -0.59 +0.93 +0.58 50 287M 287M
LMS+FD-Share +1.39 +0.32 +1.22 100 290M 273M
LMS+FD-LS +1.26 +0.38 +1.15 100 290M 287M

Table 5: The overall MQA results (F1 score) between
baseline and our three proposed methods.

6 Ablation Study

6.1 Is LMS Parameter-Efficient?
Here, we examine the parameter efficiency of the
LMS method, i.e., whether an increase in extra
parameters yields a proportional enhancement in
model performance. We conduct experiments with
d ranging from 4 to 60 in increments of 8 to
observe the resulting performance variations. For
comparison, we examine the Switch Transformer
with 4, 8, 12, 16 experts to assess its parameter
efficiency. We focus on the MMT task using the
OPUS-100 dataset. Due to computational demands,
we limit experiments to randomly selected 15
languages from OPUS-100, designated as OPUS-
15. We leave training details in Appendix D.

We report the average BLEU gains over all
translation directions in Figure 1. The plot
reveals that the LMS curve is steeper compared
to that of the Switch Transformer, indicating a
higher parameter efficiency for our method, i.e.,
it achieves greater model performance with fewer
additional parameters. Compared with a 16-expert
Switch Transformer, LMS with d = 52 yields
similar performance by using 3.7 times smaller
parameters (51M vs. 189M). Numeric results are
in Appendix E.

6.2 Applying LMS to The Attention Layer
In our default design, the LMS is solely applied
to FFN layers. We are interested in assessing the
potential benefits of extending LMS to the attention
layer (in each K, Q, V, output projection). We
consider three model variants: (1) LMS applied
only to FFN layers (default design), (2) LMS
applied only to the attention layers, and (3) LMS
applied to both FFN and attention layers. We
conduct experiments on OPUS-15, with a fixed
rank value of d = 20.

We show the averaged BLEU of all translation
directions of the three designs in Table 6. LMS
applied only to attention layers yields inferior
performance compared to LMS applied only
to FFN layers with a similar number of extra

Methods avg. BLEU WR (%) #params

Naive MMT 28.05 - 61M
LMS, ffn only (default) +2.10 100 80M
LMS, att only +1.32 100 77M
LMS, att+ffn +2.14 100 96M

Table 6: The average BLEU gains with three different
LMS designs with a fixed rank d = 20.

parameters. Moreover, applying LMS to both
FFN and attention layers results in a marginal
improvement over its application solely to FFN
layers. This outcome suggests that LS information
is primarily situated in FFN layers, aligning with
the previous findings of Wang et al. (2020b).

7 Related Work

Language-Specific Modules To mitigate
language interference, previous studies incorporate
language-specific modules into models, such
as additional language-aware linear projections
(Zhang et al., 2020; Fan et al., 2020; Zhang et al.,
2021; Fan et al., 2021), LS layer normalization
(Zhang et al., 2020). Feed-Forward Networks
(Kwon and Chung, 2023), or even entire language-
dependent transformer layers (Escolano et al.,
2021; Wang and Zhang, 2022; Pires et al., 2023).
Similar to LS modules, Mixture-of-Experts (MoE)
are also able to reduce language interference
(Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
et al., 2021; Xu et al., 2023). However, the
parameter count of LS (or expert) drastically
increases when scaling to numerous languages.
Zhang et al. (2021) address this issue by sharing all
LS modules across all encoder or decoder layers.
However, this does not fundamentally resolve the
problem, given that the complexity of constructing
LS modules remains unaltered and that different
layers may need to learn varying types of LS
information.

Lightweight Modules Our proposed techniques
draw inspiration from another research line,
lightweight fine-tuning, wherein the model
undergoes fine-tuning on a parameter subset
significantly smaller than that of the original model,
such as prefix tuning (Li and Liang, 2021), prompt
tuning (Lester et al., 2021), multitask prompt
tuning (Wang et al., 2023), LoRA (Hu et al.,
2021). In the multilingual machine translation
setting, previous studies use language-pair adapters
(Bapna and Firat, 2019) to fine-tune a specific



direction. This approach also extends to language-
wise adapters (Philip et al., 2020), language-
family adapters (Chronopoulou et al., 2023), hyper-
adapters (Baziotis et al., 2022) to facilitate the
cross-lingual learning. In light of the efficient
lightweight modules, we propose LMS to help LS
modules scale to hundreds of languages.

8 Conclusion

The construction of language-specific modules
(or experts) using full-rank matrices tends
to be parameter-intensive and inefficient,
especially as the number of languages (or experts)
increases. To address this, we have introduced
the Language-Specific Matrix Synthesis (LMS)
method that approximates the original full-rank
matrix. Notably, pair-wise synthesis, a variant
of the LMS methods, exhibits commendable
performance in MMT tasks. Further, we have
proposed the Fuse Distillation (FD) approach to
condense multilingual information into a shared
module, thereby further diminishing parameter
requirements during inference. Our methods
outperform CLSR and Switch Transformer
in MMT tasks and also demonstrate their
effectiveness in MNER and MQA tasks.

Limitations

One limitation of our LMS method is that it
necessitates the construction of homogeneous
batches, i.e., batches containing sentences
exclusively in one language or language direction.
However, this limitation could potentially
be addressed by implementing ALLToALL
communications amongst devices, a strategy
that is already widely employed in Mixture of
Experts (MoE) models (Lepikhin et al., 2021),
which is a topic we intend to explore in future
research. In each forward pass of an FFN layer,
we need an additional step to multiply two small
matrices, creating the low-rank large matrix. The
additional cost of this operation is negligible, as
the computational complexity of the FLOPs/tok
for a Feedforward linear projection, given an input
dimension c and output dimension r, is O(r · c),
while the complexity for constructing the low-rank
matrix with rank d is O(d · (r + c)). For example,
in our ablation study, when r = 2048, c = 512,
and d = 20, the difference in computational
load can be 2048×512

20×(512+2048) ≈ 20 times less. In
terms of actual training time, no significant

differences were observed; the discrepancy was
less than 1 second per 100 updates. Additionally,
a potentially effective strategy to enhance
multilingual information encapsulation in FD
could involve using a larger shared module relative
to other lightweight LS modules. This could be an
intriguing avenue for future research.

Acknowledgements

We thank anonymous reviewers for their insightful
feedback. We also extend our gratitude to
Lingfeng Shen, Hieu Hoang, Young Jin Kim,
Hany Hassan Awadalla, Stephen Rawls, and
Amr Sharaf for their valuable suggestions. This
work was supported in part by IARPA BETTER
(#2019-19051600005). The views and conclusions
contained in this work are those of the authors
and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, or endorsements of ODNI, IARPA,
or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any
copyright annotation therein. This work is also
supported in part by an Amazon Initiative for
Artificial Intelligence (AI2AI) Faculty Research
Award.

References
Armen Aghajanyan, Sonal Gupta, and Luke

Zettlemoyer. 2021. Intrinsic dimensionality
explains the effectiveness of language model fine-
tuning. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 7319–7328.

Roee Aharoni, Melvin Johnson, and Orhan Firat.
2019. Massively multilingual neural machine
translation. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3874–3884, Minneapolis, Minnesota.
Association for Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the Cross-lingual Transferability of
Monolingual Representations. In Proceedings of
ACL 2020.

Ankur Bapna and Orhan Firat. 2019. Simple, scalable
adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165


International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1538–1548,
Hong Kong, China. Association for Computational
Linguistics.

Christos Baziotis, Mikel Artetxe, James Cross, and
Shruti Bhosale. 2022. Multilingual machine
translation with hyper-adapters. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1170–1185,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alexandra Chronopoulou, Dario Stojanovski, and
Alexander Fraser. 2023. Language-family adapters
for low-resource multilingual neural machine
translation. In Proceedings of the The Sixth
Workshop on Technologies for Machine Translation
of Low-Resource Languages (LoResMT 2023),
pages 59–72, Dubrovnik, Croatia. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation learning at
scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8440–8451, Online. Association for Computational
Linguistics.

Carlos Escolano, Marta R. Costa-jussà, José A. R.
Fonollosa, and Mikel Artetxe. 2021. Multilingual
machine translation: Closing the gap between
shared and language-specific encoder-decoders. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational
Linguistics: Main Volume, pages 944–948, Online.
Association for Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2020. Beyond english-centric
multilingual machine translation. arXiv preprint
arXiv:2010.11125.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric
multilingual machine translation. The Journal of
Machine Learning Research, 22(1):4839–4886.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-Yi
Lu, and Ji-Rong Wen. 2022. Parameter-efficient
mixture-of-experts architecture for pre-trained
language models. arXiv preprint arXiv:2203.01104.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. An empirical
analysis of compute-optimal large language model
training. In Advances in Neural Information
Processing Systems.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2177–2190, Online. Association
for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. 2021. Beyond distillation:
Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3577–3599.

Yoohwan Kwon and Soo-Whan Chung. 2023. Mole:
Mixture of language experts for multi-lingual
automatic speech recognition. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong
Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng
Chen. 2021. {GS}hard: Scaling giant models
with conditional computation and automatic
sharding. In International Conference on Learning
Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on

https://aclanthology.org/2022.emnlp-main.77
https://aclanthology.org/2022.emnlp-main.77
https://aclanthology.org/2023.loresmt-1.5
https://aclanthology.org/2023.loresmt-1.5
https://aclanthology.org/2023.loresmt-1.5
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online. Association for
Computational Linguistics.

Zehui Lin, Liwei Wu, Mingxuan Wang, and Lei Li.
2021. Learning language specific sub-network for
multilingual machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 293–305, Online.
Association for Computational Linguistics.

Marta R NLLB Team, Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin
Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, et al. 2022. No language left behind:
Scaling human-centered machine translation. arXiv
preprint arXiv:2207.04672.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1946–1958, Vancouver, Canada.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Jerin Philip, Alexandre Berard, Matthias Gallé, and
Laurent Besacier. 2020. Monolingual adapters for
zero-shot neural machine translation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 4465–
4470.

Telmo Pessoa Pires, Robin M Schmidt, Yi-Hsiu Liao,
and Stephan Peitz. 2023. Learning language-specific
layers for multilingual machine translation. arXiv
preprint arXiv:2305.02665.

Matt Post. 2018. A call for clarity in reporting bleu
scores. WMT 2018, page 186.

Uri Shaham, Maha Elbayad, Vedanuj Goswami, Omer
Levy, and Shruti Bhosale. 2022. Causes and cures
for interference in multilingual translation. arXiv
preprint arXiv:2212.07530.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. 2017. Outrageously large neural
networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning
Representations.

Qian Wang and Jiajun Zhang. 2022. Parameter
differentiation based multilingual neural machine
translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, 10, pages 11440–11448.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogerio Feris, Huan Sun, and Yoon Kim. 2023.
Multitask prompt tuning enables parameter-efficient
transfer learning. In The Eleventh International
Conference on Learning Representations.

Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov.
2020a. On negative interference in multilingual
models: Findings and a meta-learning treatment.
In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4438–4450, Online. Association for
Computational Linguistics.

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov.
2020b. On negative interference in multilingual
models: Findings and a meta-learning treatment. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4438–4450.

Haoran Xu, Maha Elbayad, Kenton Murray, Jean
Maillard, and Vedanuj Goswami. 2023. Towards
being parameter-efficient: A stratified sparsely
activated transformer with dynamic capacity. arXiv
preprint arXiv:2305.02176.

Haoran Xu, Philipp Koehn, and Kenton Murray. 2022.
The importance of being parameters: An intra-
distillation method for serious gains. In Proceedings
of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 170–183,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Haoran Xu and Kenton Murray. 2022. Por qué não
utiliser alla språk? mixed training with gradient
optimization in few-shot cross-lingual transfer. In
Findings of the Association for Computational
Linguistics: NAACL 2022, pages 2043–2059,
Seattle, United States. Association for Computational
Linguistics.

Biao Zhang, Ankur Bapna, Rico Sennrich, and
Orhan Firat. 2021. Share or not? learning to
schedule language-specific capacity for multilingual
translation. In International Conference on Learning
Representations.

Biao Zhang, Philip Williams, Ivan Titov, and Rico
Sennrich. 2020. Improving massively multilingual
neural machine translation and zero-shot translation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1628–1639, Online. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://aclanthology.org/2022.emnlp-main.13
https://aclanthology.org/2022.emnlp-main.13
https://doi.org/10.18653/v1/2022.findings-naacl.157
https://doi.org/10.18653/v1/2022.findings-naacl.157
https://doi.org/10.18653/v1/2022.findings-naacl.157
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148


A Training Details for IWSLT’14 and
OPUS-100

To balance the training data, we also over-sample
low-resource languages with a temperature of
T = 5 (Aharoni et al., 2019) for the OPUS-100
data and T = 2 for the IWSLT’14 data. We
preprocess the data by sentencepiece (Kudo and
Richardson, 2018), establishing a vocabulary size
of 32K for the IWSLT’14 dataset and 64K for
the OPUS-100 dataset. We pre-pend a special
language id symbol at the beginning of the source
sentence to indicate the target language. We
build homogeneous batches (i.e., a batch only
containing sentences in one language direction) and
only activate the corresponding language-specific
matrix. We set the dropout rate as 0.1 for both
datasets. For the IWSLT’14 dataset, we fix the
training steps at 150K with 8K warm-up steps
for all methods, with a batch size of 4096 tokens.
For OPUS, we fix the training steps at 100K with
8K warm-up steps for all methods, with a batch
size of 4096 tokens but accumulating gradients
4 times. We train all models on 4 RTX 6000
GPUs. For the IWSLT’14 dataset, we employ the
transformersmall model (with an FFN dimension of
1024 and an embedding dimension of 512), while
the transformerbig model (with an FFN dimension
of 4096 and an embedding dimension of 1024) is
utilized for training the OPUS-100 dataset. The
maximum learning rate is 0.0005. The optimizer is
Adam (Kingma and Ba, 2014) with inverse_sqrt
learning rate scheduler and weight decay of 0. We
use beam search with a width of 5 and use a length
penalty of 1.

B Full Results for MNER

We show the full results of MNER in Table 7.

C Full Results for MQA

We show the full results of MQA in Table 8.

D Training Details for The Ablation
Study

We randomly pick 15 languages from the OPUS-
100 data to build a smaller 15-language data
(OPUS-15) for the ablation study: eu, pt, bg, sk,
zh, sl, de, hr, nb, ga, rw, as, fy, mr, se. We
conduct the ablation study under the many-to-many
translation settings. To balance the training data,
we sample the data with a temperature of T = 5.

We preprocess the data by sentencepiece (Kudo
and Richardson, 2018), establishing a vocabulary
size of 32K vocabulary. we fix the training steps
at 50K with 8K warm-up steps for all methods,
with a batch size of 4096 tokens. We employ the
transformerbase model (with an FFN dimension
of 2048 and an embedding dimension of 512) for
training the OPUS-15 dataset. The other settings
are the same as Appendix A.

E Numeric Results for The Ablation
Study

Figure 1 shows the averaged BLEU over all
directions. Here, We show the detailed numeric
results in Figure 9.



Methods az pt ms af kk ar qu te vi my tl fr hi
Naive NER 90.12 92.56 94.7 91.59 88.25 89.64 76.79 82.42 92.60 73.22 96.65 90.47 90.63
LMS 90.47 92.76 94.87 92.95 88.45 89.62 80.4 83.15 92.88 75.92 97.00 90.69 90.87
LMS-FD-Share 90.67 92.79 94.91 92.29 87.98 89.74 80.01 82.61 93.05 73.18 96.84 90.61 91.24
LMS-FD-LS 90.90 93.15 95.13 93.05 88.25 89.87 80.75 83.33 93.17 74.04 96.94 90.78 91.54

ro eu tr zh et hu nl id el he en avg. WR (%)
Naive NER 94.90 92.17 93.49 77.26 92.06 93.24 92.18 93.64 92.01 86.23 83.97 89.20 -
LMS 95.01 92.42 93.75 77.32 92.71 93.56 92.46 93.84 92.07 86.59 84.20 89.75 96%
LMS-FD-Share 94.88 92.31 93.65 77.78 92.39 93.40 92.41 93.79 92.07 85.67 84.33 89.53 88
LMS-FD-LS 95.03 92.63 93.83 77.99 92.67 93.75 92.67 94.02 92.22 86.88 84.35 89.87 100%

Table 7: Full results for the NMER task. We report F1 scores.

Methods bn en fi id ko sw avg.

Naive MQA 77.69 70.36 78.26 83.00 61.60 80.97 75.31
LMS 77.1 71.7 78.18 82.76 63.70 81.90 75.89
LMS+FD-LS 78.95 73.47 78.80 84.27 61.90 81.35 76.46
LMS+FD-Share 79.08 73.44 78.86 84.34 62.15 81.29 76.53

Table 8: Full results for the MQA task. We report F1 scores.

Methods
en→xx xx→en extra #params

high med low all WR (%) high med low all WR (%) Training
Naive MMT 20.94 42.3 22.72 26.99 - 25.45 37.25 27.95 29.1 - -
Switch Transformer, E = 4 21.94 45.00 25.76 28.85 100 26.21 39.35 29.12 30.30 100 38M
Switch Transformer, E = 8 22.36 45.11 27.47 29.45 100 26.37 40.02 29.26 30.59 93 88M
Switch Transformer, E = 12 22.66 45.50 27.19 29.65 100 26.52 40.32 29.55 30.81 100 138M
Switch Transformer, E = 16 23.05 46.25 28.61 30.35 100 26.82 40.33 30.31 31.12 100 189M
LMS, d = 4 21.61 40.55 24.24 27.19 87 26.16 38.52 29.21 30.07 100 4M
LMS, d = 12 22.20 44.10 25.12 28.63 100 26.56 39.40 28.65 30.40 100 12M
LMS, d = 20 22.57 45.19 25.85 29.26 100 26.86 39.89 30.34 31.03 100 20M
LMS, d = 28 22.82 43.56 26.13 29.01 93 27.07 39.88 30.27 31.13 100 28M
LMS, d = 36 23.10 43.89 26.3 29.28 93 27.24 40.07 30.31 31.27 100 36M
LMS, d = 44 23.32 43.61 26.52 29.37 93 27.30 40.53 30.81 31.53 100 43M
LMS, d = 52 23.36 45.05 26.64 29.80 93 27.36 40.75 30.72 31.60 100 51M
LMS, d = 60 23.50 45.63 26.94 30.09 100 27.51 40.88 31.20 31.81 100 59M

Table 9: The numeric results for the Figure 1.


