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ABSTRACT

Subject (e.g., cell or patient) clustering is an important problem in genetics and
genomics. Influential features PCA (IF-PCA) is a recent idea for clustering, where
we first select a small fraction of measured features and then cluster subjects
(e.g., cells or patients) into different groups using the classical PCA clustering
approach. A challenge the method faces is that we may have complex signal and
noise structures across features or subjects or both, which may make the IF-PCA
less effective. To deal with such a challenge, we propose a new approach, IF-PCA+,
which combines IF-PCA with the recent idea of manifold fitting. The latter was
shown to better support class separation. We compare our approach with the most
popular subject clustering approaches, including but not limited to DESC, SC3
and Seurat, using 10 gene microarray data sets and 8 single-cell data sets. We
show that with the new method, we have a significant improvement in feature
selection accuracy, and that on average, our method outperforms several of the
most competitive algorithms nowadays (including IF-PCA, DESC, Seurat) in terms
of average rank and regret for clustering accuracy and adjusted Rand index. We
also shed light on the insight underlying such improvements.

1 INTRODUCTION

Subject clustering, or high-dimensional clustering, uses measured features to group subjects such
as patients or cells into multiple classes, and it is a problem of significant interest (e.g., [Eisen et al.
(1998); Xu and Wunsch (2005); Jain (2010); Kiselev et al. (2019)]). Consider a setting where we have
n subjects from K different classes (i.e., normal patients, diseased patients). For each 1 ⩽ i ⩽ n, we
have a class label Yi that takes values from {1, 2, . . . ,K} and a p-dimensional measured feature Xi.
The class labels are unknown, and the goal is to use X1, X2, . . . , Xn to estimate them.

In many applications (e.g., genomics [Eisen et al. (1998); Butler et al. (2018); Kiselev et al. (2019)],
finance [Belloni and Chernozhukov (2011)], and astronomy [Takeuchi et al. (2024)]), an important
observation is that, out of all p features, only a small fraction of them are useful in deciding which
subject belongs to which class. In such a setting, a reasonable approach to subject clustering is a
two-step algorithm as follows. In the first step, we perform a feature selection and retain only a small
fraction of the features which we consider as important. In the second step, let Ŝ be the indices of all
retained features, and let XŜ be the sub-matrix of X with columns restricted to Ŝ. We cluster all n
subjects into K classes by applying the classical spectral clustering algorithm to XŜ .

The influential feature PCA (IF-PCA) proposed in [Jin and Wang (2016)] is an algorithm of this line.
This algorithm has demonstrated empirical success in both microarray and single-cell data sets and
has undergone rigorous theoretical evaluation (e.g., [Chen et al. (2023); Jin and Wang (2016)]). In
particular, the approach has been shown to be optimal in the rare/weak signal model (e.g., [Chen et al.
(2023)]).

With that being said, for complicated data sets such as microarray data and single-cell data, IF-PCA
has room for improvements.

First, in previous studies on IF-PCA (e.g., [Jin and Wang (2016)]), the authors usually assumed that
samples are independent, an assumption that does not always hold in single-cell data. Second, in the
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feature selection step of IF-PCA, we test the significance of each feature one at a time, overlooking
correlations among features. Third, IF-PCA is not designed for addressing high dropout noise.
High dropout noise is frequently found in single-cell data sets, posing a well-known challenge for
high-dimensional clustering. Last but not least, existing works on IF-PCA usually considered a
model which we may call a linear model. In this model, we assume there are K feature vectors
µ1, µ2, . . . , µK and E[Xi] = µk if and only if sample i belongs to class k. However, for single-cell
data, such a model may not be appropriate, and the relationship between Yi and Xi may be more
complex and is likely to be significantly nonlinear.

To overcome these limitations, we propose IF-PCA+, an enhanced version of IF-PCA that integrates
manifold fitting into the clustering process. By projecting data onto an estimated smooth manifold,
manifold fitting can offer improvements in several directions.

First, manifold fitting recovers missing or distorted feature signals by addressing high dropout noise.
In Section 4 Figure 1, we compared two approaches: one using sample-wise manifold fitting (as
by [Yao et al. (2024)]), and the other using our new method, which combines sample-wise and
feature-wise manifold fitting. Although both methods are effective at denoising and recovering true
features, our approach, which utilizes correlations between samples and features, proves significantly
more powerful. This suggests that manifold fitting is not only useful for removing high dropout noise,
but also should be applied across both samples and features.

Second, manifold fitting enhances PCA clustering by improving class separation, i.e., (a) reducing
intra-class distances and (b) increasing inter-class distances. For (a), the denoising effect of manifold
fitting brings points within the same class closer together. For (b), in data sets with significant dropout
noise (e.g., zero-inflated entries), points with many zeros are projected near the origin in spectral
embedding. By filling these zero-inflated locations with meaningful signals from neighboring points,
manifold fitting increases the separation between different classes.

The manifold fitting component of our algorithm, diffusion-based manifold fitting (DMF), is an
enhanced version of previous manifold fitting approaches. By utilizing diffusion maps, DMF
improves robustness against high-dimensional noise during neighborhood selection and removes
the need for additional transformations required by earlier methods, as demonstrated by empirical
evidence in Section 2.1.

To integrate DMF efficiently with IF-PCA, we introduce two key modifications to the original IF-PCA
algorithm. First, we remove the feature-wise normalization step. Second, we replace the fixed number
of singular vectors used in the K-means clustering step with a more adaptive approach. These changes
lead to a modified IF-PCA component that leverages the manifold structure of high-dimensional data
more effectively.

Additionally, IF-PCA+ integrates both sample-wise and feature-wise manifold fitting, followed by the
modified IF-PCA component, to address correlations across samples and features. To our knowledge,
IF-PCA+ is the first algorithm to combine multiple manifold fitting steps for clustering tasks.

We benchmarked our approach against popular subject clustering methods, including but not limited
to SC3 [Kiselev et al. (2017)], Seurat [Satija et al. (2015)] and DESC [Li et al. (2020)], using 10
gene microarray data sets and 8 single-cell data sets. For single-cell data sets, IF-PCA+ is the
top-performing method in terms of average ranks and regrets for clustering accuracy and ranks second
for the adjusted Rand index (ARI). Similarly, for microarray data sets, our method achieves the
second-highest performance in terms of average ranks and regrets for clustering accuracy. Compared
to IF-PCA, our method performs similarly on data sets where IF-PCA already achieves high accuracy
(e.g., Deng, Darmanis, and Patel) and outperforms it on data sets where it faces challenges (e.g., Grun
and Goolam).

In summary, by integrating both sample-wise and feature-wise manifold fitting and leveraging the
enhanced DMF method with diffusion maps, IF-PCA+ is designed to handle data with correlations
among features and samples while providing robust noise handling, especially in high-dimensional
settings with complex noise structures such as zero inflation.

Content. In Section 2, we provide a detailed explanation of our main method. Section 3 presents
the empirical results of IF-PCA+, comparing its performance against several recent methods using
8 single-cell data sets and 10 microarray data sets. Supporting simulation results are included in
Section 4, and Section 5 concludes with a discussion.
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2 METHODS

In the previous section, we discussed the limitations of IF-PCA and explained how the manifold
fitting component, DMF, can be integrated with a modified IF-PCA to address these challenges. In
this section, we will first introduce these two components separately and then present their combined
application.

2.1 DMF: AN IMPROVED APPROACH FOR ROBUST MANIFOLD FITTING

Manifold fitting is a long-standing problem that has been addressed theoretically in the past several
years by Fefferman et al. and Yao et al ([Fefferman et al. (2018; 0); Yao et al. (2023)]). Unlike
manifold embedding methods which project data onto a low-dimensional space, manifold fitting
methods fit a low-dimensional manifold within the original space. One of the latest advancements,
ysl23, proposed in [Yao et al. (2023)], ensures that the estimated manifold is smooth (twice dif-
ferentiable). Using information from Euclidean nearest neighbors, this method first estimates the
projection direction for each point, then projects each point onto the estimated direction. Building
on ysl23, a clustering framework called Single-cell Analysis via Manifold Fitting (scAMF) was
introduced in [Yao et al. (2024)]. The manifold fitting step of scAMF, which we referred to as Yao2,
is a modification of ysl23 that consists of four steps: (a) correlation-based shared nearest neighbors
(SNN) (b) value-to-rank transformation (c) estimation of the projection direction and (d) calculation
of projection. Compared to ysl23, Yao2 tackles the curse of dimensionality by introducing step (a),
addressing scale differences in raw gene expression and stabilizing variance through step (b), relaxing
the smoothness condition in step (c), and streamlining the calculation process in step (d).

However, Yao2 still has places to improve. For one, its value-to-rank transformation is not optimal
for dealing with heavy zero inflation. For another, its neighborhood selection relies solely on local
information. To address these limitations, we propose diffusion-based manifold fitting (DMF) as an
enhanced manifold fitting method utilizing diffusion maps. The DMF algorithm runs as follows.

Input: an n by pmatrixX , a tuning parameter knn, the diffusion map dimensionKdiff, and a diffusion
bandwidth ϵ. Output: a manifold fitted n by p matrix M .

• Diffusion neighborhood step. Use the data matrix X with bandwidth ϵ to fit a Kdiff dimen-
sional diffusion map P . Its projection into the diffusion space forms an n byKdiff coordinate
map C, with each row cj in C corresponding to row xj in X . For each cj with 1 ⩽ j ⩽ n,
find the closest knn points using Euclidean distance in the diffusion space, and denote this
set by Ndiff(j). The diffusion-based shared nearest neighbor distance between point xj and
point xℓ is dSNN(xj , xℓ) = |Ndiff(j) ∩Ndiff(ℓ)|. The knn diffusion neighborhood of xj is
defined by

B(j) = arg max
S⊂X ,|S|=knn

∑
xℓ∈S

dSNN(xj , xℓ).

• Estimate the projection direction component. For each 1 ⩽ j ⩽ n, the projection direction
F (xj) of xj is defined by

F (xj) =
1

|B(j)|
∑

xℓ∈B(j)

xℓ

• Projection component. For each 1 ⩽ j ⩽ n, the projection of xj onto the manifold, mj , is
computed as

mj = argmax
xt

ρ (xt) ,

where xt = xi + t (F (xi)− xi) and ρ (xj) = 1∑
xℓ∈B(j)∥xj−xℓ∥2

2

. Construct a matrix

M = [m1, . . . ,mn]
′ ∈ Rn×p.

Differences between DMF and Yao2: Differences between DMF and Yao2: Compared to Yao2, we
have two major changes.

First, in Yao2, a correlation metric is used to measure the distance between two points. We replace
the correlation metric with a diffusion metric. Unlike the correlation metric, which relies solely
on local neighborhood information, the diffusion process and eigen-projection in diffusion maps
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capture both local and global relationships, making DMF more suitable for manifold data and more
robust against high-dimensional noise. For example, in the simulation setting described in Appendix
Section F, where a 3D sphere is embedded into a 13111-dimensional space with Gaussian noise of
variance 0.02, the diffusion-based SNN achieves an average neighborhood accuracy of 0.68, while the
correlation-based SNN achieves only 0.34. This improvement in neighborhood accuracy is consistent
across various noise levels and different 3D manifolds, including the torus, Swiss roll, and helix.
Thus, diffusion-based SNN is a suitable choice for manifold data and is more robust against noise
and the curse of dimensionality compared to correlation-based SNN in high-dimensional data.

Second, a value-to-rank transform is used in step (b) of Yao2 (see above). We find that after
replacing the correlation metric with the diffusion-based metric, it is better to remove the value-to-
rank transform. The reason is, diffusion maps naturally handle differences in scale and variance
(through steps such as a normalized transition probability matrix) and stabilize variance (by choosing
the leading eigenvectors while suppressing the influence of small-scale or noisy variations present
in other eigenvectors). This makes the diffusion coordinates of each point carry specific meanings
related to the intrinsic structure of the data and eliminates the need for a value-to-rank transformation.

We support these two main changes with some real data results below. As a benchmark, consider
the procedure where we first apply Yao2, followed by IF-PCA. Alternatively, we first replace the
correlation metric in Yao2 by the diffusion metric, and then remove the value-to-rank transform.
We call this (tentatively) DMF. In Table 1, we compare the clustering accuracy of DMF with the
benchmark, demonstrating a significant improvement using DMF. This finding supports the proposed
changes. For details on parameter tuning, see Sections 2.3 and 3.1.

Data sets Camp1 Camp2 Darmanis Deng Goolam Grun Li Patel
Benchmark (Yao2) 0.751 0.514 0.743 0.871 0.822 0.513 0.918 0.914

DMF 0.799 0.64 0.768 0.813 0.806 0.92 0.921 0.925

Table 1: Improvements in clustering accuracy by using the two suggested changes. The improvement
is especially significant for Camp2 and Grun.

To summarize, DMF is an improvement over Yao2 that is more robust against high-dimensional noise,
accounts for manifold structure during neighborhood selection, and eliminates the need to handle
tie-breaking for zero-inflated locations in the value-to-rank transformation.

2.2 MODIFIED IF-PCA COMPONENT

The IF-PCA implemented in IF-PCA+ have two modifications to the orthodox IF-PCA proposed
in [Jin and Wang (2016)]. Firstly, we implemented a variant of orthodox IF-PCA, IF-PCA(X), that
applies the PCA step directly to the input matrix instead of a normalized matrix, as proposed in [Chen
et al. (2023)]. Since the input of the IF-PCA step in IF-PCA+ would be the manifold fitted result
M̂ , a feature-wise normalization from the original IF-PCA would distort the shape of the estimated
manifold, leading to loss of information and is thus unwanted.

Secondly, the PCA clustering step of the orthodox IF-PCA uses (K − 1) left singular vectors to run
the k-means algorithm. However, after the projection of noisy data to a low-dimensional manifold,
the (K − 1) left singular vectors may not be sufficient to capture useful signals of the manifold. This
problem is especially significant for data sets with a complex data model but a small K value (e.g.,
K = 2). To remedy this problem, we use K0 = max{4,K} top left singular vectors to run k-means.
For more discussion on the choice of K0, see Appendix Section B.

The modified IF-PCA runs as follows.

Input: an n by p matrix X , the number of classes K. Output: a predicted class label vector
Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn)

• KS step. For each column (feature) x(j) of X (where 1 ⩽ j ⩽ p), we compute a KS-score
ϕn(x(j)) using the formula

ϕn(x(j)) =
√
n sup

t∈R
{∥Fn,j(t)− Fj(t)∥} ,

4
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where Fn,j(t) = 1
n

∑n
i=1 1{xi(j)⩽t} is the empirical CDF of x(j), and Fj is the

CDF for normal distribution N(x̄(j), σ̂(j)) with x̄(j) = 1
n

∑n
i=1 xi(j) and σ̂(j) =[

1
n−1

∑n
i=1 (xi(j)− x̄(j))

2
] 1

2

.

• HCT step. Compute the empirical mean µ∗ and standard deviation σ∗ of the KS-
scores {ϕn(x(1)), . . . ϕn(x(p))}. For each feature j, the normalized KS statistics is
ψ∗
j = ϕn(x(j))−µ∗

σ∗ , and the corresponding p-value is πj = 1−Fj

(
ψ∗
j

)
. Sort the p-values in

ascending order, π(1) < π(2) < . . . < π(p). The higher criticism threshold (HCT) is defined
by t̂HC = π(ĵ), where

ĵ = argmax{j:π(j)>log p/p,j<p/2}

{
√
p
(
j/p− π(j)

)
/
√
max

{√
n
(
j/p− π(j)

)
, 0
}
+ j/p

}
.

We retain feature j if πj ⩽ t̂HC and remove it otherwise.

• PCA clustering step. Let XIF be the n×m sub-matrix of X consisting only the retained
features, where m is the number of retained features. For any 1 ⩽ k ⩽ min{m,n}, let
ξ̂IFk be the left singular vector of XIF corresponding to the k th largest singular value.

Define K0 = max{4,K}, and construct Ξ̂IF =
[
ξ̂IF1 , . . . , ξ̂IFK0

]
∈ Rn×K0 . We cluster the

n subjects by applying k-means to the n rows of Ξ̂IF , assuming there are K clusters. Let
Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn) be the predicted class labels.

The Colon microarray data set (with K = 2) provides a good example of how the modified IF-PCA is
more suitable for manifold fitting than the standard IF-PCA. Applying orthodox IF-PCA in IF-PCA+
results in a clustering accuracy of 0.516. In contrast, when IF-PCA+ is implemented with the modified
IF-PCA step, the accuracy significantly improves to 0.838. For differences in performance across
other data sets, we refer to Table 7 in the Appendix.

To summarize, for IF-PCA, we eliminate the feature-wise normalization step and replace the use of a
fixed number of singular vectors in the k-means clustering step with a more adaptive approach. This
adjustment improves the flexibility and performance of the method, allowing it to more effectively
capture the manifold structure in high-dimensional data.

2.3 IF-PCA+

We now introduce our main method, IF-PCA+, which follows a pipeline consisting of data transfor-
mation, sample-wise manifold fitting, feature-wise manifold fitting, feature selection, and clustering.

Note that two input parameters in DMF, Kdiff and ϵ, come from the diffusion map. In IF-PCA+,
we first let Kdiff = max{4,K} be the same with the K0 in modified IF-PCA, then implement
diffusion map using the ‘pyDiffMap’ python package, which automatically selects ϵ based on the
bgh algorithm by Berry, Harlim and Giannakis [Berry et al. (2015)]. When bgh does not converge
or the automatically selected ϵ is insufficient for the convergence of diffusion map (commonly in
feature-wise manifold fitting), we set ϵ to be 5 times the variance of the Euclidean distance matrix
computed between the rows of the input matrix. Thus, in practice, the combination of sample-wise
and feature-wise DMF gives rise to two tuning parameters knns and knnf , respectively.

Depending on the signal strength (average number of samples per cluster), applying feature-wise
manifold fitting may or may not be advisable, as the feature-wise signal strength in some data sets
may be too low to reliably fit a manifold. For example, in the Goolam single-cell data set, 41% of
features have fewer than 20 nonzero entries. Therefore, a tuning parameter n0 that determines when
to apply feature-wise manifold fitting is necessary.

IF-PCA+ runs as follows. Input: an n by p matrix X , the number of clusters K, tuning parameters
n0, knns, and knnf . Output: a predicted class label vector Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn).

• Log-transformation. Xlog = log(1 +X).
• Sample-wise DMF. Let Kdiff = max{4,K}. Choose ϵs automatically based on the bgh

algorithm. Apply DMF on Xlog with parameters Kdiff, ϵs and knns to obtain a new n by p
denoised matrix M̂s.
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• Feature-wise DMF. If n
K > n0, apply DMF on transpose of M̂s with parameters Kdiff, ϵf

(selected by bgh) and knnf to obtain an n by p denoised matrix M̂ .

• Modified IF-PCA. Apply modified IF-PCA to M̂ . Let Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn) be the predicted
class labels.

For data sets with meaningful negative values due to preprocessing (such as many microarray data
sets), applying a log transformation is not advisable. For them, we skip the log transformation step
and proceed with DMF steps to preserve data integrity.

Tuning parameters Selecting optimal values for n0, knnf and knns is difficult. For single-cell
data sets, we set n0 = 100, knns = 15, knnf = 50 if p < 10000, and knnf = 100 otherwise.
The microarray data sets have smaller sample sizes and less severe dropout noise. For them, we set
n0 = 50, knns = 10 and knnf = 10. For a discussion on the selection of tuning parameters in data
sets without prior information, see Appendix D.

Variants of IF-PCA+ There are multiple variants of IF-PCA+ one may consider:

(1) nolog-IFPCA+: IF-PCA+ without the log-transformation step;

(2) DMF-IFPCA: IF-PCA+ without the feature-wise manifold step;

(3) Yao2-IFPCA: IF-PCA+ without the feature-wise manifold step, with DMF replaced by Yao2;

(4) n0-IFPCA+: IF-PCA+ with both manifold fitting steps but without the threshold n0;

(5) IF-PCA(W)+: IF-PCA+ with the original IF-PCA instead of the modified IF-PCA.

Each variant corresponds to a modification of a single step in IF-PCA+, allowing us to study how
each individual step affects overall performance. The empirical comparison between IF-PCA+ and
Yao2-IFPCA is presented in Section 3 Table 2. The emprical comparisons between IF-PCA+ and its
other variants can be found in Appendix Section E.

From the comparisons, we observe that IF-PCA+ consistently delivers the best performance, demon-
strating the effectiveness of our combined approach and highlighting the importance of each step.
Thus, while IF-PCA+ may simplify to nolog-IFPCA+, DMF-IFPCA, or n0-IFPCA+ depending on
data sets properties, the full IF-PCA+ is recommended for general use.

In summary, from the incorporation of diffusion maps to the development of modified IF-PCA and
the integration of both sample-wise and feature-wise manifold fitting, each step in our algorithm
is carefully designed to enhance its robustness, adaptability, and performance. This is evidenced
by improved results in both simulations and empirical studies. Compared to the original IF-PCA,
IF-PCA+ is more effective at handling nonlinear data, capturing correlations between features and
samples, and providing robust noise management.

2.4 COMPUTATIONAL COMPLEXITY AND OTHER METHODS

In addition to IF-PCA and IF-PCA+, we also considered a range of state-of-the-art clustering methods
including manifold learning techniques such as scAMF (Single-cell Analysis via Manifold Fitting)
[Yao et al. (2024)], deep-learning algorithms such as IF-VAE [Chen et al. (2023)] and DESC [Li et al.
(2020)], as well as established clustering methods like SC3 [Kiselev et al. (2017)] and Seurat [Satija
et al. (2015)]. For a brief introduction to these methods, see Appendix Section A.

A asymptotic computational complexity analysis of these methods is provided in Appendix Section
C. We find that, for large high-dimensional data sets, DMF has a lower computational complexity
than Yao2, primarily due to the omission of the value-to-rank transformation step, which significantly
increases the complexity in Yao2. When dealing with weak signal data, IF-PCA+ achieves a
complexity of O

(
n2p+ p log(p)

)
, which is notably smaller than the manifold fitting method scAMF.

For stronger signal data, IF-PCA+ incorporates feature-wise information, resulting in a complexity of
O
(
n2p+ p2n

)
.

To provide practical runtime insights, we report the running time on the Grun data set (n = 1502 and
p = 5547). The methods DESC, IF-VAE, IF-PCA, and IF-PCA+ are implemented in Python, with
the VAE steps of IF-VAE and the autoencoder step of DESC implemented through the Python ‘keras’
package. SC3 and Seurat are implemented in R using the SC3 package from Bioconductor and the
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Seurat package, respectively. The manifold fitting method, scAMF, is implemented in MATLAB.
The tuning parameters for these methods are the same as those described in Section 3.1 to ensure
consistency.

In terms of runtime, Seurat (5 seconds) is the fastest, followed by IF-PCA (15.8 seconds), scAMF
(24 seconds), IF-VAE (56 seconds) and DESC (80 seconds). The computational time of scAMF was
reduced by a factor of 10 due to parallel processing. The main cost of IF-VAE arises from training
the neural network. IF-PCA+ (1.9 minutes) and SC3 (2.6 minutes) are the slower methods. The most
time-consuming part of IF-PCA+ is the feature-wise DMF, due to the larger knnf parameter. For
SC3, the main cost is from computing the n by n similarity matrix.

The code to implement IF-PCA, IF-VAE, Seurat, SC3 can be found at https://github.com/ ZhengTra-
cyKe/IFPCA. The code to implement scAMF can be found at https://github.com/zhigang-yao/scAMF.
The code to implement IF-PCA+ is attached in Supplement.

3 RESULTS

Our study utilizes 8 scRNA data sets and 10 microarray data sets that were previously studied in
Chen et al. (2023) for benchmarking purposes. These data sets cover embryonic, fetal, and adult
tissues from both humans and mice. They have sample sizes between 100 and 2,000 and have been
pre-processed using the code provided by the Hemberg Group under the column ’Scripts’ of the
link https://hemberg-lab.github.io/scRNA.seq.data sets. In all these data sets, true class labels are
provided. However, we do not use the class labels in any of the clustering approaches. They are used
only to evaluate the error rates. All data sets are freely available for download. For more detailed
information on these data sets, see Section H of the Appendix.

3.1 COMPARISON OF CLUSTERING APPROACHES ON SINGLE-CELL DATA SETS

We first present results obtained from comparing IF-PCA+ with other methods in 8 single-cell
data sets, see Table 2 and 3. Both clustering accuracies and ARI are used to rank methods for
each data set, with a rank of 1 meaning the highest accuracy. We repeat each algorithm 10 times
and report the average clustering accuracies. Similar to [Chen et al. (2023)], we also use regrets
to evaluate the performance of methods. For each data set, the regret of a method is defined by
r = (e− emin) / (emax − emin), where e is the clustering error of this method, and emax and emin

are the respective maximum and minimum clustering error among all the methods. The average
regret also measures the overall performance of a method (the smaller, the better).

It is worth noting that log transformation and the use of top K left singular vectors can significantly
improve the accuracy of some methods in single-cell data sets, such as IF-PCA (accuracy for Deng
went from 0.588 to 0.828, and accuracy for Goolam went from 0.7 to 0.81). For a fair comparison, log
transformation is applied on all data sets before the implementation of methods, top K left singular
vectors are used for the clustering of IF-PCA, and PCA clustering steps of IF-PCA and IF-VAE
are applied to the input matrix instead of a normalized matrix (as proposed in [Chen et al. (2023)]).
Manifold fitting of IF-PCA+ and Yao2-IFPCA methods are implemented directly on log transformed
data to avoid double log transformation.

When implementing scAMF and Yao2-IFPCA, we set knn = 15 in all data sets for consistency.
Similarly, for IF-VAE, we fix d = 25 and use a mini-batch stochastic gradient descent with 50 batches,
100 epochs, and a learning rate of 0.0005 for all data sets. The parameter table of DESC can be
found in Appendix Section A. For Seurat, we set (m,N, k0) = (1000, 50, 20) and choose different δ
values for each data set to ensure that the number of clusters resulting from modularity optimization
matched K. More details can be found in [Waltman and Van Eck (2013)]. The parameters for SC3
are set to (x0, d0, k0) = (10, 15,K). When implementing SC3 for the Patel data set, a gene filter
needs to be dropped as it will remove all genes. Finally, we have the accuracy table, Table 2.

Results in table 2 show that:

(1) IF-PCA+ is the best performer, with the smallest average regret and average rank.

(2) IF-PCA remains competitive to modern algorithms despite its simplicity. It takes second place for
average regrets and thrid place for average ranks.
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Accuracy Seurat SC3 scAMF DESC IF-VAE IFPCA Yao2-IFPCA IFPCA+
Camp1 0.643 0.788 0.882 0.799 0.706 0.738 0.751 0.792
Camp2 0.654 0.778 0.673 0.656 0.690 0.660 0.514 0.517

Darmanis 0.779 0.736 0.766 0.609 0.540 0.789 0.743 0.768
Deng 0.534 0.563 0.646 0.563 0.652 0.828 0.891 0.813

Goolam 0.629 0.758 0.823 0.629 0.492 0.721 0.822 0.806
Grun 0.993 0.500 0.523 0.968 0.750 0.673 0.601 0.966

Li 0.985 0.919 0.804 0.827 0.852 0.909 0.918 0.925
Patel 0.653 0.995 0.958 0.939 0.569 0.940 0.925 0.926

Rank (mean) 4.875 4.125 3.875 4.875 5.875 3.875 4.625 3.625
Rank (sd) 2.992 2.673 2.563 1.799 2.430 1.618 2.440 1.704

Regret (mean) 0.487 0.385 0.402 0.511 0.746 0.326 0.383 0.283
Regret (sd) 0.433 0.383 0.425 0.323 0.249 0.209 0.370 0.310

Table 2: Comparison of the clustering accuracies across the 8 single-cell RNA-seq data sets. IF-PCA+
is regarded as the best on average, with the smallest average rank and regret.

ARI Seurat SC3 scAMF DESC IF-VAE IFPCA Yao2-IFPCA IFPCA+
Camp1 0.519 0.763 0.801 0.729 0.639 0.629 0.651 0.685
Camp2 0.425 0.594 0.484 0.483 0.464 0.490 0.335 0.231

Darmanis 0.719 0.700 0.667 0.526 0.428 0.703 0.670 0.675
Deng 0.427 0.541 0.561 0.426 0.431 0.848 0.886 0.843

Goolam 0.544 0.687 0.914 0.543 0.205 0.537 0.914 0.840
Grun 0.969 -0.060 -0.074 0.928 0.244 -0.096 0.104 0.853

Li 0.971 0.934 0.779 0.811 0.782 0.880 0.883 0.889
Patel 0.577 0.989 0.905 0.862 0.383 0.853 0.829 0.839

Rank (mean) 4.5 3 4 4.875 6.5 4.625 4.375 4.125
Rank (sd) 2.887 1.952 2.637 2.193 1.618 2.498 2.138 1.864

Regret (mean) 0.458 0.304 0.413 0.479 0.823 0.408 0.369 0.318
Regret (sd) 0.426 0.363 0.420 0.334 0.253 0.314 0.310 0.307

Table 3: Comparison of ARI values across the 8 single-cell RNA-seq data sets. On average, IF-PCA+
is a strong second in terms of rank and regret, showing significant improvements over IF-PCA in the
Goolam and Grun data sets.

(3) In the Grun data set, where IF-PCA underperforms (and the Yao2-IFPCA method faces even
greater challenges), IF-PCA+ achieves a high accuracy of 0.966.

(4) In data sets where IF-PCA performs relatively well, such as Deng and Darmanis, IF-PCA+ attains
similar accuracies.

The adjusted Rand index (ARI) is another commonly used metric for clustering performance. In
Table 3, we report the ARI values of different methods and recalculate the ranks and regrets.

From Table 3, we see that IF-PCA+ is ranked second in terms of ranks and regrets. IF-PCA, on
the other hand, achieved similar performance to DESC and Seurat with a smaller average regret.
Moreover, our new method brings significant improvements to the ARI in data sets where IF-PCA
struggles, such as Goolam and Grun, while maintaining performance on par with IF-PCA in data sets
where it performs relatively well.

In sum, the results from the two tables show that IF-PCA+ consistently outperforms other methods
across a range of data sets, achieving the best average regret and rank for accuracy and a strong second
place for ARI. It excels in challenging data sets like Goolam and Grun, where IF-PCA struggles,
while also matching IF-PCA’s performance in data sets where it already performs well, such as
Deng. While IF-PCA remains competitive with modern algorithms, IF-PCA+ offers significant
improvements in handling more difficult data sets, making it a more robust and versatile clustering
method.

3.2 COMPARISON OF CLUSTERING APPROACHES ON MICROARRAY DATA SETS

We also benchmarked the clustering accuracy of IF-PCA+ on microarray data sets, see Table 4. In
the table, IF-VAE uses a normalized data matrix W (as in orthodox IF-PCA), while the IF-VAE(X)
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Kmeans SpecGem IFVAE IFVAE(X) IFPCA IFPCA+
Brain 0.667 0.857 0.500 0.500 0.738 0.738

Breast Cancer 0.562 0.562 0.565 0.572 0.594 0.600
Colon Cancer 0.548 0.516 0.597 0.597 0.597 0.838

Leukemia 0.972 0.708 0.722 0.833 0.931 0.967
Lung Cancer(1) 0.901 0.878 0.967 0.961 0.972 0.88
Lung Cancer(2) 0.783 0.567 0.783 0.783 0.783 0.727

Lymphoma 0.984 0.774 0.742 0.839 0.984 0.984
Prostate Cancer 0.578 0.578 0.588 0.598 0.618 0.588

SRBCT 0.556 0.492 0.524 0.635 0.556 0.460
SuCancer 0.523 0.511 0.672 0.672 0.667 0.638

Rank (mean) 3.55 5.2 3.5 2.85 2.15 3.15
Rank (sd) 3.505 5.62 3.3 2.585 2.115 3.215

Regret (mean) 0.558 0.868 0.605 0.421 0.188 0.357
Regret(sd) 0.426 0.312 0.421 0.366 0.253 0.407

Table 4: Comparison of clustering accuracy across the 10 microarray data sets. IF-PCA has the
smallest average rank and average regret (boldface) and is regarded as the best on average. IF-PCA+
is ranked second.

uses unnormalized data matrix X . Our results indicate that, on average, IF-PCA performs the best
on microarray data sets. The performance of IF-PCA+ is comparable to IF-VAE(X) and slightly
surpasses that of other methods.

The reduced average regret between IF-PCA and IF-PCA+ indicates that IF-PCA, optimized for a
rare/weak signal model under a Gaussian noise assumption, is sufficient for many microarray data sets.
The additional manifold fitting steps may lead to overfitting on these data sets and could therefore be
undesirable. It is worth noting that on the Colon data set (characterized by highly nonlinear patterns
in its spectral embedding) where IF-PCA and other approaches struggled, IF-PCA+ achieves an
accuracy of 0.838, demonstrating its effectiveness.

4 SIMULATIONS

In this section, we present simulation studies across four distinct settings to demonstrate how
integrating manifold fitting enhances the feature selection process in IF-PCA+. For additional
simulations demonstrating the improvement of DMF over Yao2 and IF-PCA+ over other methods,
see Appendix Section F and G, respectively.

Inspired by the rare/weak model introduced in [Chen et al. (2023)], in all settings, we consider a
noise matrix generated by Zij

iid∼ N(0, 1) and signal vector µ generated by

µ(j)
iid∼ (1− ϵ) ν0 + (ϵ/2) ντ + (ϵ/2) ν−τ ,∀1 ⩽ j ⩽ p,

where va stands for point mass at a, and feature j is an "influential feature" if µ(j) ̸= 0 and is a
"noisy feature" otherwise. Specifically, the four distinct settings are:

1. Independent feature signals: Xij = Yiµ(j) + Zij .

2. Correlated feature signals: Xij = YiUjµ(j) + Zij , where Uj ∼ Unif(0.8, 1.2).

3. Correlated feature signals with dropout noise: Xij = (YiUjµ(j)+ Zij) Ber(q), with q = 0.3 and
Uj ∼ Unif(0.8, 1.2).

4. Nonlinear correlated feature signals with dropout noise: Xij = (log [1 + YiUjµ(j)] + Zij) Ber(q),
with q = 0.3 and Uj ∼ Unif(0.8, 1.2).

In all settings, we set n = 500, p = 1000, K = 2, ϵ = 0.5 and τ = 0.25. Class labels Yi are assigned
such that the first half of samples are labeled “1" and the second half “-1".

To evaluate the enhancement of feature selection accuracy through manifold fitting in IF-PCA+, we
compare the standard IF step with three manifold variants:

1. IF-s: Combines sample-wise DMF with IF.

9
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2. IF-f: Combines feature-wise DMF with IF.

3. IF-sf: Integrates both sample-wise and feature-wise DMF with IF.

Feature selection accuracy is calculated by counting the number of influential features among the
top 500 selected features, corresponding to the proportion ϵ = 0.5. In all manifold steps, parameters
are set as follows: knn = 15,Kdiff = 4, and ϵdiff is selected using the bgh algorithm. Each setup is
repeated 10 times, yielding the accuracy results presented in Table 5.

(1) Independent (2) Correlated (3) Corr-Dropout (4) Log-Corr-Dropout
IF 0.504 0.510 0.526 0.512
IF-s 0.700 0.696 0.564 0.548
IF-f 0.758 0.716 0.520 0.534
IF-sf 1.000 1.000 0.822 0.652

Table 5: Feature selection accuracy in the four simulation settings. The combined sample-wise and
feature-wise approach, IF-sf, yields the best performance.

From Table 5, we observe that the combination of sample-wise and feature-wise DMF (IF-sf)
consistently outperformed the original feature selection approach and single manifold approaches.
IF-sf not only successfully identified all signal features in settings (1) and (2), which involved simple
noise structure but a high noise level, but also demonstrated greater robustness to compound noise
(Gaussian and dropout) and nonlinearity compared to other methods.

For a visual demonstration of the impact of manifold fitting on feature selection, see Figure 1.

Figure 1: Distributions of a simulated feature under setting (c). From left to right: (1) feature’s
true signal, (2) Observed feature (signal + noise), (3) Distribution after sample-wise Yao2, and (4)
Distribution after sample-wise and feature-wise DMF.

From Figure 1, we see that although Yao2 is effective in recovering the signal of features from
dropped-out noise, our new approach is much more powerful.

5 DISCUSSION

In this paper, we introduced IF-PCA+, an enhanced clustering algorithm designed to overcome the
limitations of IF-PCA when applied to complex data sets such as microarray and single-cell data. By
integrating both sample-wise and feature-wise manifold fitting, leveraging the enhanced DMF method
with diffusion maps, IF-PCA+ demonstrates robust noise handling, especially in high-dimensional
settings with challenging noise structures such as zero inflation.

Our two-step manifold fitting approach has more potentials. It can be combined with other feature
selection steps and clustering methods, both linear and nonlinear. Our approach can also be applied
to finance, network analysis, astronomy, and many other fields.

One limitation of our method is the need for three tuning parameters. How should one optimally
combine two manifold fitting steps could be an interesting question to explore. Our method also
implicitly assumes the existence of a low-dimensional smooth manifold, which may not hold true for
other data sets, and can impact the generalizability of our approach.
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A BRIEF INTRODUCTION OF OTHER METHODS

IF-VAE is a deep-learning method introduced in [Chen et al. (2023)], that combines the feature
selection step of IF-PCA with the variational auto-encoder (VAE). There are two versions of the
IF-VAE proposed in [Chen et al. (2023)]. The first one applies the VAE to a normalized data
matrix W (same as orthodox IF-PCA), called IF-VAE, while the second one applies the VAE to
the unnormalized data matrix X , called IF-VAE(X). The VAE component of the algorithm uses a
traditional architecture in which both the encoder and decoder have one hidden layer; the encoder
uses the ReLU activation, and the decoder uses the sigmoid activation. The only tuning parameter in
this algorithm is the dimension of the latent space in the VAE, denoted by d.

Deep Embedding for Single-cell Clustering (DESC) is another autoencoder inspired clustering
algorithm proposed in [Li et al. (2020)]. It uses a stacked autoencoder for data representation and
integrates it with an iterative clustering neural network. When training DESC, we set parameters
according to Table 6.

# nodes 1st layer 64
# nodes 2nd layer 32

tolerance 0.005
# neighbors 10

batch size 256
louvain resolution [0.8, 1.0]

do tsne TRUE
learning rate (TSNE) 100

Table 6: Parameter table for DESC.

Seurat and SC3 are two recent algorithms that are especially popular for subject clustering with
single-cell RNA-seq data. On a high level, both methods can be viewed as having a feature selection
step and a clustering step. However, the clustering processes in both methods are complicated when
compared to IF-PCA and IF-VAE with many tuning parameters.

Seurat was proposed in 2015 by Satija et al. [Satija et al. (2015)]. Its feature selection step filters genes
based on their variability across cells, and its clustering step combines several methods, including
PCA, the k-nearest neighbors algorithm, and modularity optimization. Due to the complexity, Seurat
has four tuning parameters, m,N, k0, δ, where m is the number of selected features in the feature
selection step while N, k0, δ pertain to the clustering step, corresponding to the PCA part, the
k-nearest neighborhood algorithm part, and the modularity optimization part, respectively.

SC3 was first presented in 2017 by Kiselev et al. [Kiselev et al. (2017)]. Its feature selection step
filters genes based on their expression levels, removing genes that are too rare or too ubiquitous. The
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main idea of the clustering step in SC3 is to apply PCA many times (each for a different number
of leading singular vectors) and use the results to construct a consensus matrix. We then cluster all
subjects into K groups using hierarchical clustering on the consensus matrix. There are three tuning
parameters for SC3, one for the gene-filtering step, x0, and two for the clustering step, d0 and k0,
corresponding to the PCA part and the hierarchical clustering part, respectively.

B ADDITIONAL COMMENTS ON MODIFIED IF-PCA

Let K0 denote the number of left singular vectors used in modified IF-PCA step. Here, we explain
the rationale for setting K0 = max{4,K}.

Empirically, higher values of K0 often yield better performance. For instance, in the Grun data set
with only two clusters (K = 2), using the top 6 left singular vectors during IF-PCA+ achieves an
accuracy of 0.879, while using 7 left singular vectors improved accuracy further to 0.886. In contrast,
using only 4 left singular vectors resulted in a lower accuracy of 0.853 . However, increasing K0

often comes with trade-offs, such as higher computational costs and a greater risk of overfitting,
particularly in data sets with a small number of clusters or with complex noise structures.

Upon examining the scree plots of various single-cell data sets, including Camp1, Camp2, and Grun,
we noticed a consistent pattern: the elbow point occured at 4-th singular values across these data sets.
This observation strongly suggests that at least 4 dimensions are required to capture the core structure
of the data. Additionally, to account for the loss of information during the fitting of a low-dimensional
manifold, we adjusted K − 1 to K for data sets with larger K values to ensure robustness.

C ASYMPTOTIC COMPUTATIONAL COMPLEXITY OF METHODS

In this section, we discuss the asymptotic computational complexity of the methods used in our
study. Given that the complexity of deep-learning algorithms varies significantly depending on their
parameters, we focus our analysis on non-deep-learning algorithms.

DMF: For the manifold fitting method DMF, there are three main steps: the diffusion neighborhood
step, the estimation of direction step, and the projection step. In the diffusion neighborhood step,
the computational complexity is primarily determined by three components: the computation of
the Gaussian kernel matrix during diffusion map construction, the eigen decomposition required to
extract diffusion coordinates, and the computation of k-nearest neighbors in the resulting diffusion
space. The Gaussian kernel computation has a complexity of O

(
n2p

)
. The eigen decomposition of

the diffusion matrix contributes an additional complexity of O
(
n2Kdiff

)
, where Kdiff is the number

of retained diffusion dimensionality. Finally, finding the k-nearest neighbors in the diffusion space has
a complexity of O

(
n2p

)
in a naive implementation. Together, the diffusion neighborhood step has a

total computational cost dominated by O
(
n2p

)
. Our implementation of the last two steps of DMF

has a complexity of O(np · knn). With knn significantly smaller than p, DMF has a computation
complexity of O(n2p).

Yao2: Similar to DMF, Yao2 has a complexity of O(n2p) from finding shared nearest neighborhoods,
a complexity ofO(np log(p)) from the value-to-rank transformation, and a complexity ofO(np·knn)
from both the estimation of direction step and the projection step. Together Yao2 has a complexity of
O(n2p+ np log(p)).

IF-PCA: IF-PCA consists of three main steps: a feature selection step using Kolmogorov-Smirnov
(KS) tests, an HCT step, and a PCA clustering step. The complexity of computing KS statistics
for a single feature is O(n log(n)), which results in a total complexity of O(np log(n)) for all p
features. The HCT step involves sorting feature scores and has a complexity ofO(p log(p)). The PCA
clustering step comprises two main components: singular value decomposition (SVD) and K-Means
clustering, each with a complexity of O(npK), where K is the number of clusters. Therefore, the
overall computational complexity of IF-PCA is O(np log(n) + p log(p)).

IF-PCA+: The IF-PCA+ algorithm integrates IF-PCA with both sample-wise and feature-wise DMF,
resulting in a combined computational complexity of O

(
n2p+ p2n

)
. However, for data sets with

weak signals, feature-wise DMF is not implemented, reducing the complexity to O
(
n2p+ p log(p)

)
,

which accounts for the sample-wise DMF and the PCA computation.
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scAMF: With Yao2 being the dominant step of scAMF, scAMF also has a complexity of O(n2p+
np log(p)).

SC3: The five main steps of SC3 are: feature selection, pairwise distance calculations, PCA transfor-
mation, k-means clustering, and consensus clustering. Their respective computational complexities
are O(np), O(n2p), O(npK), O(n2p), and O(n2 log(n)), respectively. Overall, SC3 has a com-
plexity of O(n2p + n2 log(n)). For high-dimensional data, SC3’s complexity is dominated by
O(n2p).

Seurat: The clustering process in Seurat consists of the following steps: feature selection, data
scaling, PCA, and SNN modularity optimization-based clustering (using the Louvain algorithm).
The computational complexities of these steps are, respectively, O(np+ n log n), O(np), O(npK),
and O(n2) (or O(k0n log n) for sparse graphs, where k0 is the parameter for KNN ). Thus, the
dominating complexity is O(npK + n2).

Summary: For large high-dimensional data sets, DMF has a lower computational complexity than
Yao2, primarily due to the omission of the value-to-rank transformation step, which significantly
increases the complexity in Yao2. When dealing with weak signal data, IF-PCA+ achieves a
complexity of O

(
n2p+ p log(p)

)
, which is notably smaller than the manifold fitting method scAMF.

For stronger signal data, IF-PCA+ incorporates feature-wise information, resulting in a complexity of
O
(
n2p+ p2n

)
.

D TUNING PARAMETERS OF IF-PCA+

As discussed in Section 2.3, selecting optimal parameters is a difficult task. Without any prior
knowledge about the data set, we need to first set a reasonable value for the number of clusters K,
then proceed to select both n0 and knn parameters for DMF.

Selecting K: The selection of optimal K in high-dimensional clustering is an open question. Without
prior knowledge of the data set, a practical approach could involves initially estimating range of
K using methods like scree plots, then choosing a reasonable value using consensus matrices, as
implemented in SC3.

A more theoretical approach may be to adapt the idea of st-GOF [Jiashun Jin and Wang (2023)]
in network clustering to high-dimensional clustering. This approach entails modeling the data as
X = LM + Z = Ωk + Z (similar to the original work of IF-PCA), where L ∈ Rn,K is the
matrix where the i th row is e′k (the k th standard basis vector of RK , 1 ≤ k ≤ K) if and only if
Sample i ∈ Class k, M ∈ RK,p is a matrix with each row corresponding to the mean signal of
a cluster, and Z representing the noise matrix. For each k = 1, 2, 3, . . ., one may then estimate
Ω̂k. By defining Xk = X − Ω̂k, one can define a test statistic using the idea of cycle-count,

Tk =
∑

i1,i2,i3,i4
( distinct )Xk(i1,i2)Xk(i2,i3)Xk(i3,i4)Xk(i4,i1)

Ck
with Ck being a normalization constant.

The goal is to demonstrate that Tk converges to N(0, 1) when k = K and diverges when k ̸= K.
This theoretical framework would provide a more rigorous method for determining the optimal
number of clusters in high-dimensional data.

After determining a reasonable K, one can proceed to select parameters such as n0, knns and knnf .

Selecting knns and knnf : The parameters knns and knnf represent the number of nearest neighbors
considered in the sample-wise and feature-wise DMF step. Since both parameters function similarly,
we will focus on the selection of knns. Ideally, knns should be less than the smallest cluster size
to ensure meaningful local neighborhood structures. Without prior information on cluster sizes, a
common heuristic is to set knns close to

√
n. However, as computational demands increase with

larger knns values, it may be practical to threshold knns at max{
√
n, 100}. When working with

multiple data sets of the same type, it is advisable to set knns to the smallest
√
n across all data sets.

This strategy ensures consistency in parameter selection and facilitates comparative analyses.

Selecting n0: The parameter n0 in DMF determines whether a feature-wise DMF step is implemented.
Serving as a lower bound, n0 ensures that a sufficient number of samples are available to accurately
recover the distribution of each feature. Without prior data set information, setting n0 = 50 is
advisable for noisy data. For data sets with particularly weak signals, increasing n0 to 100 may yield
more reliable results.
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E VARIANTS OF IF-PCA+

scAMF DESC IFPCA nolog-
IFPCA+

DMF-
IFPCA

n0-
IFPCA+ IFPCA(W) IFPCA+

Camp1 0.881 0.799 0.738 0.789 0.795 0.792 0.791 0.794
Camp2 0.673 0.656 0.66 0.547 0.634 0.517 0.537 0.522

Darmanis 0.7661 0.609 0.789 0.666 0.768 0.71 0.723 0.768
Deng 0.645 0.563 0.828 0.821 0.813 0.675 0.81 0.813

Goolam 0.823 0.629 0.721 0.83 0.806 0.677 0.806 0.806
Grun 0.5226 0.968 0.734 0.524 0.921 0.966 0.935 0.979

Li 0.8039 0.827 0.909 0.954 0.925 0.845 0.895 0.925
Patel 0.958 0.939 0.94 0.754 0.926 0.754 0.914 0.926

Rank (mean) 4 5.125 3.75 4.688 3.563 6.063 5.125 3.563
Rank (sd) 3.207 2.85 2.659 2.89 1.016 1.568 0.835 1.821

Regret (mean) 0.357 0.581 0.319 0.52 0.203 0.644 0.345 0.278
Regret (sd) 0.459 0.442 0.353 0.442 0.172 0.647 0.305 0.335

Table 7: Comparison of clustering errors for variants of IF-PCA+ across the 8 single-cell data sets.

The results in Table 7 show that IF-PCA+ shared the same average rank (0.563) with DMF-IFPCA,
which outperforms all other variants of IF-PCA+ for single-cell data. This indicates that each step of
our algorithm is meaningful.

Although it may be tempting to propose DMF-IFPCA as part of our final algorithm, the following
table on microarray data, Table 8, reveals a performance gap. On the Lung Cancer(1) dat aset,
IF-PCA+ shows a significant improvement over DMF-IFPCA, while performing similarly on other
microarray data sets. This result suggests that DMF-IFPCA’s gain in the Camp2 data set (the only
data set where it outperformed IF-PCA+) may have been dataset-specific. Also, considering the
significant accuracy gain observed in simulation setting of Section 4 and Appendix Section G, our
proposal of double manifold fitting is well suited.

Brain Breast Colon Leukemia Lung(1) Lung(2) Lymphoma Prostate SRBCT SuCancer
IFPCA+ 0.738 0.616 0.838 0.967 0.934 0.727 0.984 0.588 0.460 0.638

DMF-IFPCA 0.738 0.616 0.838 0.967 0.872 0.724 0.984 0.588 0.460 0.638

Table 8: Comparison of DMF-IFPCA with IF-PCA+ across the 10 microarray data sets.

F SIMULATIONS FOR DMF

We are interested in studying the how neighborhoods of different metrics are affected under noise
and the curse of dimensionality. The simulation procedure consists of four main steps:

• Generate ground truth neighborhood: Randomly generate 777 points of a 3D sphere in
a 3D space. Use Euclidean distance in the original 3D space to define the ground truth
neighborhood, as Euclidean distance is naturally meaningful in this space. For each point,
find its top 15 nearest neighbors based on Euclidean distance in 3D space. This will act as
the ground truth neighborhood.

• Embed data into 13111-Dimensional Space: The 777 points of 3D manifold give us a 777
by 3 matrix. Embed this matrix into a 13111-dimensional space by concatenating 13108
columns of entrywise Gaussian noise (with mean zero and variance σ2) to the original
3D data. Call the new 777 by 13111 data matrix A. To simulate dropout effect, we
further multiply A entrywise with a Bernoulli random variable with probability q = 0.3,
Xij = AijBer(q), with q = 0.3. So matrix X have a more complicated noise structure
than A.

• Compute neighborhoods in 13111-dimensional space: Use the following four approaches to
compute top 15 neighborhoods of each point:
1. Euclidean Distance.
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2. Correlation Distance.
3. Correlation-based Shared Nearest Neighbor (SNN) Neighborhood (Step (a) of Yao2).
4. Diffusion-based Shared Nearest Neighbor (SNN) Neighborhood (Step (a) of DMF).

• For each approach, compare the neighborhoods obtained in the 13111-dimensional space to
the ground truth neighborhoods from the original 3D space. Compute the average accuracy
over 5 runs: fraction of correctly identified neighbors in the high-dimensional space that
match the ground truth neighbors in 3D space.

The size of the simulated matrix 777 by 13111 is the same with the Camp1 data set. For all knn-
related parameters, we set knn = 15. For a diffusion map, we set Kdiff = 15 and ϵ is selected
automatically by bgh. From running the above simulation, we obtain Figure 2, which shows that
our diffusion map based neighborhood method is significantly more robust against noise of various
forms and curse of dimensionality. Specifically, we find that although an increase in Gaussian noise
levels leads to a decrease in neighborhood accuracy (and consequently clustering accuracy), our new
approach consistently outperforms others across all noise levels, demonstrating its robustness against
high-dimensional noise. Moreover, Figure 2 illustrates that increasing the zero-inflation noise level
from 0% to 30% does not alter the overall performance trend, furthur highlighting the robustness of
our method to handle compound noise effectively. Similar results are observed when using other 3D
manifolds such as helix, torus and Swiss roll.

Figure 2: Left: Average accuracy of neighborhoods with no dropout noise. Right: Average accuracy
of neighborhoods with a 30% dropout rate. Cyan: our proposed method. Blue: Euclidean distance.
Green: correlation distance. Red: correlation-based SNN. Our proposed method significantly
outperforms others across various noise levels, both with and without additional dropout noise.

G SIMULATION BENCHMARKS FOR IF-PCA+

The table below presents the clustering accuracy of various methods across the four simulation
settings introduced in Section 4. Seurat demonstrates the highest clustering accuracy, with IF-PCA+
closely following. Notably, IF-PCA+ shows significant improvements over IF-PCA and scAMF,
particularly in scenarios involving dropout noise and nonlinearity. In setting (d), IF-PCA+ achieves a
clustering accuracy of 0.952, outperforming IF-PCA’s 0.816 and scAMF’s 0.502.

(1) Independent (2) Correlated (3) Corr-Dropout (4) Log-Corr-Dropout
IFPCA+ 1.0 1.0 0.980 0.952
IFPCA 0.940 0.872 0.567 0.816
scAMF 1.0 1.0 0.826 0.502
SC3 1.0 1.0 0.976 0.947
Seurat 1.0 1.0 0.988 0.974
DESC 1.0 1.0 0.314 0.268
IF-VAE 0.974 0.624 0.626 0.718

Table 9: Clustering accuracy of various methods across four simulation settings. IF-PCA+ demon-
strates significant improvements over IF-PCA and scAMF.
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H DATA SETS

In our study, 8 scRNA data sets and 10 microarray data sets are used for benchmarking purposes.
These data sets were previously studied in Chen et al. (2023).

The scRNA data sets cover embryonic, fetal, and adult tissues from both humans and mice. They have
sample sizes between 100 and 2,000 and have been pre-processed using the code provided by the
Hemberg Group under the column ‘Scripts’ of the link https://hemberg-lab.github.io/scRNA.seq.data
sets. An additional filtering step has been applied so that genes with fractions of nonzero entries
< 5% are filtered out. The resulting dimensions of these data sets are shown in Table 10.

The 10 microarray data sets, presented in Table 11, were also studied in [Jin and Wang 2016]. data
sets 1, 3, 4, 7, 8, and 9 were analyzed and cleaned by Dettling (2004), while data sets 2, 6, and 10
were analyzed by Yousefi et al. (2010). Data set 10 was further cleaned by Jin and Wang (2016)
using the same method as Dettling (2004). Data set 5 was obtained from Gordon et al. (2002). The
8 single-cell data sets can be download at https://data.mendeley.com/drafts/nv2x6kf5rd and the 10
microarray data sets can be downloaded at https://data.mendeley.com/data sets/cdsz2ddv3t.

# Data set K n p
1 Camp1 7 777 13,111
2 Camp2 6 734 11,233
3 Darmanis 9 466 13,400
4 Deng 6 268 16,347
5 Goolam 5 124 21,199
6 Grun 2 1502 5,547
7 Li 9 561 25,369
8 Patel 5 430 5,948

Table 10: Single-cell RNA-seq data sets investigated in this paper. (n: number of cells; p: number of
genes; K: number of cell types).

# Data name Source K n p
1 Brain Pomeroy (02) 5 42 5,597
2 Breast cancer Wang et al. (05) 2 276 22,215
3 Colon cancer Alon et al. (99) 2 62 2,000
4 Leukemia Golub et al. (99) 2 72 3,571
5 Lung cancer (1) Gordon et al. (02) 2 181 12,533
6 Lung cancer (2) Bhattacharjee et al. (01) 2 203 12,600
7 Lymphoma Alizadeh et al. (00) 3 62 4,026
8 Prostate cancer Singh et al. (02) 2 102 6,033
9 SRBCT Kahn (01) 4 63 2,308
10 Su cancer Su et al. (01) 2 174 7,909

Table 11: Microarray data sets investigated in this paper. (n: number of cells; p: number of genes; K:
number of cell types).
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