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Abstract

Adding noise is easy; what about denoising? Diffusion is easy; what about reverting a
diffusion? Diffusion-based generative models aim to denoise a Langevin diffusion chain,
moving from a log-concave equilibrium measure ν, say an isotropic Gaussian, back to a
complex, possibly non-log-concave initial measure µ. The score function performs denoising,
moving backward in time, and predicting the conditional mean of the past location given the
current one. We show that score denoising is the optimal backward map in transportation
cost. What is its localization uncertainty? We show that the curvature function determines
this localization uncertainty, measured as the conditional variance of the past location given
the current. We study in this paper the effectiveness of the diffuse-then-denoise process: the
contraction of the forward diffusion chain, offset by the possible expansion of the backward
denoising chain, governs the denoising difficulty. For any initial measure µ, we prove that this
offset net contraction at time t is characterized by the curvature complexity of a smoothed µ
at a specific signal-to-noise ratio (SNR) scale r(t). We discover that the multi-scale curvature
complexity collectively determines the difficulty of the denoising chain. Our multi-scale
complexity quantifies a fine-grained notion of average-case curvature instead of the worst-
case. Curiously, it depends on an integrated tail function, measuring the relative mass
of locations with positive curvature versus those with negative curvature; denoising at a
specific SNR scale is easy if such an integrated tail is light. We conclude with several non-
log-concave examples to demonstrate how the multi-scale complexity probes the bottleneck
SNR for the diffuse-then-denoise process.

1 Introduction

Empirically, diffusion models exhibit compelling performance as probabilistic generative models for complex,
multi-dimensional probability measures (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2021; Karras et al., 2022). They are often employed when traditional sampling methods suffer,
such as when the probability measure is multi-modal and supported on an unknown manifold that is hard to
mathematize, such as the probability distribution of (pixels of) images. Despite their impressive performance
in practice, several fundamental theoretical questions regarding denoising quality remain unanswered (Block
et al., 2020; Chen et al., 2022; Lee et al., 2022).

In a nutshell, diffusion models aim to revert a Langevin diffusion chain, moving from a log-concave equilibrium
measure ν, say an isotropic Gaussian, back toward a complex, possibly non-log-concave initial measure µ.
A Langevin diffusion is a forward chain in the space of probability measures, implemented iteratively with a
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stepsize η as in (1), where ν is the equilibrium measure and fµ
k denotes the forward transition map1 at step

k.

Forward Diffusion µ =: µ0
f µ
1→ µη → · · ·

f µ
k→ µkη → · · ·

f µ
K→ µKη

K→∞
⇝ ν , (1)

Time Reversal µ =: µ0 ←
bµ

1

µη ← · · · ←
bµ

k

µkη ← · · · ←
bµ

K

µKη ←
?
· · · ←

bν
ν . (2)

This forward chain is Markovian and thus time-reversible as in (2), where bµ
k denotes the backward transition

map2 for the µ-chain at step k. For sampling, diffusion models propose starting the time reversal process at
K → ∞, namely the equilibrium measure ν, and aim to reverse it back to the initial measure µ. However,
this is problematic both theoretically (in terms of probability) and conceptually (in terms of optimization).
Theoretically, the time reversal of a Markov Chain starting from an equilibrium (invariant measure) will
get stuck (Norris, 1998). The backward chain ν ←bν ν will stay as the invariant measure and never reach
µKη. Conceptually, hoping to trace back the initial condition µ starting from ν is infeasible. If two forward
chains with initials µ ̸= µ′ both end up at ν, the time-reversal starting from ν (and solely using the future
information) cannot recover the past and distinguish these two chains.

Therefore, framing the diffusion model as a time-reversal Markov chain—one that recovers the past from the
future—does not fully resolve the underlying conceptual issues. In contrast, we propose studying diffusion
models as a form of sensitivity analysis. It is clear that starting from µKη and traversing back following
transitions bµ

K · · ·b
µ
k · · ·b

µ
1 will identify µ. But what will happen if we start from a perturbed version

ν =: ν̄Kη ̸= µKη and follow the same traversing path bµ
K · · ·b

µ
k · · ·b

µ
1 as illustrated in (4)?

Time Reversal µ =: µ0 ←
bµ

1

µη ← · · · ←
bµ

k

µkη ← · · · ←
bµ

K

µKη
�����XXXXX
←
?
· · · ←

bν
ν (3)

Backward Denoising µ
?
⇝̄ν0 ←

bµ
1

ν̄η ← · · · ←
bµ

k

ν̄kη ← · · · ←
bµ

K

ν̄Kη := ν , (4)

The traversing path carries the past information, namely the signature of the initial measure µ, but starts
with an easy-to-sample ν as a surrogate, replacing µKη. This mismatch renders the backward denoising
process (4) non-Markovian, thereby making it plausible to recover the past from the future.

Sensitivity Analysis: Score, Curvature, and Localization. How can the traversing operator bµ
k be

estimated? We show in Proposition 1 that the optimal backward operator bµ
k—in terms of transportation

cost—depends on the score function ∇ log pµkη
where pµkη

is the probability density function of pµkη
. A

key observation in diffusion models is that score estimation can be cast as a supervised prediction problem
(Saremi & Hyvärinen, 2019) using the forward diffusion chain, where the goal is to predict the previous
location given the current one, in terms of conditional expectation, as seen in Proposition 2.

The fundamental question is whether the perturbation ν̄Kη ≈ µKη will get amplified along the backward
denoising chain. Will ν̄kη as in (3)-(4) stay close to µkη, for k = K, · · · , 0? This paper provides a precise study
of diffusion models from the viewpoint of denoising quality. We unveil in Proposition 3 that the curvature
function ∇2 log pµkη

controls the key aspects of this sensitivity analysis. In other words, the curvature
function governs the score function’s denoising capability, which we refer to as localization. Localization
quantifies the uncertainty of the previous location given the current, in terms of conditional covariance.

Most of the current theoretical literature (Lee et al., 2023; Chen et al., 2022; 2023) treats this curvature as a
nuisance, for example, by focusing on “non-expansion” metrics d, and leveraging a form of data-processing
inequality,

d(µk−1, ν̄k−1)/d(µk, ν̄k) ≤ 1, for d ∈ {dTV, dKL} .

Consequently, d(µ0, ν̄0) ≤ d(µK , ν), and d(µ0, ν̄0) can be determined by the contraction of the forward
diffusion chain alone. However, even for simple Gaussians, the backward denoising could either be (i) an

1The rigorous definition will follow in Section 3.
2Again, the rigorous definition will follow in Section 3.
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expansion or (ii) a contraction much faster than the forward diffusion, under the Wasserstein-2 metric, W .
Consider the forward diffusion (5) with initialization µ ∼ N (0, s2) and temperature β = 1. Recall, the
forward diffusion contracts in W at a rate 1 − η. Our Corollary 1 implies that the one-step backward
denoising at effective time t = kη with µk ∼ N (e−kη, e−2kηs2 + 1− e−2kη) satisfies the equality

W (µk−1, ν̄k−1)
W (µk, ν̄k) = 1 + η s2−1

ekη+s2−1 ,


(i) > 1 if s2 > 1,

(ii) < 1− η
if s2 < 1

2 , and
k < 1

2η log
(
2(1− s2)

)
.

In either case, treating the backward denoising as simply non-expansive under certain metrics is losing
significant information about the diffuse-then-denoise process.

In contrast, we study the process under the Wasserstein-2 metric and provide a fine-grained analysis of how
a complexity measure based on the curvature, ∇2 log pµkη

, completely governs the expansion or contraction
of the backward denoising step.

Diffuse-then-Denoise Process: Offset Contraction/Expansion. The sensitivity analysis is equiva-
lent to studying the effectiveness of a diffuse-then-denoise process. To simplify the exposition, we consider
a one-step version here. Given any two measures, µ0 ̸= ν0, run one step of forward diffusion as in (1) with
K = 1, with Z isotropic Gaussian and β ∈ R+, the temperature,

Xη = (1− η)X0 +
√

2β−1ηZ, X0 ∼ µ0, and Yη = (1− η)Y0 +
√

2β−1ηZ, Y0 ∼ ν0 .

Denote the measure associated with Yη ∼ ν̄η, then run one step of backward denoising with the optimal
bµ (as in (4) with K = 1) to obtain ν̄0 ←bµ ν̄η. A natural question is whether the cumulative effect of this
diffuse-then-denoise process is a contraction. Namely, is W (µ0, ν̄0) smaller than W (µ0, ν0)?

At first sight, it may seem unnatural that the diffuse-then-denoise process will yield an improvement. How
can adding noise and then denoising be better? Consider setting β−1 = 0, and let µ0 = δx and ν0 = δy be
two Dirac measures supported at x ̸= y. One can verify that

Forward W (µ0, ν0) = ∥x− y∥ , Backward W (µη, ν̄η) = (1− η)∥x− y∥ ,

Forward-then-Backward W (µ0, ν̄0) = (1− η)−1W (µη, ν̄η) = ∥x− y∥ = W (µ0, ν0) .

Here, the backward expansion offsets the forward contraction, resulting in no net effect for the forward-then-
backward process.

Curiously, as we shall show in Theorems 1, 2 and 3, roughly speaking, when β−1 ̸= 0 and ∇2 log pµ has a
certain curvature complexity quantified by ζ ∈ R, there is a net effect of the diffuse-then-denoise process

Forward Diffusion: W (µη, ν̄η)
W (µ0, ν0) ≤ 1− η + O(η2) ,

Backward Denoising: W (µ0, ν̄0)
W (µη, ν̄η) ≤ 1 + η − ηβ−1ζ + O(η2) ,

Diffuse-then-Denoise: W (µ0, ν̄0)
W (µ0, ν0) ≤ 1− ηβ−1ζ + O(η2) .

This contrasts sharply with the β−1 = 0 case: curiously, adding non-trivial noise then denoising could be
beneficial and result in an effective net contraction β−1ζ, provided the curvature ζ > 0. We emphasize
that these inequalities become equalities for simple log-concave µ0’s, thus establishing the sharpness of our
characterization, see Corollary 1. In summary, the success or failure of the diffuse-then-denoise process solely
depends on the curvature/localization function defined in Proposition 3.

Chaining the argument, we show in Corollary 2 that, rather than log-concavity, it is a multi-scale complexity
along all time scales that controls the net effect of the diffuse-then-denoise process (4) with K steps

W (µ0, ν̄0)
W (µ0, ν0) ≤ exp

(
−β−1η

K∑
k=1

ζkη + O(η2)
)

,
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where ζkη is some curvature/localization complexity of µkη at time t = kη. For a general initial measure µ,
the diffused version µt could be non-log-concave, depending on the time scale t. In Section 4, we introduce
a notion of multi-scale complexity that describes the localization difficulty for generic µ and is new to the
literature. The multi-scale corresponds to the effective signal-to-noise ratio for the denoising step at each
time scale t.

Multi-Scale Complexity: Beyond Log-Concavity. With any initial measure µ, the Ornstein-
Uhlenbeck diffusion process at different time scales t is closely tied to a multi-scale smoothing, at different
signal-to-noise ratio r = r(t) (defined in (12)),

Yr := rX + Z , (X, Z) ∼ µ⊗N (0, 1) .

We introduce in Section 4 the following multi-scale complexity, defined based on the localization function
Lr(y) := ∥Cov[rX|Yr = y]∥op,

hµ(δ, r) =
∫ ∞

1−δ

P
(
Lr(Yr) > u

)
du , δ ∈ (0, 1] .

Here P
(
Lr(Yr) > u

)
is the tail probability of random variable ∥Cov[rX|Yr]∥op, and therefore hµ(δ, r) controls

its integrated tail. We show in Theorem 4 that the growth of this integrated tail function δ 7→ hµ(δ, r) governs
the effectiveness of the diffuse-then-denoise process at any time t, with the corresponding SNR scale r(t).
Our characterization holds for any generic µ that extends far beyond log-concavity.

This multi-scale complexity at every SNR scale r ≥ 0, conceptually, is quantifying the curvature ∇2 log pYr (y)
in a certain average sense weighted by pYr (y). This notion, rather than the worst-case curvature, governs
the localization accuracy of the backward denoising chain at every scale. Our analysis is fine-grained in
two senses. First, for any X ∼ µ, across different scales of r, the non-log-concavity of pYr changes in a
complex, multi-resolution way. Non-log-concavity across all scales of r collectively determines the effect
of the backward denoising chain. Second, unlike in the worst-case analysis, where the worst point y with
the largest positive curvature ∇2 log pYr (y) dictates the analysis, we leverage the following observation. If
a point y with a large positive curvature ∇2 log pYr (y) is unlikely to occur with pYr (y) small, the overall
non-log-concavity is still benign. This is true in many examples; see Section 5.

This multi-scale complexity may appear mysterious; we present a concrete, non-log-concave example to
clarify intuitions. Consider the simplest one-dimensional non-log-concave measure µ = 1

2 δ−1 + 1
2 δ+1.

• Localization and Curvature: Lr(y) ≤ 1 − δ if and only if ∇2 log pYr (y) ⪯ −δ · Id, that is, pYr (y)
strongly log-concave at y. These y’s are good locations with strong curvature: accurate denoising
and localization from y is easy. These are locations where diffuse-then-denoise is beneficial. See
locations outside the shaded areas in Figure 1.

• Survival Function: provided we have samples Yr, the survival function sr(1−δ) := P
(
Lr(Yr) > 1−δ

)
tells us the probability of bad locations with possible non-log-concavity where the backward denoising
is hard. It quantifies the mass that may induce a large expansion in the diffuse-then-denoise process.
See shaded areas in Figure 1.

• Integrated Tail: slow growth in the integrated tail function δ → hµ(δ, r) implies that one can take
an effectively large δ such that the bad locations with positive curvature have a negligible expansion
effect, and good locations with strong negative curvature induce a contraction effect, offsetting the
expansion. This complexity quantifies an overall notion of curvature.
Figure 1 shows: (a) low r = 0.71, hµ(0, r) = hµ(0.5, r) = 0, no growth, (b) mid r = 1.50, hµ(0, r) =
0.13, hµ(0.5, r) = 0.24, rapid growth of integrated tail as δ increases from 0 to 0.5, and (c) high
r = 3.00, hµ(0, r) = 0.02, hµ(0.5, r) = 0.03, a very slow growth. Curiously, the complexity is non-
monotonic in SNR r: the mid r presents the hardest non-log-concavity for localization.

How is this multi-scale complexity useful? Here we plot the survival function sr(u), indexed by the different
SNR r. Curiously, the growth rate of the integrated tail complexity hµ(δ, r) is non-monotonic in SNR r:

4
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(a) r = 0.71 (b) r = 1.50 (c) r = 3.00

Figure 1: We plot the density pYr (·), for three SNR r’s. Red shaded area corresponds to non-log-concave
region with ∇2 log pYr (·) > −δ with δ = 0, and Orange shaded area corresponds to δ = 0.5. For each δ, we
report the integrated tail hµ(δ, r) and survival function sr(1− δ) for δ ∈ {0, 0.5}. (a) low r = 0.71, sr(1) = 0,
sr(0.5) = 0; (b) mid r = 1.50, sr(1) = 0.18, sr(0.5) = 0.27, non-trivial mass of bad locations; (c) high r = 3.00,
sr(1) = 0.01, sr(0.5) = 0.01, though bad locations do exist, samples Yr rarely end up there.

both low SNR r ≤ 1 and high r ≥ 2 have extremely slow growth in the integrated tail; the hardest non-log-
concavity happens when r ∈ (1, 2). Conceptually, for any given initial measure µ, the multi-scale complexity
tells us precisely at what time scale r(t) the backward denoising chain suffers the most. See Section 5 for
more comprehensive examples.

(a) (b)

Figure 2: (a) sr(u) Low SNR. (b) sr(u) High SNR.

1.1 Preliminaries and Notations

Notation Throughout this paper, we consider µ ∈ P2(X), the space of probability measures with a
bounded second moment with X ⊆ Rd. Pr

2 (X) ⊂ P2(X) denotes probability measures absolutely continuous
to the Lebesgue measure. For a measure ν ∈ Pr

2 (X), denote ν = pν · Ld the Radon-Nikodym derivative w.r.t
Lebesgue measure, where pν ∈ C1(X) is the density function. We reserve G,F , E for functionals P2(X)→ R,
and h, g, f for real-valued functions X → R. Let ξ ∈ C∞

c (X; X) denote smooth vector fields; i denotes the
identity map, t, f , b denotes the optimal transport maps, in Definition 2. We use X, Y, Z, B to denote
random vectors. For a matrix M , ∥M∥op denotes the operator norm, tr(M) denotes the trace of the matrix.
For a vector v, ∥v∥ denotes the Euclidean norm.

The forward Langevin diffusion process is a stochastic differential equation in the form,

dXt = −∇f(Xt)dt +
√

2β−1dBt, ∇f ∈ C∞
c (X, X) . (5)
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Here β−1 serves as the temperature parameter, which controls the magnitude of the injected noise dBt. The
probability measure of Xt, denoted as µt with density ρt := pµt , evolves according to the Fokker-Planck
partial differential equation

∂tρt = ∇ ·
(
ρt(∇f + β−1∇ log ρt)

)
. (6)

Forward diffusion can also be viewed as a gradient flow in the Wasserstein space. For two measures µ, ν ∈
Pr

2 (X), define the Wasserstein metric as

W2(µ, ν) := min
π∈Π(µ,ν)

(∫
∥x− y∥2dπ(x, y)

)1/2
.

Jordan et al. (1998) showed that the forward Fokker-Planck PDE, µt → µt+η, can be viewed as the steepest
descent with respect to the Wasserstein metric in the infinitesimal limit, as η → 0

µt+η := arg min
ν∈Pr

2 (X)

1
2η

W 2
2 (µt, ν) + G(ν), G : Pr

2 (X)→ R . (7)

Here the functional G(ν) = F(ν) + β−1E(ν) consists of two parts, a potential functional F and an entropy
functional E

F(ν) :=
∫

f dν =
∫

f(x)pν(x) dx ,

E(ν) :=
∫

log
(

dν

dx

)
dν =

∫
pν(x) log pν(x) dx .

1.2 Related Work

Probabilistic generative models, including generative adversarial networks, flow-based generative models, and
diffusion-based generative models, have recently received broad research interest, both empirically (Good-
fellow et al., 2020; Song & Ermon, 2019; 2020; Song et al., 2021; Karras et al., 2022; Nichol & Dhariwal,
2021; Kingma et al., 2021; Huang et al., 2023) and theoretically (Papamakarios et al., 2021; Liang, 2021;
Hur et al., 2024; Oko et al., 2023; Lübeck et al., 2022; Chen et al., 2024; Block et al., 2020; DeBortoli et al.,
2021; Lee et al., 2022; Montanari, 2023). Generative models with diffusion-based sampling can be traced
back to three influential formulations: Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020;
Sohl-Dickstein et al., 2015), Score-based Generative Models (SGMs) (Song & Ermon, 2019), and Score-based
Stochastic Differential Equations (Song et al., 2021; Karras et al., 2022). The latter universalizes the frame-
works by discretizing a particular Stochastic Differential Equation at specific signal-to-noise ratios (SNR).
Sampling can be viewed as Langevin dynamics for the time-reversed SDE (Anderson, 1982; Ho et al., 2020;
Dockhorn et al., 2021), or deterministic transports via a probability flow ODE (Song et al., 2020; Maoutsa
et al., 2020; Guo et al., 2022). The deterministic denoising outlined in Song et al. (2020) is optimal in terms
of transportation of measure in the Wasserstein metric. This was previously noted by Chen et al. (2024);
Jordan et al. (1998) in the infinitesimal limit η → 0. We show in Proposition 1 that for a fixed stepsize η,
the score denoising map is the optimal transport map in the backward chain.

Rigorous justification for diffuse-then-denoise can be found in the seminal work of Saremi & Hyvärinen
(2019) who unified two distinct schemes: (1) smoothing via Gaussian convolution Y = X + 1

rN (0, Id),
and (2) denoising via the score function E[X|Y = y] = y + 1

r2∇ log pY(y), to design a single machine for
sampling X. Their approach is motivated by a fundamental result in the concentration of measure literature
(Vershynin, 2018); that d-dimensional Gaussian vectors concentrate on a uniform sphere of radius

√
d in

high-dimensions. And so, while X may be non-log-concave or confined to a low-dimensional manifold, Y
may not be. Thus, diffuse (X→ Y) then denoise (Y→ X) presents a way to sample when the distribution of
X is misbehaved. Exploiting the machinery of measure transportation, we show that Gaussian convolution
up to an appropriate signal-to-noise ratio r promotes log-concavity, yielding desirable contractive properties
for denoising, Y→ X.
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Recent empirical work (Song & Ermon, 2019; 2020; Song et al., 2021; Karras et al., 2022) demonstrates
dramatic improvements in sample quality and log-likelihood metrics for diffusions by employing a rich scheme
of noise scheduling, namely the effective SNR t 7→ r(t), a map between time and the corresponding SNR.
Several authors consider jointly learning the schedule alongside diffusion network parameters (Nichol &
Dhariwal, 2021; Kingma et al., 2021). While state-of-the-art applications suggest that convolving at multiple
noise scales is advantageous (Dhariwal & Nichol, 2021; Austin et al., 2021), its theoretical benefit remains
to be understood. Restricting to the Ornstein-Uhlenbeck process, we discover a multi-scale complexity
measure that controls the effective contraction of diffuse-then-denoise at each SNR r. Particularly for non-
log-concave distributions, a wide regime of SNR schedule r(t) may be necessary as diffusing at a specific SNR
scale r pushes the problem into an effective near-log-concave setting with strong curvature. Our multi-scale
complexity determines the effective curvature, thereby providing a vehicle for probing the noise-scheduling
question.

Theoretical investigation of diffusion-based sampling mostly focuses on the non-expansive properties of the
denoising process under f -divergence, say total variation dTV or Kullback-Leibler dKL, where data processing
inequities hold. The current theory falls short in addressing the behavior of the backward denoising process
under the Wasserstein metric, where the backward denoising chain does incur expansion even for simple
Gaussian distributions (Chen et al., 2022). Typically, the problem is coupled with the additional burden
of having access to only an estimated score function (Block et al., 2020; DeBortoli et al., 2021; Lee et al.,
2022). This presents a significant challenge; however, it is not the focus of the current paper. We isolate
treatment of the backward denoising question: initializing at µT , and the equilibrium measure, ν, suppose
we observe {µ0 ←bµ

1
. . . ←bµ

K
µK}, {ν̄0 ←bµ

1
. . . ←bµ

K
ν̄K := ν}. How does d(µK , ν̄K) → d(µK−1, ν̄K−1) →

· · · → d(µ0, ν̄0) evolve? Is the backward denoising chain expansive or contractive at each time scale t = kη?
What geometric complexities govern the quality of the denoising at each time scale? We view our focus as
complementary to the current literature, which conducts careful sensitivity analyses of score estimation and
time discretization.

Provided the score functions are accurate in an L2 sense, Block et al. (2020); Lee et al. (2022) established
results in the Wasserstein metric for unimodal distributions, for example, those satisfying strong dissipativity
or a log-Sobolev inequality. These results are extended in Lee et al. (2023); Chen et al. (2022; 2023) to allow
substantial non-log-concavity for reverse SDE sampling, and in Chen et al. (2024) for the probability flow
ODE. However, these analyses are conducted in dTV or dKL and avoid the detailed curvature information in
the backward map. For dTV or dKL, and a finite K, one can always appeal to a data processing inequality
to bound d(µ0, µ̄0) ≤ d(µK , ν), solely determined by the forward diffusion chain. This is not fine-grained
enough to understand denoising. It overlooks the curvature information and the amount of non-log-concavity
at any specific SNR r. As in the introduction, the backward denoising step could expand significantly or
contract much faster than the forward diffusion under the Wasserstein metric.

More recently, Bruno et al. (2023); Gao et al. (2025) establish results in the Wasserstein metric under log-
concavity assumptions. The concurrent work (Gentiloni-Silveri & Ocello, 2025) tackles the problem assuming
weak log-concavity of the target density, a property with origins in dissipativity - that the target density is
essentially log-concave outside a region of compact support. Our work makes no such assumptions. Similar to
Gentiloni-Silveri & Ocello (2025), we note that the denoising process can exhibit non-contractive behavior. In
our analysis, the fine-grained behavior of the denoising process is governed by a notion of average curvature,
defined as an integrated tail function measuring the relative mass of locations with positive curvature versus
those with negative curvature. Notions of average curvature have been used to derive improved convergence
bounds for diffusion models with respect to dKL (Chen et al., 2023; Benton et al., 2023). Our paper shows
that a different notion of average curvature also plays a role in the sensitivity analysis when the metric is
the Wasserstein distance. Our perspective helps bridge the parallel theoretical analyses of diffusion models
under f -divergence and Wasserstein distance.

More importantly, previous approaches disconnect denoising from diffusion when evaluating the success
of score-based sampling. We show that the net benefit of the diffuse-then-denoise process matters: the
contraction of the forward diffusion, offset by the possible backward expansion, results in a net benefit as
long as there is enough negative curvature on average. This paradigm shift is enabled by a new notion of
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multi-scale complexity governing the effective curvature and “localization” effect of the diffuse-then-denoise
process. This allows an analysis that extends beyond log-concavity assumptions.

2 Denoising and Localization: Score and Curvature

2.1 Score Function: Denoising and Optimal Transport

The score function arises naturally in the Fokker-Planck PDE (6). For a valid probability density ρ, the
vector field ∇ log ρ : X → Rd defines the score function.
Definition 1 (Score Function). For a measure ν ∈ Pr

2 (X), denote its density with respect to the Lebesgue
measure as pν where ν = pν · Ld. The score function is x 7→ ∇ log pν(x).

It turns out, even for non-vanishing η, the score function ∇ log ρt+η induces an optimal plan to localize and
denoise from µt+η, defined in (7), back to µt, in the sense of optimal transport (OT). In the η → 0 case, the
score induced by the OT map was studied in Chen et al. (2024); Song et al. (2020); Jordan et al. (1998).
We first introduce the OT map.
Definition 2 (OT Map, (Brenier, 1987)). For µ, ν ∈ Pr

2 (X), there exists a unique optimal transport map
tµ

ν : X → X that solves the Monge problem

tµ
ν = arg min

t:t#ν=µ

(∫
∥y − t(y)∥2 dν(y)

)1/2
.

and attains the minimum of the Kantorovich problem

W2(µ, ν) =
(∫
∥i− tµ

ν∥2dν

)1/2
.

Proposition 1 (Score Function and Backward OT Map). Consider the Wasserstein gradient descent as in
(7) with a lower-semicontinuous G = F+β−1E. Assume that there exists η⋆ > 0, such that for all η ∈ (0, η⋆),
µt+η in (7) admits a well-defined minimizer. Then for any η ∈ (0, η⋆), the optimal transport map tµt

µt+η
as

in Definition 2 takes the form,
1
η

(tµt
µt+η
− i)(x) = ∇f(x) + β−1∇ log pµt+η

(x), for µt+η-a.e. x ∈ Rd .

Recall that discretized Langevin diffusion reads Xt+η = Xt− η∇f(Xt) +
√

2β−1ηZ. Another interpretation
of the score function is that it induces a backward denoising step for the diffusion, namely, quantifying the
barycenter E[Xt − η∇f(Xt) | Xt+η = y]. In other words, score estimation can be cast as a prediction
problem based on the diffusion process, where one aims to predict Xt − η∇f(Xt) based on Xt+η (Saremi &
Hyvärinen, 2019).
Proposition 2 (Score and Backward Denoising). Consider Y = X + σZ, where X ∼ µ and Z ∼ N (0, Id)
and X, Z are independent. Let pY denote the density function associated with the random variables Y. Then

∇ log pY(y) = − 1
σ2

{
y − E[X|Y = y]

}
.

The score function is the optimal transport map to denoise the diffusion process, but how accurate is the
denoising step? Conceptually, the denoising quality depends on the localization Cov[Xt−η∇f(Xt) | Xt+η =
y]. As we shall see next, the localization quality of the score function as a backward denoising step depends
on the curvature function, x 7→ ∇2 log pν(x).

2.2 Curvature Function: Backward Localization

The curvature function, namely, the derivative of the score function, governs whether the backward denoising
step is localized. The following proposition describes the variability of the backward denoising, Cov[Xt −
η∇f(Xt) | Xt+η = y]. Intuitively, a large positive curvature of the log density function results in a large
conditional covariance and in turn, makes the denoising process hard.

8
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Proposition 3 (Curvature and Localization). Consider Y = X + σZ, where X ∼ µ and Z ∼ N (0, Id) and
X, Z are independent. Let pY denote the density function associated with the random variables Y. Then

∇2 log pY(y) = − 1
σ2

{
Id − Cov[ X

σ |Y = y]
}

.

The validity of the diffusion-then-denoise process depends on the spectrum of the conditional covariance
function. Motivated by this, we shall define a multi-scale complexity measure in Section 4. Before concluding
this section, we show that the average-case curvature is always negative, although the worst-case curvature is
positive for non-log-concave measures. In other words, average curvature tr[∇2 log pν(y)] weighed by pν(y),
is strictly negative for any ν. This will be useful later.
Proposition 4 (Curvature and Score).∫

tr[∇2 log pν(x)]dν(x) = −
∫
∥∇ log pν(x)∥2dν(x) .

An immediate implication is that the average localization radius is bounded.

E ∥Cov[ X
σ |Y]∥op ≤ E tr

[
Cov[ X

σ |Y]
]
≤ d .

As we shall see in Definition 4 in Section 4.2, the tail behavior of ∥Cov[ X
σ |Y]∥op governs the complexity of

the diffuse-then-denoise process.

We conclude this section by noting that the score function ∇ log p(y), the curvature function ∇2 log p(y),
and higher-order generalizations play a central role in characterizing the quality of distributional denoising.
In particular, Liang (2025a) analyzes the universality of distributional denoisers constructed from score and
curvature functions, while Liang (2025b) proposes a hierarchy of denoisers based on higher-order scores that,
in the limit, converges to the optimal map transporting PY to PX.

3 Forward Contraction and Backward Expansion

In this section, we study how the curvature governs the effectiveness of the diffuse-then-denoise process in
diffusion models.

3.1 Contraction of Forward Chain

Consider two forward diffusion chains µt, νt at a given time t, with an infinitesimal time increment η. Recall
the Fokker-Planck PDE in (6); the measures are implemented by

µt+η := fµ,η
# µt, where fµ,η = i− η(∇f + β−1∇ log pµt) ,

νt+η := fν,η
# νt, where fν,η = i− η(∇f + β−1∇ log pνt

) .
(8)

Again, these are the Euler discretization of the Wasserstein gradient flow as in (7), with functional G(ν) =
F(ν) + β−1E(ν).
Theorem 1 (Forward Contraction). Assume for some λ ∈ R+, ∇2f(x) ⪰ λ · Id, ∀x ∈ X. For any
µt ̸= νt ∈ Pr

2 (X) and any β ∈ R+, the one-step forward process (8) satisfies

lim sup
η→0

1
η

W 2
2 (µt+η, νt+η)−W 2

2 (µt, νt)
W 2

2 (µt, νt)
≤ −2λ .

Remark 1. The above Theorem 1 shows that as η → 0, for any µt, νt

W2(µt+η, νt+η)
W2(µt, νt)

≤ 1− ηλ .

9
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With the choice νt = ν⋆, the invariant measure, we have νt+η = ν⋆, and thus

W2(µt+η, ν⋆)
W2(µt, ν⋆) ≤ 1− ηλ .

Conceptually, the one-step contraction rate for the forward diffusion process is governed by λ. This contrac-
tion rate is sharp and holds equality for some µ, ν’s, for example, take µ, ν as Dirac measures.

3.2 Expansion of Backward Chain

Recall the backward OT map as in Proposition 1

bµ,η = i + η(∇f + β−1∇ log pµt
) . (9)

This backward OT map encapsulates the plan to revert the chain bµ,η
# µt → µt−η, which we will formally

prove in Theorem 3 in next section. In this section, we conduct a sensitivity analysis on the backward map:
consider a measure ν that is a small perturbation to µt, will bµ,η

# ν stay close to bµ,η
# µt? This question

concerns the expansion rate of the backward chain.

We first derive a warm-up result in the simple case, employing a notion of worst-case curvature. Later, we will
generalize the result in Section 4, elucidating how an average-case curvature gives rise to a multi-resolution
complexity measure that governs the effectiveness of the diffuse-then-denoise process.
Theorem 2 (Backward Expansion). Consider ∇2f(x),∇2 log pµt(x) with bounded eigenvalues over x ∈ X.
Assume for some κ ∈ R+, ∇2f(x) ⪯ κ · Id, ∀x ∈ X. Assume ∇ log pµt

∈ C∞
c (X, X) and for some ζ ∈ R

∇2 log pµt
(x) ⪯ −ζ · Id, ∀x ∈ X .

Then for any β ∈ R+, the one-step backward map (9) satisfies

lim sup
η→0

sup
ν∈Pr

2 (X)

1
η

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) ≤ 2(κ− β−1ζ) .

Remark 2. We emphasize that this theorem operates even when ζ < 0, namely when µt is non-log-concave.
The above theorem shows that, for any ν ∈ Pr

2 (X), as η → 0

W2(bµ,η
# µt, bµ,η

# ν)
W2(µt, ν) ≤ 1 + η(κ− β−1ζ) .

Conceptually, the one-step expansion rate for the backward OT map is governed by κ− β−1ζ. We call this
an expansion because it is positive when β is large enough, regardless of the sign of ζ.

This backward expansion is inevitable, even for certain log-concave µt. As a simple corollary of Theorem 2,
we show the expansion upper bound is tight.
Corollary 1 (Lower Bound). Assume for some κ, ζ ∈ R+,

∇2f(x) = κ · Id, ∇2 log pµt
(x) = −ζ · Id .

Then for any β > ζ/κ, the one-step backward map (9) satisfies for all ν

lim
η→0

1
η

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) = 2(κ− β−1ζ) > 0 .

3.3 Diffuse-then-Denoise: One-Step Improvement and Chaining

Consider the special case of an Ornstein-Uhlenbeck process where f(x) = ∥x∥2/2. Take any two chains µt

and νt, as η → 0, then Theorem 1 claims the forward diffusion satisfies contraction

W2(fµ,η
# µt, fν,η

# νt)
W2(µt, νt)

= W2(µt+η, νt+η)
W2(µt, νt)

≤ 1− η + O(η2) .

10
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The backward denoising in Theorem 2 satisfies an expansion at most

W2(bµ,η
# fµ,η

# µt, bµ,η
# fν,η

# νt)
W2(fµ,η

# µt, fν,η
# νt)

=
W2(bµ,η

# µt+η, bµ,η
# νt+η)

W2(µt+η, νt+η) ≤ 1 + η(1− β−1ζ) + O(η2) .

We shall show next in Theorem 3 that

W2(bµ,η
# fµ,η

# µt, µt) = O(η2) .

Then compared to νt, the diffuse-then-denoise version bµ,η
# fν,η

# νt will get closer to µt, in the following sense

W2(µt, bµ,η
# fν,η

# νt)
W2(µt, νt)

≤ 1− ηβ−1ζ + O(η2) .

The one-step diffuse-then-denoise process bµ,η ◦ fν,η has a net contraction β−1ζ when ζ > 0, namely, the
forward contraction, offset by the possible backward expansion, presents a net gain in localization.
Theorem 3. Define the one-step diffuse-then-denoise

fµ,η := i− η(∇f + β−1∇ log pµ), µη := fµ,η
# µ ,

bµ,η := i + η(∇f + β−1∇ log pµη
) .

Assume ∇f,∇ log pµ,∇ log pµη ∈ C∞
c (X, X), then

W2(bµ,η
# fµ,η

# µ, µ) = O(η2) .

A direct corollary concerning the diffuse-then-denoise chain now follows from Theorem 1, 2, and 3. We
consider finite K-step diffuse-then-denoise chains:

• Forward diffuse: for the µ chain, set µ0 = µ, and define fµ,η
k := i − η(∇f + β−1∇ log pµ(k−1)η

) and
µkη := (fµ,η

k )#µ(k−1)η, recursively for k = 1, 2, . . . , K. Same for the ν chain.

• Backward denoise: for the ν chain, recursively apply the backward OT map bµ,η
k := i + η(∇f +

β−1∇ log pµkη
) to νKη, for k = K, K − 1, . . . , 1.

Corollary 2 (Diffuse-then-Denoise: Chaining). Let f(x) = ∥x∥2/2. Define the diffuse-then-denoise map

fν
[K] := fν,η

K ◦ · · · ◦ fν,η
2 ◦ fν,η

1 ,

bµ
[K] := bµ,η

1 ◦ bµ,η
2 ◦ · · · ◦ bµ,η

K .

Assume there exists a sequence of ζkη ∈ R such that

∇2 log pµkη
(x) ⪯ −ζkη · Id, ∀x ∈ X, ∀k = 1, 2, . . . , K .

Then the diffuse-then-denoise process on ν with fixed K steps, denoted as
(
bµ

[K] ◦ fν
[K]
)

#ν, satisfies

W 2
2
(
µ,
(
bµ

[K] ◦ fν
[K]
)

#ν
)

W 2
2 (µ, ν) ≤ exp

(
−2ηβ−1

K∑
k=1

ζkη + O(η2)
)

. (10)

The above Corollary states the denoising quality of the diffuse-then-denoise chain is collectively determined
by the curvature at each step ζkη. For non-log-concave µ, along the chain, some of the ζkη will be positive,
and some will be negative. Therefore, we need a fine-grained understanding of the curvature at each time
scale t = kη to understand the whole chain behavior. This calls for a fine-resolution analysis of the curvature
of µt, going beyond the worst-case curvature, the focus of the next section.
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4 Beyond Log-Concavity: A Multi-Scale Complexity

In this section, we restrict to the Ornstein-Uhlenbeck process and discover a multi-scale complexity measure
that controls the effective contraction/expansion of the diffuse-then-denoise process. The key is that for the
Ornstein-Uhlenbeck process, µt is a smoothed version of µ at a particular signal-to-noise ratio scale r = r(t).

4.1 OU Process

Definition 3 (Ornstein-Uhlenbeck Process). Define the Ornstein-Uhlenbeck Process with initialization X0 ∼
µ, and potential f(x) = ∥x∥2/2

dXt = −Xtdt +
√

2β−1dBt .

Then the distribution of Xt,∀t ∈ R+ admits the representation

Xt
L∼ e−tX0 +

√
β−1(1− e−2t)Z, Z ∼ N (0, Id) . (11)

For any measure X ∼ µ ∈ P2(X), the above representation motivates us to consider a sequence of problems
indexed by a multi-scale signal-to-noise ratio. Recall Proposition 3,

r(t) := e−t√
β−1(1− e−2t)

, s(t) :=
√

β−1(1− e−2t) ,

∇2 log pµt(x) = − 1
s2(t) {Id − Cov[r(t)X0|Xt = x]} .

(12)

The curvature at each scale quantifies and, collectively, determines the measure’s complexity.

If µ is a log-concave measure, then by Prékopa-Leindler Inequality, µt’s are convolutions of a log-concave
measure with a Gaussian measure, and therefore, log-concave. Hence, for any t, we know that∇2 log pµt

(x) ⪯
0. As a direct consequence of Equation (10), we know that the diffuse-then-denoise chain is effective.

However, for non-log-concave measure µ, the ∇2 log pµt
(x) may have positive eigenvalues. Given Equation

(12), studying the positive eigenvalues of ∇2 log pµt
is equivalent to understanding the tail behavior of the

localization quantity Cov[r(t)X0|Xt], which motivates the following section.

4.2 Multi-Scale Complexity: Non-Log-Concavity and Survival Function

We define a sequence of functions at various signal-to-noise ratio (SNR) scales. In a nutshell, the different
scales of SNR probe the tail behavior of the localization quantity, Cov[r(t)X0|Xt]. In turn, the localization
quantity determines the landscape of the curvature of the measure µt, a smoothed version of the original
measure µ at a given SNR scale r(t), as shown in Equations (11)-(12). This multi-scale corruption also
occurred in stochastic localization; see Montanari (2023) for the connection between stochastic localization
and diffusions. We give precise complexity measures of the denoising problem, cast in quantities determined
by the survival function of the random variable Cov[r(t)X0|Xt]. As a result, these complexity measures
illustrate the effective contraction or expansion rate for the diffuse-then-denoise process, covering the case
of non-log-concave µ’s.

Two direct consequences of the newly proposed complexity measures follow: (1) It gives rise to a fine-grained
analysis for the diffuse-then-denoise process at any SNR scale, for any non-log-concave measures, to be shown
in Section 4.3; (2) It motivates a simulation-based numerical tool to visualize the bottleneck SNR scale for
the denoising problem, as we shall demonstrate in Section 5. Several curious phenomena are unveiled and
rationalized by the new multi-scale complexity.
Definition 4 (SNR, Localization and Survival Function). Given an initial measure µ ∈ P2(Rd), we define,
for any SNR r ∈ R≥0

Yr := rX + Z, (X, Z) ∼ µ⊗N (0, Id)

12
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where X ∼ µ and Z ∼ N (0, Id) are independent.

Define the localization function and the associated random variable

Lr(y) = ∥Cov[rX|Yr = y]∥op , and Lr = ∥Cov[rX|Yr]∥op ,

and denote the survival function of Lr as sr(·) : R+ → [0, 1]

sr(u) := P(Lr > u) .

A few remarks follow from this definition: (i) When the measure µ = L(X) is log-concave, then by Prékopa-
Leindler Inequality, for all r, the measure L(Yr) is log-concave as well. Proposition 3 implies that the
random variable Lr ≤ 1. Therefore, the survival function sr(1) = 0. (ii) When the measure µ = L(X) is
non-log-concave, then the measure L(Yr) will be non-log-concave for some r. For these r’s, we know that
∃y, Lr(y) > 1 and in turn implies sr(1) = P(Lr > 1) > 0.

This property is crucial and distinguishes the difficult settings for the backward transport. The validity
and effectiveness of reverting the diffusion model depends on the integrated tail of the survival function
sr(u), u ∈ [0, 1), which we define now.
Definition 5 (Multi-Scale Complexity). For δ ∈ (0, 1], define

hµ(δ, r) :=
∫ ∞

1−δ

sr(u)du , mµ(δ, r) := hµ(δ, r)
δ

.

Define

δ∗(r) = max
{

ζ ∈ [0, 1] : ζ ∈ arg min
δ∈[0,1]

mµ(δ, r)
}

,

and the minimal value

m∗(r) := min
δ∈[0,1]

mµ(δ, r) .

A few observations follow for the mµ(·, r) : δ 7→ hµ(δ, r)/δ function, which ensures δ⋆(r) and m⋆(r) are
well-defined.
Proposition 5. The following properties for mµ(·, r) hold:

1. Log-concave case: If sr(1) = 0, then mµ(·, r) is a non-decreasing function in δ ∈ [0, 1];

2. Non-log-concave case: If sr(1) > 0, then mµ(·, r) is either (i) non-increasing in δ ∈ [0, 1], or (ii)
U-shaped in δ ∈ [0, 1], namely first non-increasing then non-decreasing.

At a high level, if for some δ ∈ [0, 1] the integrated tail
∫∞

1−δ
sr(u)du is small, then the effective contraction of

the diffuse-then-denoise process will be governed by this δ. By Proposition 5, m∗(r) ≥ 0 is well-defined and,
as we shall see in the next section, this will quantify the type of perturbation that the diffuse-then-denoise
step can tolerate and still effectively contract.

4.3 Backward Expansion: Refined Analysis

In this section, we give a proof of why the multi-scale survival function at each SNR schedule r(t) =
e−t√

β−1(1−e−2t)
for t ∈ [0,∞] controls the backward expansion of the diffusion-then-denoise model. The

result generalizes Theorem 2 to the case of arbitrary non-log-concave measures.
Definition 6. For a measure µ ∈ Pr

2 (X), define a class of measures in reference to µ,

M(µ, M) := {ν ∈ Pr
2 (X) :

supx∈Dom(µ) ∥(tν
µ − i)(x)∥2∫

∥(tν
µ − i)(x)∥2dµ

≤M} .

13
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If M = 1, the set M(µ, M) consists of simple measures that are a location shift of µ. If M = ∞, the set
M(µ, M) = Pr

2 (X) all Wasserstein space. Here M controls the richness of perturbations around µ.
Theorem 4 (Backward Expansion: Beyond Log-Concavity). Recall the hµ(δ, r) function in Definition 5.
Assume ∇2 log pµt(x) has bounded eigenvalues over x ∈ X. Consider the backward OT map for the OU
process as in Definition 3, then for any δ ∈ [0, 1]

lim sup
η→0

lim sup
ν∈M(µt,M):ν

W2→ µt

1
η

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) ≤ 2− 2
1−e−2t

[
δ −M · hµ(δ, r(t))

]
.

Here the SNR schedule r(t) is defined in (12).

To build intuition for this result, we will isolate the following term,

ζ∗
M (t) = sup

δ∈[0,1]

1
1−e−2t [δ −M · hµ(δ, r(t))] .

We shall extensively explore how the multi-scale complexity affects this effective curvature complexity ζ∗
M (t)

with several non-log-concave examples in the next section. The curious reader may wonder whether this
multi-scale complexity recovers the result obtained in the previous section for the log-concave case. The
answer is yes.

In the log-concave case, namely, there exists ζ ≥ 0, ∇2 log pµt(x) ⪯ −ζ · Id. For ζ̃(t) = (1 − e−2t)ζ and
r = r(t), we have ∇2 log pYr (y) ⪯ −ζ̃ · Id. In this case, Lr(y) ≤ 1− ζ̃ and sr(1− ζ̃) = 0. Then, mµ(δ, r) = 0
for all δ ∈ [0, ζ̃], and

m∗(r) = 0, δ∗(r) = ζ̃,

ζ∗
∞(t) = lim

M→∞

1
1− e−2t

[δ∗(r)−M · hµ(δ∗(r), r)] = ζ̃

1− e−2t
= ζ.

In the non-log-concave case, for any M < 1
m∗(r) , it is possible to obtain ζ∗

M (t) > 0, and thus, a net contraction
for the diffuse-then-denoise process. We will explore this extensively in the next section and delineate the
behavior of ζ∗

M (t) for a host of fundamental non-log-concave distributions.

5 Examples

Theorem 4 depends on an integrated survival function hµ(δ, r) whose shape is difficult to guess. Luckily, its
complete behavior can be captured by understanding the following quantities.

sr(u) = P(Lr > u), m∗(r) = min
δ∈[0,1]

mµ(δ, r), δ∗(r) = max
{

ζ ∈ [0, 1] : ζ ∈ arg min
δ∈[0,1]

mµ(δ, r)
}

.

We will methodically calculate and plot these objects for a range of fundamental distributions. Given a
target distribution, empirical or with explicit form, we can use a Monte Carlo simulation method to visualize
the functions above.

• For any empirical measure µ0, (15) defines an expression for the empirical version of Lr(y).

• One can simulate Yr by sampling rX +N (0, 1), for X ∼ µ0.

• Then one can obtain the empirical survival function, sr(u). m∗(r), δ∗(r) and ζ∗
M (t) follow.

Capturing this behavior at precise time scales will allow us to ascertain (1) when contraction is easy, and
if not, (2) at what SNR, r, the process transitions to a non-log-concave setting. In the following, we will
restrict ourselves to the OU process, with β = 1, and in one dimension.
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5.1 Warm-Up: Log-Concave

Suppose the target measure, µ0 is log-concave. Via Prékopa-Leindler Inequality, the full chain of measures
generated by the OU process admits log-concavity. That is, there exists a sequence of non-negative constants
ζ(r) > 0 such that

∇2 log pYr (y) ⪯ −ζ(r), ∀r ≥ 0.

We know from the previous section that this implies,

m∗(r) = 0, δ∗(r) = ζ(r), ζ∗
∞(t) = δ∗(r(t))

1− e−2t
.

We visualize and validate this result for three log-concave distributions.
Example 1 (Point Mass). Consider the simplest case where the target measure µ0 is a Dirac measure, δ0.
We assess the localization of the backward transport by investigating the random covariance, Lr.

−∇2 log pYr (y) = 1, =⇒ Lr ≡ 0.

In this simple case, Lr is a point mass at 0. The backward transport localizes completely. It follows that
sr(u) = 0. Therefore,

m∗(r) = 0, δ∗(r) = 1, ζ∗
∞(t) = 1

1− e−2t
.

(a) (b)

Figure 3: (a) m∗(r), δ∗(r). (b) ζ∗(t).

Example 2 (Normal). Consider now that µ0 is a normal distribution N (m, σ2). Again, we calculate the
localization quantity,

−∇2 log pYr (y) = 1
σ2r2 + 1 , =⇒ Lr = σ2r2

σ2r2 + 1 .

Lr is a point mass with location depending on the SNR, r. In turn, the survival function is not 0, but a step
function with an explicit threshold,

sr(u) =
{

1, ∀u ∈ [0, σ2r2

σ2r2+1 )
0, ∀u ∈ [ σ2r2

σ2r2+1 ,∞)

We plot this in Figure 4 (a). The backward transport localizes completely as r→ 0 (or equivalently t→∞).

For any r, we can find δ ∈ [0, 1] such that mµ(δ, r) = 0. It follows,

m∗(r) = 0, δ∗(r) = 1
σ2r2 + 1 , ζ∗

∞(t) = 1
1 + e−2t(σ2 − 1) .
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We confirm a variety of σ2 choices in Figure 4 (b) and (c).

(a) (b)

(c)

Figure 4: (a) sr(u). (b) m∗(r), δ∗(r). (c) ζ∗(t).

Example 3 (Uniform). Consider the case when the target distribution is uniform µ0 = Unif(−1, 1). As
before, we gauge the localization via the random covariance of the backward transport, Lr.

∇2 log pYr (y) =
[−(y + r)ϕ(y + r) + (y − r)ϕ(y − r)

Φ(y + r)− Φ(y − r) −
(

ϕ(y + r)− ϕ(y − r)
Φ(y + r)− Φ(y − r)

)2]
,

Lr(Yr) = 1 +∇2 log pYr (Yr) .

Based on this characterization we simulate sr(u), m∗(r), δ∗(r), ζ∗
∞(t). As expected we see,

sr(1) = 0, m∗(r) = 0, ζ∗
∞(t) > 0.

We recover the same qualitative behavior as in the preceding examples (point mass, Gaussian). However,
the fine-grained behavior is remarkably different; see Figure 5 (c). Note that though ζ∗

∞(t) > 0, we have the
non-monotonic behavior of the effective contract at different time scales. The slowest effective contraction
is happening in some small time scales.

The uniting technicality that allows this is:

Lr ≤ 1, ⇐⇒ sr(1) = 0, ∀r ≥ 0.

By Proposition 3, this is exactly saying that the curvature, ∇2 log pYr (y) ≤ 0.
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(a) (b)

(c)

Figure 5: (a) sr(u). (b) m∗(r), δ∗(r). (c) ζ∗(t).

5.2 Beyond Log-Concavity

With general non-log-concave µ as initialization, the Ornstein-Uhlenbeck process at time t may not have
log-concavity. Indeed, ∇2 log pYr (y) is not uniformly upper bounded by 0, or equivalently, the random
covariance Lr cannot be uniformly bounded from above by 1. We separate from the regime of the previous
three examples, all of which exploited this property to show contraction at all scales r.

It is important to understand (i) when the backward chain enters this non-log-concave regime, and (ii) the
expansion behavior in this regime. To that end, we make use of the following notation:

r∗ = max{r : sr(1) = 0}.

Example 4 (Two Point Mass). We consider X0 ∼ 1
2 δ−µ + 1

2 δµ for some µ > 0. We assess the localization via
the random variance, Lr.

Lr(y) = (rµ)2
[
1−

(ϕ(y − rµ)− ϕ(y + rµ)
ϕ(y − rµ) + ϕ(y + rµ)

)2]
, sup

y
Lr(y) = Lr(0) = (rµ)2.

We see immediately, r∗ = µ−1. We can explicitly calculate sr(u).

sr(u) = Φ
(

1
2(rµ) log rµ +

√
(rµ)2 − u

rµ−
√

(rµ)2 − u
+ rµ

)
+ Φ

(
1

2(rµ) log rµ +
√

(rµ)2 − u

rµ−
√

(rµ)2 − u
− rµ

)
− 1 (13)

sr(u) = 0, u ∈ [(rµ)2,∞). (14)
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(i) (r ≤ µ−1): In this setting, we expect log-concave behavior. By (14),

m∗(r) = 0, δ∗(r) = 1− (rµ)2, ζ∗
∞(t) = 1− (r(t)µ)2

1− e−2t

t→∞→ 1.

(ii) (r→∞): For extremely high SNR, we can see sr(u)→ 0. This phenomenon is qualitatively the same as
log-concavity and can be rationalized as essentially recovering the single-point mass behavior in the limit.
In particular,

m∗(r)→ 0, δ∗(r)→ 1, ζ∗
∞(t)→∞.

(iii) Contraction should be hardest at mid-range SNR, where we no longer have log-concavity. The behavior
is simulated and displayed in Figure 6 (c). In this setting, we can tolerate a complexity M ≤ 1

m∗(r) < ∞
in order for non-expansion ζ∗

M (t) ≥ 0. This is visualized in Figure 6 (d). Note the non-monotonic behavior
of the curvature complexity ζ∗

M (t): there seems to be a mid-range of time at which the diffuse-then-denoise
chain could expand, when the type of perturbation is complex with large M .

The conclusion is not pessimistic. For most of the process, regardless of M , ζ∗
M (t) is positive and contraction

occurs. We remind the reader that M is a proposed upper bound in Definition 6. In our numerical examples,
this is typically small. Refer to Figure 7 to see the success of diffuse-then-denoise in this case.

(a) (b)

(c) (d)

Figure 6: (a) sr(u) Low SNR. (b) sr(u) High SNR. (c) m∗(r), δ∗(r). (d) ζ∗
M (t).
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(a) Forward Diffusion via OU (b) Backward Transport via OT

Figure 7: (a) Forward diffusion initialized at µ0 = 0.5δ1 +0.5δ−1, ν0 = δ0. T = 100, η = 0.01. (b) Backward
transport initialized at µT , νT , and applying the backward OT map bµ,η.

(a) (b)

(c) (d)

Figure 8: (a) sr(u) Low SNR. (b) sr(u) High SNR. (c) m∗(r), δ∗(r). (d) ζ∗
M (t).

Example 5 (Mixture of Point Mass and Gaussian). We now consider diffuse-then-denoise for the target
distribution; 1

2 δ0 + 1
2N (0, 1). Let v =

√
r2 + 1. We first calculate the covariance,

Lr(y) = 1 +
v−3 (y2/v2 − 1

)
ϕ (y/v) + (y2 − 1)ϕ(y)

vϕ (y/v) + ϕ(y) −
(

v−3yϕ (y/v) + yϕ(y)
vϕ (y/v) + ϕ(y)

)2

.

We simulate the survival function sr(u) = P(Lr > u) via Monte Carlo, see Figures 8 (a) and (b). A lack of
log-concavity is clear for high SNR.
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(i) (r ≤ r∗): We expect m∗(r) = 0. While we don’t have an explicit form for r∗, simulations in Figure 8
validate this. See also Monte Carlo-based simulations for δ∗, ζ∗

∞.

(ii) (r > r∗): We move away from the log-concave regime for large SNR (small t). We conjecture that as
r →∞, m∗(r)→ 1

2 . To see this, note that sr(t) approaches a step function form with a step at 0.5. In this
setting, the behavior of ζ∗

M is captured in Figure 8 (d). We note that regardless of M , the range of time
when the process effectively expands is minimal compared to the full process.

Refer to Figure 9 to see the success of diffuse-then-denoise in this case.

(a) Forward Diffusion via OU (b) Backward Transport via OT

Figure 9: (a) Forward diffusion initialized at µ0 = 0.5δ0 + 0.5N (0, 1), ν0 = δ0. T = 100, η = 0.01. (b)
Backward transport initialized at µT , νT , and applying the backward OT map bµ,η.

Example 6 (Mixture of Gaussian, Heterogeneous Variance). Consider the general Gaussian Mixture given
by,

X0 ∼
m∑

i=1
pi · N (µi, σ2

i )

In Figure 10, we consider a specific formulation: 0.1N (−4, 1) + 0.2N (−2, 0.5) + 0.4N (2, 0.5) + 0.3N (4, 1).
Defining vi =

√
r2σ2

i + 1, ti = vi
−1(y − rµi), for i ∈ [m], we derive the conditional covariance:

Lr(y) = 1 +
∑

i piv
−3
i (t2

i − 1)ϕ(ti)∑
i piviϕ(ti)

−
(
−
∑

i piv
−2
i tiϕ(ti)∑

i piviϕ(ti)

)2

(15)

The survival function sr(u) = P(Lr > u) is simulated via Monte Carlo and is displayed in Figures 10 (a) and
(b). As soon as the SNR is not small, we are no longer in the log-concave setting.

(i) (r ≤ r∗): We expect m∗(r) = 0. Simulations in Figure 10 show a flat m∗ for sufficiently large r. Even for
mid-range SNR, we diverge from this log-concave setting.

(ii) (r > r∗): The shape of ζ∗
M is captured in Figure 10 (d). In contrast to the previous two cases, this region

is not so narrow. For a chosen noise schedule, diffuse-then-denoise still seems successful for sampling in this
setting, see Figure 11.
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(a) (b)

(c) (d)

Figure 10: (a) sr(u) Low SNR. (b) sr(u) High SNR. (c) m∗(r), δ∗(r). (d) ζ∗
M (t).

(a) Forward Diffusion via OU (b) Backward Transport via OT

Figure 11: (a) Forward diffusion initialized at µ0 = 0.1N (−4, 1) + 0.2N (−2, 0.5) + 0.4N (2, 0.5) +
0.3N (4, 1), ν0 = δ0. T = 100, η = 0.01. (b) Backward transport initialized at µT , νT , and applying
the backward OT map bµ,η.
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A Proofs

The Appendix is organized as follows.

Section A.1 gathers the technical preparations for denoising and localization, where we prove the results in
Section 2. We derive the optimal transport denoising map and explain how the curvature function appears
from a localization perspective.

Section A.2 presents analyses of the forward and backward processes, where we prove the results in Section 3.
We demonstrate how the curvature function influences backward denoising via a sensitivity analysis under
the Wasserstein metric. We also study the diffuse-then-denoise process, showing that adding noise then
denoising can be beneficial in the presence of negative curvature.

Section A.3 provides proofs for the results in Section 4. We extend beyond the log-concave setting by defining
and analyzing a multi-scale complexity that captures an average notion of curvature across all time scales.
This multi-scale complexity plays a key role in the sensitivity analysis of the diffusion model under the
Wasserstein metric.

A.1 Proofs for Section 2

Proof of Proposition 1. By Lemma 10.1.2 in Ambrosio et al. (2008),
1
η

(tµt
µt+η
− i) ∈ ∂G(µt+η)

where ∂G(µt+η) is the strong subdifferential. Recall that G(ν) = F(ν)+β−1E(ν). For a given ν with density
ν = ρ · Ld, by Lemma 10.4.1 in Ambrosio et al. (2008), we know any ξ(x) ∈ L2(ν;Rd) in ∂G(ν) admits the
representation

ξ(x) = ∇δG
δρ

= ∇f(x) + β−1∇ log ρ(x), for ν-a.e. x ∈ Rd .

Take ν = µt+η, we finish the proof.

Proof of Proposition 2. This result follows from Tweedie’s formula (Robbins, 1992). The conditional distri-
bution of Y = y given X admits the following density: pY(y|X) := d

dy P (Y ≤ y|X) = 1
σ ϕ((y −X)/σ) where

ϕ : Rd → R is the density of d-dimensional standard normal. This implies

∇pY(y|X) = − 1
σ2 (y −X)pY(y|X) and ∇pY(y) = − 1

σ2 E[(y −X)pY(y|X)]. (16)
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Therefore, we obtain

∇pY(y)
pY(y) = − 1

σ2E[(y −X)pY(y|X)
pY(y) ] = − 1

σ2

{
y − E[X|Y = y]

}
,

where we used the fact that E[h(X) pY(y|X)
pY(y) ] = E[h(X)|Y = y] for any integrable function h with respect to

X. This completes the proof.

Proof of Proposition 3. Taking the derivative of (16) with respect to y, we have

∇2pY(y|X) =
[
− 1

σ2 Id + 1
σ4 (y −X)(y −X)⊤

]
pY(y|X) ,

and ∇2pY(y) = E
[(
− 1

σ2 Id + 1
σ4 (y −X)(y −X)⊤)pY(y|X)

]
. This gives

∇2pY(y)
pY(y) = E

[(
− 1

σ2 Id + 1
σ4 (y −X)(y −X)⊤)pY(y|X)

pY(y)

]
,

= − 1
σ2 Id + 1

σ4 E[(y −X)(y −X)⊤|Y = y] .

Combined with the result ∇pY(y)
pY(y) = − 1

σ2 (E[y −X|Y = y]) from Proposition 2, we obtain

∇2 log pY(y) = ∇
2pY(y)
pY(y) − ∇pY(y)

pY(y)

(∇pY(y)
pY(y)

)⊤

= − 1
σ2 Id + 1

σ4 E[(y −X)(y −X)⊤|Y = y]

− 1
σ4 (E[y −X|Y = y])(E[y −X|Y = y])⊤

= − 1
σ2 Id + 1

σ4 Cov[y −X|Y = y] .

With Cov[y −X|Y = y] = Cov[X|Y = y] = σ2 Cov[σ−1X|Y], we complete the proof.

Proof of Proposition 4. Using the integration by parts, we have∫
tr[∇2 log pν(x)]dν(x) =

d∑
i=1

∫
pν(x) ∂2

∂xi
log pν(x)dx ,

= −
d∑

i=1

∫
∂

∂xi
pν(x) ∂

∂xi
log pν(x)dx ,

= −
∫
∥∇ log pν(x)∥2pν(x)dx .

A.2 Proofs for Section 3

Proof of Theorem 1. Take any two µ, ν ∈ Pr
2 (X), we have by convexity of E(·)

E(µ)− E(ν) ≥
∫
⟨∇ log pν , tµ

ν − i⟩dν = ⟨∇ log pν(tν
µ), i− tν

µ⟩dµ ,

E(ν)− E(µ) ≥
∫
⟨∇ log pµ, tν

µ − i⟩dµ .
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Therefore, adding up these two inequalities, we have∫
⟨∇ log pµ −∇ log pν(tν

µ), tν
µ − i⟩dµ ≤ 0 . (17)

Now denote t := tνt
µt

, we know (fµ,η, fν,η ◦ t)#µt ∈ Π(µt, νt) where fµ,η, fν,η are defined in (8),

W 2
2 (µt+η, νt+η) = inf

π∈Π(µt+η,νt+η)

∫
∥x− y∥2dπ(x, y) ,

≤
∫
∥(i− η∇f − ηβ−1∇ log pµt)− (t− η∇f(t)− ηβ−1∇ log pνt(t))∥2dµt ,

=
∫
∥i− t∥2dµt − 2η

∫
⟨i− t,∇f −∇f(t)⟩dµt

+ 2ηβ−1
∫
⟨∇ log pµt −∇ log pνt(t), t− i⟩dµt

+ O(η2) ,

≤ (1− 2ηλ)W 2
2 (µt, νt) + O(η2) .

Here we use (17) and the fact ⟨∇f(x) − ∇f(y), x − y⟩ ≥ λ∥x − y∥2, for all x, y. Rearrange and then let
η → 0, we prove the theorem.

Proof of Theorem 2. First, for any ν ∈ Pr
2 (X), define two quantities

ϵ := ∥tν
µt
− i∥L2(µt;Rd) = W2(ν, µt) ,

ξ := (tν
µt
− i)/∥tν

µt
− i∥L2(µt;Rd) ,

Then tν
µt

= i + ϵξ. For any ν ∈ Pr
2 (X), we have

W 2
2 (bµ,η

# µt, bµ,η
# ν) ≤

∫
∥bµ,η ◦ (i + ϵξ)− bµ,η ◦ i∥2dµt ,

=
∫
∥bµ,η(x + ϵξ(x))− bµ,η(x)∥2dµt(x) .

Define an auxiliary function gξ(ϵ) :=
∫
∥bµ,η(x + ϵξ(x))− bµ,η(x)∥2dµt(x), we can verify that

g′
ξ(0) = 0, lim

ϵ→0

gξ(ϵ)
ϵ

= 0 .

We also know that

g′
ξ(ϵ) =

∫
2⟨∇bµ,η(x + ϵξ(x))ξ(x), bµ,η(x + ϵξ(x))− bµ,η(x)⟩dµt(x) ,

≤
∫
∥bµ,η(x + ϵξ(x))− bµ,η(x)∥2dµt(x)

ϵ
+ ϵ ·

∫
∥∇bµ,η(x + ϵξ(x))ξ(x)∥2dµt(x) ,

≤ gξ(ϵ)
ϵ

+ ϵ · sup
x
∥∇bµ,η(x)∥2

op ·
∫
∥ξ(x)∥2dµt(x) .

Notice
∫
∥ξ(x)∥2dµt(x) = 1, and divide both sides by ϵ, we obtain

d
dϵ

(
gξ(ϵ)

ϵ

)
=

g′
ξ(ϵ)ϵ− gξ(ϵ)

ϵ2 ≤ sup
x
∥∇bµ,η(x)∥2

op .

Integrate this inequality and recall limϵ→0
gξ(ϵ)

ϵ = 0, we get

gξ(ϵ)
ϵ
≤ ϵ · sup

x
∥∇bµ,η(x)∥2

op ,
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which implies

gξ(ϵ) ≤ sup
x
∥∇bµ,η(x)∥2

op · ϵ2
∫
∥ξ(x)∥2dµt(x) = sup

x
∥∇bµ,η(x)∥2

op ·W 2
2 (µt, ν) .

Recall the definition of gξ(ϵ), we have shown for any ν ∈ Pr
2 (X),

W 2
2 (bµ,η

# µt, bµ,η
# ν) ≤ gξ(ϵ) ≤ sup

x
∥∇bµ,η(x)∥2

op ·W 2
2 (µt, ν) . (18)

Therefore, we have for any ν ∈ Pr
2 (X)

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) ≤ sup
x
∥∇bµ,η(x)∥2

op − 1 .

To further bound the right-hand side, for η small enough, we notice

∇bµ,η(x) = Id + η(∇2f(x) + β−1∇2 log pµt(x)) ⪯
(
1 + η(κ− β−1ζ)

)
Id .

We complete the proof by taking the η → 0 limit.

Proof of Corollary 1. First note

∇bµ,η(x) = Id + η(∇2f(x) + β−1∇2 log pµt(x)) =
(
1 + η(κ− β−1ζ)

)
Id ,

bµ,η = (1 + η(κ− β−1ζ))i, f := (bµ,η)−1 = (1 + η(κ− β−1ζ))−1i .

Define for convenience, µt−η := bµ,η
# µt, ν−η := bµ,η

# ν, then in the proof of Theorem 2, (18) already proved

W 2
2 (µt, ν)

W 2
2 (bµ,η

# µt, bµ,η
# ν) = W 2

2 (f#µt−η, f#ν−η)
W 2

2 (µt−η, ν−η) ≤ sup
x
∥∇f(x)∥2

op = (1 + η(κ− β−1ζ))−2 .

Thus taking the reciprocal, then taking the limit inferior as η → 0, we obtain

lim inf
η→0

1
η

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) ≥ 2(κ− β−1ζ) .

Theorem 2 already proved

lim sup
η→0

1
η

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν) ≤ 2(κ− β−1ζ) .

Thus, the equality holds.

Proof of Theorem 3. Note by definition of the diffuse-then-denoise step, we have

W 2
2 (bµ,η

# fµ,η
# µ, µ)

≤
∫
∥bµ,η ◦ fµ,η(x)− x∥2dµ ,

=
∫
∥fµ,η(x) + η(∇f(fµ,η(x)) + β−1∇ log pµη

(fµ,η(x)))− x∥2dµ ,

=
∫
∥fµ,η(x) + η∇f(fµ,η(x)) + ηβ−1∇ log pµ(x) + O(η2)− x∥2dµ ,

=
∫
∥x− η∇f(x)− ηβ−1∇ log pµ(x) + η∇f(x) + ηβ−1∇ log pµ(x) + O(η2)− x∥2dµ ,

= O(η4) ,
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where the second to the third line is applying the change of variable formula

log pµη (fµ,η(x)) = log pµ(x)− log det
(
Id − η(∇2f(x) + β−1∇2 log pµ(x))

)
,

= log pµ(x) + η tr(∇2f(x) + β−1∇2 log pµ(x)) + O(η2) ,

and the third to the fourth line uses the fact

∇f(fµ,η(x)) = ∇f(x) + η∇2f(x)(∇f(x) + β−1∇ log pµ(x)) + O(η2) .

The proof is completed.

Proof of Corollary 2. Without loss of generality, assume W2(µ, ν) = 1. By Theorem 1, we know

W2(µKη, νKη) ≤ 1− ηK + O(η2) ≤ exp
(
−ηK + O(η2)

)
.

Using Theorem 2

W2((bµ,η
K )#µKη, (bµ,η

K )#νKη)
W2(µKη, νKη) ≤ 1 + η(1− β−1ζKη) + O(η2),

≤ exp
(
η(1− β−1ζKη) + O(η2)

)
,

W2((bµ,η
K )#µKη, (bµ,η

K )#νKη)) ≤ exp
(
−η(K − 1)− ηβ−1ζKη + O(η2)

)
.

Now recall Theorem 3, we have

W2(µ(K−1)η, (bµ,η
K )#µKη) = W2(µ(K−1)η, (bµ,η

K ◦ fµ,η
K−1)#µ(K−1)η) = O(η2) ,

and thus

W2(µ(K−1)η, (bµ,η
K )#νKη)) ≤W2(µ(K−1)η, (bµ,η

K )#µKη) + W2((bµ,η
K )#µKη, (bµ,η

K )#νKη)) ,

≤ exp
(
−η(K − 1)− ηβ−1ζKη + O(η2)

)
.

Repeat the same argument, we know

W2(µ(K−2)η, (bµ,η
K−1 ◦ bµ,η

K )#νKη)) ≤ exp
(
−η(K − 2)− ηβ−1(ζ(K−1)η + ζKη) + O(η2)

)
.

Chaining this bound recursively, we have

W2
(
µ,
(
bµ

[K] ◦ fν
[K]
)

#ν
)

= W2(µ, (bµ
[K])#νKη) ≤ exp

(
−ηβ−1

K∑
k=1

ζkη + O(η2)
)

.

A.3 Proofs for Section 4

Proof of Proposition 5. Recall the definition

dmµ(δ, r)
dδ

=
sr(1− δ) · δ −

∫∞
1−δ

sr(u)du

δ2 .

(1) In the log-concave case, we know sr(1) = 0, therefore

dmµ(δ, r)
dδ

=
sr(1− δ) · δ −

∫ 1
1−δ

sr(u)du

δ2 =
∫ 1

1−δ
[sr(1− δ)− sr(u)]du

δ2 ≥ 0

which shows the non-decreasing shape of mµ(·, r). (2) In the non-log-concave case, we have sr(1) > 0, and
thus

dmµ(δ, r)
dδ

|δ→0+ < 0 ,
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and we claim that (by taking the derivative w.r.t δ)

δ 7→ sr(1− δ) · δ −
∫ ∞

1−δ

sr(u)du

is non-decreasing in δ. Therefore, δ 7→ dmµ(δ,r)
dδ either crosses zero (in a non-decreasing way) or stays negative

for δ ∈ [0, 1]. Therefore, mµ(δ, r) is either (i) non-increasing in δ ∈ (0, 1], or (ii) U-shaped in δ ∈ (0, 1], namely
first non-increasing then non-decreasing.

Proof of Theorem 4. As in the proof of Theorem 2, for any ν ∈M(µt, M), define two quantities

ϵ := ∥tν
µt
− i∥L2(µt;Rd) = W2(ν, µt) ,

ξ := (tν
µt
− i)/∥tν

µt
− i∥L2(µt;Rd) ,

Then tν
µt

= i + ϵξ, and as ν
W2→ µt, we know ϵ→ 0. Now note additionally if we assume ν ∈M(µt, M), then

the corresponding ξ satisfies

ξ ∈ Tµt
(M) :=

{
ξ :

∫
∥ξ∥2dµt = 1, sup

x∈Dom(µt)
∥ξ(x)∥2 ≤M

}
.

Claim that for any sequence of ν ∈ Pr
2 (X) : ν

W2→ µt that attains the limit superior, we have

lim sup
ν∈M(µt,M):ν

W2→ µt

W 2
2 (bµ,η

# µt, bµ,η
# ν)−W 2

2 (µt, ν)
W 2

2 (µt, ν)

≤ sup
ξ∈Tµt (M)

∫
∥∇bµ,η(x)ξ(x)∥2dµt(x)−

∫
∥ξ(x)∥2dµt(x)∫

∥ξ(x)∥2dµt(x) .

To derive this claim, notice that

W 2
2 (bµ,η

# µt, bµ,η
# ν) ≤

∫
∥bµ,η ◦ (i + ϵξ)− bµ,η ◦ i∥2dµt ,

=
∫
∥bµ,η(x + ϵξ(x))− bµ,η(x)∥2dµt(x) ,

= ϵ2
(∫
∥∇bµ,η(x)ξ(x)∥2dµt(x) + oϵ(1)

)
.

The last step requires some justification. Define an auxiliary function g(ϵ) :=
∫
∥bµ,η(x + ϵξ(x)) −

bµ,η(x)∥2dµt(x), we can verify that

g′(0) = 0,

g′′(0) = 2
∫
∥∇bµ,η(x)ξ(x)∥2dµt(x) ,

g′′(ϵ) = 2
∫
∥∇bµ,η(x + ϵξ(x))ξ(x)∥2dµt(x)

+ 2
∫ 〈
∇2bµ,η(x + ϵξ(x)), ξ(x)⊗ ξ(x)⊗

(
bµ,η(x + ϵξ(x))− bµ,η(x)

)〉
.

By the Taylor’s Theorem, there exists ϵ̃ ∈ [0, ϵ], such that

g(ϵ) = 1
2g′′(ϵ̃)ϵ2 .

Notice g′′(ϵ̃) = g′′(0)+oϵ(1) due to the fact that ∥ξ(x)∥2 ≤M uniformly bounded and that bµ,η has bounded
derivatives, we establish the claim.
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Now we proceed to control the term
∫
∥∇bµ,η(x)ξ(x)∥2dµt(x)∫

∥∇bµ,η(x)ξ(x)∥2dµt(x) ≤
∫
∥∇bµ,η(x)∥2

op∥ξ(x)∥2dµt(x) .

Now let’s study ∥∇bµ,η(x)∥op: recall s(t) =
√

β−1(1− e−2t)

∥∇bµ,η(x)∥op = ∥Id + ηId − η
1−e−2t (Id − Cov[r(t)X0|Xt = x])∥op

= (1 + η)− η
1−e−2t + η

1−e−2t ∥Cov[r(t)X0|Xt = x]∥op

= (1 + η)− η
1−e−2t + η

1−e−2t Lr(t)( x
s(t) )

Here we recall the conditional covariance (localization function) defined before

Lr(y) := ∥Cov[rX|Yr = y]∥op .

Continue, we have ∫
∥∇bµ,η(x)ξ(x)∥2dµt(x)−

∫
∥ξ(x)∥2dµt(x)

≤ 2η

∫
∥ξ(x)∥2dµt(x)− 2η

1−e−2t

∫
∥ξ(x)∥2dµt(x)

+ 2η
1−e−2t

∫
Lr(t)( x

s(t) )∥ξ(x)∥2dµt(x) + O(η2) .

We analyze the last term: first, we define the region

Rδ := {x ∈ X : Lr(t)( x
s(t) ) ≤ 1− δ}

and bound the integral depending on the region,∫
Lr(t)( x

s(t) )∥ξ(x)∥2dµt(x) =
∫

x∈Rδ

Lr(t)( x
s(t) )∥ξ(x)∥2dµt(x)

+
∫

x∈Rc
δ

Lr(t)( x
s(t) )∥ξ(x)∥2dµt(x) ,

≤ (1− δ)
(∫

x∈Rδ

∥ξ(x)∥2dµt(x) +
∫

x∈Rc
δ

∥ξ(x)∥2dµt(x)
)

+
∫

x∈Rc
δ

(
Lr(t)( x

s(t) )− (1− δ)
)
∥ξ(x)∥2dµt(x) ,

Recalling ξ ∈ Tµt
(M),

(1− δ)
∫
∥ξ(x)∥2dµt(x) +

∫
x∈Rc

δ

(
Lr(t)( x

s(t) )− (1− δ)
)
∥ξ(x)∥2dµt(x)

= (1− δ)
∫
∥ξ(x)∥2dµt(x) +

∫
∥ξ(x)∥2dµt(x) ·M ·

∫
x∈Rc

δ

(
Lr(t)( x

s(t) )− (1− δ)
)
dµt(x) ,

=
∫
∥ξ(x)∥2dµt(x) ·

(
(1− δ) + M ·

∫ ∞

1−δ

sr(t)(z)dz

)
,

where the last step uses Proposition 4 and the Fubini’s theorem: for a non-negative random variable Z > 0,
if E[Z] <∞, then

∫∞
C

(z − C)pZ(z)dz =
∫∞

C
P (Z ≥ z)dz for C > 0; set Z = Lr(t)( Xt

s(t) ) and C = 1− δ. Put
things together, for any δ ∈ [0, 1]

sup
ξ∈Tµt (M)

∫
∥∇bµ,η(x)ξ(x)∥2dµt(x)−

∫
∥ξ(x)∥2dµt(x)∫

∥ξ(x)∥2dµt(x)

≤ 2η − 2η
1−e−2t

[
δ −M · hµ(δ, r(t))

]
+ O(η2) .
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