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Abstract

Estimating the quantiles of a large dataset is a fundamental problem in both the streaming
algorithms literature and the differential privacy literature. However, all existing private
mechanisms for distribution-independent quantile computation require space at least lin-
ear in the input size n. In this work, we devise a differentially private algorithm for the
quantile estimation problem, with strongly sublinear space complexity, in the one-shot and
continual observation settings. Our basic mechanism estimates any α-approximate quantile
of a length-n stream over a data universe X with probability 1− β using O

(
log(|X |/β) logn

αε

)
space while satisfying ε-differential privacy at a single time point. Our approach builds
upon deterministic streaming algorithms for non-private quantile estimation instantiating
the exponential mechanism using a utility function defined on sketch items, while (privately)
sampling from intervals defined by the sketch. We also present another algorithm based on
histograms that is especially well-suited to the multiple quantiles case. We implement our
algorithms and experimentally evaluate them on synthetic and real-world datasets.

1 Introduction

Quantile estimation is a fundamental subroutine in data analysis and statistics. For q ∈ [0, 1], the q-quantile
of a dataset of size n is the element ranked dqne when the elements are sorted from smallest to largest.
Computing a small number of quantiles in a massive data set can serve as a quick and effective sketch of
the “shape” of the data. Quantile estimation also serves an essential role in robust statistics, where data is
generated from some distribution but is contaminated by a non-negligible fraction of outliers, i.e., “out of
distribution” elements that may sometimes even be adversarial. For example, the median (50th percentile) of
a dataset is used as a robust estimator of the mean in such situations where the data may be contaminated.
Location parameters can also be (robustly) estimated via truncation or winsorization, an operation that relies
on quantile estimation as a subroutine (Tukey, 1960; Huber, 1964). Rank-based nonparametric statistics
can be used for hypothesis testing (e.g., the Kruskal-Wallis test statistic (Kruskal & Wallis, 1952)). Thus,
designing quantile-based or rank-based estimators, whether distribution-dependent or distribution-agnostic,
is important in many scenarios.

Maintaining the privacy of individual users or data items, or even of groups, is an essential prerequisite
in many modern data analysis and management systems. Differential privacy (DP) is a rigorous and now
well-accepted definition of privacy for data analysis and machine learning. In particular, there is already a
substantial amount of literature on differentially private quantile estimation (e.g., see (Nissim et al., 2007;
Asi & Duchi, 2020; Gillenwater et al., 2021; Tzamos et al., 2020)).1

1Robust estimators are also known to be useful for accurate differentially private estimation; see, e.g., the work of Dwork
and Lei (Dwork & Lei, 2009) in the context of quantile estimation for the interquartile range and for medians.

1

https://openreview.net/forum?id=sixOD8YVvM


Published in Transactions on Machine Learning Research (06/2023)

All previous work either makes certain distributional assumptions about the input, or assumes the ability
to access all input elements (thus virtually requiring a linear or worse space complexity). Such assumptions
may be infeasible in many practical scenarios, where large scale databases have to quickly process streams
of millions or billions of data elements without clear a priori distributional characteristics. The field of
streaming algorithms aims to provide space-efficient algorithms for data analysis tasks such as these. These
algorithms typically maintain good accuracy and fast running time while having space requirements that
are substantially smaller than the size of the data. While distribution-agnostic quantile estimation is among
the most fundamental problems in the streaming literature (Agarwal et al., 2013; Felber & Ostrovsky, 2017;
Greenwald & Khanna, 2001; Hung & Ting, 2010; Karnin et al., 2016; Manku et al., 1999; Munro & Paterson,
1980; Shrivastava et al., 2004; Wang et al., 2013), no differentially private sublinear-space algorithms for the
same task are currently known. Thus, the following question, essentially posed by (Smith, 2011) and (Mir
et al., 2011), naturally arises:

Can we design differentially private quantile estimators that use space sublinear in the stream
length, have efficient running time, provide high-enough utility, and do not rely on restrictive
distributional assumptions?

It is well-known (Munro & Paterson, 1980) that exact computation of quantiles cannot be done with sublinear
space, even where there are no privacy considerations. Thus, one must resort to approximation. Specifically,
for a dataset of n elements, an α-approximate q-quantile is any element which has rank (q±α)n when sorting
the elements from smallest to largest, and it is known that the space complexity of α-approximating quantiles
is Ω̃(1/α) (Munro & Paterson, 1980). In our case, the general goal is to efficiently compute α-approximate
quantiles in a (pure or approximate) differentially private manner.

1.1 Our Contributions

We answer the above question affirmatively by providing theoretically proven algorithms with accompanying
experimental validation for quantile estimation with DP guarantees. The algorithms are suitable for private
computation of either a single quantile or multiple quantiles. Concretely, the main contributions are:

1. We devise DPExpGK, a differentially private sublinear-space algorithm for quantile estimation based on
the exponential mechanism. In order to achieve sublinear space complexity, our algorithm carefully
instantiates the exponential mechanism with the basic blocks being intervals from the Greenwald-
Khanna (Greenwald & Khanna, 2001) data structure for non-private quantile estimation, rather
than single elements. We prove general distribution-agnostic utility bounds on our algorithm and
show that the space complexity is logarithmic in n.

2. We present DPHistGK, another differentially private mechanism for quantile estimation, which applies
the Laplace mechanism to a histogram, again using intervals of the GK-sketch as the basic building
block. We theoretically demonstrate that DPHistGK may be useful in cases where one has prior
knowledge on the input.

3. We extend our results to the continual release setting, wherein we must maintain and output an
estimate of the queried quantile in an online manner as the data is received and processed.

4. We empirically validate our results by evaluating DPExpGK, analyzing and comparing various aspects
of performance on real-world and synthetic datasets.

2 Related Work

2.1 Quantile Approximation of Streams and Sketches

Approximation of quantiles in large data streams (without privacy guarantees) is among the most well-
investigated problems in the streaming literature (Wang et al., 2013; Greenwald & Khanna, 2016; Xiang
et al., 2020). A classical result of Munro and Paterson from 1980 (Munro & Paterson, 1980) shows that
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computing the median exactly with p passes over a stream requires Ω(n1/p) space, thus implying the need
for approximation to obtain very efficient (that is, at most polylogarithmic) space complexity. Manku,
Rajagopalan and Lindsay (Manku et al., 1999) built on ideas from (Munro & Paterson, 1980) to obtain a
randomized algorithm with only O((1/α) log2(nα)) for α-approximating all quantiles; a deterministic variant
of their approach with the same space complexity exists as well (Agarwal et al., 2013). The best known
deterministic algorithm is that of Greenwald and Khanna (GK) (Greenwald & Khanna, 2001) on which we
build on in this paper, with a space complexity of O(α−1 log(αn)) to sketch all quantiles for n elements (up
to rank approximation error of ±αn). A recent deterministic lower bound of Cormode and Veselý (Cormode
& Veselý, 2020) (improving on (Hung & Ting, 2010)) shows that the GK algorithm is in fact optimal among
deterministic (comparison-based) sketches.

Randomization and sampling help for streaming quantiles, and the space complexity becomes independent of
n; an optimal space complexity of O((1/α) log log(1/β)) was achieved by Karnin, Lang and Liberty (Karnin
et al., 2016) (for failure probability β), concluding a series of work on randomized algorithms (Agarwal et al.,
2013; Felber & Ostrovsky, 2017; Luo et al., 2016; Manku et al., 1999).

The problem of biased or relative error quantiles, where one is interested in increased approximation accuracy
for very small or very large quantiles, has also been investigated (Cormode et al.; 2006); it would be interesting
to devise efficient differentially private algorithms for this problem.

Recall that our approach is based on the Greenwald-Khanna deterministic all-quantiles sketch (Greenwald
& Khanna, 2001). While some of the aforementioned randomized algorithms have a slightly better space
complexity, differential privacy mechanisms are inherently randomized by themselves, and the analysis seems
somewhat simpler and more intuitive when combined with a deterministic sketch. This, of course, does not
rule out improved private algorithms based on modern efficient randomized sketches (see Section 7).

2.2 Differential Privacy

Differentially private single quantile estimation: Works by Nissim, Raskhodnikova and Smith (Nis-
sim et al., 2007) and Asi and Duchi (Asi & Duchi, 2020) improve the trade-off between accuracy and privacy
by scaling the noise added for obfuscation in an instance-specific manner for median estimation in the absence
of distributional assumptions. Another work by Dwork and Lei (Dwork & Lei, 2009) uses a “propose-test-
release" paradigm to take advantage of local sensitivity; however, as observed in Gillenwater et al. (2021), in
practice the error incurred by this method is relatively large as compared to other works like Tzamos et al.
(2020). The work of Tzamos et al. (2020) achieves the optimal trade-off between privacy and utility in the
distributional setting, but again as observed by Gillenwater et al. (2021), with a time complexity of O(n4),
this method does not scale well to large data sets.

The work of Gillenwater et al. (2021) shows how to optimize the division of the privacy budget to estimate
m quantiles in a time-efficient manner. For estimation of m quantiles, their time and space complexity are
O(mn log(n) +m2n) and O(m2n), respectively. They do an extensive experimental analysis and find lower
error compared to previous work. However, although they provide intuition for why their method should
incur relatively low error, they do not achieve formal theoretical accuracy guarantees. Kaplan et al. (2022)
improve upon the work of Gillenwater et al. (2021) for the multiple approximate quantiles problem by using
a tree-based (recursive) approach to CDF estimation. However, none of these works deal with quantile
estimation in the sublinear space setting. Böhler & Kerschbaum (2020) solve the problem of estimating the
joint median of two private data sets with time complexity sub-linear in the size of the data-universe and
provide privacy guarantees for small data sets as well as limited group privacy guarantees unconditionally
against polynomially time-bounded adversaries.

Inherent privacy: Another line of work (Blocki et al., 2012; Smith et al., 2020; Choi et al., 2020) demon-
strates that sketching algorithms for streaming problems might have inherent privacy guarantees under
minimal assumptions on the dataset in some cases. For such algorithms, relatively little noise needs to be
added to preserve privacy unconditionally.

3



Published in Transactions on Machine Learning Research (06/2023)

3 Preliminaries and Notation

We now give standard differential privacy notation and formally describe the quantile estimation problem.
We also present the Greenwald-Khanna sketch guarantees in a suitable form.

3.1 Differential Privacy

Definition 3.1 (Differential Privacy (Dwork et al., 2006)). Let Q : Xn → R be a (randomized) mechanism.
For any ε ≥ 0, δ ∈ [0, 1], Q satisfies (ε, δ)-differential privacy if for any neighboring databases (that differ
in one row) x ∼ x′ ∈ Xn and any set S ⊆ R,

P[Q(x) ∈ S] ≤ eεP[Q(x′) ∈ S] + δ.

The probability is taken over the coin tosses of Q. We say that Q satisfies pure differential privacy (ε-DP)
if δ = 0 and approximate differential privacy ((ε, δ)-DP) if δ > 0. We can set ε to be a small constant (e.g.,
between 0.01 and 2) but will require that δ ≤ n−ω(1) be cryptographically small.

3.2 Quantile Approximation

2 3 4 5
Totally ordered domain X

1 2

2

2

3 5

5

6

Data set S ′ = {1, 2, 2, 3, 5, 2, 6, 5}

Figure 1: In the data set S′ of 8 elements, the true
0.5 quantile is the value 2, and the values 2, 3, 4 and
5 are all acceptable 0.25-approximate answers. Note
that although 1 is adjacent to 2 in the data universe
X , it is not an acceptable output.

In this subsection we make some definitions to for-
malize our analysis.
Definition 3.2. (Quantiles) Let there be a totally
ordered data universe X and an input data stream
X = ((x1, 1), . . . , (xn, n)) (sometimes implicitly re-
ferred to as X = (x1, . . . , xn)). For (xi, i) ∈ X,
let val((xi, i)) = xi and ix((xi, i)) =

∑
j≤i |{(xj , j) :

xj < xi or xj = xi, j < i}|. We abuse notation to
say that for v1, v2 ∈ X, v1 ≤ v2 if ix(v1) ≤ ix(v2).
Then, the q-quantile of X is val(v) for v ∈ X with
ix(v) = dqne.

We observe that in this setting a value from the data
universe can occur multiple times in a set. To account
for this we define a range of ranks that any value
can hold; this will be useful when reasoning about
quantile approximation.
Definition 3.3. (Rank and approximate quantiles)
For x ∈ X , we define rmin(x) = |{v ∈ X : val(v) <
x}|, rmax(x) = |{v ∈ X : val(v) ≤ x}| and rank(X,x)
to be the interval [rmin(x), rmax(x)]. We say that x ∈
X is an α-approximate q-quantile for X if rank(X,x) ∩ [dqne − αn, dqne+ αn] 6= ∅.

Consider the following example to see how these definitions play out in practice.
Example 3.4. Given the data set {1, 2, 2, 3, 5, 2, 6, 5} (refer to figure 1), the 0.5 quantile is 2, which we
distinguish from the median, which would be the average of the elements ranked 4 and 5, i.e, 2.5 for this
data set. A straightforward way to obtain quantiles is to sort the dataset and the pick the element at
the dq · ne position. This method only works in the offline (non-streaming) setting. For α = 0.25, the
α-approximate 0.5 quantiles are 2, 3, 4 and 5. Note that 4, which does not occur in the data set, is still a
valid response, but 1, which occurs in the data set and is even adjacent to the true 0.5 quantile 2 in the data
universe X , is not a valid response.

We can now formalize the two versions of the problems that are dealt with in the literature on streaming
quantile approximation. Let D be any distribution with random variable X ∼ D and CDF FX : R→ [0, 1].
For any q ∈ [0, 1], QqD denotes the value x such that FX(x) = q.
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Definition 3.5 (Single Quantile). Given sample S = (x1, . . . , xn) in a streaming fashion in arbitrary order,
construct a data structure for computing the quantile QqD such that for any q ∈ [0, 1], with probability at
least 1− β, |QqD − Q̃

q
S | ≤ α.

Definition 3.6 (All Quantiles). Given sample S = (x1, . . . , xn) in a streaming fashion in arbitrary order,
construct a data structure for computing the quantile QqD such that with probability at least 1 − β, for all
values of q ∈M where M ⊂ [0, 1], |QqD − Q̃

q
S | ≤ α.

3.3 Non-private Quantile Streaming

In this subsection, we provide formal guarantees needed for any sketch that our algorithms can build upon:
Lemma 3.7. Given a data stream x1, . . . , xn of elements drawn from X , there exists a sketching algorithm
that outputs a list S(X) of s = O

( 1
α logαn

)
many tuples (vi, gi,∆i) ∈ (X ×N)×N×N for i = 1, . . . , s such

that if X is the data multi-set then:

1. rank(X, val(vi)) ⊂ [
∑
j≤i gj ,∆i +

∑
j≤i gj ].

2. gi + ∆i ≤ 2αn.

3. The first tuple is (min{x ∈ X}, 1, 0) and the last tuple is (max{x ∈ X}, 1, 0).

4. The vi are sorted in ascending order. Without loss of generality, the lower interval bounds
∑
j≤i gj

and upper interval bounds ∆i +
∑
j≤i gj are also sorted in increasing order.

From conditions 1 and 2 above, it follows that the GK sketch can be used to compute α-approximate q-
quantiles by outputting the value vi∗ for the unique index i∗ such that

∑
j≤i∗ gj ≤ qn ≤ ∆i∗ +

∑
j≤i∗ gj .

More generally, any sketch which achieves the properties outlined in Lemma 3.7 can be used in place of GK.

4 Differentially Private Algorithms

In this section we present our two DP mechanisms for quantile estimation. Throughout, we assume that α
is a user-defined approximation parameter. The goal is to obtain α-approximate q-quantiles.

The new algorithms we introduce are:

(1) DPExpGK (Algorithm 1): An exponential mechanism based (ε, 0)-DP algorithm for computing a single
q-quantile. To solve the all-quantiles problem with approximation factor α, one can run this algorithm
iteratively with target quantile 0, α, 2α, . . . . Doing so requires scaling the privacy parameter in each call by
an additional α factor which increases the space complexity by a factor of 1/α. We also give an optimized
implementation (algorithm 8) of this algorithm in the appendix. We extend our results to the continual
observation setting (Dwork et al., 2010; Chan et al., 2011).

(2) DPHistGK (Algorithm 2): A histogram based (ε, 0)-DP algorithm (Algorithm 2) for the α-approximate
all-quantiles problem. The privacy guarantee of this algorithm is unconditional, but there is no universal
theoretical utility bound as in the previous algorithm. However, in some cases the utility is provably better:
for example, we show that if the data set is drawn from a normal distribution (with unknown mean and
variance), we can avoid the quadractic 1/α2 factor in the sample complexity that we incur when using
DPExpGKGumb for the same all-quantiles task.

The rest of this section contains the descriptions of the two algorithms; we relegate all proofs to the appendix.

4.1 DPExpGKGumb: Exponential Mechanism Based Approach

We first establish how the exponential mechanism and the GK sketch may be used in conjunction to solve
the single quantile problem. Concretely, the high level idea is to call the privacy preserving exponential
mechanism with a score function derived from the GK sketch. The exponential mechanism is a fundamental
privacy primitive which when given a public set of choices and a private score for each choice outputs a choice
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Algorithm 1: DPExpGK: Exponential Mechanism DP Quantiles : High Level Description
Data: X = (x1, x2, . . . , xn)
Input: ε, α (approximation parameter), q ∈ [0, 1] (quantile parameters), δu (sensitivity)

1 S(X) = {(vi, gi,∆i) : i ∈ [s]} ← GK(X,α)
2 Define score function

u(S(X), x) = −min{|y − dqne| : y ∈ [r̂min(x), r̂max(x)]}. (1)

where

r̂min(x) = max{
∑
j≤i

gj : val(vi) < x}

r̂max(x) = min{∆i +
∑
j≤i

gj : val(vi) > x}

3 Execute the exponential mechanism with score function u(S(X), ·), i.e. choose and output a single
e ∈ X with probability

∝ exp
(

ε

2δu
· u(S(X), e)

)
.

that with high probability has a score close to optimal whilst preserving privacy. In the course of constructing
our algorithms, we have to resolve two problems; one, how to usefully construct a score function to pass to
the exponential mechanism so that the private value derived is a good approximation to the q-quantile, and
two, how to execute the exponential mechanism efficiently on the (possibly massive) data universe X . To
resolve the first issue we devise the (not necessarily efficient) routine Algorithm 1; and to resolve the second
one, we run an essentially equivalent but far more efficient routine, Algorithm 8.

Constructing a score function: We recall that the GK sketch returns a short sequence of elements
from the data set with a deterministic interval for their ranks and the promise that for any target quantile
q ∈ [0, 1], there is some sketch element that lies within αn units in rank of dqne. One technicality that we
run into when trying to construct a score function on the data universe X is that when a single value occurs
with very high frequency in the data set, the ranks of the set of occurrences can span a large interval in
[0, n], and there is no one rank we can ascribe to it so as to compare it with the target rank dqne. This can
be resolved by defining the score for any data domain value in terms of the distance of its respective rank
interval [rmin(x), rmax(x)] (formalized in Definition B.1) from dqne; elements whose intervals lie closer to the
target have a higher score than further away ones.

Efficiently executing the exponential mechanism: The exponential mechanism samples one of the
public choices (in our case some element from the data universe X ) with probability that increases with the
quality of the choice according to the score function. In general every element can have a possibly different
score and the efficiency of the exponential mechanism can vary widely depending on the context. In our
setting, the succinctness of the GK sketch leads to a crucial observation: by defining the score function via
the sketch, the data domain is partitioned into a relatively small number of sets such that the score function
is constant on each partition. Concretely, for any two successive elements in the GK sketch, the range of
values in the data universe that lie between them will have the same score according to our score function.
We can hence first sample a partition from which to output a value, and then choose a value from within
that interval uniformly at random. To make our implementation even more efficient and easy to use, we
also make use of the Gumbel-max trick that allows us to iterate through the set of choices instead of storing
them in memory - see appendix B.1 and the expanded pseudocode in algorithm 8 for more detail.

On formalizing this outline we get the following formal guarantees for algorithm 1 (please see appendix B.1
for a complete proof). d(·, ·) denotes the `1 metric on R.
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Theorem 4.1. Algorithm 1 is ε-differentially private. Let x̂ be the value returned by Algorithm 1 when
initialized with target quantile q. The following statements hold:

1. Algorithm 1 can be implemented to run with space complexity O((1/α) logαn), such that with prob-
ability 1− β

d(dqne, [r̂min(x̂), r̂max(x̂)]) ≤ 2αn+ 2(4αn+ 2) log(|X |/β)
ε

(2)

2. For n > 24 log |X |/β
αmin{ε,1} , Algorithm 1 can be implemented to run with space complexity

O
(
(αε)−1 log(|X |/β) logn

)
such that with probability 1− β, x̂ is an α approximate q-quantile.

4.2 DPHistGK: Histogram Based Approach

For methods in this section, we assume that we have K ≥ 1 disjoint bins each of width w (e.g., w = α/2)
partitioning the data universe. These bins are used to construct a histogram. Essentially, Algorithm 2
builds an empirical histogram based on the GK sketch, adds noise so that the bin values satisfy (ε, 0)-DP,
and converts this empirical histogram to an approximate empirical CDF, from which the quantiles can be
approximately calculated. We demonstrate one use case of DPHistGK where the space complexity required
improves upon the worst-case bound for DPExpGK, Theorem 4.1. While the histogram based mechanism does
not have universal utility bounds in the spirit of the above theorem, the results in this section serve as one
simple example where it may yield desirable accuracy while using less space.

Algorithm 2: DPHistGK: Computing DP Quantiles in Bounded Space
Data: X = (x1, x2, . . . , xn)
Input: ε, α (approximation parameter), q ∈ [0, 1] (quantile parameters), w

1 Build summary sketch S(X) where
2 S(X) = {(vi, gi,∆i) : i ∈ [s]} ← GK(X,α)

/* cell labels ai and counts ci = 0 */
3 Initialize data-agnostic (empty) histogram Hist = 〈(ai, ci), . . .〉 with cell widths w
4 for (vi, gi,∆i) ∈ S(X) do
5 Insert gi counts of vi into histogram Hist

6 c = 0
7 H = [·]/* initialize empty list */
8 for (ai, ci) ∈ Hist do
9 c̃i = max(0, ci + Lap(0, 2/ε))

10 Append (ai, c+ c̃i) to H
11 c = c+ c̃i

12 r = dq · ne
13 for (b, rank) ∈ H do
14 if r < rank then
15 return b

/* return last element of H */
16 return H[|H| − 1]

Suppose that we are given an i.i.d. sample S = (X1, X2, . . . , Xn) such that for all i ∈ [n], Xi ∼ N (µ, σ2Id×d),
µ ∈ Rd. The goal is to estimate DP quantiles of the distribution N (µ, σ2Id×d) without knowledge of µ or
σ2. We will show how to estimate the quantiles assuming that σ2 is known. Note that it is easy to generalize
the work to the case where σ2 is unknown as follows:

For any sample S drawn from i.i.d. from N (µ, σ2Id×d), the 1− β confidence interval is

X̄ ± σ√
n
· z1−β/2,
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where z1−β/2 is the 1− β/2 quantile of the standard normal distribution and X̄ is the empirical mean. The
length of this interval is fixed and equal to 2σz1−β/2√

n
= Θ

(
σ√
n

√
log 1

β

)
. In the case where σ2 is unknown,

the confidence interval becomes X̄ ± s√
n
· tn−1,1−β/2, where s2 = 1

n−1
∑n
i=1(Xi− X̄)2 is the sample variance

(sample estimate of σ2) and tn−1,1−β/2 is the 1 − β/2 quantile of the t-distribution with n − 1 degrees of
freedom. The length of the interval can be shown to be

2σ√
n
· kn · tn−1,1−β/2 = Θ

(
σ√
n

√
log 1

β

)
,

where kn = 1 − O(1/n) is an appropriately chosen constant (see (Lehmann & Romano, 2005; Karwa &
Vadhan, 2018; Keener, 2010) for more details and discussion). We can hence assume that σ2 is known and
proceed to show sample and space complexity bounds. 2

For any q ∈ (0, 1), we denote the q-quantile of the sample S = (X1, X2, . . . , Xn) as QqS and the q-quantile of
the distribution as QqD. With this notation, for some β ∈ (0, 1] and α > 0, we wish to obtain a DP q-quantile
Q̃qS such that

P[‖QqD − Q̃
q
S‖ ≥ α] ≤ β.

We shall proceed in a three-step approach: (1) Estimate a DP range of the population in sub-linear space; (2)
Use this range of the population to construct a DP histogram using the stream S; (3) Use the DP histogram
to estimate one or more quantiles via the sub-linear data structure of Greenwald and Khanna. Our main
formal result for algorithm 2 can be summarized as follows (please see appendix B.2 for a complete proof).
Theorem 4.2. For the one-dimensional normal distribution N (µ, σ2), let S = (X1, X2, . . . , Xn) be a data
stream through which we wish to obtain Q̃qS, a DP estimate of the q-quantile of the distribution.

For any q ∈ (0, 1), there exists an (ε, δ)-DP algorithm such that, with probability at least 1 − β, we obtain
|QqD − Q̃

q
S | ≤ α for any α > 0, β ∈ (0, 1], ε, δ ∈ (0, 1/n) and for stream length

n ≥ max {min {A,B} , C} , where

A = O

(
R

εσα
log R

σβ

)
, B = O

(
R

εσα
log 1

βδ

)
, C = O

(
R2

σ2α2 log 1
β

)
as long as µ ∈ (−R,R) and using space of O(max{Rσ ,

1
α logαn}).

In the case where d = 1, by Theorem 4.2, there exists an (ε, δ)-DP algorithm Q̃qS such that if µ ∈ (−R,R)
then using space of O(max{Rσ ,

1
α logαn}) (with probability 1) as long as the stream length n is at least

Ω
(

max
{

min
{
O

(
R

εσα
log R

σβ

)
, O

(
R

εσα
log 1

βδ

)}
, O

(
R2

σ2α2 log 1
β

)})
,

we get the guarantee that, for all β ∈ (0, 1], α > 0, P[‖QqD − Q̃qS‖ ≥ α] ≤ β. Intuitively, this means
that: (1) Space: We need less space to estimate any quantile with DP guarantees if the distribution is less
concentrated (i.e., σ can be large) or if we do not require a high degree of accuracy for our queries (i.e., α
can be large). (2) Stream Length: We need a large stream length to estimate quantiles if we require a
high degree of accuracy (i.e., smaller β, α), or do not have a good public estimate of µ (large R), or have
small privacy parameters (small ε, δ), or have concentrated datasets (small σ).

5 Continual Observation

We now describe how our one-shot approach can be used as a black box to obtain a continual observation
solution (Dwork et al., 2010; Chan et al., 2011). In the absence of privacy, we recall that an α/2-approximate
solution for the q-quantile problem on a stream of length n allows for an additive error of αn/2 in the rank of
any candidate q-quantile solution. It follows that if we append any arbitrary αn/2-many elements to the end

2One could also estimate the variance in a DP way and then prove the complexity bounds.
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Algorithm 3: Continual Observation DP Quantiles

Data: Input stream X = (x1, . . . , xn) for some n > nmin = Ω
(

1
α2ε logn log

(
|X | logn
αβ

))
, privacy

parameter ε, approximation parameter α, target quantile q
1 , failure probability β Let s = 0
2 ε∗ ← O(αε/ logn)
3 α∗ ← α/2
4 β∗ ← logn

αβ

5 cp(s)← nmin /* stores stream checkpoints */
6 Instantiate GK← GK(α∗)
7 vs ←⊥ /* holds α-approximate q-quantile */
8 for stream element xs ∈ X do
9 s← s+ 1

10 GK.insert(xs)
11 if s = dcp(s− 1)e then
12 vs ← DPExpGK(GK, ε∗, α∗, q, β∗)
13 cp(s)← cp(s− 1)(1 + α/2)
14 else
15 vs ← vs−1
16 cp(s)← cp(s− 1)

of the stream, these new elements can lead to an additional additive error of at most αn/2. This suggests
that on releasing a DP quantile estimate at any point in the stream, we can avoid updating our q-quantile
estimate for a proportionate number of additional elements whilst maintaining a (1+α)-approximation. This
is essentially the idea behind the flip number used in the study of adversarially robust streaming algorithms.
At a high level, the flip number is a measure of the number of times the output of an online algorithm
changes by more than a (1± α) multiplicative factor (see (Ben-Eliezer et al., 2020) for more detail).

Building on this idea, we can show that we only need update our estimate after every additional α/2-fraction
as many elements are added as were present at the previous estimate. At the beginning of this process,
i.e. when no stream elements have been processed, for the first few elements (nmin-many, as described in
the pseudo-code) we will need to update our online estimate every time or omit producing any estimate.
However, after this short warm-up prefix of the stream, a relatively small number of estimates serve as
(1 + α)-approximate q quantiles for every point in the remainder of the stream.

Accounting for the additional requirement of privacy is now easy - we merely need to privatize the estimate
at each of the checkpoints, which are the points in the stream where the quantile estimate must be updated.
For n elements in all there are O

(
log1+α

n
nmin

)
many such elements, which for a suitable choice of nmin

simplifies essentially to O
( logn
εα

)
. In other words we see that the privacy loss scales only with the logarithm

of the length of the stream because of the relatively few checkpoints that occur. The formal statement is as
below, and we present a complete proof in appendix B.3.

Theorem 5.1. Let ε, α > 0, n ∈ Z. For any β ∈ (0, 1], with probability ≥ 1 − β, Algorithm 3 maintains
an α-approximate q-quantile at every point s in the data stream for s = Ω

(
logn log |X |/β

α2ε

)
. Furthermore,

Algorithm 3 satisfies ε-DP and has space complexity Ω
(

1
α2ε log2 n log

(
|X | logn
αβ

))
.

We conclude by mentioning that our continual observation solution incurs roughly a O(logn/α) overhead
in the space complexity, which is in line with classical works in differential privacy and adversarially robust
streaming (Ben-Eliezer et al., 2020; Dwork et al., 2010). Concurrently, Stemmer and Kaplan (Kaplan &
Stemmer, 2021) developed a notion of streaming sanitizers which yields a continual observation guarantee
“for free”, without incurring such an overhead over the one-shot case.
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Figure 2: DPExpGKGumb versus DPExpFull for uniform or normally distributed data, α = 10−4, ε = 1, q = 0.5

6 Experimental Evaluation

In this section, we experimentally evaluate our sublinear-space exponential-based mechanism, DPExpGKGumb.
We study how well our algorithm performs in terms of accuracy and space usage. This section validates
the theoretical results in the prequel - we find that the space complexity of the algorithm is indeed very
small in practice, and that the accuracy is typically closely tied to the approximation parameter α. Our
main baselines will be DPExpFull, which applies the exponential mechanism on the full data set without
any sketching algorithms (see appendix C.1 for further implementation details), and the true quantile value.
The true quantile values are used to compute relative error, the absolute value of the difference between
the estimated quantile and the true quantile, divided by the standard deviation of the data set. We graph
the mean relative error over 100 trials of the exponential mechanism per experiment, as well as the 80%
confidence interval computed by taking the 10th and 90th percentile. We fix the target quantile to be
estimated to q = 0.5 (the median) throughout as the relative error and the space usage generally do not
seem to vary much with choice of q.

6.1 Synthetic data sets

In this subsection, we compare our methods on synthetically generated datasets. We vary the parameters of
the Stream Length n (the size of the input stream x1, . . . , xn), the Approximation Parameter α (the
approximation factor used by the internal GK sketch), and the Data Distribution. We generate data from
uniform and Gaussian distributions; we use a uniform distribution in range [0, 1] (i.e., U(0, 1)) or a normal
distribution with mean 0 and variance 1 (i.e., N(0, 1)), clipped to the interval [−10, 10].3.

We show results on space usage and relative error (both plotted mostly on logarithmic scales) from non-DP
estimates, as we vary the parameters listed above.

In Figure 2, we vary the stream length n for an approximation factor of α = 10−4. The streams are either
normally or uniformly distributed. In Figures 2a and 2b, we compare DPExpGKGumb (space strongly sublinear
in n) vs. DPExpFull (uses space of O(n)) in terms of space usage and accuracy. In general we find that
although our method DPExpGKGumb incurs higher error, in absolute terms it remains quite small and the 95%
confidence intervals tend to be adjacent for DPExpGKGumb and DPExpFull. However, there is a clear trend of
an exponential gap developing between their respective space usages which is a natural consequence of the
space complexity guarantee of the GK sketch. This holds for both distributions studied.

3Clipping is required for the exponential mechanism, as it must operate on some bounded interval of values. In any case,
we never expect to see samples from N(0, 1) that lie outside [−10, 10] for any practical purpose; the probability for any given
sample to satisfy this is minuscule, at about ≈ 10−21.
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Figure 4: Relative error versus approximation factor.

In Figure 3, we vary the stream length for a relatively large approximation factor of 0.1. Here we see that
compared to the non-approximate method we incur far higher error, although there is also a concomitant
increase in the space savings. This is not a typical use-case since the non-private error can itself be large,
but we get a complete picture of how space usage and performance vary with this user-defined parameter.

In Figures 4c and 4d, we vary the approximation factor. In the small approximation setting we see the
inverse tendency of accuracy with privacy which is characteristic of most DP algorithms. However, in the
large approximation setting, there is no such clear drop in performance with more privacy. This motivates
the question of determining the true interplay between the approximation factor α and the private parameter
ε, as discussed further in Section 7.

Our algorithm performs well in practical settings where one wishes to estimate some quantity across all data
items privately and using small space. For example, our results indicate that choosing an approximation
factor of α = 10−4 induces an error which is also of order about 10−4 for privately computing parameters
chosen according to a uniform or normal distribution, all while saving orders of magnitude in the space
complexity.

6.2 Real-World Datasets

We repeat our investigation of the utility and space complexity comparison between DPExpGKGumb and
DPExpFull with the following real-world data sets (Dua & Graff, 2017): (1) Taxi Service Trajectory:
A dataset from the UCI machine learning repository describing trajectories performed by all 442 taxis (at

4The 80% CI for error incurred by DPExpFull was entirely supported on the point 0 and drops off axis as we use the log
scale.
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Figure 5: Taxi and Gas sensor data sets.

the time) in the city of Porto in Portugal (Moreira-Matias et al., 2013). This dataset contains real-valued
attributes with about 1.5 million instances. (2) Gas Sensor Dataset: A UCI repository dataset containing
recordings of 16 chemical sensors exposed to varying concentrations of two gas mixtures (Fonollosa et al.,
2015). The sensor measurements are acquired continuously during a 12-hour time range and contains about
4 millions instances. We pick a real-valued attribute from each dataset (the TIMESTAMP and the first
ETHYLENE_CO gas sensor value, respectively) and calculate the median on these datasets. The results
are reported in Figures 5a and 5b, and Figures 5c and 5d respectively.

We see that the larger the approximation factor, the larger the space savings are with DPExpGK. Comparing
DPExpFull to DPExpGK, we see space savings of 2 times up to 1000 times as we vary the approximation factor.
These results are consistent with our expectations that the space savings are inversely proportional to the
allowed approximation factor.

7 Conclusion & Future Work

In this work, we presented sublinear-space and differentially private algorithms for approximately estimating
quantiles in a dataset. Our solutions are two-part: one based on the exponential mechanism and efficiently
implemented via the use of the Gumbel distribution; the other based on constructing histograms. Our
algorithms are supplemented with theoretical utility guarantees. Furthermore, we experimentally validate
our methods on both synthetic and real-world datasets. Our work leaves room for further exploration in
various directions.

Interplay between α and ε: The space complexity bounds we obtain are (up to lower order terms) in-
versely linear in α and in ε. While it is either known or easy to show that such linear dependence
in each of these parameters in itself is necessary, it is not clear whether the α−1ε−1 term in Theo-
rem 4.1 can be replaced with, say, α−1 + ε−1. Such an improvement, if possible, seems to require
substantially modifying the baseline Greenwald-Khanna sketch or adding randomness.

Alternative streaming baselines: We base our mechanisms upon the GK-sketch, which is known to
be space-optimal among deterministic streaming algorithms for quantile approximation. The use
of a deterministic baseline simplifies the analysis and the overall solution, but better randomized
streaming algorithms for the same problem are known to exist. What would be the benefit of
working, e.g., with the (optimal among randomized algorithms) KLL-sketch (Karnin et al., 2016)?

Dependence in universe size: The dependence of our space complexity bounds in the size of the universe,
X , is logarithmic. Recent work of Kaplan et al. (Kaplan et al., 2020) (see also (Bun et al., 2015)) on
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the sample (not space) complexity of privately learning thresholds in one dimension, a fundamental
problem at the intersection of learning theory and privacy, demonstrate a bound polynomial in
log∗ |X | on the sample complexity. As quantile estimation and threshold learning are closely related
problems, this raises the question of whether techniques developed in the aforementioned papers can
improve the dependence on |X | in our bounds.

Random order: The results presented here (except for those about normally distributed data) all assume
that the data stream is presented in worst case order, an assumption that may be too strong for
some scenarios. Can improved bounds be proved when the data elements are chosen in advance but
their order is chosen randomly? This can serve as a middle ground between the most general case
(which we address in this paper) and the case where data is assumed to be generated according to
a certain distribution.

8 Acknowledgements

D.A. was supported by a Junior Fellowship from the Simons Foundation Society of Fellows, Cooperative
Agreement CB20ADR0160001 with the U.S. Census Bureau, and a Fellowship from Meta AI. Most of this
work was done while he was a Ph.D. student at Harvard University. A.C. was supported in part by NSF
CAREER grant 1750716.

References
Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Perturbation Techniques in Online Learning and Opti-
mization, pp. 233–264. 2017. 23

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and Ke Yi. Mergeable
summaries. ACM Trans. Database Syst., 38(4):26:1–26:28, 2013. 2, 3

Hilal Asi and John C. Duchi. Near instance-optimality in differential privacy. CoRR, abs/2005.10630, 2020.
1, 3

Victor Balcer and Salil P. Vadhan. Differential privacy on finite computers. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of
LIPIcs, pp. 43:1–43:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 23

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially
robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pp. 63–80, 2020. 9

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The Johnson-Lindenstrauss transform itself
preserves differential privacy. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pp. 410–419. IEEE Computer Society, 2012.
3

Jonas Böhler and Florian Kerschbaum. Secure sublinear time differentially private median computation. In
27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020, 2020. 3

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release and learning of
threshold functions. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pp. 634–649, 2015. 12, 25

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM Trans.
Inf. Syst. Secur., 14(3):26:1–26:24, 2011. 5, 8

Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhimovich. Differentially-private
multi-party sketching for large-scale statistics. Proc. Priv. Enhancing Technol., 2020(3):153–174, 2020. 3

13



Published in Transactions on Machine Learning Research (06/2023)

Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based quantile summaries. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS’20, pp. 81–93. Association for Computing Machinery, 2020. 3

Graham Cormode, Zohar S. Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý. Relative error stream-
ing quantiles. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS’21, pp. 96–108. Association for Computing Machinery. 3

Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Space- and time-efficient deter-
ministic algorithms for biased quantiles over data streams. In Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-28, 2006, Chicago,
Illinois, USA, pp. 263–272, 2006. 3

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 11

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution function
and of the classical multinomial estimator. Ann. Math. Statist., 27(3):642–669, 09 1956. doi: 10.1214/
aoms/1177728174. 24

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pp. 371–380, 2009. 1, 3

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, pp. 265–284, 2006. 4, 26

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual ob-
servation. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pp. 715–724. ACM, 2010. 5, 8, 9

David Felber and Rafail Ostrovsky. A randomized online quantile summary in o((1/ε) log(1/ε)) words.
Theory Comput., 13(1):1–17, 2017. 2, 3

Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reservoir computing compensates
slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring.
Sensors and Actuators B: Chemical, 215:618–629, 2015. ISSN 0925-4005. 12

Jennifer Gillenwater, Matthew Joseph, and Alex Kulesza. Differentially private quantiles. In Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 3713–3722. PMLR, 2021. 1, 3

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries. In
Proceedings of the 2001 ACM SIGMOD international conference on Management of data, Santa Barbara,
CA, USA, May 21-24, 2001, pp. 58–66, 2001. 2, 3, 17, 19

Michael Greenwald and Sanjeev Khanna. Power-conserving computation of order-statistics over sensor net-
works. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 14-16, 2004, Paris, France, pp. 275–285, 2004. 25

Michael B. Greenwald and Sanjeev Khanna. Quantiles and equi-depth histograms over streams. In Data
Stream Management - Processing High-Speed Data Streams, pp. 45–86. 2016. 2

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35(1):
73 – 101, 1964. doi: 10.1214/aoms/1177703732. 1

Regant Y. S. Hung and Hing-Fung Ting. An ω(1/ε log(1/ε)) space lower bound for finding epsilon-
approximate quantiles in a data stream. In Frontiers in Algorithmics, 4th International Workshop, FAW
2010, Wuhan, China, August 11-13, 2010. Proceedings, volume 6213 of Lecture Notes in Computer Science,
pp. 89–100. Springer, 2010. 2, 3

14



Published in Transactions on Machine Learning Research (06/2023)

Haim Kaplan and Uri Stemmer. A note on sanitizing streams with differential privacy, 2021. 9, 24

Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. Privately learning thresholds:
Closing the exponential gap. In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual
Event [Graz, Austria], volume 125 of Proceedings of Machine Learning Research, pp. 2263–2285. PMLR,
2020. 12

Haim Kaplan, Shachar Schnapp, and Uri Stemmer. Differentially private approximate quantiles. In Pro-
ceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning
Research, pp. 10751–10761. PMLR, 2022. 3

Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. Optimal quantile approximation in streams. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pp. 71–78, 2016. 2, 3, 12

Vishesh Karwa and Salil Vadhan. Finite Sample Differentially Private Confidence Intervals. In Anna R.
Karlin (ed.), 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of
Leibniz International Proceedings in Informatics (LIPIcs), pp. 44:1–44:9, 2018. 8, 25

R.W. Keener. Theoretical Statistics: Topics for a Core Course. Springer Texts in Statistics. Springer New
York, 2010. 8

William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance analysis. Journal of the
American Statistical Association, 47(260):583–621, 1952. doi: 10.1080/01621459.1952.10483441. 1

Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics.
Springer New York, New York, NY, 3. edition, 2005. ISBN 9780387276052. 8

Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams: experimental comparisons,
new analyses, and further improvements. VLDB J., 25(4):449–472, 2016. 3

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random sampling techniques for space
efficient online computation of order statistics of large datasets. In SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania,
USA, pp. 251–262, 1999. 2, 3

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,
USA, Proceedings, pp. 94–103, 2007. 20, 21

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright. Pan-private algorithms
via statistics on sketches. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pp. 37–48, 2011. 2

Ilya Mironov. On significance of the least significant bits for differential privacy. In the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pp. 650–661,
2012. 23

Luís Moreira-Matias, João Gama, Michel Ferreira, João Mendes-Moreira, and Luís Damas. Predicting taxi-
passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst., 14(3):1393–1402, 2013. 12

J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theoretical Computer Science,
12(3):315–323, 1980. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(80)90061-4. 2, 3

Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pp. 75–84, 2007. 1, 3

15



Published in Transactions on Machine Learning Research (06/2023)

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians and beyond:
New aggregation techniques for sensor networks. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04, pp. 239–249. Association for Computing Machinery,
2004. ISBN 1581138792. 2

Adam D. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pp. 813–822, 2011. 2, 21

Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The Flajolet-Martin sketch itself preserves differ-
ential privacy: Private counting with minimal space. In NeurIPS, 2020. 3

J. W. Tukey. A survey of sampling from contaminated distributions. Contributions to Probability and
Statistics, pp. 448–485, 1960. 1

Christos Tzamos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, and Ilias Zadik. Optimal private median
estimation under minimal distributional assumptions. In NeurIPS, 2020. 1, 3

Salil P. Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography,
pp. 347–450. 2017. 25

Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. Quantiles over data streams: an experimental study.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013,
New York, NY, USA, June 22-27, 2013, pp. 737–748, 2013. 2

Zhuolun Xiang, Bolin Ding, Xi He, and Jingren Zhou. Linear and range counting under metric-based local
differential privacy. In IEEE International Symposium on Information Theory, ISIT 2020, pp. 908–913,
2020. 2

A Greenwald-Khanna Sketch

For completeness of our algorithm’s description, we specify the operations in the Greenwald-Khanna (GK)
non-private sketch. Throughout, we will use n = n(t) to denote the number of elements encountered up to
time t ∈ Z+. Some of the operations outlined here will be used a subroutines for the DP procedures.

A.1 The Sketch

Let X = (x1, x2, . . . , xn) be a stream of items and S(X) be the resulting sketch with size sublinear in n.
The GK sketch stores

S(X) = 〈t0, t1, . . . , ts−1〉, ∀i ∈ {0, . . . , s− 1}, ti = (vi, gi,∆i),

where gi = rmin(vi)− rmin(vi−1) and ∆i = rmax(vi)− rmin(vi). We reserve v0, vs−1 be denote the smallest
and largest elements seem in the stream X, respectively. We use S(X)[i] to refer to the ith tuple in the
sketch S(X). i.e., for any i, S(X)[i] = ti = (vi, gi,∆i).

Implicitly, the goal is to (implicitly) maintain bounds rmin(v) and rmax(v) for every v in S(X). rmin(v)
and rmax(v) are the lower and upper bounds on the rank of v amongst all items in X, respectively. We can
compute these bounds as follows:

rmin(vi) =
∑
j≤i

gj , rmin(vi) =
∑
j≤i

gj + ∆i.

As a result, gi + ∆i − 1 is an upper bound on the number of items between vi−1 and vi. In addition,
n =

∑
i gi.
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The sketch is built in such a way to guarantee (maximum) error of maxs−1
i=0 (gi + ∆i)/2 for approximately

computing any quantile using the sketch.

We will also impose a tree structure over tuples in S(X) (mostly because of the merge procedure) as follows:
the tree T (X) associated with S(X) has a node Vi for each ti. The parent of a node Vi is the node Vj such
that j is the smallest index greater than i with band(tj) > band(ti).

band(ti) is the band of ∆i at time n and bandτ (n) as all tuples that had band value of τ . All possible values
of ∆ are denoted as bands and it can take on values between
(0, 1

2 2αn, 3
4 2αn, . . . , 2i−1

2i 2αn, . . . , 2αn− 1, 2αn) corresponding to capacities of (2αn, αn, . . . , 8, 4, 2, 1).

A.2 Quantile

Algorithm 4 computes the α-approximate q-quantile based on the sketch S(X) that has size that is sublinear
in n.

The algorithm goes through all tuples and checks if the condition max(r − rmin(vi), rmax(vi) − r) ≤ αn
is satisfied and return (i, vi) as the representative approximate quantile. This algorithm will be used a
subroutine for one or more of our differentially private algorithms.
Lemma A.1 (Proposition 1 & Corollary 1 (Greenwald & Khanna, 2001)). If after receiving n items in
the stream, the sketch S(X) satisfies the property maxi(gi + ∆i) ≤ 2αn, then Algorithm 4 returns an α-
approximate q-quantile.

Proof. The algorithm computes r = dqne. Then the condition max(r − rmin(vi), rmax(vi)− r) ≤ αn clearly
is (by definition) an α-approximate q-quantile. We still need to show that such vi always exists. First set
e = maxi(gi+ ∆i)/2. If r > n− e, then rmin(vs−1) = rmax(vs−1) = n so that i = s−1 satisfies the property.
When r ≤ n− e, then the algorithm chooses the smallest index j such that rmax(vj) > r+ e so that r− e ≤
rmin(vj−1). This follows since if r− e > rmin(vj−1) then rmax(vj) = rmin(vj−1) + gj + ∆j > rmin(vj−1) + 2e
which contradicts the definition of e.

Algorithm 4: Quantile(S(X), q, n, α): Computing α-Approximate Quantiles
Input: S(X), q, n, α (approximation parameter)

1 Compute r = dqne
2 for i = 0, . . . , s− 1 do
3 (vi, gi,∆i) = S(X)[i]
4 if max(r − rmin(vi), rmax(vi)− r) ≤ αn then
5 return (i, vi)

6 return ⊥

A.3 Insert

Algorithm 5 goes through a stream of items and inserts into the sketch. The algorithm calls a compress
operator on the data structure every time that i ≡ 0 mod 1

2α for any i ∈ [m].

Algorithm 6 inserts a particular item xn into the data structure S(X). In the special case where xn is a
minimum or maximum, it inserts the tuple (xn, 1, 0) at the beginning or end of S(X). Otherwise, it finds
an index i such that vi−1 ≤ xn < vi and then inserts the tuple (xn, 1, b2αnc) into S(X) at position i.

A.4 Compress

The Compress operation is an internal operation used for compressing (contiguous) tuples in S(X). The goal
of this operation is to merge a node and its descendants into either its right sibling or parent node. After
merge, we have to maintain the property that the tuple is not full. A tuple is full when gi + ∆i ≥ b2αnc.
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Algorithm 5: Inserting a stream of items into Summary Sketch
Data: x1, x2, . . . , xm, . . .
Input: S(X), α (approximation parameter)

1 n = 0
2 for i = 1, . . . ,m, . . . do
3 if i ≡ 0 mod 1

2α then
4 Compress(S(X), α, n)
5 Insert(S(X), α, xi)
6 n = n+ 1
7 return S(X), n

Algorithm 6: Insert(S(X), α, xn): Inserting into Summary Sketch
Data: xn
Input: S(X), α (approximation parameter)

1 (v0, g0,∆0) = S(X)[0]
2 (vs−1, gs−1,∆s−1) = S(X)[s− 1]
3 if xn < v0 then
4 Shift all positions in S(X)[0 . . . s− 1] to S(X)[i . . . s]
5 S(X)[0] = (xn, 1, 0)
6 else if xn > vs−1 then
7 S(X)[s] = (xn, 1, 0)
8 else
9 for i = 0, . . . , s− 1 do

10 (vi, gi,∆i) = S(X)[i]
11 if vi−1 ≤ xn < vi then
12 Shift all positions in S(X)[i . . . s− 1] to S(X)[i+ 1 . . . s]
13 S(X)[i] = (xn, 1, b2αnc)

14 return S(X), s+ 1

Algorithm 7: Compressing the Sketch
Input: S(X), α (approximation parameter), n

1 if n < 1
2α then

2 return
3 for i = s− 2, . . . , 0 do
4 ti = (vi, gi,∆i) = S(X)[i]
5 ti+1 = (vi+1, gi+1,∆i+1) = S(X)[i+ 1]
6 Compute g∗i , the sum of g-values of tuple ti and its descendants
7 if band(ti) ≤ band(ti+1) & (g∗i + gi+1 + ∆i+1 < 2αn) then
8 Delete all descendants of ti and the tuple ti from sketch S(X)
9 Update ti+1 in S(X) to (vi+1, g

∗
i + gi+1,∆i+1)
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By Proposition A.2, a node and its children will form a contiguous segment. Let g∗i be the sum of g-values
of tuple ti and all of its descendants. Then merging ti and its descendants would update ti+1 in S(X) to
(vi+1, g

∗
i + gi+1,∆i+1) and delete ti and all of its descendants.

Proposition A.2 (Proposition 4 in (Greenwald & Khanna, 2001)). For any node V , the set of all its
descendants in the tree forms a contiguous segment in S(X).

A.5 Formal guarantee

We briefly recall the main guarantees of the GK sketch that we appeal to in the main body of this work and
provide a proof for the statements that are not reproduced from previous work.
Lemma 3.7. Given a data stream x1, . . . , xn of elements drawn from X , there exists a sketching algorithm
that outputs a list S(X) of s = O

( 1
α logαn

)
many tuples (vi, gi,∆i) ∈ (X ×N)×N×N for i = 1, . . . , s such

that if X is the data multi-set then:

1. rank(X, val(vi)) ⊂ [
∑
j≤i gj ,∆i +

∑
j≤i gj ].

2. gi + ∆i ≤ 2αn.

3. The first tuple is (min{x ∈ X}, 1, 0) and the last tuple is (max{x ∈ X}, 1, 0).

4. The vi are sorted in ascending order. Without loss of generality, the lower interval bounds
∑
j≤i gj

and upper interval bounds ∆i +
∑
j≤i gj are also sorted in increasing order.

Proof. The first three statements are part of the GK sketch guarantee. For the third statement, i.e., to see
that the vi are sorted in ascending order, we see that the GK sketch construction ensures that val(vi) ≤
val(vi+1) for all i. Since an insertion operation always inserts a repeated value after all previous occurrences
and the tuple order is always preserved, it follows that ix(vi) ≤ ix(vi+1) as well, so in sum rank(X, vi) ≤
rank(X, vi+1). In other words, the sort order in the GK sketch is stable.

The fact that the sequence
∑
j≤i gj is sorted in increasing order follows from the non-negativity of the gi.

To ensure that ∆i +
∑
j≤i gj are sorted in increasing order note that we always have that rank(X, vi) ≤

rank(X, vi+1) so that we can decrement ∆i and ensure that ∆i +
∑
j≤i gj ≤ ∆i+1 +

∑
j≤i+1 gj without

violating the guarantees of the GK sketch.

B Omitted proofs

We first recall and add some definitions that we will require in the sequel.
Definition B.1. Let X = ((x1, 1), . . . , (xn, n)) (sometimes implicitly referred to as X = (x1, . . . , xn)) be a
stream of elements drawn from some finite totally ordered data universe X , i.e., xi ∈ X for all i ∈ [n].

1. Rank: Given a totally ordered finite data universe X , a data set X and a value x ∈ X , let
rankX(x) = rank(X,x) =

∑
y∈X 1[y ≤ x].

2. For (xi, i) ∈ X, let val((xi, i)) = xi and ix((xi, i)) =
∑
j≤i |{(xj , j) : xj < xi or xj = xi, j < i}|.

3. For v1, v2 ∈ X, we say that v1 ≤ v2 if ix(v1) ≤ ix(v2).

4. The q-quantile of X is val(v) for v ∈ X with ix(v) = dqne.

5. For x ∈ X , we define rmin(x) = |{v ∈ X : val(v) < x}|, rmax(x) = |{v ∈ X : val(v) ≤ x}| and
rank(X,x) to be the interval [rmin(x), rmax(x)].

6. We say that x ∈ X is an α-approximate q-quantile for X if rank(X,x)∩ [dqne−αn, dqne+αn] 6= ∅.

With this notation, the data set X is naturally identified as a multi-set of elements drawn from X .
Definition B.2. Let r̂min(x) = max{

∑
j≤i gj : val(vi) < x} and r̂max(x) = min{∆i+

∑
j≤i gj : val(vi) > x}.

Note that for every v ∈ X such that val(v) = x, ix(v) ∈ [r̂min(x), r̂max(x)].
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B.1 Proofs of privacy and utility for DPExpGK

Outline: From Definition B.2 to Lemma B.5, we formalize how the GK sketch may be used to construct
rank interval estimates for any data domain value. We then recall and apply the exponential mechanism with
a score function derived from the GK sketch (Definition B.6 to Lemma B.9 and Algorithm 1), and derive
the error guarantee Lemma B.11. We conclude this subsection with a detailed description of an efficient
implementation of the exponential mechanism (Algorithm 8 and Lemma B.12), and summarize our final
accuracy and space complexity guarantees in Theorem 4.1.
Remark B.3. We can add two additional tuples (−∞, 0, 0) and (∞, 0, 0) to the sketch, which corresponds to
respective rank intervals [0, 0] and [n+ 1, n+ 1]. The bounds gi + ∆i ≤ 2αn are preserved. This will ensure
that the sets {i : val(vi) < x} and {i : val(vi) > x} for any x ∈ X are always non-empty.

We formalize the rank interval estimation in a partition-wise manner as below.
Lemma B.4. Given a GK sketch (v1, g1,∆1), . . . , (vs, gs,∆s), for every x ∈ X one of the following two
cases holds:

1. x = vi for some i ∈ [s] and i = min{j : vj = x},

r̂min(x) =
∑
j≤i

gj

r̂max(x) = min{∆i∗ +
∑
j≤i∗

gj : ∃i∗, val(vi∗) > val(vi)}

2. x ∈ (vi−1, vi), i.e., x > vi−1 and x < vi for some i ∈ [s],

r̂min(x) =
∑
j≤i

gj

r̂max(x) = ∆i+1 +
∑
j≤i+1

gj

Proof. Recall, by Remark B.3, that the first tuple and the last tuple are formal elements at −∞ and ∞,
ensuring that every data universe element either explicitly occurs in the GK sketch or lies between two values
that occur in the GK sketch. Both statements now follow directly from Definition B.2 and the fact that the
values vi occur in increasing order in the sketch (Lemma 3.7).

We bound the quality of the rank interval estimate [r̂min(x), r̂max(x)] compared to the true rank interval
[rmin(x), rmax(x)] as follows.
Lemma B.5. |rmin(x)− r̂min(x)| ≤ 2αn and |rmax(x)− r̂max(x)| ≤ 2αn.

Proof. Let i∗ = argmaxi:val(vi)<x
∑
j≤i gj . Then by Definition of i∗, we have that val(vi∗) < x ≤ val(vi∗+1).

It follows that

[ix(vi∗), ix(vi∗+1)] ⊂ [
∑
j≤i∗

gj ,∆i∗+1 + gi∗+1 +
∑
j≤i∗

gj ]

⊂ [r̂min(x),∆i∗+1 + gi∗+1 + r̂min(x)]

Since rmin(x) ∈ [ix(vi∗), ix(vi∗+1)] and gi∗+1 + ∆i∗+1 ≤ 2αn, it follows that |rmin(x)− r̂min(x)| ≤ 2αn. The
other inequality follows analogously.

Definition B.6 (Exponential Mechanism (McSherry & Talwar, 2007)). Let u : SS×R → R be an arbitrary
score function with global sensitivity δu. For any database summary d ∈ SS and privacy parameter ε > 0,
the exponential mechanism Eεu : SS → R outputs r ∈ R with probability ∝ exp( ε·u(S(X),r)

2δu ) where

δu = max
X∼X′,r

|u(S(X), r)− u(S(X ′), r)|.
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The following statement formalizes the trade-off between the privacy parameter ε and the tightness of the
tail bound on the score attained by the exponential mechanism.
Theorem B.7 ( (McSherry & Talwar, 2007; Smith, 2011)). The exponential mechanism (Definition B.6)
satisfies ε-differential privacy. Further, the following tail bound on the utility (the score of the output element)
holds:

P

(
u(S(X), Eεu(S(X))) < max

r∈R
u(S(X), r)− 2δu(t+ ln s)

ε

)
≤ e−t,

where s is the size of the universe from which we are sampling from.

To run the exponential mechanism using our approximate rank interval estimates, we define a score function
as follows.
Definition B.8. Let d(·, ·) denote the `1 metric on R. Given a sketch S(X), we define a score function on
X :

u(S(X), x) = −min{|y − dqne| : y ∈ [r̂min(x), r̂max(x)]}
= −d(dqne, [r̂min(x), r̂max(x)])

The magnitude of the noise that is added in the course of the exponential mechanism depends on the
sensitivity of the score function, which we bound from above as follows.
Lemma B.9. For all n > 1/α, the sensitivity of u (i.e., δu) is at most 4αn+ 2 units.

Proof. Fix any data set X ′ neighbouring X under swap DP and let [r′min(·), r′max(·)] be the rank ranges with
respect to X ′ for values in X . Let [r̂′min(·), r̂′max(·)] denote the confidence interval derived from the GK
sketch S(X ′) for values in X .

Claim B.10. |rmin(x)− r′min(x)| ≤ 2, |rmax(x)− r′max(x)| ≤ 2.

Proof. These bounds follow directly from the Definition of rmin and rmax; under swap DP at most two
elements of the stream are changed which implies that the count of the sets defining these terms changes by
at most 1 unit each for a total shift of 2 units (in fact, this can be bounded by 1 unit).

We now prove the sensitivity bound.

u(S(X), x) = −d(dqne, [r̂min(x), r̂max(x)])
≤ −d(dqne, [rmin(x), rmax(x)]) + 2αn
≤ −d(dqne, [r′min(x), r′max(x)]) + 2αn+ 2
≤ −d(dqne, [r̂′min(x), r̂′max(x)]) + 4αn+ 2
≤ u(S(X ′), x) + 4αn+ 2.

Swapping the positions of X and X ′, we get the reverse bound to complete the sensitivity analysis.

We can now derive a high probability bound on the utility that is achieved by Algorithm 1.
Lemma B.11. If x̂ is the value returned DPExpGK then with probability 1− β,

d(dqne, [r̂min(x̂), r̂max(x̂)]) ≤ 2αn+ 2(4αn+ 2) log(|X |/β)
ε

.

Proof. By construction, Algorithm 1 is simply a call to the exponential mechanism with score function
u(S(X), ·), Since for any target q-quantile, dqne lies in [0, n] it follows that there is some i∗ ∈ s such that
dqne ∈ [

∑
j≤i∗ gj ,∆i∗+1 + gi∗+1 +

∑
j≤i∗ gj ]. It follows that d(dqne, [rmin(val(vi∗), rmax(val(vi∗))]) ≤ 2αn
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and that hence max(u(S(X), x)) ≥ −2αn. If x∗ is the output of the exponential mechanism, then applying
the utility tail bound we get that with probability 1− β,

u(S(X), x∗) ≥ −2αn− 2(4αn+ 2) log(|X |/β)
ε

.

By definition of u, the desired bound follows.

Algorithm 8: DPExpGKGumb: Implementing the Exponential Mechanism on S(X) using the Gumbel
Distribution (Optimized implementation of Algorithm 1)
Data: X = (x1, x2, . . . , xn)
Input: ε, α (approximation parameter), q ∈ [0, 1] (quantile parameters)

1 Build summary sketch S(X) and let s = |S(X)|.
2 Let (vi, gi,∆i) = S(X)[i] for all i ∈ [s]
3 maxIndex = −1
4 maxValue = −∞

/* Iterating over tuple values vi */
5 Let i = 1
6 while i <= s do
7 r̂min =

∑
j≤i gj

8 r̂max = min{∆i∗ +
∑
j≤i∗ gj : val(vi∗) > val(vi)}

9 ui = −min{|y − dqne| : y ∈ [r̂min, r̂max]}.
10 f = ε

2ui
11 f̃ = f + Gumb(0, 1)
12 if f̃ > maxValue then
13 maxIndex = (i, tuple)
14 maxValue = f̃

15 i← min{j : vj > vi}
/* Iterating over intervals between tuples X (vi−1, vi) ⊂ X */

16 Let i = 1
17 while i <= s do
18 if X (vi−1, vi) is not empty then
19 r̂min =

∑
j≤i gj

20 r̂max = ∆i+1 +
∑
j≤i+1 gj

21 ui−1,i = −min{|y − dqne| : y ∈ [r̂min, r̂max]}.
22 f = log(|X (vi−1, vi)|) + ε

2ui−1,i
23 f̃ = f + Gumb(0, 1)
24 if f̃ > maxValue then
25 maxIndex = (i, interval)
26 maxValue = f̃

27 i← i+ 1
28 if maxIndex = (i, tuple) for some i ∈ 1, . . . , s then
29 return vi
30 else if maxIndex = (i, interval) for some i ∈ 1, . . . , s then
31 Pick v ∈ X (vi−1, vi) uniformly at random
32 return v

As discussed before, in general a naive implementation of the exponential mechanism as in Algorithm 1 would
in general not be efficient. To resolve this issue, in Algorithm 8 we take advantage of the partition of the data
domain by the score function and the Gumbel-max trick to implement the exponential mechanism without
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any higher-order overhead and return an α-approximate q quantile. This trick has become a standard way
to implement the exponential mechanism over intervals/tuples.
Lemma B.12. Algorithm 8 implements Algorithm 1 on the data universe X with space complexity O(|S(X)|)
(where S(X) is the GK sketch) and additional time complexity O(|S(X)| log |S(X)|).

Proof. We see that it will suffice to show that Algorithm 8 executes the exponential mechanism with the
same score function as Algorithm 1 to prove that it is a valid implementation of the latter.

As noted in previous work (Abernethy et al., 2017), if Z1, . . . , ZN are drawn i.i.d. from standard Gumbel
distribution, then

P
[
fi + Zi = max

j∈[N ]
{fj + Zj}

]
= exp(fi)∑

j∈[N ] exp(fj)
,∀i ∈ [N ].

We recall that when running the exponential mechanism on X , we want to sample the element x ∈ X with
probability ∝ exp(εu(S(X), x). To implement the exponential mechanism via the identification with Gumbel
argmax distribution above, we will simply compute the scores u(S(X), x) and let fi = ε · u(S(X), x).

For x ∈ X such that x = vi for some i ∈ [s], Algorithm 8 directly computes the scores according to
Definition B.8 and Lemma B.4; this is formalized by lines 5 to 15 in the pseudo code.

For x ∈ X which lie strictly between the tuple values {vi : i ∈ [s]}, we proceed as follows. Fixing i,
from Lemma B.4 we have that that for X (vi−1, vi) := {x ∈ X : x > vi−1, x < vi}, the rank confidence
interval estimate is the same, i.e. [

∑
j≤i−1 gj ,∆i +

∑
j≤i gj ]. It follows from Definition B.8 that for all such

domain values the the score function value u(S(X), ·) is equal; this is denoted ui−1,i in the pseudo code.
By summing the probabilities for sampling individual domain elements, it follows that the likelihood of the
exponential mechanism outputting some value from the set X (vi−1, vi) is ∝ |X (vi−1, vi)| exp(εui−1,i/2) =
exp(εui−1,i/2 + log(|X (vi−1, vi)|)). This is formalized by lines 16 to 27 in the pseudo code.

Finally, if some interval is selected, then by outputting elements chosen uniformly at random, we ensure
that the likelihood of x ∈ X (vi−1, vi) being output is ∝ 1

|X (vi−1,vi)| · exp(εui−1,i/2 + log(|X (vi−1, vi)|) =
exp(εui−1,i). Note that we do not need to account for ties in the Gumbel scores as the event fi+Zi = fj+Zj
for any j 6= i has measure 0. 5

To bound the space and time complexity; we note that by the guarantees of the GK sketch, the size of the
sketch S(X) is O((1/α) logαn); we compute Gumbel scores by iterating over tuples and intervals of which
there are at most O(S(X))-many of each, each computation takes at most O(log |S(X)|) time, and only the
max score and index seen at any point is tracked in the course of the algorithm.

We can now state and prove our main theorem in this section, proving utility bounds for α-approximating
quantiles through DPExpGK with sublinear space.
Theorem 4.1. Algorithm 1 is ε-differentially private. Let x̂ be the value returned by Algorithm 1 when
initialized with target quantile q. The following statements hold:

1. Algorithm 1 can be implemented to run with space complexity O((1/α) logαn), such that with prob-
ability 1− β

d(dqne, [r̂min(x̂), r̂max(x̂)]) ≤ 2αn+ 2(4αn+ 2) log(|X |/β)
ε

(2)

2. For n > 24 log |X |/β
αmin{ε,1} , Algorithm 1 can be implemented to run with space complexity

O
(
(αε)−1 log(|X |/β) logn

)
such that with probability 1− β, x̂ is an α approximate q-quantile.

5As is usual in the privacy literature, we assume that the sampling of the Gumb(0, 1) distribution can be done on finite-
precision computers (Balcer & Vadhan, 2018). While the problem of formally dealing with rounding has not been settled in the
privacy literature (Mironov, 2012), for any practical purpose it easily suffices to store the output of the Gumbel distribution
using a few computer words.
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Our dependence in α, which for practical purposes is usually the most important term, is optimal. Recent
subsequent work by Kaplan and Stemmer (Kaplan & Stemmer, 2021) shows how to improve the dependence
in other parameters if approximate (rather than pure) differential privacy is allowed, or if the stream length
is large enough.

Proof. The privacy guarantee of Algorithm 1 follows from the privacy guarantee of the exponential mecha-
nism and Lemma B.12. The accuracy bound in equation 2 is simply a restatement of Lemma B.11, and the
space complexity bounds follow from the GK sketch space complexity bound O

( 1
α logαn

)
. To derive the

second statement, we substitute αmin{ε,1}
24 log(|X |/β) for the approximation parameter α in equation 2 and get

d(dqne, [r̂min(x̂), r̂max(x̂)])

≤ 2 · αmin{ε, 1}n
24 log(|X |/β) +

2(4( αmin{ε,1}
24 log(|X |/β) )n+ 2) log(|X |/β)

ε

≤ αn

12 log(|X |/β) + αn

3 + 4 log |X |/β
ε

≤ αn

12 + αn

3 + αn

3
≤ αn.

The space complexity bound now follows directly from the space complexity bound derived in Lemma B.12,
the space complexity bound O((1/α) logαn) for the GK sketch, and by substituting
αmin{ε,1}

24 log(|X |/β) for α. Sincve the approximation parameter must be greater than 1/n, we have that n ≥
24 log(|X |/β)
αmin{ε,1} .

B.2 Proofs of privacy and utility for DPHistGK

In this section we prove Theorem 4.2, which we restate here for ease of reference.
Theorem 4.2. For the one-dimensional normal distribution N (µ, σ2), let S = (X1, X2, . . . , Xn) be a data
stream through which we wish to obtain Q̃qS, a DP estimate of the q-quantile of the distribution.

For any q ∈ (0, 1), there exists an (ε, δ)-DP algorithm such that, with probability at least 1 − β, we obtain
|QqD − Q̃

q
S | ≤ α for any α > 0, β ∈ (0, 1], ε, δ ∈ (0, 1/n) and for stream length

n ≥ max {min {A,B} , C} , where

A = O

(
R

εσα
log R

σβ

)
, B = O

(
R

εσα
log 1

βδ

)
, C = O

(
R2

σ2α2 log 1
β

)
as long as µ ∈ (−R,R) and using space of O(max{Rσ ,

1
α logαn}).

Proof. For any stream S = (X1, . . . , Xn), we use the triangle inequality so that

|QqD − Q̃
q
S | ≤ |Q

q
D −Q

q
S |+ |Q

q
S − Q̃

q
S | (3)

≤ α/2 + α/2. (4)

|QqD − Q
q
S | ≤ α/2 follows with probability 1 − β/2 by Corollary B.14 and |QqS − Q̃

q
S | ≤ α/2 follows with

probability 1− β/2 by Lemma B.15. The space complexity follows with probability 1 via the deterministic
nature of the Greenwald-Khanna sketch.

Lemma B.13 (Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956)). For any n ∈ Z+, let
X1, . . . , Xn be i.i.d. random variables with cumulative distribution function F so that F (x) is the prob-
ability that a single random variable X is less than x for any x ∈ R. Let the corresponding empirical
distribution function be Fn(x) = 1

n

∑n
i=1 1[Xi ≤ x] for any x ∈ R. Then for any γ > 0,

P
(

sup
x∈R
|Fn(x)− F (x)| > γ

)
≤ 2 exp(−2nγ2).
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Corollary B.14. For any q ∈ (0, 1), let QqD be the q-quantile estimate for the distribution D and QqS be the
q-quantile estimate for the sample. Then, |QqD −Q

q
S | ≤ α/2 with probability 1− β/2 when n ≥ 2

α2 log 4/β.

Proof. Follows by the DKW inequality (Lemma B.13) where n ≥ 1
2γ2 log 4/β and γ = α/2.

Lemma B.15. For any q ∈ (0, 1), α > 0, β ∈ (0, 1], ε, δ ∈ (0, 1/n), there exists an (ε, δ)-differentially
private algorithm Q̃qS for computing the q-quantile such that

|QqS − Q̃
q
S | ≤ α/2,

with probability ≥ 1− β for stream length

n ≥ O
(

min{O
(
R

εσα
log R

σβ

)
, O

(
R

εσα
log 1

βδ

)
}
)
.

Furthermore, with probability 1, Q̃qS uses space of O(max{Rσ ,
1
α logαn}).

Proof. First, by the tail bounds of the Gaussian distribution (Claim B.17), we can obtain that for any i ∈ [n],

P[|Xi − µ| > c] ≤ 2e−c
2/2σ2

,

so that by the union bound,
P[∃i, |Xi − µ| ≥ c] ≤ 2ne−c

2/2σ2
,

which implies that for any β ∈ (0, 1],

P[∀i, |Xi − µ| ≤ σ
√

2 log 4n/β] ≥ 1− β/2,

which holds by our sample complexity (stream length) guarantees.

Next, let r = dR/σe. 6 Divide [−R−σ/2, R+σ/2] into 2r+1 bins of length at most σ each. Each binBj should
equal ((j − 0.5)σ, (j + 0.5)σ] for any j ∈ {−r, . . . , r}. Next run the histogram learner of Lemma B.16 with
per-bin accuracy parameter of α/K, high-probability parameter of β/2, privacy parameters ε, δ ∈ (0, 1/n),
and number of bins K = 2dR/σe + 1. We can do this because of our sample complexity (stream length)
bounds. Then we obtain noisy estimates p̃−r, . . . , p̃r with per-bin accuracy of α/K. Then any quantile
estimate would have accuracy of α (by summing noisy estimates for at most K bins).

Next, we use these bins to construct a sketch (private by DP post-processing) based on the deterministic
algorithms of (Greenwald & Khanna, 2004) to, with probability 1, obtain space of O(max{Rσ ,

1
α logαn}).

Lemma B.16 (Histogram Learner (Bun et al., 2015; Vadhan, 2017; Karwa & Vadhan, 2018)). For every
K ∈ N ∪ {∞} and every collection of disjoint bins B1, . . . , BK defined on the domain X . For any n ∈ N,
ε, δ ∈ (0, 1/n), α > 0, and β ∈ (0, 1), there exists an (ε, δ)-DP algorithm M : Xn → RK such that for every
distribution D on the domain X , if

1. X1, . . . , Xn ∼ D, pk = P[Xi ∈ Bk] for any k ∈ [K],

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn),

3. n ≥ max
{

min
{

8
εα log 2K

β ,
8
εα log 4

βδ

}
, 1

2α2 log 4
β

}
,

then (over the randomness of the data X1, . . . , Xn and of M)

1. PX∼D,M [|p̃k − pk| ≤ α] ≥ 1− β,

2. P[argmaxk p̃k = j] ≤ npj if K ≥ 2/δ,
6Note that this argument is similar to the arguments for Algorithm 1 in (Karwa & Vadhan, 2018).

25



Published in Transactions on Machine Learning Research (06/2023)

3. P[argmaxk p̃k = j] ≤ npj + 2 exp(−(εn/8) · (maxk pk)) if K < 2/δ.

Claim B.17 (Gaussian Tail Bound). Let Z be a random variable distributed according to a standard normal
distribution (with mean 0 and variance 1). For every t > 0,

P[|Z| > t] ≤ 2 exp(−t2/2).

Lemma B.18. Algorithm 2 satisfies (ε, 0)-DP.

Proof. For any i ∈ [n], any item xi can belong in at most one bin. Plus, the global sensitivity of the function
that computes the empirical histogram is 2, since changing a single item can change the contents of at most
two bins.

As a result, adding noise of Lap(0, 2/ε) to each bin satisfies ε-DP by Theorem B.19.

Theorem B.19 (Laplace Mechanism (Dwork et al., 2006)). Fix ε > 0 and any function f : Yn → RK . The
Laplace mechanism outputs

f(y) + (L1, . . . , LK),

L1, . . . , LK ∼ Lap(0, GSf/ε) where GSf is the global sensitivity of the function f . Furthermore, the mecha-
nism satisfies (ε, 0)-DP.

B.3 Extension to the Continual Observation setting

In this section we prove Theorem 5.1, which formalizes the privacy and utility guarantees of Algorithm 3 in
the continual observation setting. We start by making some definitions that will aid us in our analysis.
Definition B.20. We make the following definitions:

1. Stream Prefix: Given an input data stream X = (x1, . . . , xn) we define the prefix up to the index
s element of this stream X[1 : s] := (x1, . . . , xs). Note that we can overload notation and treat
X[1 : s] as a data set by ignoring the order in which the elements arrive.

2. Checkpoint: A set S 6= ∅ is a set of checkpoints for stream X if ∀j ∈ S, ∃ value vj that is a
(α/2)-approximate q-quantile for X[1 : j].

We first observe that if we have an α/2 approximate quantile for a given data set, then that estimate remains
at least an α-approximate quantile for a slightly larger set as well.
Lemma B.21. If x ∈ X is an α/2-approximate q-quantile for a data set X (for some q ∈ [0, 1]), then it is
an α-approximate q-quantile for any data set X ′ ⊃ X such that |X ′| ≤ (1 + α/2)|X|.

Proof. Since x is an α/2-approximate q-quantile, we have that

(1− α/2)|X| ≤ rank
X

(x) ≤ (1 + α/2)|X|.

We then have that

rank
X′

(x) =
∑
y∈X′

1[y ≤ x]

=
∑
y∈X

1[y ≤ x] +
∑

y∈X′\X

1[y ≤ x]

⇒
∑
y∈X

1[y ≤ x] ≤
∑
y∈X′

1[y ≤ x] ≤
∑
y∈X

1[y ≤ x] +
∑

y∈X′\X

1[y ≤ x]

⇒ (1− α/2)|X| ≤
∑
y∈X′

1[y ≤ x] ≤ (1 + α/2)|X|+ (|X ′| − |X|)
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⇒ (1− α/2)|X| ≤
∑
y∈X′

1[y ≤ x] ≤ (1 + α/2)|X|+ α|X|/2

⇒ (1− α)|X| ≤
∑
y∈X′

1[y ≤ x] ≤ (1 + α)|X|,

i.e., x is also an α-approximate q-quantile for X ′, as required.

We now show that the choice of checkpoints made in the pseudocode of algorithm 3 is valid as per our
definition.
Lemma B.22. In Algorithm 3, the set {cp(s′) : s′ ∈ [n]} forms a valid set of checkpoints for the data stream
X. More concretely vs is an α/2-approximate q-quantile for X[1 : s].

Proof. First we bound the size of the set of checkpoints {cp(s′) : s′ ∈ [n]}. Since a new checkpoint value is
generated only when s ≥ (1+α/2)cp(s−1), it follows that for any new checkpoint where cp(s′) 6= cp(s′−1),
we have cp(s′) ≥ (1 + α/2)cp(s′ − 1). Using Theorem 4.1, we set the first checkpoint value to 24 log |X |/β∗

α∗ε∗ ,
where α∗ = α/2, β∗ and ε∗ are the accuracy parameter, the failure probability, and the private parameter that
are passed in the calls to DPExpGK, respectively. 7 It follows that there are at most k ≤ log1+α/2 n = 3

α logn
checkpoints using the fact that for all x > −1, x

1+x ≤ log(1 + x) ≤ x.

Since vcp(s) is the output of DPExpGK given a GK sketch with accuracy parameter α/2 and privacy parameter
ε∗ it follows that with probability 1 − β∗ where β∗ = αβ

3 logn , rankX[1:s′] ∈ (1 − α/2, 1 + α/2)qn. We now
apply the union bound over all private approximate quantile computations at checkpoints and are done.

We can now prove our main technical result.
Theorem 5.1. Let ε, α > 0, n ∈ Z. For any β ∈ (0, 1], with probability ≥ 1 − β, Algorithm 3 maintains
an α-approximate q-quantile at every point s in the data stream for s = Ω

(
logn log |X |/β

α2ε

)
. Furthermore,

Algorithm 3 satisfies ε-DP and has space complexity Ω
(

1
α2ε log2 n log

(
|X | logn
αβ

))
.

Proof. To see that Algorithm 3 is ε-DP, we observe that the output of this algorithm throughout the data
stream can be summarized by its outputs at the checkpoints {cp(s) : s ∈ [n]} (the points in the stream at
which a new checkpoint is reached and a new value released are known publicly, so this suffices for privacy
analysis). It follows that there is a choice of ε∗ = αε

3 logn that gives us an ε-DP mechanism.

We now prove the accuracy guarantee. From the second statement of Theorem 4.1 we get that for points in
the stream s such that cp(s) ≥ 48 log |X |/β

αmin{ε∗,1} , i.e., the first checkpoint, the output vs will be an α/2-accurate
quantile for X[1 : cp(s)|. Then, since |X[1 : s]| = s ≤ (1 + α/2)cp(s) ≤ (1 + α/2)|X[1 : cp(s)]|, by
Lemma B.21 it follows that rankX[1:s](vs) ∈ (1 − α, 1 + α)qn, i.e., vs is an α-approximate q-quantile for
X[1 : s].

C Additional Experiments

In this section, we include some additional experimental details and results.

Varying ε for DPExpGKGumb: In Table 1, we vary ε and compare DPExpFull to DPExpGKGumb in terms of
average absolute error and execution time (in seconds). We see that DPExpGKGumb is significantly faster than
DPExpFull in terms of average execution time. However, DPExpGKGumb incurs larger error because of the
approximation factor of α = 0.0001.

7The last checkpoint might occur at (1 + α/2)n. We may ignore checkpoints past n.
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ε DPExpFull (Error) DPExpGKGumb (Error) DPExpFull (Time) DPExpGKGumb (Time)
0.1 0.0019796 0.002172 0.1330166 0.028163
0.5 0.0004581 0.0013467 0.13113595 0.02804
1 0.000249894 0.00127795 0.1335331 0.0284041
5 0.00007110 0.00151 0.1341164231 0.028285

Table 1: α = 0.0001, n = 105, U(0, 10). Time in Seconds.

Histogram-Based Algorithm: We also implemented the DPHistGK and tested by varying the bin width
of the histogram. In general, we observe that DPExpGK has superior performance in terms of minimizing the
error for any single quantile query. For example, we obtain averge absolute errors of at least 2.56 for 2 bins
and 3.001 for 10 bins for q = 0.3 for DPHistGK. This suggests that we can rely on DPExpGK and its variants for
general-purpose implementations with minimal error. However, it is possible that certain parameter settings
(e.g., bin width) for DPHistGK might yield better performance.

Continual Observation Algorithm: We also implement the continual observation algorithm that builds
directly on DPExpGK. We fixed the first stream checkpoint to 10000. For α = 0.001 and stream length of
n = 100000 from U(0, 10), we observe average absolute error of 0.00723 for ε ∈ {0.1, 0.5, 1, 5} over 100 trials.
For α = 0.001 and stream length of n = 100000 from N (5, 1), we observe average absolute error of 0.00134.
However, it is possible that the first few checkpoints might be an important parameter for the error of the
sketch in the continual observation setting. We leave the full exploration of this question to future work.

C.1 Full Space Quantile Computation

Without the bounded space requirement (i.e., space sublinear in the stream length), we can use the expo-
nential mechanism with a score function that uses the entire stream of values X. In that case, the sensitivity
of the score function is at most 1. We use this as one of the baselines for our experimental validation.
Lemma C.1. Given any insertion only stream

X = (x1, x2, . . . , xn−1, xn),

the sensitivity of the score function u (under swap differential privacy) is at most 1. i.e., δu ≤ 1. The
function u is defined as u(X, e) = −| rank(X, e) − r| where r is the approximate bq · nc rank of the sketch
and rank(X, e) is the rank of e amongst all values in the stream X.

Proof. Let |X| = n. The score function becomes −| rank(X, e) − nq| where nq = bq · nc. Consider two
streams with only one element changed: X,X ′, denoting the element by xd. Then at time d ≤ n, in the
second stream x′d is inserted instead of xd. In both cases, nq changes by at most q (in the case of add-remove
DP) and for swap DP, nq remains the same. And for any e, rank(X ′, e) would differ from rank(X, e) by at
most 1 since the rank of any element can change by at most 1 after adding, deleting, or replacing an item
in the stream. Furthermore, for any n ≥ d, the rank of any e will differ in X,X ′ by at most 1 replacing xd
with x′d can displace the rank of any element by at most 1. Also, the term nq will remain the same. (Note
that in the add-remove privacy definition nq = bq · nc would change to either bq · (n+ 1)c or bq · (n− 1)c.)

The “reverse triangle inequality” says that for any real numbers x and y, |x − y| ≥ ||x| − |y||. As a result,
−| rank(X, e)− nq|+ | rank(X ′, e)− nq| ≤ | rank(X ′, e)− rank(X, e)| ≤ 1 for any e.
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