
Breaking Distortion-free Watermarks in Large
Language Models

Shayleen Reynolds1, Hengzhi He2, Dung Daniel Ngo3, Saheed Obitayo3, Niccolò Dalmasso3,
Guang Cheng2, Vamsi K. Potluru3, and Manuela Veloso3

1NTT DATA.∗ Email: shayleen.reynolds.d@gmail.com
2UCLA. Email: hengzhihe@g.ucla.edu, guangcheng@ucla.edu

2JPMorganChase AI Research. Email: {tuandung.ngo, niccolo.dalmasso,
saheed.obitayo, vamsi.k.potluru, manuela.veloso}@jpmchase.com

Abstract

In recent years, LLM watermarking has emerged as an attractive safeguard against
AI-generated content, with promising applications in many real-world domains.
However, there are growing concerns that the current LLM watermarking schemes
are vulnerable to expert adversaries wishing to reverse-engineer the watermarking
mechanisms. Prior work in ‘breaking’ or ‘stealing’ LLM watermarks mainly fo-
cuses on the distribution-modifying algorithm of Kirchenbauer et al. [13], which
perturbs the logit vector before sampling. In this work, we focus on reverse-
engineering the other prominent LLM watermarking scheme, distortion-free wa-
termarking [15], which preserves the underlying token distribution by using a
hidden watermarking key sequence. We demonstrate that, even under a more
sophisticated watermarking scheme, it is possible to compromise the LLM and
carry out a spoofing attack, i.e., generate a large number of (potentially harmful)
texts that can be attributed to the original watermarked LLM. Specifically, we
propose using adaptive prompting and a sorting-based algorithm to accurately
recover the underlying secret key for watermarking the LLM. Our empirical find-
ings on LLAMA-3.1-8B-Instruct, Mistral-7B-Instruct, Gemma-7b, and OPT-125M
challenge the current theoretical claims on the robustness and usability of the
distortion-free watermarking techniques.

1 Introduction

Recent advances in generative models have significantly improved their capabilities and applicability
across various real-world domains. Notably, models like ChatGPT [21] and other large language
models (LLMs) can now generate text closely resembling human-written content. However, as both
businesses and individuals have rapidly adopted generative models, there is a growing concern within
the research community about their potential for malicious use. To address this issue, a growing
body of research around watermarking LLM-generated text has emerged [1, 13, 15, 19, 24, 31]. The
primary strategy in this line of research involves embedding a hidden signal (i.e., a secret watermark
key) within the generated text, which any third party with knowledge of the key can reliably detect.

While these watermarking techniques offer reliable and robust statistical guarantees to verify LLM-
generated texts, they still fall short in addressing the potential attack models posed by malicious
actors [7, 8, 12, 23, 28, 33]. Previous research on LLM watermarking often focuses on robust-
ness against common attacks, such as deletion, insertion, and substitution, to simulate the behavior

∗Work done while at AI Research, JPMorganChase.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: Overview of our watermark stealing framework. Top: Illustrative example of Algorithm 4
to estimate the secret permutation over the LLM’s vocabulary. Bottom: Outputs using Llama-3.1-8B-
Instruct (left): without watermark, (middle): with watermark, (right): spoofing attack. The p-value
reflects the watermark detection confidence, and the perplexity (PPL) measures text quality.

of users attempting to evade content detectors. For instance, a student might slightly modify a
machine-generated essay by altering a few sentences to avoid detection by their professor. However,
a determined adversary could go further by reverse-engineering the watermarking scheme. By re-
peatedly querying the API of the watermarked LLM, they could steal the watermark by approximating
the hidden secret key. Once estimated, the most significant threat is spoofing, where an attacker
generates (potentially harmful) text that appears to be watermarked. Being able to generate large
volumes of spoofed content with minimal computational effort not only undermines the intended
purpose of a watermark but is also a reputational risk for the LLM providers, whose model could
have been falsely attributed to harmful or incorrect content.

Prior work on watermark stealing primarily studies the distribution-modifying algorithm by Kirchen-
bauer et al. [13] and its variants. In contrast, our focus is on the other prominent watermarking
scheme by Kuditipudi et al. [15], which is distortion-free, i.e., the watermark does not change the
underlying token distribution. A significant difference between the two watermarking techniques
is that Kuditipudi et al. [15] use a randomized watermark key, creating a correlation between the
LLM-generated text and this secret key. During detection, a third party with this secret watermark
key can efficiently check for the correlation and verify whether the text is watermarked. Furthermore,
prior work that attempted to break this distortion-free watermark specifically focus on the exponential
minimum sampling variant. In this work, we complete the line of work on stealing Kuditipudi et al.
[15]’s watermark by investigating the inverse transform sampling (ITS) variant (Section 2.1).

Considering this approach, we propose a sorting-based algorithm to accurately estimate the secret
watermark key and enable spoofing attacks with only a few samples from the watermarked LLM.
Our spoofed outputs both (i) pass the original watermark detection test, and (ii) maintain similar text
quality (measured with perplexity score and cosine similarity) compared to the non-watermarked and
watermarked outputs from the base LLM. Notably, we observe successful spoofing attempts even
when the attacker has a partial knowledge of the secret key and permutation used for watermarking.

Overview of Paper. We introduce a watermark stealing framework for the distortion-free LLM
watermarking technique from Kuditipudi et al. [15]. Specifically, in this work we focus on the
watermark approach using ITS. At a high level, the decoder used in ITS has two main components:
a secret key sequence of uniformly random variables and a permutation over the entire vocabulary.
With a sequence of well-crafted prompts, our algorithm can probe the underlying watermark to
accurately learn the permutation over the vocabulary used to generate watermarked text. Once the
permutation is recovered, we repeatedly query the watermarked LLM and obtain an accurate estimate
of the secret key sequence by iteratively narrowing down the confidence interval with each observed

2

sample. After both components of the watermark decoder have been learned, we can successfully
perform spoofing attacks on the watermarked LLM, i.e., generate texts that appear to be watermarked.
Overall, we make the following contributions:

• We provide a framework that accurately estimates underlying parameters of the distortion-
free watermarking algorithm [15] under different threat models. Specifically, we target the
watermark algorithm based on ITS, which uses a sequence of random secret keys and a
permutation over the vocabulary to watermark the LLM.

• With this secret watermark key estimation, we demonstrate a spoofing attack with a high
success rate on four LLMs (Llama-3.1-8B-Instruct [9], Mistral-7B-Instruct [11], Gemma-
7b [27], and OPT-125M [32]). In conjunction with prior work in watermark stealing, these
results highlight the need for refining SOTA watermarking techniques for language models.

2 Preliminary

In this section, we provide relevant background on the inverse-transform mapping-based watermarking
method proposed in Kuditipudi et al. [15], our notations, and a concrete set of threat models. In the
following, we use x to denote a sequence of tokens, xi ∈ V is the i-th token in the sequence, and V is
the vocabulary. For n ∈ N+, we write [n] to denote the set {1, · · · , n}.

2.1 Watermark Generation and Interaction Protocol

Let p : V∗ → ∆(V) be an auto-regressive language model (LM) that maps a string of arbitrary
length to a probability distribution over the vocabulary ∆(V). Given a prefix x ∈ V∗, we denote
the conditional probability distribution over the next token by p(·|x). Let Ξ represent the space of
watermark key elements, and let ξ ∈ Ξn be a secret key sequence. For simplicity, we assume that
each element ξi ∈ [0, 1] : i ∈ [n]. Let π : [|V|]→ V be a fixed bijective permutation mapping from
integers to tokens, where π(i) is the i-th token in the vocabulary sorted according to the permutation π.
The watermarking mechanism is based on ITS as follows; for details, see Algorithm 1 (Appendix C).

1. Key and Mechanism Sharing: The LM provider shares a secret key sequence ξ =
(ξ1, ξ2, . . . , ξn) ∈ Ξn and a bijective permutation function π with the detector.

2. User Prompt: The user provides a prompt x ∈ V∗ to the LM provider.

3. Watermarked Text Generation: The LM provider generates watermarked text Y ∈ V∗ by
applying the following procedure at each token generation step:

(a) Compute the CDF of the LM’s probability distribution over the vocabulary: Ck =∑k
i=1 p(π(i)|x), ∀k ∈ [|V|].

(b) Retrieve the corresponding key element for the t-th token generation: ζ = ξt mod n.
(c) Identify the smallest index k such that Ck ≥ ζ.
(d) Select the token π(k) as the next token in Y .
(e) Append the selected token to the current prefix and update it: x← x⊕ π(k).
(f) Repeat until the desired text length is reached or another termination condition is met.

2.2 Watermark Detection

We adopt the watermark detection using permutation test to compute p-value similar to Kuditipudi
et al. [15]. If the test returns a small p-value, then the text is likely to be watermarked; otherwise, the
text is likely not watermarked. The details are summarized in Algorithm 2 (Appendix C).

2.3 Attacker Model

Attacker’s Objective and Motivation. Our work focuses on the ‘spoofing’ attack, which aims to
generate harmful or incorrect outputs that carry the original LM provider’s watermark. For example,
an attacker can ‘spoof’ the watermarked LM, generate fake news or defamatory remarks, and post
them on social media. The attacker can damage the LM provider and their model’s reputation by
claiming that the LM provider’s model generated these harmful texts.

3

Attacker’s Capabilities. Similar to [12, 23], we make the following assumptions on the attacker’s
capabilities. The attacker has black-box access to the complete generation of the watermarked LM and
is aware of the existence of the watermark used by the LM provider. The attacker aims to use a small
number of queries to the watermarked LM to build an estimation of the underlying watermarking
scheme parameterized by the secret key ξ and permutation π. We further assume that the detection
API is available to the public. The attacker can query the detection API and obtain the watermark
confidence score in terms of p-value. This assumption allows the attacker to verify the effectiveness
of their ‘spoofing’ attack. Following prior work [18, 22, 23] and enabled by OpenAI’s API, we
assume that the top tokens at each position and their probabilities are returned to the attacker.

3 Methodology: Breaking Distortion-free Watermarks

In this section, we explore three different regimes for breaking the distortion-free watermark, focusing
on secret key estimation and recovering the token permutation used in the watermarking process.

Threat Models. The goal of the attack is to reverse-engineer both the permutation π and the secret
keys {ξi} by querying a LM with a variety of carefully designed prompts. We assume that (i) the
model consistently employs the same secret key sequence and permutation for text generation and (ii)
the adversary can interact with the model through these crafted prompt queries to extract information
about its watermarking process 2. Concretely, we consider the following three threat models:

1. Either π is known or {ξi} is known: The attacker either knows the secret key sequence
{ξi} or the permutation π. The goal is to infer the permutation or the secret key sequence,
respectively. The analysis for these two models is in Appendix D.1.

2. Both {ξi} and π are Unknown: The most realistic and challenging model where the
attacker has no knowledge of the secret key sequence {ξi} and the permutation π. Under
this model, the attacker must simultaneously recover both parameters solely from the
observed watermarked outputs. The analysis for this model is in Section 3.1 below.

3.1 Unknown secret key sequence {ξi} and permutation π

In general, if both the random key sequence {ξi} and the permutation π are unknown, it is im-
possible to determine them uniquely. An interesting symmetry emerges in the parameterization of
the watermarking process. Specifically, replacing each ξi with its complement 1− ξi and simultan-
eously reversing the permutation π leaves the watermarking process unchanged. Formally, given
a permutation π, define its reverse counterpart π′ as π′ = reverse(π). Then the transformation
ξi → 1− ξi, π → π′ results in the same watermarking behavior almost surely. Formally, we show in
Theorem 3.1 that this is the only possible alternative parametrization. The proof is in Appendix B.

Theorem 3.1. Given secret keys ξ, ξ̂ ∈ [0, 1], permutations π, π̂ : [|V|]→ V and a probability distri-
bution p ∈ ∆(V). Let S(p, ξ, π) denote the token selection function that outputs the watermarked
token in Algorithm 1. Suppose S

(
p, ξ, π

)
= S

(
p, ξ̂, π̂

)
for almost every p ∈ ∆(V). Then exactly one

of the following must hold: either (i) π = π̂ and ξ = ξ̂ or (ii) π = reverse(π̂) and ξ = 1− ξ̂.

We propose a method to learn one of these two equivalent parameterizations. Our approach relies on
constructing queries that force the LM to choose randomly between two candidate tokens, allowing us
to record the relative order between any pair of tokens. With these pairwise ordering, a comparison-
based sorting algorithm can recover the global ordering π (or its reverse) in O(|V| log |V|) queries.
Specifically, we define a query interface, QueryLLM(a, b), with two tokens a and b as input. With
carefully designed prompts similar to Chen et al. [3], this interface ensures that the model considers
only the two candidate tokens and assigns them equal probabilities. Under the ITS watermark, the
model’s selection between a and b is governed only by the hidden permutation π and the secret key.
In our scheme, if the model outputs token b, we interpret this as a < b; otherwise, we interpret it as
b < a. With this ordering definition, we apply a comparison-based sorting algorithm (e.g., Merge
Sort) to recover an ordered sequence of tokens. The resulting order will correspond either to π or its

2 Kuditipudi et al. [15] suggested using a single random permutation in practice to reduce overhead in both
watermark generation and detection.

4

reverse, which are equally useful. This result reduces the problem to the case where π is known. The
algorithm details and analysis are summarized in Algorithm 7 (Appendix F).

4 Experimental Evaluation

To validate the effectiveness of our watermark spoofing methodology, we conduct a series of exper-
iments under the most challenging threat model where the attacker has no prior knowledge of the
watermark’s secret permutation π or secret key {ξ} (section 3.1 and Appendix F). After inferring the
permuted vocabulary, the problem reduces to the case where the permutation is known (or partially
known), but the secret key still needs to be estimated (section D.2 and appendix E). Our evaluation
addresses three key questions: (Q1) Can an attacker successfully carry out spoofing attacks on the
Kuditipudi et al. [15]’s watermark? (Q2) Do the different LMs affect the spoofing result? and (Q3)
How much computational resources does the attacker need to spoof successfully?

We test our approach using the OpenGen benchmark prompts [14] and the LFQA dataset [6], on
four different LLMs: Llama-3.1-8B-Instruct [2], Mistral-7B-Instruct [11], Gemma-7b [27], and OPT-
125M [32]. We employ three evaluation metrics: the watermark detection p-value from Algorithm 2,
cosine similarity using nomic embed models [20] to calculate semantic similarity, and the output
perplexity (PPL) to measure text fluency and quality. A successful spoofing attack should generate
texts with p-value less than α = 0.05 (Appendix C), PPL on par with ordinary model outputs and
cosine similarity score close to 1 [16]. For additional experimental detail and results, see Appendix G.

(Q1) Successful spoofing attacks on Kuditipudi et al. [15]’s watermark. Our proposed al-
gorithms can successfully spoof the ITS-based watermark by Kuditipudi et al. [15]. First, we evaluate
the spoofing results from the estimated permutation π and secret-key ξi. We follow the procedure
outlined in Section 3 to generate new samples using the recovered permutation and secret key values
(or subsets in the partial order scenarios). Our experimental setup compares three types of generated
text: (1) watermarked text from the watermarked LLM using the true secret key and permutation – a
baseline for expected detector behavior and text quality, (2) non-watermarked text from the same
model (without watermarking mechanism) – a control LLM output, and (3) spoofed text produced by
our attack using the recovered permutation and secret key. We generate 100 samples in each category
with 50 tokens per sample. The results of this evaluation are summarized in Table 1 and Figure 2.

Table 1 shows the median p-values for 100 samples of each generation type across all language
models. Watermarked (WM) text yields low p-values (p < 0.05), and non-watermarked (Non-WM)
text shows high values (p > 0.05), as expected. Across all LLMs, once the attacker has learned the
permutation of the first 50% tokens in the tokenizer, most spoofed samples are below the detection
threshold. Detection starts to fail when only the permutation of the first 25% tokens are learned, with
many spoofed samples detected as non-watermarked. We conclude that our method reliably passes
the detector at moderate-to-high permutation recovery levels (50− 100%) across all models.

Additionally, we examine the quality of the spoofed text to ensure that our attack does not significantly
degrade the coherence of the generated content. We evaluate the text quality using PPL and cosine
similarity, which are viable proxies for human preference [5, 35]. In Table 1 and Figure 2, the
spoofed texts (Spoof @ 50% and Spoof @ 25%) have almost the same perplexity distribution as
the watermarked text. With a fully learned permutation, the spoofed text’s perplexity is slightly
higher on average than genuine watermarked outputs across all LLMs. In Appendix G, we provide
examples of texts generated by our spoofing attack, the watermarked LLM’s generated output and the

Table 1: Comparison of baseline and spoofed outputs on OpenGen dataset. For detection, we report
the median p-value (p-val). For text quality, we report perplexity (PPL) and cosine similarity (co-sim).

Model Non-WM WM Spoof @ 50% Spoof @ 25%

p-val PPL p-val PPL co-sim p-val PPL co-sim p-val PPL co-sim

Llama-3.1-8B 0.48 5.13 1.0e-04 16.32 0.871 1.0e-04 26.51 0.871 5.5e-04 24.09 0.859
Mistral-7B 0.39 8.91 1.0e-04 51.49 0.861 1.0e-04 56.26 0.864 1.0e-04 68.48 0.863
Gemma-7B 0.45 9.89 1.0e-04 59.02 0.85 1.0e-04 81.41 0.837 1.0e-04 86.35 0.829
OPT-125M 0.54 8.77 1.0e-04 132.46 0.836 1.0e-04 130.5 0.834 1.0e-04 133.69 0.845

5

non-watermarked output using the same prompt. Hence, we conclude that humans would be unlikely
to notice any difference in quality, and the outputs are coherent and on-topic given the prompts.

(Q2) Larger models impact spoofing quality. We observe that Gemma-7B underperforms relative
to other models in both spoofing detection success and output perplexity. In contrast, Llama-3.1-8B-
Instruct shows strong spoofing performance due to its highly consistent token ranking, low-entropy
output distributions, and robust response to prompt-based token comparisons. We found that smaller
model like OPT-125M achieve strong spoofing performance, with spoofed outputs consistently
passing the watermark detection test. We do see these smaller models produce text with higher
perplexity, reflecting their limited language fluency and smaller effective vocabulary. While spoofing
is statistically easier, the generated text lacks the quality of outputs from larger LLMs.

(Q3) Query-efficient spoofing attack compared to prior work. An advantage of our framework
is its sample efficiency. By directly querying the model with well-crafted comparisons and leveraging
the structure of the ITS watermarking scheme, we require a low number of queries to steal the
watermark. Although the exact number of queries depends on the vocabulary size and the model’s
consistency, it is typically in order of only tens of thousands for a full reconstruction. This improved
efficiency translates to real-world cost savings for the adversary. If the target model is accessed via a
paid API, an attacker’s job requiring a million queries could be cost-prohibitive [25]. For comparison,
Jovanović et al. [12] reported using 30k queries with 800k tokens to learn token distribution statistics
for breaking a watermark, while our permutation recovery requires significantly fewer queries (<100)
and tokens (<50). Our proposed approach translates to a significant reduction in attack cost and time.

In summary, our experimental evaluation demonstrates that an attacker can (i) reverse-engineer the
secret watermark parameters of a distortion-free watermarked LLM and (ii) use these to generate a
large quantity of spoofed text that fools the watermark detector and remains high-quality.

OPT-125M Mistral-7B
Instruct

Gemma-7B LLaMA-3.1-8B
Instruct

0%

20%

40%

60%

80%

100%

De
te

ct
or

 R
ej

ec
tio

ns
 [%

]

P-values Below Significance Level
(50 tokens, 100 samples)

OPT-125M Mistral-7B
Instruct

Gemma-7B LLaMA-3.1-8B
Instruct

101

102

103

Te
xt

 P
er

pl
ex

ity

Text Perplexity Distribution
(50 tokens, 100 samples)

Text Generation Type
Non-watermarked Watermarked Spoofed (= 25%) Spoofed (= 50%) Spoofed (= 100%) Expected Rejection Under Null

Figure 2: Left: Percentage of p-values below the significance level (α = 0.05) for detection
(Algorithm 2). Spoofed samples have similar rejection rates as watermarked samples. Right:
Distribution of text perplexity. Spoofed samples are not significant different in perplexity compared
to the watermarked text. All experiments are across LLMs and known permutation π proportions.

5 Conclusion and Future Work

This paper presents a novel attack that spoofs Kuditipudi et al. [15]’s LLM watermarking scheme by
using adaptive prompting and a sorting-based query strategy. This allows us to generate ‘spoofed’
high-quality texts that are statistically indistinguishable from genuine watermarked text. Our attack
succeeds even when both the watermark key and the permutation are not known a-priori, with
even a partial recovery of the permutation being sufficient. Our results challenge the security of
distortion-free watermarks and complement existing watermark attacks, showing that the alternative
ITS watermark scheme is also vulnerable and urging caution in using LLM watermarks as a line
of defense. Future works include (i) developing watermarking schemes that are resilient to key
recovery (e.g., dynamic key rotation, randomness during generation), (ii) testing attacks under stricter
constraints (e.g., limited queries or partial detector access), (iii) scaling to larger models and (iv)
exploring how spoofing interacts with other provenance mechanisms like model fingerprinting [29].

6

Acknowledgments and Disclosure of Funding

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References
[1] S. Aaronson. ‘Reform’ AI Alignment with Scott Aaronson. AXRP - the AI

X-risk Research Podcast, 2023. URL https://axrp.net/episode/2023/04/11/
episode-20-reform-ai-alignment-scott-aaronson.html.

[2] M. AI. Llama 3.1 8b instruct, 2024. URL https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct.

[3] R. Chen, Y. Wu, J. Guo, and H. Huang. De-mark: Watermark removal in large language models.
arXiv preprint arXiv:2410.13808, 2024.

[4] Y. Cheng, H. Guo, Y. Li, and L. Sigal. Revealing weaknesses in text watermarking through
self-information rewrite attacks. arXiv preprint arXiv:2505.05190, 2025.

[5] C.-H. Chiang and H. yi Lee. Can large language models be an alternative to human evaluations?,
2023. URL https://arxiv.org/abs/2305.01937.

[6] A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli. Eli5: Long form question
answering, 2019. URL https://arxiv.org/abs/1907.09190.

[7] T. Gloaguen, N. Jovanović, R. Staab, and M. Vechev. Black-box detection of language model
watermarks. arXiv preprint arXiv:2405.20777, 2024.

[8] T. Gloaguen, N. Jovanović, R. Staab, and M. Vechev. Discovering clues of spoofed lm water-
marks. arXiv preprint arXiv:2410.02693, 2024.

[9] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models, 2024.

[10] C. Gu, X. L. Li, P. Liang, and T. Hashimoto. On the learnability of watermarks for language
models, 2024. URL https://arxiv.org/abs/2312.04469.

[11] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/
2310.06825.

[12] N. Jovanović, R. Staab, and M. Vechev. Watermark stealing in large language models, 2024.
URL https://arxiv.org/abs/2402.19361.

[13] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein. A watermark for large
language models. arXiv preprint arXiv:2301.10226, 2023.

[14] K. Krishna, Y. Song, M. Karpinska, J. F. Wieting, and M. Iyyer. Paraphrasing evades detectors
of ai-generated text, but retrieval is an effective defense. In Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS), 2023. URL https://openreview.net/forum?
id=WbFhFvjjKj.

[15] R. Kuditipudi, J. Thickstun, T. Hashimoto, and P. Liang. Robust distortion-free watermarks for
language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=FpaCL1MO2C.

7

https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://arxiv.org/abs/2305.01937
https://arxiv.org/abs/1907.09190
https://arxiv.org/abs/2312.04469
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2402.19361
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=FpaCL1MO2C

[16] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan. Cosine similarity to determine similarity
measure: Study case in online essay assessment. In 2016 4th International Conference on Cyber
and IT Service Management, pages 1–6, 2016. doi: 10.1109/CITSM.2016.7577578.

[17] A. Liu, L. Pan, Y. Lu, J. Li, X. Hu, X. Zhang, L. Wen, I. King, H. Xiong, and P. Yu. A survey of
text watermarking in the era of large language models. ACM Computing Surveys, 57(2):1–36,
2024.

[18] A. Naseh, K. Krishna, M. Iyyer, and A. Houmansadr. Stealing the decoding algorithms of
language models. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 1835–1849. ACM, Nov. 2023. doi: 10.1145/3576915.
3616652. URL http://dx.doi.org/10.1145/3576915.3616652.

[19] K. Ning, J. Chen, Q. Zhong, T. Zhang, Y. Wang, W. Li, Y. Zhang, W. Zhang, and Z. Zheng.
Mcgmark: An encodable and robust online watermark for llm-generated malicious code. arXiv
preprint arXiv:2408.01354, 2024.

[20] Z. Nussbaum and B. Duderstadt. Training sparse mixture of experts text embedding models,
2025. URL https://arxiv.org/abs/2502.07972.

[21] OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt.

[22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback, 2022. URL https://arxiv.org/abs/2203.02155.

[23] Q. Pang, S. Hu, W. Zheng, and V. Smith. No free lunch in llm watermarking: Trade-offs in
watermarking design choices. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[24] J. Piet, C. Sitawarin, V. Fang, N. Mu, and D. Wagner. Mark my words: Analyzing and evaluating
language model watermarks, 2024. URL https://arxiv.org/abs/2312.00273.

[25] V. S. Sadasivan, A. Kumar, S. Balasubramanian, W. Wang, and S. Feizi. Can ai-generated text
be reliably detected?, 2025. URL https://arxiv.org/abs/2303.11156.

[26] H. Steck, C. Ekanadham, and N. Kallus. Is cosine-similarity of embeddings really about
similarity? In Companion Proceedings of the ACM Web Conference 2024, WWW ’24, page
887–890. ACM, May 2024. doi: 10.1145/3589335.3651526. URL http://dx.doi.org/10.
1145/3589335.3651526.

[27] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière,
M. S. Kale, J. Love, P. Tafti, L. Hussenot, P. G. Sessa, A. Chowdhery, A. Roberts, A. Barua,
A. Botev, A. Castro-Ros, A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, B. Tsai,
B. Shahriari, C. L. Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ippolito, D. Reid, E. Buchat-
skaya, E. Ni, E. Noland, G. Yan, G. Tucker, G.-C. Muraru, G. Rozhdestvenskiy, H. Michalewski,
I. Tenney, I. Grishchenko, J. Austin, J. Keeling, J. Labanowski, J.-B. Lespiau, J. Stanway,
J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao-Jones, K. Lee, K. Yu, K. Millican, L. L. Sjoesund,
L. Lee, L. Dixon, M. Reid, M. Mikuła, M. Wirth, M. Sharman, N. Chinaev, N. Thain, O. Ba-
chem, O. Chang, O. Wahltinez, P. Bailey, P. Michel, P. Yotov, R. Chaabouni, R. Comanescu,
R. Jana, R. Anil, R. McIlroy, R. Liu, R. Mullins, S. L. Smith, S. Borgeaud, S. Girgin, S. Douglas,
S. Pandya, S. Shakeri, S. De, T. Klimenko, T. Hennigan, V. Feinberg, W. Stokowiec, Y. hui
Chen, Z. Ahmed, Z. Gong, T. Warkentin, L. Peran, M. Giang, C. Farabet, O. Vinyals, J. Dean,
K. Kavukcuoglu, D. Hassabis, Z. Ghahramani, D. Eck, J. Barral, F. Pereira, E. Collins, A. Joulin,
N. Fiedel, E. Senter, A. Andreev, and K. Kenealy. Gemma: Open models based on gemini
research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

[28] Q. Wu and V. Chandrasekaran. Bypassing llm watermarks with color-aware substitutions, 2024.
URL https://arxiv.org/abs/2403.14719.

8

http://dx.doi.org/10.1145/3576915.3616652
https://arxiv.org/abs/2502.07972
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2312.00273
https://arxiv.org/abs/2303.11156
http://dx.doi.org/10.1145/3589335.3651526
http://dx.doi.org/10.1145/3589335.3651526
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.14719

[29] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling tabular data using
conditional gan. Advances in neural information processing systems, 32, 2019.

[30] H. Zhang, B. L. Edelman, D. Francati, D. Venturi, G. Ateniese, and B. Barak. Watermarks
in the sand: Impossibility of strong watermarking for generative models, 2024. URL https:
//arxiv.org/abs/2311.04378.

[31] R. Zhang, S. S. Hussain, P. Neekhara, and F. Koushanfar. {REMARK-LLM}: A robust and
efficient watermarking framework for generative large language models. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 1813–1830, 2024.

[32] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022.

[33] Z. Zhang, X. Zhang, Y. Zhang, L. Y. Zhang, C. Chen, S. Hu, A. Gill, and S. Pan. Large
language model watermark stealing with mixed integer programming, 2024. URL https:
//arxiv.org/abs/2405.19677.

[34] X. Zhao, P. Ananth, L. Li, and Y.-X. Wang. Provable robust watermarking for ai-generated text,
2023. URL https://arxiv.org/abs/2306.17439.

[35] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot
arena, 2023. URL https://arxiv.org/abs/2306.05685.

9

https://arxiv.org/abs/2311.04378
https://arxiv.org/abs/2311.04378
https://arxiv.org/abs/2405.19677
https://arxiv.org/abs/2405.19677
https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2306.05685

A Related Work

LLM Watermark. Advances in large language models have led to promising applications in
various real-world domains. However, there is growing concern that language models may be
misused for spreading fake news, generating harmful content, and facilitating academic dishonesty.
In response, a growing body of research has proposed watermarking as a framework to reliably
detect LLM-generated content and mitigate the potential for malicious use [1, 13, 15, 19, 24, 33].
These approaches embed an ‘invisible’ watermark in the model-generated output, which can later
be identified and verified using a secret key. Existing LLM watermarking schemes share various
desirable properties: (i) the watermark should be easily detected given knowledge of the secret key;
(ii) the watermark should not degrade model-generated outputs; (iii) the watermark should be robust
against adversarial attacks; and (iv) the watermark should not be easily stolen for spoofing or removal
attacks. However, recent work on ‘watermark stealing’ directly challenges these theoretical claims.

LLM Watermark Stealing. The literature on LLM watermark and watermark stealing primarily
considers two attacks: scrubbing and spoofing. Prior work on watermark scrubbing studies effective
watermark removal by paraphrasing [4, 12, 14, 14, 30] or leveraging the LM’s side information [23].

In this work, we instead focus on the ‘spoofing’ attack. The primary approach in this literature is first
to estimate the watermarking scheme, then embed this secret key approximation into arbitrary content
to generate spoofing attacks. The first work that comprehensively studied spoofing is Sadasivan
et al. [25], which targets Kirchenbauer et al. [13]’s distribution-modifying watermark. The authors
query the watermarked LLM a million times to learn the underlying token pair distribution, then
manually compose texts to spoof the watermark. Follow-up works [10, 12, 17] further highlight the
importance of spoofing by operating in more realistic settings. Notably, Jovanović et al. [12] spoofs
Kirchenbauer et al. [13]’s soft watermark without access to the watermark z-score detector and no
base (non-watermarked) responses. The work most related to ours is Pang et al. [23], who provide
spoofing attacks on the three most prominent LLM watermarking schemes: KGW [13], Unigram [34],
and EXP [15]. Instead of directly estimating the watermarking scheme, the authors leverage the
public detection API to enable more sample-efficient spoofing and propose a differential privacy
approach to mitigate the risks of having a public detection API. Our work differs from this work in
that we consider the inverse transform sampling (ITS) watermark approach in Kuditipudi et al. [15]
instead of the exponential minimum sampling (EXP) approach. Kuditipudi et al. [15] suggests the
EXP watermark in practice when robustness is of higher priority and the ITS watermark in practice
when detection throughput is of higher priority. Thus, our results complement their findings and
complete the spoofing attacks on both watermark approaches in Kuditipudi et al. [15].

B Identifiability of the Reverse-Transform-Based Watermarking Scheme

In this section, we establish an identifiability result for the reverse-transform-based watermarking
scheme. Specifically, we address whether it is possible to uniquely recover both the secret key
ξ ∈ [0, 1] and the permutation π, given outputs from queries to the language model. Formally, we
define a selection function S as follows: given a probability distribution p ∈ ∆(V), a secret key
ξ ∈ [0, 1], and a permutation π, the output S(p, ξ, π) denotes the token generated according to the
procedure described in Algorithm 1.

Lemma B.1. Suppose the selection function satisfies

S(p, ξ, π) = S(p, ξ̂, π̂), for p almost everywhere on ∆(V),

where ξ, ξ̂ ∈ [0, 1] are secret keys, and π, π̂ are permutations over the vocabulary. Then, it must hold
that either π = π̂ or π is the reverse permutation of π̂.

Proof. We prove by contradiction. Assume there exist two permutations π1 and π2 that are neither
identical nor mutual reverses, such that S(p, ξ, π1) ≡ S(p, ξ̂, π2) for some secret keys ξ and ξ̂.

Then by mathematical induction, we show that there exists tokens a, b, c such that b lies between a
and c in π1 but not in π2.

Now consider a probability distribution p(x) parametrized by x over these tokens defined as follows:

10

• Token a is assigned probability x,

• Token b is assigned probability 0.5(1− x),

• Token c is assigned probability 0.5(1− x),

• All other tokens have probability zero.

As x increases from 0 to 1, the sampled tokens under permutation π1, S(p(x), ξ, π1) emerge in an
ordered progression, sometimes involving only two of {a, b, c}, sometimes all three, depending on
the secret key ξ, but in every case b invariably appears as the second token in that sequence.

However, under permutation π2, since token b is not positioned between tokens a and c, the sequential
appearance of these three tokens as x changes will differ substantially. In fact, token b will never
appear as the second token shown in S(p(x), ξ̂, π2), no matter what the ξ̂ is. This contradicts with
the assumption S(p, ξ, π1) ≡ S(p, ξ̂, π2).

Lemma B.2. Suppose the selection function satisfies

S(p, ξ, π) = S(p, ξ̂, π), for p almost everywhere on ∆(V),

where ξ, ξ̂ ∈ [0, 1] are secret keys. Then, it must hold that ξ = ξ̂.

Proof. Assume, for the sake of contradiction, that there exist keys ξ ̸= ξ̂ such that S(p, ξ, π) =

S(p, ξ̂, π) for a.e. p ∈ ∆(V). Without loss of generality, let ξ > ξ̂.

Denote the first and second tokens in the permutation π by a := π(1) and b := π(2), respectively.
Consider a probability distribution p(x)

px(a) = x, px(b) = 1− x, px(c) = 0 for all c /∈ {a, b}, 0 ≤ x ≤ 1.

For any x ∈ (ξ̂, ξ) we then have

S
(
px, ξ, π

)
= a while S

(
px, ξ̂, π

)
= b,

contradicting the assumed equality of the two outputs. This finishes the proof.

With Lemma B.1 and Lemma B.2, we are ready to present the proof of Theorem 3.1, which highlights
an intriguing equivalence between the two parameterizations:

Proof. By lemma B.1, we know either π = π̂ or π = reverse(π̂) holds. If π = π̂, we have
S(p, ξ, π) = S(p, ξ̂, π) for almost every p ∈ ∆(V). Then, by lemma B.2, we obtain ξ = ξ̂.

If π = reverse(π̂), first note that

S
(
p, ξ̂, π̂

)
= S

(
p, 1− ξ̂, inv(π̂)

)
for almost every p ∈ ∆(V), (1)

which holds for any ξ̂, π̂. Because π = inv(π̂), (1) becomes

S
(
p, ξ̂, π̂

)
= S

(
p, 1− ξ̂, π

)
for almost every p ∈ ∆(V).

By assumption,
S
(
p, ξ, π

)
= S

(
p, ξ̂, π̂

)
for almost every p ∈ ∆(V),

so we further have

S
(
p, ξ, π

)
= S

(
p, 1− ξ̂, π

)
for almost every p ∈ ∆(V).

Applying lemma B.2 again yields ξ = 1− ξ̂.

11

C Appendix: Additional Background on Watermarking

In this section, we include the full algorithms used by Kuditipudi et al. [15] to generate the watermark
using inverse transform sampling (Algorithm 1) and to detect the watermark (Algorithm 2) for
completion.

Algorithm 1: Watermarked Text Generation via Inverse Transform Sampling
Input: Watermark key sequence ξ = (ξ1, ξ2, . . . , ξn) ∈ Ξn, generation length m ∈ N, language

model p : V∗ → ∆(V), bijective permutation function π : [|V|]→ V , vocabulary V .
Output: Generated watermarked string y = (y1, . . . , ym) ∈ Vm

1: for t = 1 to m do
2: Ck =

∑k
i=1 p(π(i)|y:t−1), ∀k ∈ [|V|]}

3: ζ = ξt mod n

4: k = min{k | Ck ≥ ζ}
5: yt = π(k)
6: return y

At detection time, Algorithm 2 is used to detect the watermark by using a permutation test to obtain
a p- value. If the test returns a small p-value (typically chosen to be p < 0.05), then the text is
watermarked.

Algorithm 2: Watermark Detection via Alignment Cost
Input: • Watermark key sequence ξ = (ξ1, . . . , ξn) ∈ [0, 1]n.

• Candidate text ỹ = (ỹ1, . . . , ỹm).
• Permutation π : {1, . . . , |V|} → V .
• Language model p : V∗ → ∆(V).
• Number of random samples T for the permutation test.

Output: p-value p indicating the likelihood that ỹ is watermarked.
1: D ← COMPUTEALIGNMENTCOST(ỹ, ξ)
2: c← 0
3: for i = 1 to T do
4: Sample µ(i) ∼ U [0, 1]n
5: D(i) ← COMPUTEALIGNMENTCOST(ỹ, µ(i))
6: if D ≥ D(i) then
7: c← c+ 1
8: p← 1+c

T+1
9: return p

10: Function COMPUTEALIGNMENTCOST(ỹ, ξ):
11: D ← 0
12: for t = 1 to m do
13: kt ← π−1(ỹt) ▷ Obtain token index under π
14: Ckt

←
∑kt

j=1 p
(
π(j) | ỹ:t−1

)
▷ Compute cumulative probability

15: ζt ← ξt mod n ▷ Retrieve key element
16: dt ← |Ckt − ζt| ▷ Token alignment cost
17: D ← D + dt
18: return D
19: End Function

12

Algorithm 3: Dataset Construction for Reverse-Engineering the Permutation
Input: Fixed prompt xprefix, number of queries N
Output: Dataset D = {(ξi, xi) | i ∈ [N]}

1: for i = 1 to N do
2: Sample a random key ξi ∼ U [0, 1].
3: Query the language model with the fixed prompt xprefix using ξi.
4: Receive response and extract the first token xi.
5: return D

D Methodology: First two threat models

D.1 Known secret key sequence {ξi}, reverse-engineer permutation π:

When the random key sequence {ξi} is known, the attacker’s goal is to reconstruct the permutation
map π. In this regime, we assume that the attacker can modify the random key sequence {ξi} to
perform queries for inferring the permutation. To facilitate this, we construct a dataset of (secret key,
prompt) pairs {(ξi, xi)} as follows (details are summarized in Algorithm 3):

1. Fixed Prompt: A fixed prompt xprefix, e.g., ‘Once upon a time,’ is used across multiple
queries to ensure the conditional probability distribution p(·|xprefix) remains the same.

2. Multiple Queries: For each query to the LM, a different random key ξi ∈ [0, 1] is used.
The key ξi determines the CDF threshold for selecting the first token xi in the response.

3. Dataset Construction: By repeatedly querying the language model with the fixed prompt
xprefix and different random keys ξi, we obtain a collection of pairs {(ξi, xi)}, where each
xi is the first token selected in response to ξi.

Then, we utilize a sorting-based algorithm to reverse engineer by first sorting the observed data pairs
{ξi, xi} in ascending order of ξi. Then, we record the order in which each unique token xi appears
for the first time. This sequence of first occurrences defines the estimated permutation π over the
vocabulary. The detail of this sorting-based algorithm is summarized in Algorithm 4.

Algorithm 4: Reverse-Engineer Secret Permutation π

Input: Dataset D = {(ξi, xi) | i ∈ [N]}
Output: Recovered permutation π

1: Sort D in ascending order by ξi to obtain {(ξ(1), x(1)), (ξ(2), x(2)), . . . , (ξ(N), x(N))}.
2: Initialize empty list R = ∅.
3: for i = 1 to N do
4: if R is empty or x(i) is not the last element of R then
5: Append x(i) to R.
6: Set π ← R.
7: return π.

D.2 Known permutation π, reverse-engineer secret key sequence {ξi}

In this regime, where the permutation π is known to the adversary, each generated token x can be
mapped to its corresponding index in the vocabulary via the inverse mapping k = π−1(x). Given
an index k, the secret key ξ corresponding to the token x’s selection must lie within the following
interval determined by the cumulative distribution function of the language model, i.e., Ck−1 <
ξ ≤ Ck, where the Ck−1 and Ck are the CDF values with respect to permutation π defined as
Ck =

∑k
j=1 p

(
π(j) | prefix

)
with the convention C0 = 0.

With this principle, we use Algorithm 5 to estimate the secret keys when the permutation is known.
When the attacker only knows a partial ordering over a subset of tokens, we could modify Algorithm 5
with the same principle to estimate the secret keys. The details are in Algorithm 6 (Appendix E).

13

Algorithm 5: Reverse-Engineering Pseudorandom Secret Key from Watermarked Outputs
Input: • A set of output sentences Y generated by the watermarked model.

• Known permutation π (and its reverse mapping π−1).
• Watermark key length n (i.e., there are n pseudorandom numbers ξ1, ξ2, . . . , ξn).

Output: Estimated lower bound LBi and upper bound UBi for each pseudorandom number ξi:i∈[n].
1: Initialization: For i = 1 to n, set LBi ← 0 and UBi ← 1.
2: for each sentence y ∈ Y do
3: for each token ys in y (with s as the token index) do
4: i← s mod n.
5: Compute k ← π−1(ys).
6: Compute the cumulative probabilities Ck−1 and Ck with respect to permutation π, where

Ck =
∑k

j=1 p
(
π(j) | prefix

)
and C0 = 0.

7: Update bounds: LBi ← max(LBi, Ck−1), UBi ← min(UBi, Ck).
8: return {(LBi,UBi)}ni=1

E Appendix: Reverse-Engineering Pseudorandom Numbers from
Watermarked Outputs with Partial Ordering

As mentioned in section D.2, when the attacker only knows a partial ordering over a subset of tokens,
we can use the same principles to estimate the secret keys. Algorithm 6 below includes the details on
how to modify Algorithm 5 in such settings.

Algorithm 6: Reverse-Engineering Pseudorandom Numbers from Watermarked Outputs
with Partial Ordering

Input: • A set of output sentences Y generated by the watermarked model.
• A subset S ⊂ V with known ordering given by π−1 (i.e., for each t ∈ S, π−1(t) is

known).
• Watermark key length n (i.e., there are n pseudorandom numbers ξ1, ξ2, . . . , ξn).

Output: Estimated bounds for each pseudorandom number ξi (i.e., lower bound LBi and upper
bound UBi for i = 1, . . . , n).

1: Initialization: For i = 1 to n, set LBi ← 0 and UBi ← 1.
2: for each sentence y ∈ Y do
3: for each token ys in y (with s as the token index) do
4: i← s mod n
5: if ys ∈ S then
6: Let r ← π−1(ys).
7: Compute the lower temporary bound:

Ltemp =
∑
t∈S

π−1(t)<r

p
(
t | prefix

)
.

8: Compute the upper temporary bound:

Utemp = 1−
∑
t∈S

π−1(t)>r

p
(
t | prefix

)
.

9: Update bounds:

LBi ← max
(
LBi, Ltemp

)
, UBi ← min

(
UBi, Utemp

)
.

10: return {(LBi, UBi)}ni=1

14

F Appendix: Recover Permutation via MergeSort

In this section we include the details of the algorithm to recover the permutation order via MergeSort,
as mentioned in section 3.1.

Algorithm 7: Recover Global Ordering via QueryLLM and MergeSort
Input: Vocabulary of tokens T = {t1, t2, . . . , tn}
Output: Ordered token sequence Tsorted equivalent to the hidden permutation π (or its reverse)

1: Tsorted ← MERGESORT(T)
2: return Tsorted
3: Function QueryLLM(a, b):
4: Query the language model with a prompt that forces a random choice between a and b.
5: If the model outputs token b, then interpret as a < b;
6: Else interpret as b < a.
7: Return the corresponding comparison result.
8: End Function
9: Function MERGESORT(arr):

10: If length(arr) ≤ 1
11: return arr
12: mid← ⌊length(arr)/2⌋
13: left← MERGESORT(arr[0 : mid])
14: right← MERGESORT(arr[mid :])
15:
16: return MERGE(left, right)
17: End Function
18: Function MERGE(left, right):
19: merged← empty list; i← 0; j ← 0
20: While i < length(left) and j < length(right):
21: If QueryLLM(left[i], right[j]) returns "a < b":
22: Append left[i] to merged
23: i← i+ 1
24: Else:
25: Append right[j] to merged
26: j ← j + 1
27: End While
28: Append remaining elements of left[i :] to merged
29: Append remaining elements of right[j :] to merged
30:
31: return merged
32: End Function

We provide the following result to illustrate why Algorithm 7 is indeed a valid approach in our setting.
Fact F.1. Let the probability distribution p be defined over tokens as

p(a) = 0.5, p(b) = 0.5, p(c) = 0 for all other tokens c.

Suppose the permutation π satisfies π−1(b) > π−1(a). Then the selection output satisfies:

S(p, ξ, π) =

{
a, if ξ ≤ 0.5,

b, if ξ > 0.5.

The proof of fact F.1 is straight forward, therefore we omit it.

With this fact established, the validity of algorithm 7 becomes clear: if the corresponding secret
key satisfies ξ ≤ 0.5, then QueryLLM(a, b) returns the token appearing earlier in the permutation π,
causing the algorithm to recover inv(π). Otherwise, it returns the token appearing later, enabling
direct recovery of π. In either case, the algorithm remains valid.

15

G Appendix: Additional Experiments

In this section, we provide additional experimental detail and results previously omitted from
Section 4.

Text Quality Evaluation We apply the watermark detection and compute the perplexity of each
sample using the base Llama-3.1-8B model to generate the perplexity scores. In addition, we use
the Nomic Embed Model [20] to generate embeddings to calculate the cosine similarity between
spoofed text and the non-watermarked text as well as between the genuine watermarked text and the
non-watermarked text.

We compute perplexity using a separate reference language model (Llama-3.1-8B) that is different
from the generation model. We decode each output using the generation model’s tokenizer to preserve
lexical fidelity, then re-tokenize the resulting text with the perplexity model’s tokenizer for scoring.
To mitigate distortion from rare token artifacts or malformed completions, we filter the samples with
perplexity values that exceed the 95th percentile within each batch (similar to how Jovanović et al.
[12] define their attack success metric). For completion, we also report the results using unfiltered
samples in Table 3 and Table 4 in Appendix G. Cosine similarity measures how similar two vectors
are regardless of their magnitude [26]. We generate learned embeddings using the pretrained nomic
embed language model [20] to turn each generated text into a vector which captures the meaning of
the sentences. We then calculate the cosine similarity of the non-watermarked text vectors compared
to the watermarked text vectors and spoofed text vectors which tells us how close the vectors point
in the same directions. Table 1 presents these statistics for the same sets of samples, where low
perplexity and high cosine similarity indicates more fluent text.

G.1 Evaluating Estimated Vocabulary Permutation π and Estimated Secret Key

First, we investigate whether an attacker can successfully recover the secret permutation π and key
sequence {ξ}. As described in Section 3.1, when the permutation is unknown, the attacker can
estimate it by adaptively querying the LLM with pairwise token comparisons (the QueryLLM(a,b)
procedure in Appendix F) and aggregating these comparisons via a merge-sort algorithm. This
process would accurately estimate the true permutation in an ideal scenario with a perfectly consistent
LLM that always follows instructions. In practice, LLMs may not provide a full-ordered preference
for all token pairs (due to model uncertainties or equal probabilities). We address this issue by
forcing a decision in ambiguous comparisons: if the model returns a tie, we break the tie arbitrarily
to obtain a complete ordered list. We find this strategy effective: using well-engineered comparison
prompts, an attacker can obtain an accurate estimation of the permutation over the vocabulary. We
observe that smaller model (e.g., OPT-125M) are often easier to spoof, i.e., spoofed generations more
consistently pass watermark detection despite only partial permutation recovery. We attribute this to
two primary factors: (i) smaller models tend to have lower-entropy token distributions, making the
ITS watermarking mechanism more brittle to approximate key values and permutation errors; and (ii)
the lower diversity of output sequences in smaller models reduces alignment cost variance, leading to
more forgiving p-values under the permutation test. However, while spoofing detection is easier, the
output quality suffers: larger models like Llama-3.1-8B and Mistral-7B produce significantly more
fluent and coherent text, as evidenced by consistently lower perplexity and higher cosine similarity
scores.

Figure 3 shows the mean absolute error (MAE) when estimating the secret keys as a function of the
percentage of known permutation π for the model vocabulary. As expected, we observe that the more
information on π, the more accurate the estimation process, with the estimation error being virtually
unchanged after at least 60% of the permutation is known, validating the use of Algorithm 5 and the
theoretical insights in Appendix B. Additionally, we note that in practice a successful spoofing attack
might depend on the dataset, model and prompt used, and hence we leave for a future work exploring
the connection between the estimation error of secret keys and the feasibility of spoofing attacks.

G.2 Additional spoofing evaluations

Partial recovery. Our results in Table 1 and Figure 2 show that perfect recovery of the permutation
is not needed to carry out a spoofing attack - a partially correct permutation can suffice. We
verify this by evaluating the attacker’s success rate when only some of the true permutation is

16

20 40 60 80 100
Known Permutation (%)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

500 samples
50.0 tokens/sample

Secret Key MAE vs. Known Permutation

Figure 3: Secret key estimation error (MAE) as a function of known permutation fraction π using
500 samples of 50 tokens each.

known. Even with only approximately the first half of the permutation recovered, spoofing the
watermarked text with high success rate and minimal PPL penalty is possible across all model types.
As permutation knowledge increases, the attack is more effective. Even with moderate permutation
recovery (e.g., when the attacker successfully recovered the permutation of the first 50% of tokens),
the secret key estimation error remains low and enables successful spoofing. Overall, we demonstrate
that an attacker can recover both components of the distortion-free watermark. With a sufficiently
accurate estimate of π and {ξ}– achieved with a feasible number of queries – the attacker is then able
to generate spoofed text.

(Q2) Larger models impact spoofing quality. We observe that Gemma-7B underperforms relative
to other models in both spoofing detection success and output perplexity. This behavior may be due
to the LLM’s more diffuse token distribution and less consistent top-k token ranking, which impair
permutation recovery and increase alignment cost under the ITS watermark detection metric. In
contrast, Llama-3.1-8B-Instruct shows strong spoofing performance due to its highly consistent token
ranking, low-entropy output distributions, and robust response to prompt-based token comparisons.
These traits make it easier to recover the watermark permutation and generate spoofed text that
passes detection with low perplexity. We found that smaller model like OPT-125M achieve strong
spoofing performance, with spoofed outputs consistently passing the watermark detection test. We
attribute this to their flatter output distributions, which make the ITS watermarking more tolerant to
approximation errors in the spoofing parameters. We do see these models produce text with higher
perplexity, reflecting their limited language fluency and smaller effective vocabulary. While spoofing
is statistically easier, the generated text lacks the quality of outputs from larger LLMs.

Filtering out high perplexity outliers In Section 4, we have presented Table 1 containing the
summary statistics for evaluating the spoofing attack on different LLMs. For completeness, we also
provide additional tables of the same format in the appendix. Particularly, we see some outliers with
high p-values bringing the mean p-value up (Table 2). The main differences between the results in
Table 1 and these additional tables are two-fold: (i) in Table 3 and 4, we report the results without
filtering outliers as described in Section 4 (we filter the samples with PPL values that exceed the
95th percentile within each batch); and (ii) in Table 2 and 4, we report the mean p-value across 100
samples instead of the median p-value. Furthermore, we provide the comparison of p-value and
perplexity across different LLMs without filtering outliers in PPL values Figure 4. In these new
results, our observations are consistent with the findings in Section 4. Our proposed approach can
successfully spoof the watermark by Kuditipudi et al. [15] across different LLMs, and the spoofing
results generally improves with more capable LLMs.

Additional dataset: LFQA. In addition to the spoofing results on the OpenGen dataset, we
also evaluate the robustness of our spoofing attack on the LFQA dataset[6], which contains long-
form question-answering prompts. Despite the domain shift and the stylistic differences in prompt
structure, we found that our attack remained consistently effective across different LLMs (Llama-
3.1-8B, Mistral-7B, OPT-125M). The spoofed generations on LFQA achieves low p-value, are

17

Table 2: Comparison of baseline and spoofed outputs with various LLMs. We report the mean p-value
(p-val) for detection test, and a combination of perplexity (PPL) and cosine similarity (co-sim) with
thresholding for the text quality assessment.

Model Non-WM WM
p-val PPL p-val PPL co-sim

Llama-3.1-8B 0.5 5.67 3.4e-02 29.79 0.866
Mistral-7B 0.5 9.56 8.2e-03 65.08 0.855
Gemma-7B 0.5 9.96 8.7e-02 119.41 0.846
OPT-125M 0.5 9.84 1.1e-04 176.73 0.834

Model Spoof @ 50% Spoof @ 25%

p-val PPL co-sim p-val PPL co-sim

Llama-3.1-8B 5.6e-02 108.04 0.869 1.2e-01 55.53 0.854
Mistral-7B 6.1e-03 65.83 0.86 3.4e-02 74.79 0.858
Gemma-7B 7.6e-02 119.84 0.838 1.6e-01 134.15 0.833
OPT-125M 1.0e-04 150.08 0.832 1.4e-02 155.6 0.836

Table 3: Comparison of baseline and spoofed outputs with various LLMs. We report the median
p-value (p-val) for detection test, and a combination of perplexity (PPL) and cosine similarity (co-sim)
without thresholding for the text quality assessment.

Model Non-WM WM
p-val PPL p-val PPL co-sim

Llama-3.1-8B 0.5 5.5 1.0e-04 18.09 0.871
Mistral-7B 0.5 13.01 1.0e-04 66.91 0.861
Gemma-7B 0.5 11.22 1.0e-04 65.53 0.85
OPT-125M 0.5 10.08 1.0e-04 142.79 0.836

Model Spoof @ 50% Spoof @ 25%

p-val PPL co-sim p-val PPL co-sim

Llama-3.1-8B 1.0e-04 24.52 0.871 1.0e-04 27.47 0.859
Mistral-7B 1.0e-04 66.89 0.864 1.0e-04 80.61 0.863
Gemma-7B 1.0e-04 84.61 0.837 1.0e-04 92.22 0.829
OPT-125M 1.0e-04 142.04 0.834 1.0e-04 147.35 0.845

indistinguishable from genuine watermarked text, and maintain high text quality as measured through
perplexity. These results demonstrate that our spoofing attack generalizes well across datasets with
different linguistic characteristics, and is not overfitted to a particular prompt style or topic distribution.
We summarize these results in Table 5 below.

G.3 Spoofing Examples

We provide additional examples of our spoofing attacks. Specifically, under the same prompt "What
is Quantum Computing", we report the outputs from a non-watermarked LM, watermarked LM and
our spoofing attack as well as the p-value (for watermark detection) and perplexity score (for text
quality) using Llama-3.1-8B-Instruct for all generation types.

Prompt: "What is Quantum Computing?" (200 tokens)

Watermarked Output

A quantum computer is a developing field of technology that uses the principles of
quantum mechanics, such as superposition and entanglement, to perform calcula-
tions and operations that are beyond the capabilities of traditional computers.

18

Table 4: Comparison of baseline and spoofed outputs with various LLMs. We report the mean p-value
(p-val) for detection test, and a combination of perplexity (PPL) and cosine similarity (co-sim) without
thresholding for the text quality assessment.

Model Non-WM WM
p-val PPL p-val PPL co-sim

Llama-3.1-8B 0.5 6.27 3.2e-02 409.25 0.866
Mistral-7B 0.5 14.69 7.8e-03 89.11 0.855
Gemma-7B 0.5 12.04 8.1e-02 172.82 0.846
OPT-125M 0.5 11.62 1.1e-04 199.52 0.834

Model Spoof @ 50% Spoof @ 25%

p-val PPL co-sim p-val PPL co-sim

Llama-3.1-8B 3.3e-02 299.5 0.869 1.6e-02 717.58 0.854
Mistral-7B 5.7e-03 87.97 0.86 4.2e-02 98.18 0.858
Gemma-7B 1.0e-01 153.86 0.838 1.5e-01 163.26 0.833
OPT-125M 1.0e-04 185.79 0.832 1.3e-02 172.88 0.836

OPT-125M Mistral-7B
Instruct

Gemma-7B LLaMA-3.1-8B
Instruct

0%

20%

40%

60%

80%

100%

De
te

ct
or

 R
ej

ec
tio

ns
 [%

]

P-values Below Significance Level
(50 tokens, 100 samples)

OPT-125M Mistral-7B
Instruct

Gemma-7B LLaMA-3.1-8B
Instruct

101

102

103

104

Te
xt

 P
er

pl
ex

ity
Text Perplexity Distribution
(50 tokens, 100 samples)

Text Generation Type
Non-watermarked Watermarked Spoofed (= 25%) Spoofed (= 50%) Spoofed (= 100%) Expected Rejection Under Null

Figure 4: Spoofing results as in Figure 2, but without removing generated low-quality text. Left: Per-
centage of p-values below the significance level (α = 0.05) for watermark detection in Algorithm 2,
across LLMs and known permutation π proportions. Our spoofing attacks achieve similar rejection
rates as watermarked samples from each model. Right: Distribution of text perplexity for the gener-
ated samples, across LLMs and known permutation π proportions. Our spoofed attacks do not exhibit
significant difference in perplexity distributions with respect to the watermarked text.

Table 5: Comparison of baseline and spoofed outputs with various LLMs on the LFQA dataset.
We report the median p-value (p-val) for detection test, and perplexity (PPL) for the text quality
assessment.

Model Non-WM WM Spoof 50 Spoof 25
p-val PPL p-val PPL p-val PPL p-val PPL

Llama-3.1-8B 0.49 3.68 1.0e-04 11.58 2.0e-04 14.02 8.8e-03 19.14
Mistral-7B 0.44 5.13 1.0e-04 6.28 1.0e-04 31.57 1.0e-04 37.23
OPT-125M 0.52 5.77 1.0e-04 56.34 1.0e-04 66.60 1.0e-04 65.89

Quantum computers are designed to solve complex problems, such as simulating
chemical reactions or factoring large numbers, exponentially faster than classical
computers. They work by manipulating qubits (quantum bits) that can exist in mul-
tiple states simultaneously, allowing for massive parallel processing and exploration
of vast solution spaces.

19

The core concept of quantum computing is to exploit the inherent properties of
quantum systems to perform operations that cannot be simulated with classical
computers. These properties include:
Quantum superposition: A qubit can represent both 0 and 1 simultaneously,
enabling it to process multiple possibilities at once.
Quantum entanglement: Qubits can become “entangled,” meaning their proper-
ties are connected, allowing for instant communication and correlation between
them.
Quantum measurement: Measuring a quantum system collapses it into a definite
state, which is used to extract information from the system.

Non-Watermarked Output

What is quantum computing? Quantum computing is a new paradigm for com-
puting that uses the principles of quantum mechanics to perform calculations and
operations on data.
Quantum computing is based on the principles of superposition, entanglement, and
interference, which allow for the processing of vast amounts of data in parallel.
Quantum computing has the potential to solve complex problems that are currently
unsolvable with classical computers.
Quantum computing is a new and rapidly evolving field that has the potential to
revolutionize the way we approach complex problems in fields such as crypto-
graphy, optimization, and machine learning. Quantum computing is based on the
principles of quantum mechanics, which describe the behavior of matter and energy
at the smallest scales. Quantum computing uses quantum bits, or qubits, which can
exist in multiple states simultaneously, unlike classical bits, allowing for massive
parallelism in computation.

Spoofed Output

A quantum computer is a computer that can use quantum mechanical phenomena,
such as superposition and entanglement, that enable it to solve certain problems that
are difficult for a classical computer to solve, faster and more efficiently. Quantum
computing is a new and rapidly evolving field which has seen significant advances
in recent years.
Quantum computers are based on quantum mechanical systems, such as quantum
bits (qubits) and quantum gates, and are able to perform certain operations that
are beyond the capabilities of classical computers. Quantum computers have
the potential to revolutionize the field of computation and may have important
applications in fields such as cryptography, optimization, and simulation.
A classical computer works on binary (0, 1) bits to process information and make
decisions. In contrast, a quantum computer will work on quantum bits (0, 1, 2, and
other states), known as qubits, which allow for complex operations and parallelism.
Quantum computing has the potential to accelerate countless applications and
industries.

Table 6: Summary statistics comparing generation types by detection p-value and perplexity.
Generation Type p-value Perplexity

Watermarked 9.999× 10−5 2.74
Non-Watermarked 0.469 1.56
Spoofed 9.999× 10−5 11.49

20

H Computational Resources

Both experiments and evaluations are run on an Ubuntu Machine with 96 Intel Xeon Platinum 8259CL
CPUs, 384GB of RAM, a storage volume of 500 Gb and 8 A100 NVIDIA Tensor Core GPUs.

I Limitations and Broader Impact

Limitations. We focus on the ITS variant of the robust distortion-free watermark, which augment
the line of work on stealing SOTA robust watermark. A comprehensive study on other distortion-free
watermarks that share this (secret key, permutation) structure would be an interesting future direction.
Furthermore, in our experiments, we use the same LLM architecture for the base watermarked model
and the spoofing model, e.g., we use OPT-125M to generate the watermarked outputs and spoof
by running our proposed approach on OPT-125M. An interesting extension of our work could be
evaluating whether the current approach can still spoof successfully when the base model and the
attacking models are different. Particularly, if our approach can spoof a large, watermarked LLM by
using a smaller, distilled model, then our approach would be more applicable in practice and further
challenge the theoretical claims of Kuditipudi et al. [15]’s watermark. Finally, our experiments only
use a single dataset: OpenGen [14]. Evaluating our approach on more datasets used in the watermark
stealing literature would strengthen our theoretical and empirical claims.

Impact Statement. As outlined in prior research, watermarking plays a crucial role in addressing
social issues such as detecting plagiarism, tracing text origins, and combating misinformation. Our
work investigates vulnerabilities in LLM watermarking that could potentially be exploited by attackers
to break the watermark mechanism, posing risks to the owners or users of the model. However,
we believe that our research has a positive societal impact by revealing the current weaknesses of
watermarking methods, highlighting the need for stronger, more reliable systems, and advocating for
improved evaluation frameworks. Ultimately, this work contributes to advancing the field toward
more effective LLM watermarking solutions.

21

	Introduction
	Preliminary
	Watermark Generation and Interaction Protocol
	Watermark Detection
	Attacker Model

	Methodology: Breaking Distortion-free Watermarks
	Unknown secret key sequence {i} and permutation

	Experimental Evaluation
	Conclusion and Future Work
	Related Work
	Identifiability of the Reverse-Transform-Based Watermarking Scheme
	Appendix: Additional Background on Watermarking
	Methodology: First two threat models
	Known secret key sequence {i}, reverse-engineer permutation :
	Known permutation , reverse-engineer secret key sequence {i}

	Appendix: Reverse-Engineering Pseudorandom Numbers from Watermarked Outputs with Partial Ordering
	Appendix: Recover Permutation via MergeSort
	Appendix: Additional Experiments
	Evaluating Estimated Vocabulary Permutation and Estimated Secret Key
	Additional spoofing evaluations
	Spoofing Examples

	Computational Resources
	Limitations and Broader Impact

