ONE PATCH DOESN'T FIT ALL: ADAPTIVE PATCHING FOR NATIVE-RESOLUTION MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

ABSTRACT

Real-world visual signals are inherently variable in resolution, and it is natural to endow multimodal large language models (MLLMs) with such native-resolution perception capabilities. In principle, for general and straightforward multimodal understanding, low-resolution images are sufficient. While for images with nuanced details like documents and charts, it is crucial to preserve fine-grained details using high-resolution inputs, as naive resizing inevitably results in information loss. Recent advances employ sequence packing to process images of any resolution and aspect ratios. Despite these efforts, model performance degrades at both low and high resolutions, and high-resolution inputs incur substantial computational costs. We argue that the rigid use of a single patch size is the primary cause: when image resolution or information density varies, fixing patch size is intrinsically suboptimal. To address this issue, we introduce Adaptive Patching (AdaPatch), a simple yet effective strategy that adjusts patch size according to image resolution and information density and could be seamlessly plugged into pretrained fixed-patch MLLMs without any training efforts. Extensive evaluations demonstrate consistent improvements in native resolution performance without additional training. Besides, we provide a training-based method to further adapt MLLMs with dynamic patch sizes and enhance the performance.

1 Introduction

Multimodal large language models (MLLMs) (Liu et al., 2024a; Team et al., 2023) have emerged as a central paradigm for joint visual and linguistic understanding. A common design couples a pretrained vision transformer with a large language model via a lightweight projector. In real-world scenarios, visual inputs exhibit substantial variability in resolution and aspect ratio, ranging from low-resolution thumbnails to high-resolution documents, making robust native resolution capability a key requirement for MLLMs (Guo et al., 2024). Early MLLMs (e.g., the LLaVA (Liu et al., 2023a; 2024b) and InternVL (Chen et al., 2024b) series) typically rely on fixed-resolution vision encoders, resizing images to a single canonical size or partitioning them into tiles prior to encoding. Such preprocessing inevitably alters visual content and can degrade performance on inputs that demand preservation of fine detail or global structure, e.g., charts and diagrams.

Following NaViT (Dehghani et al., 2023), recent works retain images at native resolution and divide them into fixed-size, non-overlapping patches, producing token sequences whose length scales with image size. Multiple sequences are concatenated into a single packed sequence and processed jointly by the encoder using per-sample image masks, a technique known as sequence packing. Several state-of-the-art models, including Qwen2.5-VL (Bai et al., 2025), Ovis2.5 (Lu et al., 2025), and Kimi-VL (Team et al., 2025), implement this paradigm and claim support for any input resolutions.

In this work, we demonstrate that current designs for any-resolution processing still fail to realize genuine native capability. Through systematic evaluation on multiple benchmarks across a broad spectrum of pixel range, we reveal that model performance fluctuates considerably between resolution bands. It often degrades or becomes unstable at both low and high resolutions. These findings suggest that robust any-resolution understanding remains an open challenge.

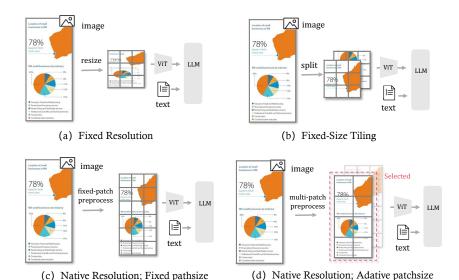


Figure 1: Illustration of strategies for different image resolutions: (a) Fixed resolution: resize to a preset size; (b) Fixed-size tiling: split into uniform tiles; (c) Native resolution: fixed patch size with sequence packing; (d) Our method: adaptively adjust patch size.

Our analysis identifies the inflexibility of a fixed patch size as the principal source of degradation. In low-resolution or information-dense images, a large patch size is too coarse to recover fine-grained cues. In contrast, in very high-resolution or information-sparse images, a small patch size becomes overly local and fails to capture global context. This mismatch constrains the model's receptive granularity and underlies most of the observed performance loss.

To address this limitation, we propose $Adaptive\ Patching$, a simple drop-in method that computes a lightweight information-density estimate ρ and maps $(\rho,r)\mapsto s$ to determine an appropriate patch size s for an image of native resolution r, as illustrated in Fig. 1. We further present a weight-preserving conversion that enables pretrained fixed-patch MLLMs to operate with any patch sizes without additional training, effectively transforming them into adaptive patch models while remaining compatible with sequence packing. Extensive experiments show $Adaptive\ Patching\ improves$ accuracy and stability across resolutions on multiple benchmarks, while reducing encoder token counts at high resolutions to speed up inference. Our contributions are summarized as follows:

- We conduct a comprehensive evaluation of AnyRes performance by rescaling benchmarks across wide resolution ranges, revealing significant degradation and instability in recent state-of-the-art MLLMs with fixed patch size.
- We uncover that the fixed patch size is the principal architectural cause of such degradation: it induces a representational mismatch across resolutions and information densities.
- We propose *Adaptive Patching (AdaPatch)* that adapts patch size according to the resolution and information density. Our method provides both training-free and training-based alternatives. Extensive experiments validate the improved accuracy and stability across resolutions and reduced computation for high-resolution images.

2 Anyres Evaluation and Analysis

2.1 BACKGROUND AND NOTATION

We consider a causal MLLM that takes an image x and a text sequence $y_{1:T}$ as input and generates an autoregressive distribution $p(y_t \mid y_{< t}, x)$ over the next token, including the following steps:

AnyRes preprocessing. Given an input image $x \in \mathbb{R}^{h \times w \times c}$ with native resolution r = (h, w), the AnyRes preprocessor produces $\tilde{x} \in \mathbb{R}^{\tilde{h} \times \tilde{w} \times c}$ at target resolution $\tilde{r} = (\tilde{h}, \tilde{w})$. The target dimensions

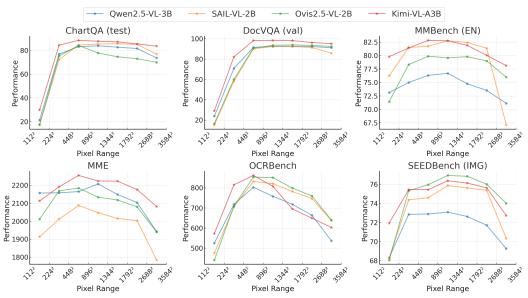


Figure 2: Anyres evaluation of SOTA MLLMs (Qwen2.5-VL, SAIL-VL, Ovis2.5, and Kimi-VL): varying the preprocessing pixel range on a single benchmark causes marked changes in performance, contradicting claims of any-resolution robustness.

 \tilde{h}, \tilde{w} are required to be divisible by the patch size s^1 and approximate the native size. Formally, \tilde{r} is chosen to minimize:

s.t.
$$\tilde{h}, \tilde{w} \in \mathbb{Z}_+, \gamma > 0$$

$$(\tilde{h}w - \tilde{w}h)^2 + \varepsilon \left[(\tilde{h} - \gamma h)^2 + (\tilde{w} - \gamma w)^2 \right] + \varepsilon^2 (\gamma - 1)^2,$$
s.t. $\tilde{h}, \tilde{w} \in s\mathbb{Z}_+, \ P_{\min} \le \tilde{h}\tilde{w} \le P_{\max},$ (1)

where $[P_{\min}, P_{\max}]$ is the valid pixel range, γ is an auxiliary scale parameter, and $0 < \varepsilon \ll 1$ is a small tie-breaking weight. Resizing (e.g., bilinear interpolation) is applied independently to each channel and can be regarded as a linear transformation:

$$\tilde{\boldsymbol{x}}_i = \text{resize}_r^{\tilde{r}}(\boldsymbol{x}_i) = B_r^{\tilde{r}} \operatorname{vec}(\boldsymbol{x}_i) \quad (i = 1, \dots, c),$$
 (2)

where $\text{vec}(\boldsymbol{x}_i) \in \mathbb{R}^{hw}$ vectorizes channel i and $B_r^{\tilde{r}} \in \mathbb{R}^{\tilde{h}\tilde{w}\times hw}$ is the interpolation matrix. The preprocessed image is $\tilde{\boldsymbol{x}} = [\tilde{\boldsymbol{x}}_1, \dots, \tilde{\boldsymbol{x}}_c]$.

Patch embedding. Divide the image $\boldsymbol{x} \in \mathbb{R}^{h \times w \times c}$ into n non-overlapping $s \times s$ patches $(n = \lfloor h/s \rfloor \lfloor w/s \rfloor)$ and embed into vision feature space \mathbb{R}^{d_v} . The patch-embedding layer $g_{\boldsymbol{\theta}} : \mathbb{R}^{h \times w \times c} \to \mathbb{R}^{n \times d_v}$ is a stride-s convolution with kernel $\boldsymbol{w}_{\boldsymbol{\theta}} \in \mathbb{R}^{s \times s \times c \times d_v}$ and bias $\boldsymbol{b}_{\boldsymbol{\theta}} \in \mathbb{R}^{d_v}$, i.e. $g_{\boldsymbol{\theta}}(\boldsymbol{x}) = \operatorname{conv}_{\boldsymbol{\theta}}(\boldsymbol{x}; s)$, then flattened to an $n \times d_v$ token sequence.

Vision encoder, projector, and LLM. From the preprocessed image, patch tokens $Z = g_{\theta}(\tilde{x})$ are passed to a vision encoder \mathcal{E}_{ϕ} with an attention mask M, producing features $V = \{v_j\}_{j=1}^{L_v} = \mathcal{E}_{\phi}(Z;M)$ (when packing multiple images, M is block diagonal to avoid cross-image attention). A lightweight projector $\Pi_{\psi}: \mathbb{R}^{d_v} \to \mathbb{R}^{d_\ell}$ maps tokens into the language space, $\hat{V} = \{\hat{v}_j\}_{j=1}^{L_v}$ with $\hat{v}_j = \Pi_{\psi}(v_j)$. The causal LLM \mathcal{L}_{ξ} then reads the interleaved sequence $u = [\langle \mathrm{BOS} \rangle, \langle \mathrm{IMG} \rangle, \hat{V}, \langle / \mathrm{IMG} \rangle, \tau(y_{1:T})]$ and the next-token distribution is $p_{\xi}(y_t \mid y_{< t}, \hat{V}) = \mathrm{Softmax}(\mathrm{Head}(\mathcal{L}_{\xi}(u_{\leq t})))$, with causal masks enforcing left-to-right text generation.

2.2 Anyres Evaluation of SOTA MLLMs

To explore the ability of handling inputs with various resolutions, for the first time, we evaluate MLLMs from a *pixel-range* perspective: we apply multiple pixel ranges $P \in [P_{\min}, P_{\max}]$ during

 $^{^{1}}$ To simplify the analysis, we ignore special-token merging. Under this assumption the factor is equal to the patch size; if special-token merging is applied, the factor is the patch size \times the merge size.

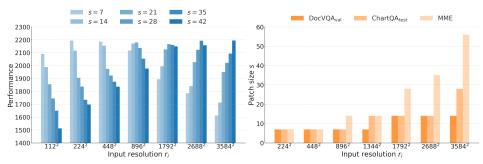


Figure 3: Effect of patch size on AnyRes performance. Left: MME benchmark performance across patch sizes (s) and input resolutions (r). Right: Relative optimal patch size at the same resolutions for MME, chart, and document images.

AnyRes preprocessing and evaluate representative models (Qwen2.5-VL, Ovis2.5, Kimi-VL, and SAIL-VL). Experimental Results in Fig. 2 show that different models (and tasks) exhibit distinct preferred resolution ranges, and the performance drops sharply at both low and high pixel ranges: (1) Low pixel budgets: the degradation is pronounced on information-dense images (e.g., charts, documents) because resampling at low resolutions range P destroys fine-grained signals, making it difficult to extract accurate cues from information-dense images. (2) High pixel budgets: most models decline markedly despite claims of supporting \sim 3K inputs. We argue that a fixed (relatively small) patch size struggles to capture global context for information-sparse images with high resolution. In conclusion, a fixed patch size fails to cope with images at varying resolutions.

2.3 How Fixed Patch size Drives Anyres Instability

To verify our assumptions and investigate the effect of patch size in Anyres, we convert pretrained Qwen2.5-VL (patch size s=14) to multi-sizes $s\in\{7,14,21,28,35,42\}$ (details in Sec. 3.2) and evaluate each configuration on the MME benchmark across a wide range of input sizes. The results in Fig. 3 (Left) reveal a clear, resolution-dependent preference: smaller patches improve performance at low resolutions, while larger patches are preferable at high resolutions.

However, the preferred patch size is not determined by resolution alone but also depends on *information density*. Fig. 3 (Right) compares three image types: documents, charts, and general MME images. For a given absolute resolution, the empirically optimal patch size is smaller for higher information-density images (e.g., $\rho_{\text{document}} > \rho_{\text{chart}} > \rho_{\text{MME}}$, where ρ denotes the information density). Empirically, we observe the following approximate trend: $s^* \propto r/\rho$ where s^* is the preferred patch size and r denotes a scalar measure of resolution (e.g., pixels on the shorter image side).

3 METHOD: ADAPTIVE PATCHING

Motivated by the observation in Sec. 2 that the optimal patch size is related to native resolution and information density, we propose *Adaptive Patching (AdaPatch)*. Our method quantifies information density and maps it (together with native resolution) to a patch-size estimate. We then extend fixed-patch models to any-patch, enabling per-image patch-size selection. The proposed method is illustrated in Fig. 4 and described below.

3.1 Adaptive Patch Size Estimation

Estimation of Information Density. In this work, we introduce a simple measure of image information density to guide patch size adaptation. Intuitively, downsampling high-density images leads to larger information loss than downsampling sparse images. To capture this effect, we quantify information density by comparing features extracted from the native images with those from a decreased resolution. Formally, the information density of an image \boldsymbol{x} is defined as

$$\rho_{\text{info}}(\boldsymbol{x}) = 1 - \frac{1}{n} \sum_{i=1}^{n} \frac{\left\langle \mathcal{E}_{\boldsymbol{\phi}}^{[k,i]}(\text{conv}_{\boldsymbol{\theta}}(\tilde{\boldsymbol{x}};s)), \, \mathcal{E}_{\boldsymbol{\phi}}^{[k,i]}(\text{conv}_{\boldsymbol{\theta}^*}(B_r^{r/2} \operatorname{vec}(\tilde{\boldsymbol{x}});s/2)) \right\rangle}{\left\| \mathcal{E}_{\boldsymbol{\phi}}^{[k,i]}(\text{conv}_{\boldsymbol{\theta}}(\tilde{\boldsymbol{x}};s)) \right\| \cdot \left\| \mathcal{E}_{\boldsymbol{\phi}}^{[k,i]}(\text{conv}_{\boldsymbol{\theta}^*}(B_r^{r/2} \operatorname{vec}(\tilde{\boldsymbol{x}});s/2)) \right\|}.$$
(3)

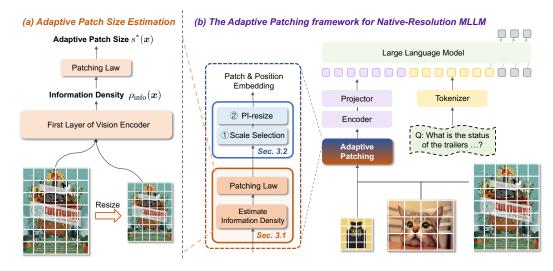


Figure 4: Patching is a drop-in method that estimates information density ρ from feature similarity and maps $(\rho, r) \mapsto s$ to choose a patch size. We also convert fixed-patch MLLMs to any-patch models for per-sample adaptation at training or inference.

Here, $\mathcal{E}_{\phi}^{[k,i]}$ denotes the *i*-th token feature at layer k of the vision encoder, and $\operatorname{conv}_{\theta^*}$ is the patch embedding with patch size adjusted to s/2. In definition, $\rho(x) \in [0,1]$ where larger values signify increased downsampling loss and therefore higher information density.

Adaptive Patching Law. We adjust the patch size based on the empirical observation in Sec. 2.3 that $s^* \propto \frac{r}{\rho}$. For simplicity, we model this dependency as a power-law relation and introduce hyperparameters $\alpha > 0$ and $\beta > 0$ to control the relative sensitivity to resolution and information density, respectively. Specifically, the target patch size s^* for image x is given by

$$s^*(\boldsymbol{x}) = \operatorname{Quantize}\left(\operatorname{clip}\left(\tilde{s}\left(\frac{\kappa(r_{\boldsymbol{x}})}{\tilde{r}}\right)^{\alpha}\left(\frac{\tilde{\rho}}{\rho(\boldsymbol{x})+\varepsilon}\right)^{\beta}, s_{\min}, s_{\max}\right)\right). \tag{4}$$

where $\kappa(\cdot)$ is a scalar measure of resolution (e.g., $\min\{h,w\}$), and \tilde{r} , $\tilde{\rho}$, and \tilde{s} denote the base resolution, information density, and patch size of the pretrained model, with default values set to 896, 14, and 0.2. The constant ε is a small positive value for numerical stability. The operator $\operatorname{clip}(\cdot,s_{\min},s_{\max})$ constrains to specified bounds, while $\operatorname{Quantize}(\cdot)$ maps the result to the nearest value from a predefined discrete set in \mathbb{Z}_+ .

Eq. 4 reflects two trends: (1) higher resolution favors larger patches, and (2) higher information density favors smaller patches to preserve details. This rule enables per-image patch size selection that balances resolution and density, remaining compatible with existing sequence-packing MLLMs.

3.2 Converting Fixed-Patch MLLMs to Any-Patch

Given a pretrained MLLM with patch embedding g_{θ} at patch size s, our objective is to extend it to any sizes $\{s_i\}_{i=1}^{M}$ while preserving model performance. We introduce two solutions: pseudo-inverse resize (training-free) and multi-scale patch embedding (training-based).

Pseudo-inverse resize (training-free) optimizes the patch-embedding layer $conv_{\theta_i}$ so that token embeddings are consistent across patch sizes s_i and corresponding resolutions r_i . The optimization objective is:

$$\{\boldsymbol{\omega}_{\boldsymbol{\theta}_i}, \boldsymbol{b}_{\boldsymbol{\theta}_i}\} := \boldsymbol{\theta}_i = \arg\min_{\boldsymbol{\theta}_i} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{X}} \left\| \operatorname{conv}_{\boldsymbol{\theta}}(\boldsymbol{x}, s) - \operatorname{conv}_{\boldsymbol{\theta}_i}(B_r^{r_i} \operatorname{vec}(\boldsymbol{x}), s_i) \right\|_F, \quad i = 1, \dots, M. \quad (5)$$

The closed-form solution is $\omega_{\theta_i} = B_i (B_i^\top B_i)^{-1} \omega_{\theta} = (B_i^\top)^+ \omega_{\theta}$, where $B_i = B_{s^2}^{s_i^2}$ and $(\cdot)^+$ denote the Moore–Penrose pseudoinverse. For upsampling $(s_i > s)$, inner products are preserved exactly, i.e., $\langle B_i x, (B_i^\top)^+ \omega_{\theta} \rangle = \langle x, \omega_{\theta} \rangle$; for downsampling $(s_i < s)$, the pseudoinverse yields the optimal approximation. We introduce PI-resize as a weight-preserving mapping from s to s_i :

$$PI-resize_s^{s_i}(\boldsymbol{w}) = (B_i^T)^+ vec(\boldsymbol{w}). \tag{6}$$

Table 1: **Evaluation results under native resolution.** Our method (*Adaptive Patching*) is compared with the baseline (fixed patch size = 14), using the same pretrained model. For each model, the larger score between vanilla and our is marked in **bold**.

Benchmark	Qwen2.5-VL-3B		SAIL-VL-2B		Ovis	2.5-2B	Kimi-VL-A3B	
Dencimal K	vanilla	AdaPatch	vanilla	AdaPatch	vanilla	AdaPatch	vanilla	AdaPatch
General								
MME	2135.90	2210.41	2026.27	2103.96	2156.29	2208.60	2191.92	2230.94
MMMU	49.22	51.89	44.11	45.97	46.33	49.28	50.44	51.32
MMStar	54.27	55.42	59.87	60.68	59.47	59.22	50.93	52.86
$MMBench_{EN}$	75.15	78.49	81.58	83.35	78.79	81.32	81.58	82.50
LLaVABench	66.30	65.34	52.50	53.53	42.00	44.81	70.00	68.70
RealWorldQA	65.36	66.35	69.80	70.76	67.84	68.15	69.80	70.30
SEEDBench _{IMG}	72.91	75.57	74.40	75.91	75.37	76.36	75.57	77.77
AI2D _{test}	80.31	81.16	82.32	82.67	84.55	84.26	80.47	80.87
HallusionBench	48.73	50.80	51.32	53.44	50.70	52.35	48.26	50.52
Domain								
ChartQA _{test}	82.92	83.40	84.08	85.98	83.60	84.11	88.40	89.17
TextVQA _{val}	78.68	79.53	79.92	80.02	79.91	80.76	89.82	89.96
OCRBench	821	845	783	855	706	814	865	890
DocVQA _{val}	92.31	92.62	91.48	92.89	93.90	93.22	96.45	98.33
POPE	86.39	86.88	86.10	86.09	87.81	88.65	85.75	86.43
$InfoVQA_{val}$	74.65	75.29	70.61	71.62	76.48	77.21	84.92	85.86
MathVista _{MINI}	60.30	62.37	67.40	69.99	63.10	66.90	65.00	67.04

Multi-scale patch embedding (training-based) allocate independent parameter $\{\theta_i\}_{i=1}^M$ for patch size s_i and jointly train MLLM with embedding layers end-to-end. During training, the patch size s_i is sampled adaptively, and we minimize the task loss

$$\min_{\{\boldsymbol{\theta}_i\},\,\boldsymbol{\phi},\,\boldsymbol{\psi},\,\boldsymbol{\xi}} \mathbb{E}_{(\boldsymbol{x},y_{1:T})\sim\mathcal{X},\,s_i} \mathcal{J}\Big(\mathcal{L}_{\boldsymbol{\xi}}\big([\langle \mathrm{BOS}\rangle,\langle \mathrm{IMG}\rangle,\hat{\boldsymbol{V}}_i,\langle/\mathrm{IMG}\rangle,\tau(y_{1:T})]\big),\,y_{1:T}\Big), \tag{7}$$

where \mathcal{J} is the task loss and $\boldsymbol{\theta}_i$ is initialized via PI-resize $s_i^{s_i}(\cdot)$. In summary, PI-resize converts fixed-patch to any-patch models at inference, while MSPE trains embedding weights for multiple patch sizes, both supporting *Adaptive Patching* (Sec. 3.1) without altering the backbone.

4 EXPERIMENTS

Evaluation Setup. We evaluate on diverse public benchmarks, including comprehensive benchmarks (MME (Fu et al., 2023), MMMU (Yue et al., 2024), AI2D (Kembhavi et al., 2016), MM-Bench (Liu et al., 2023b), LLaVABench (Liu et al., 2023a), RealWorldQA, InfoVQA (Mathew et al., 2022), SEEDBench (Li et al., 2023a), MMStar (Chen et al., 2024a)) and domain-specific benchmarks (ChartQA (Masry et al., 2022), TextVQA (Singh et al., 2019), OCRBench (Liu et al., 2024d), DocVQA (Mathew et al., 2021), POPE (Li et al., 2023b), HallusionBench (Guan et al., 2024), ScienceQA (Lu et al., 2022)). Experiments are conducted on four representative native-resolution MLLMs: Qwen2.5-VL, SAIL-VL, Ovis2.5, and Kimi-VL. We exclude fixed-resolution or cropped-input models (*e.g.*, LLaVA, InternVL) to focus on native-resolution architectures.

Implementation Details. All experiments are conducted on $8\times A100$ GPUs with 80GB memory. We evaluate the official checkpoints of Qwen2.5-VL, SAIL-VL, Ovis2.5, and Kimi-VL using VLMEvalKit (Duan et al., 2024). Candidate patch sizes are set to integers within [6,56]. The information density is estimated from the i=0 layer of the vision encoder with default hyperparameters $(\alpha,\beta)=(0.5,0.3)$. For MSPE, we train with AdamW (learning rate 1e-5, weight decay 0.01). Inference is performed with a maximum generation length of 512 tokens and temperature 0.

4.1 MAIN RESULTS

Comparison with State-of-the-Art on Native Resolution. Table 1 summarizes results across all public benchmarks. Adaptive Patching consistently improves performance over the fixed-patch setting across all evaluated MLLMs. The gains are particularly pronounced on benchmarks that involve heterogeneous image resolutions and varying information densities. For instance, OCRBench, which contains images ranging from low resolution (56×56) to high resolution (1344×1344) . Similarly, MMBench and MME, which cover diverse image types and complex information layouts,

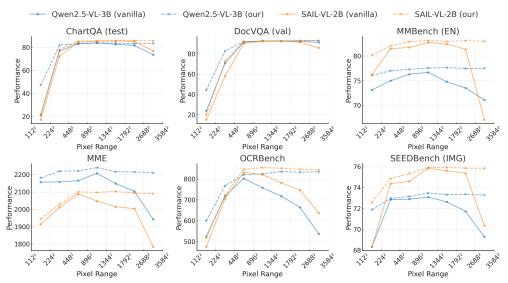


Figure 5: Evaluation results across different pixel ranges of preprocessing pipeline. All MLLMs exhibit notable performance degradation at low and high resolutions, whereas *Adaptive Patching* achieves substantially more stable performance.

Table 2: **Evaluation of** *Adaptive Patching* **under supervised finetuning.** We evaluate the same pretrained backbone (SAIL-VL-2B) after incremental fine-tuning on LLaVA1.5-665K and LLaVA1.6-779K. Patch sizes are adaptively chosen in our method, while the baseline uses a fixed size of 14.

Dataset	ChartQA _{test}	DocVQA _{val}	MMBench _{EN}	MME	SEEDBench _{IMG}	TextVQA _{val}	OCRBench
LLava1.5-665K	47.96	69.65	70.12	1821.49	71.68	68.86	418
+ AdaPatch (Ours)	54.84	70.66	<u>71.43</u>	1854.14	<u>72.24</u>	70.34	<u>535</u>
LLava1.6-779K	<u>75.16</u>	<u>85.90</u>	70.59	1790.26	71.44	72.60	466
+ AdaPatch (Ours)	77.53	87.00	71.89	1837.25	72.04	73.59	579

also benefit notably. On most general benchmarks, our method achieves stable and consistent improvements without introducing additional training overhead. These results confirm that *Adaptive Patching* is especially effective when input resolution differences are large or when the information density varies significantly, thereby enhancing the robustness and adaptability of MLLMs compared to the fixed patch-size baseline.

Comparison with State-of-the-Art on Pixel-range. To assess robustness with respect to input resolution, we evaluate models across pixel ranges from 112×112 to 3584×3584 . As shown in Fig. 5, recent MLLMs exhibit strong resolution preferences: performance deteriorates at both low and high pixel budgets, with different models peaking at distinct ranges. In contrast, *Adaptive Patching* markedly mitigates such instability. By dynamically adjusting patch sizes, our method preserves fine-grained detail under limited budgets while maintaining global context at larger scales. Consequently, performance remains substantially more stable across the entire spectrum. These results indicate that resolution sensitivity in current MLLMs largely stems from fixed patching, and *Adaptive Patching* is an effective solution.

Comparison with SAIL-VL-2B on Supervised Finetuning. Training-based Adaptive Patching is realized by modifying the patch embedding layer (Eq. 7) and initializing multi-scale patch sizes with PI-resize (Eq. 6), where the default set is $\{s_i\}_{i=1}^M = \{8, 12, 14, 16, 24, 28\}$. Under limited computational resources, we incrementally finetuned the SAIL-VL-2B model on the LLaVA1.5-665K and LLaVA1.6-779K datasets, which inevitably leads to some degradation compared to the original pretrained model. During supervised finetuning, the patch size is adaptively selected per image, while the remainder of the training pipeline is kept unchanged. As shown in Table 2, Adaptive Patching yields consistently higher performance across datasets at their native resolutions compared to the fixed patch size baseline (s=14). These results indicate that dynamically adjusting patch sizes during training can provide more benefits.

Table 3: **Performance comparison across different model scales.** The table reports evaluation results of *Adaptive Patching* on Qwen2.5-VL (3B, 7B, 34B) and Ovis2.5 (2B, 9B).

Model Size	SEEDBench	DocVQA	MMBench	MME	OCRBench	MMMU	TextVQA	Hallusion	LLaVABench	ChartQA
Qwen2.5-VL										
3B	72.91	92.31	75.15	2135.90	821.00	54.27	78.68	48.73	66.30	82.92
+ our method	75.57	92.62	78.49	2210.41	845.00	55.42	79.53	50.80	65.34	83.40
7B	76.15	94.50	81.89	2313.17	863.00	62.13	84.62	54.73	74.70	85.68
+ our method	76.50	94.80	82.04	2345.96	897.00	63.55	85.38	55.91	76.79	86.42
32B	76.47	92.47	85.84	2433.57	839.00	66.07	77.76	57.21	77.50	72.16
$+\ our\ method$	76.92	92.68	86.56	2460.71	859.00	66.18	79.61	58.22	77.36	74.78
Ovis2.5										
2B	75.37	93.90	78.79	2156.29	706.00	59.47	79.91	50.70	42.00	83.60
$+\ our\ method$	76.36	93.22	81.32	2208.60	814.00	59.22	80.76	52.35	44.81	84.11
9B	77.12	95.08	84.67	2353.73	722.00	67.00	81.85	55.96	78.30	85.92
$+\ our\ method$	77.19	95.19	85.51	2390.41	843.00	67.31	82.09	56.81	77.45	86.73

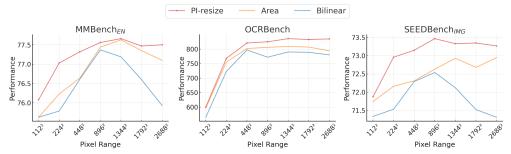


Figure 6: Comparison of different resizing methods on Qwen2.5-VL-3B. We evaluate Bilinear, PI-resize, and Area for adjusting the embedding layer weights, where PI-resize performs the best.

4.2 ABLATION STUDY AND ANALYSIS

Impact of Model Scale. We examine whether the advantages of *Adaptive Patching* scale with model size by evaluating Qwen2.5-VL (3B, 7B, 34B) and Ovis2.5 (2B, 9B). As shown in Table 3, consistent gains are observed across all scales, indicating that the benefits stem from mitigating the rigidity of fixed patch sizes rather than from model capacity. The improvements are particularly pronounced on OCRBench and MME, consistent with the findings in Sec. 4.1 that tasks involving diverse image resolutions and information densities benefit most.

Impact of Resizing Methods. We investigate the effect of alternative interpolation strategies (bilinear, PI-resize, and area) for adapting pretrained models with fixed patch sizes to different target patch resolutions. Using Qwen2.5-VL-3B as a case study, we compare these resizing methods in conjunction with *Adaptive Patching*. As shown in Fig. 6, PI-resize consistently outperforms other approaches, demonstrating its ability to effectively realign the patch embedding layer without additional training. In contrast, bilinear and area interpolation lead to notable performance degradation.

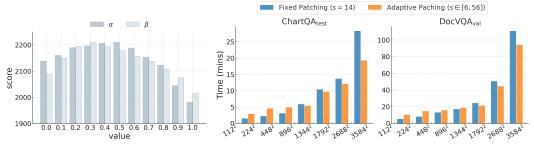
Impact of Hyperparameters α and β . As shown in Fig. 7a, we evaluate different values of the two hyperparameters, which control sensitivity to resolution and information density when adaptively scaling the base patch size (s=14). The results indicate that α has a stronger influence, with larger values leading to notable performance degradation. By default, we set $\alpha=0.5$ and $\beta=0.3$.

Comparison with Resizing Images. As shown in Table 4, *Adaptive Patching* consistently outperforms direct image resizing. Although resizing brings gains on benchmarks such as OCRBench, it substantially degrades performance on others (*e.g.*, DocVQA and MME). This highlights the limited robustness of resolution adjustment and underscores the importance of preserving native resolution, which enables the model to directly process heterogeneous visual regions without distortion.

Comparison on Inference Time. Adaptive Patching introduces additional computational overhead from two sources: (1) a lightweight information-density estimation, and (2) variation in the sequence length of image tokens, which is the dominant factor. As shown in Fig. 7b, we compare inference cost against fixed patch sizes. While our approach introduces higher cost at low resolutions, it achieves substantial speedups at high resolutions.

Table 4: **Comparison of image resizing and** *Adaptive Patching*. Images are resized to a fixed pixel range [896, 1344] and compared with *Adaptive Patching* on Qwen2.5-VL and SAIL-VL.

Dataset	ChartQA _{test}	$DocVQA_{val} \\$	$MMBench_{EN}$	MME	$SEEDBench_{IMG} \\$	$TextVQA_{val} \\$	OCRBench			
Qwen2.5-VL-3B										
IMG-resize	83.16	91.53	76.32	2165.01	72.89	78.48	803.00			
Adaptive Patching	83.40	92.62	78.49	2210.41	75.57	79.53	845.00			
SAIL-VL-2B										
IMG-resize	84.56	90.24	81.73	2007.54	74.59	79.43	822.00			
Adaptive Patching	85.98	92.89	83.35	2103.96	75.91	80.02	855.00			



- (a) Impact of hyperparameters α and β .
- (b) Comparison of inference time.

5 RELATED WORK

Early works on any-resolution aimed to improve classification accuracy or reduce computation. For example, Learn-to-Resize (Talebi & Milanfar, 2021) replaced fixed interpolation with a learnable resizing layer; Resolution Adaptive Networks (Yang et al., 2020) and Dynamic Resolution Networks (Zhu et al., 2021) routed inputs to different sub-networks or resolutions depending on task difficulty. However, these methods are closely tied to CNN architectures and are difficult to transfer to vision–language systems.

For ViT-based model, FlexiViT (Beyer et al., 2023) resizes patch-embedding weights to trade off accuracy and computational cost. Pix2struct (Lee et al., 2023) and NaViT (Dehghani et al., 2023) preserve native resolution while using a fixed patch size, producing variable-length token sequences and using sequence packing to handle different input sizes. Liu et al. (2024c) extends FlexiViT by learning resized embeddings jointly with the model, which improves cross-resolution performance. Recent MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025)) follow NaViT to process images at native resolution, but a fixed patch size degrades performance at resolution extremes. We propose *Adaptive Patching*, which selects a per-image patch size from the native resolution and an information-density estimate to improve accuracy and efficiency.

6 Conclusion

We revisit the widely claimed "any-resolution" capability of recent MLLMs and show that their performance is in fact highly sensitive to input resolution, largely due to the rigidity of fixed patch size. To address this, we introduce *Adaptive Patching*, a lightweight and training-free method that adjusts patch size according to image resolution and information density, and converts fixed-patch MLLMs into any-patch models via PI-resize or MSPE. Extensive experiments on a broad suite of benchmarks demonstrate that adaptive patching improves both accuracy and stability across resolutions while reducing computation at high resolutions. Our study highlights patch size as a key bottleneck for vision—language modeling and provides a simple, general, and effective solution toward genuine native resolution robustness.

Limitations and Future Work. In this work, we tackle the native resolution issue from the perspective of visual processing before LLMs. Future work could incorporate more high-quality multiresolution data. Besides, our method could also endow current thinking-with-images models like OpenAI o3 (OpenAI, 2025) with more advanced multi-resolution perception abilities.

REFERENCES

- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flexivit: One model for all patch sizes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14496–14506, 2023.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024a.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 24185–24198, 2024b.
- Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n'pack: Navit, a vision transformer for any aspect ratio and resolution. *Advances in Neural Information Processing Systems*, 36:2252–2274, 2023.
- Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11198–11201, 2024.
- Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multimodal large language models. *arXiv preprint arXiv:2306.13394*, 2023.
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–14385, 2024.
- Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu, and Gao Huang. Llava-uhd: an lmm perceiving any aspect ratio and high-resolution images. In *European Conference on Computer Vision*, pp. 390–406. Springer, 2024.
- Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images. In *European Conference on Computer Vision*, pp. 235–251. Springer, 2016.
- Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot parsing as pretraining for visual language understanding. In *International Conference on Machine Learning*, pp. 18893–18912. PMLR, 2023.
- Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. *arXiv* preprint arXiv:2305.10355, 2023b.
- Dongyang Liu, Renrui Zhang, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao, Shijie Geng, Ziyi Lin, Peng Jin, Kaipeng Zhang, et al. Sphinx-x: Scaling data and parameters for a family of multi-modal large language models. *arXiv preprint arXiv:2402.05935*, 2024a.

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023a.
- Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024b.
 - Wenzhuo Liu, Fei Zhu, Shijie Ma, and Cheng-Lin Liu. Mspe: multi-scale patch embedding prompts vision transformers to any resolution. *Advances in Neural Information Processing Systems*, 37: 29191–29212, 2024c.
 - Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? *arXiv preprint arXiv:2307.06281*, 2023b.
 - Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin, Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large multimodal models. *Science China Information Sciences*, 67(12):220102, 2024d.
 - Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering. In *The 36th Conference on Neural Information Processing Systems*, 2022.
 - Shiyin Lu, Yang Li, Yu Xia, Yuwei Hu, Shanshan Zhao, Yanqing Ma, Zhichao Wei, Yinglun Li, Lunhao Duan, Jianshan Zhao, et al. Ovis2. 5 technical report. *arXiv preprint arXiv:2508.11737*, 2025.
 - Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. *arXiv* preprint *arXiv*:2203.10244, 2022.
 - Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 2200–2209, 2021.
 - Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar. Infographic vqa. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 1697–1706, 2022.
 - OpenAI. Openai o3 and o4-mini system card. 2025.
 - Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8317–8326, 2019.
 - Hossein Talebi and Peyman Milanfar. Learning to resize images for computer vision tasks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 497–506, 2021.
 - Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
 - Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*, 2025.
 - Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks for efficient inference. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2369–2378, 2020.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

Mingjian Zhu, Kai Han, Enhua Wu, Qiulin Zhang, Ying Nie, Zhenzhong Lan, and Yunhe Wang. Dynamic resolution network. *Advances in Neural Information Processing Systems*, 34:27319–27330, 2021.

A APPENDIX

A.1 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were involved. All datasets used, including MME, MMMU, AI2D, MMBench, LLaVABench, RealWorldQA, InfoVQA, SEEDBench, MMStar, ChartQA, TextVQA, OCRBench, DocVQA, POPE, HallusionBench, and ScienceQA, are publicly available and widely adopted benchmarks in the research community, ensuring no violation of privacy. We have taken care to avoid biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

A.2 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure reproducibility of our results. The experimental setup, including evaluation procedures, model configurations, and hardware details, is described in detail in the paper. We evaluate the official checkpoints of Qwen2.5-VL, SAIL-VL, Ovis2.5, and Kimi-VL using open-source code (VLMEvalKit), ensuring consistent and verifiable results. These measures enable other researchers to reproduce our work and build upon it to further advance the field.

A.3 LARGE LANGUAGE MODELS USAGE

LLMs were used only to assist with writing and polishing the manuscript. They supported tasks such as sentence rephrasing, grammar checking, and improving readability, but were not involved in the ideation, methodology, experimental design, or data analysis. All research concepts, analyses, and conclusions were developed by the authors. The use of LLMs was limited to enhancing linguistic quality, without affecting the scientific content. The authors take full responsibility for the manuscript and have ensured that the use of LLMs complies with ethical standards and avoids plagiarism or scientific misconduct.