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Abstract

Voxel-based 3D object detectors have achieved remarkable performance in point
cloud perception, yet their high computational and memory demands pose sig-
nificant challenges for deployment on resource-constrained edge devices. Post-
training quantization (PTQ) provides a practical means to compress models and
accelerate inference; however, existing PTQ methods for point cloud detection
are typically limited to INT8 and lack support for lower-bit formats such as INT4,
which restricts their deployment potential. In this paper, we present Point4bit,
the first general 4-bit PTQ framework tailored for voxel-based 3D object detec-
tors. To tackle challenges in low-bit quantization, we propose two key techniques:
(1) Foreground-aware Piecewise Activation Quantization (FA-PAQ), which
leverages foreground structural cues to improve the quantization of sparse activa-
tions; and (2) Gradient-guided Key Weight Quantization (G-KWQ), which pre-
serves task-critical weights through gradient-based analysis to reduce quantization-
induced degradation. Extensive experiments demonstrate that Point4bit achieves
INT4 quantization with minimal accuracy loss with less than 1.5% accuracy drop.
Moreover, we validate its generalization ability on point cloud classification and
segmentation tasks, demonstrating broad applicability. Our method further ad-
vances the bit-width limitation of point cloud quantization to 4 bits, demonstrating
strong potential for efficient deployment on resource-constrained edge devices.

1 Introduction

3D object detection [25}134] plays a crucial role in autonomous driving by enabling accurate environ-
mental perception. Compared with camera-based methods, LiDAR offers robust and lighting-invariant
geometric information, making it a popular choice for reliable 3D perception [37,33}144}145]. Among
various approaches, voxel-based 3D detectors [[18} 47, |6] are particularly popular due to their ability
to convert irregular point clouds into structured voxel grids, enabling efficient feature extraction via
2D convolutions. These methods are typically built on dense or sparse backbones [56}, 46l 10, [52],
aiming to improve accuracy and speed. However, real-time deployment remains challenging on
edge devices. For instance, VoxelNeXt [6] achieves 26.9 FPS on an NVIDIA RTX 3090, which is
impractical for in-vehicle deployment. These real-world constraints underline the urgent need to
reduce the computational cost and memory footprint of voxel-based detectors, and to strike a better
balance between accuracy and efficiency for large-scale, real-world applications.

Quantization is a promising solution to reduce model size and latency by converting floating-point
(FP) operations into low-bit formats (e.g., INT8 or INT4) in different application [14} 43,16} 153} [15].
Compared to quantization-aware training (QAT), post-training quantization (PTQ) is more practical,
requiring no retraining and only minimal unlabeled data. A pioneering PTQ method for point cloud
object detection is Lidar-PTQ [51]], which systematically analyzes the reason for quantization error and
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proposes a compensation mechanism based on quantization-aware distribution alignment. While this
method demonstrates strong practical value, it still has notable limitations: (1) Limited robustness
in ultra-low-bit settings. While supporting INTS, naively lowering to INT4, already available on
modern hardware [30], causes severe degradation, as uniform treatment of weights/activations breaks
down at 4-bit where errors are amplified; (2) Distillation-based optimization and time-consuming.
Its calibration and optimization procedures involve multiple training-style steps and are relatively
complex, often requiring several hours to complete. This significantly hinders rapid deployment and
iterative prototyping on edge devices; (3) Limited generalization ability. LiDAR-PTQ is primarily
designed for 3D object detection models, and its effectiveness on other LiDAR-based perception
tasks beyond 3D object detection remains to be explored.

To address the limitations of existing PTQ methods in terms of low-bit support, deployment efficiency,
and task generalization, we propose a generic 4-bit PTQ framework for point cloud perception,
named Point4bit. The framework consists of two key components: the Foreground-aware Piecewise
Activation Quantization (FA-PAQ) and the Gradient-guided Key Weight Quantization (G-KWQ).
The FA-PAQ leverages the inherent sparsity and geometric structure of point clouds to preserve
task-critical features, especially those of foreground points. The G-KWQ module leverages gradient
sensitivity analysis to identify task-critical weights and applies high-fidelity quantization to preserve
model performance, even under extremely low-bit settings such as INT4.

Point4bit demonstrates strong quantization performance on voxel-based 3D detectors under INT4
settings, with minimal accuracy degradation. It also demonstrates robust generalization to classifica-
tion and segmentation tasks, indicating broad applicability. In addition, Point4bit enables efficient
deployment with minimal calibration overhead, making it a practical solution for resource-constrained
edge scenarios. The main contributions of this paper are:

* We propose the Foreground-aware Piecewise Activation Quantization (FA-PAQ) design
to address the issue of the challenging problem of sparse activation quantization in point
cloud detection. By leveraging the structural information of foreground regions, FA-PAQ
effectively mitigates performance degradation during low-bit settings.

* We introduce Gradient-guided Key Weight Quantization (G-KWQ), a gradient-guided
weight quantization strategy that adaptively identifies and prioritizes task-critical weights.
It effectively alleviates quantization-induced error propagation in low-bit regimes, thereby
improving quantization performance.

* We develop Point4bit, the first general 4-bit PTQ framework for point cloud object detection.
It achieves a favorable trade-off between compression ratio and accuracy. Experiments
show that Point4bit consistently outperforms existing methods under both INT8 and INT4
settings, demonstrating strong robustness under low-bit quantization, superior cross-task
generalization, and high deployment potential.

2 Preliminary

Uniform Affine Quantization. In quantization, uniform affine quantization maps FP inputs to a
fixed integer range using three key parameters: the scale factor s, zero-point z, and bit-width b. Given
an FP input x (weights or activations), the quantization and de-quantization process can be described
by Eq. , where |-] denotes the round-to-nearest operation (RTN), and clamp(-) restricts the result
to the valid integer range:

Xint = clamp QE—‘ +2;0,20 — 1) , X =8 (Xint — 2) - €))
s

where x;,,; represents the quantized integer value, Z is the de-quantized FP value with an error that is
introduced during the quantization process. Based on Eq. (I), the FP range of the quantization grid is
defined as [Gumin, Gmax] = [—52, 5(2° — 1 — 2)]. Input values x falling outside this range are clipped
to the nearest boundary, resulting in clipping error. Increasing the scale factor s can reduce clipping
by expanding the representable range, but at the cost of increased rounding error, which is bounded
within [— %3, %s] . To balance these two sources of error, modern quantization frameworks commonly
adopt MSE-based calibration [2, 28], which searches for the optimal (¢umin, ¢max) that minimizes the
Mean Squared Error (MSE) between the original tensor x and its de-quantized approximation X.



3 Method

In this section, we present Point4bit, which consists of two key components: a foreground-aware
activation quantization strategy and a gradient-guided weight quantization method. Inspired by
LiDAR-PTQ [51]], we enhance activation quantization by emphasizing foreground regions to better
preserve task-relevant features. We further extend task-awareness to weight quantization by leveraging
gradient information to retain weights most critical to the detection loss. Together, these components
enhance the robustness and accuracy of quantized models under ultra-low-bit settings.

3.1 Foreground-aware Piecewise Activation Quantization

As pointed out in LIDAR-PTQ, current point cloud detection models are highly sensitive to activation
quantization. To address the unique challenges posed by activation quantization in 3D object detection,
we propose a novel method called Foreground-aware Piecewise Activation Quantization (FA-PAQ),
which leverages the inherent sparsity and geometric structure of point clouds. This method aims to
preserve task-critical features during quantization, especially those associated with foreground points,
which are crucial for accurate 3D object detection.

FA-PAQ consists of two components: Adaptive Foreground Recognition and Foreground-aware Piece-
wise Activation Quantization. The former selects high-importance regions based on the activation
map, while the latter applies finer-grained quantization in these regions to minimize activation
information loss and maintain detection accuracy.
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Figure 1: Visualization of activation strength on the BEV feature map based on CP-Voxel [47/]. Red
boxes represent the regions of GT bounding boxes. Top-K denotes the top K non-empty voxels
selected based on average activation responses.

Adaptive Foreground Recognition. LiDAR-PTQ reveals that the boundary values of activations
significantly impact quantization performance. This insight motivates us to investigate which regions
in LiDAR-based point cloud detection are more critical to maintain under quantization. To this end,
we visualize both the raw input point cloud and the BEV feature maps in the network, as shown in
Fig.|l} Surprisingly, when computing the mean activation over the channel dimension and sorting the
spatial locations in descending order, we find that the Top-K non-empty voxels are almost entirely
located within ground truth (GT) bounding boxes.

This observation implies that foreground regions tend to have larger activation magnitudes, while
background activations are often close to zero. Therefore, activation magnitude can effectively and
automatically identify foreground points in the BEV feature map under an unsupervised setting.
These foreground responses are highly relevant to the detection task [22].

Formally, let the activation feature at ¢ layer be denoted as X te RLZ ><C'£’ where L is the number
of spatial locations, and C* is the number of channels. Let V¢ C {1,..., L*} denote the set of
non-empty voxel indices at layer £. For each location i € V¢, we compute the average activation
across channels, and select the top K = m; - |V*| positions with the highest average activations as
foreground candidates (Eq. (2)):
1 ¢
6,fg _ A o _ ¢

X9 = Topy (X!7), x| =5 > Xiy ®)

j=0
where Topy, () denotes selecting the top k locations with the highest average activation. The resulting

foreground set 'G is considered to contain the most critical structural information and will serve as
the foundation for the subsequent piecewise quantization process.



As shown in Fig.[I|c), the selected Top-K activation locations strongly align with GT bounding boxes,
validating the effectiveness of our unsupervised foreground extraction strategy. By incorporating
this foreground-aware mechanism, we are able to apply finer-grained quantization in crucial regions,
preserving geometry-sensitive activations while maintaining overall model efficiency.

Piece-wise Activation Quantization After identifying foreground features and analyzing their
distribution, we propose a piecewise activation quantization strategy that determines scale factors
for multiple intervals based on the distribution of foreground non-empty voxels in the BEV feature
map. A straightforward approach is to uniformly divide the activation range; however, such uniform
partitioning neglects the intensity distribution of critical features. In contrast, leveraging the cumula-
tive distribution function (CDF) allows us to better account for the underlying distribution of feature
intensities, leading to a more adaptive and data-aware quantization scheme (see Appendix for details).
For background features, we adopt the conventional quantization strategy. This method ensures
that the quantization process is well aligned with the underlying data distribution. In particular, the
proposed approach is designed to enhance point cloud detection performance by preserving critical
semantic information in foreground regions.
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Figure 2: Visualization of activation distributions based on the CP-Voxel model [47].

Foreground voxels in a BEV feature map typically correspond to semantically significant objects,
such as vehicles or pedestrians, and are characterized by higher feature values or densities. We
represent these feature values as a random variable X, whose statistical distribution is inferred from
a calibration dataset. This distribution encapsulates the properties of foreground voxels within the
feature space, providing the foundation for subsequent quantization steps.

Step 1: CDF Estimation. The cumulative distribution function Fx (x) is defined as the probability
that the feature value X is less than or equal to a specific value z: Fx(z) = P(X < z). To
empirically estimate the foreground CDF F'x(x), we collect a set of foreground feature values
denoted as X9 = {x1,x9,..., 2y} These values correspond to the activation intensities of the most
semantically meaningful (foreground) regions. As illustrated in Fig. |2} the foreground activations
exhibit a skewed distribution, with higher densities concentrated in specific value ranges. We sort
the collected values in ascending order as x(;) < x(2) < -+ < X (). The empirical CDF is then
approximated as shown in Eq. , where 1(-) denotes the indicator function, returning 1 if z(;) < x
and O otherwise:

Fx((L') ~

{0, T <T)OrxT > Tnp) 3)

5 i W <a), zay <o <.

Step 2: Interval Division. To determine quantization intervals adaptively, we partition the feature
value range into m intervals, each containing an equal cumulative probability of % The boundary
points py, for k = 1,2,...,m — 1 are selected based on the Eq. {@). The resulting intervals are
defined as [po, p1], [p1, P2 - - - » [Pm—1, Pm]» Where pg = min(X/9) and p,,, = max(X/9) represent
the minimum and maximum feature values, respectively. This equal-probability partitioning ensures
that the quantization intervals reflect the data distribution (Fig. [2c)).

Fx(p) = 2. 4

m

Step 3: Activation Quantization. For each quantization interval [py_1, pr], we compute the quantiza-
tion scale sig for b-bit quantization (i.e., 2° quantization levels), as shown in Eq. (5):

Pk — Pk—1
s19 = = (5)



Based on the general quantization and de-quantization functions defined in Eq. (IJ), our piece-wise
strategy derives a specific quantization rule for each foreground interval, as formulated in Eq. (6):

al9 —ppy

7 ;0,2 =1, 279 € [pr_y, pal- ©6)
537

2F9 = pp_q + sig - clamp

3.2 Gradient-guided Key Weight Quantization.

To identify weights that are critical to task performance in point cloud object detection, we propose a
gradient-guided key weight quantization (G-KWQ). This method is motivated by the observation that
3D object detection heavily relies on geometric structure modeling. In sparse point cloud scenarios,
structural cues such as object boundaries and shape information are particularly crucial for accurate
detection. Therefore, we design a gradient-based weight sensitivity evaluation mechanism tailored
for 3D detection tasks, which guides the preservation of high-fidelity representations for important
weights during quantization.
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Figure 3: Visualization of weight distributions based on the CP-Voxel model [47].

Gradient-Based Weight Sensitivity Evaluation. The magnitude of the gradient of a weight with
respect to the loss function can indicate its task sensitivity. Specifically, the sensitivity of a weight w;
is measured by the gradient magnitude of the total task loss Ly, which typically consists of a Focal
Loss for classification and a Smooth-L; Loss for regression. Given that our quantization is conducted
in a per-channel manner, we compute the average gradient magnitude across input channels for each
output channel, as shown in Eq. (7):

Mi—1
O/ _ 1 8‘Ctask
3T Al £
M = | oW,

(N

Here, a? denotes the aggregated task sensitivity of the j-th channel in the weight tensor of layer
¢, where a larger value indicates a potentially greater impact on overall model performance. M?*
represents the total number of weights in layer ¢. This sensitivity scoring strategy is particularly
suitable for 3D object detection tasks that rely on structural information, as high-sensitivity weights
often encode critical geometric features, such as object boundaries or dense spatial regions, which

play an important role in determining the mean Average Precision (mAP).

Rounding Error in Low-Bit Quantization. As shown in Fig.[3] we observe that as the bit-width
decreases, the distribution of quantized weights becomes increasingly sparse. This trend reflects a
growing discrepancy between the original full-precision weights and their low-bit representations,
which is primarily caused by rounding errors. The sparsity arises due to the limited set of representable
values in low-bit quantization, leading to coarse-grained mappings and aggressive rounding, especially
for weights near zero or quantization thresholds. Such increased rounding error may significantly
degrade the network’s capacity to retain subtle but task-relevant features. This observation highlights
the necessity of explicitly mitigating rounding error for task-sensitive weights under low-bit settings.



Key Weight Identification and Differentiated Quantization Process. Based on the above analysis,
we propose the gradient-guided quantization pipeline:

Step 1: Gradient Extraction. Perform a forward and backward pass on a calibration dataset to
compute the per-channel gradient sensitivity using Eq. (7).

Step 2: Sensitivity Scoring. Use the gradient magnitude ozf (or its square) as a sensitivity score to
measure each channel’s importance to task performance.

Step 3: Key Channel Selection. Rank channels by of in descending order and select the top m2% as
task-critical channels for special treatment in quantization.

Step 4: Differentiated Quantization. Introduce a rounding error penalty term into the quantization
loss to enforce high-fidelity quantization for important weights. The total quantization loss is defined
as Eq. , where Lgg, ; denotes the rounding error and S} is the quantization step size for channel j:

2
W W
Lguant = Lwmse + )\Zaj - Lrej, LrE,j = (SUJJ — {qu-‘) ®)
i J J

J

Task-Specific Benefits. Without introducing additional model complexity, our method adaptively
identifies task-relevant weights using gradient information and applies differentiated quantization
strategies to preserve their fidelity. Experimental results show that under low-bit settings (e.g., INT4),
our method effectively mitigates performance degradation and demonstrates superior robustness and
task adaptability in 3D detection scenarios.

3.3 Point4bit Algorithm

Point4bit is a fully post-training quantization method that operates without the need for labeled
data or model training, making it particularly well-suited for deployment in privacy-sensitive or
resource-constrained environments. The overall procedure of Point4bit is summarized in Algorithm|[T}

Algorithm 1 Point4bit Quantization

Input: Pretrained FP model with IV layers; Calibration dataset D°.
Output: quantization parameters of both activation and weight in network, i.e., weight scale s*,
weight zero-point z,,, activation scale {s77, ..., s/9, sb9}.
1: for L,, = {¢;]i =1,2,..N} do
2:  Run a forward and backward pass on the calibration dataset D¢ to compute per-channel
gradient sensitivity aﬁ"' using Eq. ;

3:  Optimize the weight quantization parameters s and z* by minimizing the MSE loss defined
in Eq. (8) using grid search algorithm.

4: end for

5: for L, = {{;]i=1,2,..N} do

6:  Input D¢ to FP network and obtain the output feature Xy, at layer ¢;;

7:  Identify the foreground and background activation values, X /9 and X?9, according to Eq. ;

8:  Optimize the background activation quantization parameters s°9 based on X9 by minimizing

the MSE loss using grid search algorithm;
9:  Determine the interval boundaries {po, p1, ..., P, } based on the empirical cumulative distribu-
tion function as defined in Eq. (3) and Eq. @);
10:  Optimize the foreground activation scales {slf 9....,s19} using Eq. .
11: end for

4 Experiments

Datasets. We evaluate the effectiveness of the Point4bit framework primarily on the large-scale
autonomous driving dataset nuScenes [4] for the 3D object detection task. The evaluation metrics
for 3D detection are mean Average Precision (mAP) and the nuScenes Detection Score (NDS). To
further assess its generalizability across different tasks, we conduct additional experiments on 3D
object classification and semantic segmentation. For classification, we adopt the ModelNet40 [42]]
and ScanObjectNN [39] datasets, which are widely used as benchmarks in this domain, and evaluate
performance using Overall Accuracy (OA) and mean Class Accuracy (mAcc). For semantic segmen-
tation, evaluations are performed on the real-world LiDAR dataset SemanticKITTT [3], using mean
Intersection-over-Union (mloU) as the evaluation metric.



Table 1: CP-Voxel [47] Quantization results on nuScenes val set. GS: grid search strategy.

Methods Bits(W/A) | mAP NDS | Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
Full Prec. 32/32 58.45 66.22|84.81 57.09 15.88 70.08 37.66 67.37 57.39 3935 84.99 69.92

©RIN[28] 8/8 5822 66.08|84.72 56.96 1523 70.14 37.19 67.15 56.97 38.88 84.97 69.91
RTN+GS [28] 8/8 58.30 66.09 | 84.78 56.99 15.78 70.17 37.25 6731 57.24 3871 8491 69.79
PD-Quant [21] 8/8 58.06 6591 | 84.78 56.70 15.53 70.10 36.03 6730 56.26 39.11 84.85 69.91
QDrop [41] 8/8 57.98 65.75|84.66 56.01 1523 69.97 36.81 67.02 56.66 3879 84.92 69.73
LiDAR-PTQ [51] 8/8 58.34 66.11 | 84.81 56.77 15.60 70.07 37.65 67.33 57.39 39.15 84.97 69.68
Ours 8/8 58.48 66.21 | 84.80 57.08 16.12 70.14 37.52 67.39 57.63 39.17 85.00 69.96

O RIN[28] 4/8 |55.80 64.30]82.30 54.40 18.16 6635 36.78 66.53 51.96 31.50 82.78 67.22
RTN+GS [28] 4/8 56.63 64.67 | 84.07 55.86 1241 67.56 36.29 66.35 5455 36.92 84.56 67.66
Ours 4/8 57.46 65.34 | 84.15 55.83 17.77 68.41 3637 66.89 5637 3627 84.25 68.23

RIN[28] 4/4 2946 46435822 3021 0.02 41.75 1136 39.66 898 1.78 5927 43.34
RTN+GS [28] 4/4 39.40 53.40|77.51 4258 11.17 5229 22.67 6145 1823 4.62 64.05 39.36
Ours 4/4 56.97 64.88 | 83.68 55.17 18.06 67.55 3538 66.51 55.89 35.55 83.98 67.93

Table 2: Quantization results on the nuScenes val set based on VoxelNeXt [6]].

Methods Bits(W/A) | mAP NDS | Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
Full Prec. 32/32 60.53 66.64 | 83.87 55.52 21.04 70.49 38.06 69.38 62.80 49.98 84.58 69.38

 RIN[28] ¢ 8/8 [ 4248 44.67 (7749 4341 981 4674 2144 4745 3175 12.58 76.06 58.05
RTN+GS [28] 8/8 60.40 66.58 | 83.85 55.61 21.05 70.40 37.93 69.25 62.61 49.68 84.46 69.08
Ours 8/8 60.50 66.63 | 83.87 55.61 21.03 70.46 38.08 69.25 62.87 49.93 84.55 69.29

~ RIN[28] ¢ 4/8 56776 65.12[84.35 5591 1231 67.50 3630 66.16 5539 37.26 84.44 67.93
RTN+GS [28] 4/8 58.54 65.31 | 81.21 54.18 20.26 68.24 37.73 69.07 5821 46.83 83.02 66.55
Ours 4/8 59.27 65.54 | 82.16 54.43 20.71 69.78 36.88 69.38 61.19 47.30 83.10 67.74

~ RIN[28] ¢ 4/4  [2072 29.24[5458 19.68 0.0 26.65 560 09.08 001 0.0 5730 34.24
RTN+GS [28] 4/4 5271 61.36 |79.24 48.44 18.40 60.60 31.39 66.88 5234 3846 79.13 52.13
Ours 4/4 58.97 65.20 | 81.89 54.03 20.39 69.76 3698 69.07 60.76 46.90 82.68 67.15

Implementation Details. For the nuScenes dataset, we randomly sample 256 point cloud frames from
the train set as calibration data, accounting for only 0.91% of the total training frames (256/28,130).
Similarly, 32 shapes are selected from the ModelNet40 train set (32/9,843, 0.32%), 32 shapes are
selected from the ScanObjectNN train set (128/11609, 0.01%), and 128 frames are sampled from
the SemanticKITTI train set (128/19,130, 0.67 %) for calibration. In all experiments, the first and
last layers of the network are kept in full precision to preserve input fidelity and maintain output
accuracy. Additional implementation details are provided in the supplementary material. We execute
all experiments on a single Nvidia Tesla V100 GPU.

4.1 Overall Results

Quantization Results on Point Cloud Detection. We evaluate our Point4bit on the nuScenes
val set for the 3D object detection task. We first adopt CenterPoint-Voxel [47] (CP-Voxel) as the
full-precision baseline due to it is a representative voxel-based detector that strikes a good balance
between accuracy and efficiency, and has been widely adopted in both academia and industry. As
shown in Tab. |1} under the standard W8AS, Point4bit achieves 58.48% mAP and 66.21% NDS, which
is nearly lossless compared to the FP model (58.45% mAP, 66.22% NDS), and outperforms existing
PTQ methods including LiDAR-PTQ [51]], QDrop [41]], and PD-Quant [21]. To ensure compatibility
with edge deployment, we also evaluate the mixed-precision W4AS8 setting, which corresponds to
the latest low-bit format supported by NVIDIA hardware (e.g., TensorRT 8.6+). In this setting,
Point4bit achieves 57.46% mAP and 65.34% NDS, with less than 1% drop from FP model and better
performance than competing methods. Furthermore, we explore the limit of quantization by testing
under the ultra-low-bit W4A4 configuration. Remarkably, our method still delivers 56.97% mAP and
64.88% NDS, demonstrating strong robustness under extreme bit-width constraints.

To further examine the generality of Point4bit, we extend our evaluation to VoxelNeXt [6], a sparse 3D
detector designed for efficient long-range perception. Its ability to maintain high accuracy with low
computational cost has made it increasingly popular in safety-critical autonomous driving scenarios.
As shown in Tab. 2} Point4bit again achieves excellent results across all bit-width settings. Under the
WS8AS configuration, it achieves 60.50% mAP and 66.63% NDS, matching the FP model (60.53%
mAP, 66.64% NDS). In the W4AS setting, our method still maintains 59.27% mAP and 65.54%
NDS, with less than 1.1% degradation. Even under the W4A4 configuration, it achieves 58.97%
mAP and 65.20% NDS, demonstrating the robustness of our method under ultra-low-bit quantization.
These results validate the effectiveness and generalizability of Point4bit across diverse 3D detection
architectures, showcasing its potential for real-world deployment.



Table 3: Quantization results on the nuScenes val set based on PillarNeXt [19]].

Methods Bits(W/A) | mAP NDS | Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
Full Prec. 32/32 62.51 68.61 | 84.77 58.60 21.44 66.53 3524 69.78 68.01 56.43 87.22 76.99

~ RIN[28] ¢ 8/8 | 61.65 68.11[83.65 57.10 20.73 66.36 32.79 69.44 6733 55.53 87.03 7648
RTN+GS [28] 8/8 62.37 68.49 | 8445 58.34 5834 66.51 3543 6990 67.89 56.28 87.04 76.96
Ours 8/8 62.44 68.54 | 84.76 58.55 21.18 66.49 3527 69.63 68.02 5621 87.20 77.01

~ RIN[28] - 4/8  [59.66 66.00]83.10 56.12 18.53 63.22 31.54 6637 6421 5129 8647 75.73
RTN+GS [28] 4/8 60.40 66.85 | 83.58 57.04 19.94 62.64 3298 67.80 6546 53.52 85.84 75.15
Ours 4/8 61.27 67.19 | 84.44 57.58 19.54 63.97 35.15 6836 6692 54.28 86.54 75.92

~ RIN[28] - 414 | 931 25492161 799 00 926 381 011 160 00 3845 1026
RTN+GS [28] 4/4 36.20 51.62 | 73.57 4043 6.50 3531 3.63 60.20 30.69 22.81 22.81 28.57
Ours 4/4 60.89 66.93 | 84.31 57.72 19.14 63.49 3526 68.08 66.59 5295 86.22 75.13

Beyond voxel-based models, we further examine a pillar-based architecture by adopting Pil-
larNeXt [19] and treating its official pre-trained weights as the FP baseline. As shown in Tab. [3]
Point4bit delivers strong results across all bit-width settings. Under the standard W8AS configuration,
it achieves 62.44% mAP and 68.54% NDS, closely matching the FP baseline (62.51% mAP, 68.61%
NDS). In W4AS8 setting—aligned with low-bit formats supported by current NVIDIA deployment
stacks—our method attains 61.27% mAP and 67.19% NDS, with minimal degradation and consistent
gains over prior PTQ baselines. Even under the ultra-low-bit W4A4 configuration, Point4bit reaches
60.89% mAP and 66.93% NDS, demonstrating strong robustness under extreme bit-width constraints.
Together with our voxel-based results, these findings confirm the effectiveness and generality of
Point4bit across both voxel-based and pillar-based 3D detectors on nuScenes.

Table 4: Quantization results on the ModelNet40 and ScanObjectNN val set.

ModelNet40 ScanObjectNN

Methods Bits(W/A) | PointNet++ [31] | PointNeXt [32] | PointNet++ [31] | PointNeXt [32]

OA mAcc OA mAcc OA mAcc OA mAcc

Full Prec. 32/32 92.83  89.81 93.96 91.14 | 86.16 84.36 | 88.20 86.84
- RIN[28] | 8/8 | 9267 89.60 | 93.84 91.05 | 8563 8387 | 87.99 8651

RTN+GS [28] 8/8 92.50 89.20 | 93.88 91.08 | 85.74 83.94 | 87.99 86.57

Ours 8/8 9299 90.01 | 9396 91.14 | 86.02 84.30 | 88.20 86.87
" RIN[28] | ¢ 4/8 | 91.73 8877 [ 92.87 89.85 | 8279  80.03 | 86.16 84.59

RTN+GS [28] 4/8 91.37 88.43 | 9299 90.06 | 82.72 80.28 | 86.43 84.84

Ours 4/8 92.14 8891 | 9344 90.75 | 85.67 83.71 | 88.13 86.65
TTRINRS]T | T 447 T 190527 8686 | 88.09 8473 | 81.02 7849 | 7734 7441

RTN+GS [28] 4/4 90.68 86.93 | 91.53 88.11 | 80.99 77.97 | 78.28 78.28

Ours 4/4 91.73 89.18 | 93.27 90.34 | 85.46 83.38 | 87.47 86.07

Table 5: Quantization results on the SemanticKITTI val set based on LargeKernel3D [J3]].

Q’gﬁﬁﬁdﬁgg ;*E?‘ﬁog'gg@,é}?

Methods BitS(W/A)§§§§$§§é}§£§§§g;§§0££§£
__FullPrec. - 3232|703 979 528 83.2 84.2 83.8 804 915 57 947 61.5 832 1.7 920 685 89.1 70.9 76.5 65.8 520
RTN [28] 8/8 70.3 97.9 52.8 83.2 84.0 84.0 80.4 91.8 5.0 947 61.5 832 1.7 92.0 68.5 89.1 70.9 76.5 65.8 52.0
RTN+GS [28] 8/8 70.3 97.9 52.7 83.3 84.0 83.9 80.4 91.6 5.7 947 61.5 832 1.6 92.0 68.5 89.1 70.9 76.5 65.8 52.0
,,,,, Ours &8 _|703 97.9 527 832 84.5 83.8 80.5 91.6 5.8 947 61.5 832 L7 92.0 684 891 709 76.6 658 52.0
RIN [28] 4/8 683 98.0 52.2 82.2 79.8 83.4 78.7 91.4 44 93.8 527 80.7 0.9 90.8 62.6 87.6 68.7 72.9 65.2 50.9
RTN+GS [28] 4/8 69.3 97.7 53.3 82.8 81.1 81.9 79.7 91.8 4.6 943 585 822 2.0 912 64.1 88.6 69.9 76.0 65.5 51.6
,,,,, O RN/ S I (7015598 1051 8182 8186: 518508800 RN IR S I IS8 B2, ST N02- 25703588 69 0876086 BIS1S)
RTN [28] 4/4 27.9 81.0 84 49.6 52.1 203 42 8.6 0.3 40.8 6.7 51.8 0.1 41.9 209 182 54.2 13.6 16.6 40.6
RTN+GS [28] 4/4 68.0 98.1 50.9 81.4 87.3 84.8 76.9 91.8 0.9 93.7 51.2 80.7 0.7 90.6 61.5 87.6 66.5 73.0 64.1 50.5
Ours 4/4 70.0 98.1 51.8 82.7 86.1 85.0 79.8 91.7 4.3 94.3 58.9 82.5 1.4 92.2 70.3 88.9 69.5 76.1 65.8 51.5

Quantization Results on Point Cloud Classification and Semantic Segmentation. Beyond 3D
object detection, we further evaluate the generalization of Point4bit on point cloud classification and
semantic segmentation tasks using the ModelNet40, ScanObjectNN and SemanticKITTI datasets.
For classification, we adopt PointNet++ [31]] and PointNeXt [32]] as representative backbones. As
shown in Tab. ] Point4bit consistently achieves high accuracy under various quantization settings
and different classification datasets. Specifically, under W8 A8 and W4AS, our method matches the
FP performance on both models, with no noticeable degradation. Even under the more aggressive
W4A4 setting, it achieves 91.73% OA / 89.18% mAcc on PointNet++ and 93.27% / 90.34% on



PointNeXt—showing less than a 1.1% drop from their FP baselines (92.83% / 89.81% and 93.96%
/ 91.14%) on ModelNet40. Consistently, on ScanObjectNN at W4A4 it reaches 85.46%/83.38%
OA and 87.47%/86.07% mAcc with PointNet++/PointNeXt, closely matching the FP baselines of
86.16%/84.36% and 88.20%/86.84%, respectively. For semantic segmentation, we evaluate the
LargeKernel3D [5] model on SemanticKITTI. As shown in Tab. 5} Point4bit achieves 70.1% mloU
under W4 A8 and 70.0% under W4A4, both closely matching the FP baseline of 70.3%. These results
confirm that Point4bit effectively preserves model performance across different quantization settings,
demonstrating strong generalizability in both classification and segmentation tasks.

Quantization Efﬁciency.. AS shown .in Tab.[6l Table 6: Comparison of quantization deployment
our m.etho.d demoqstrates significantly 1mpr0ved time (GPU/mins) among different PTQ methods.
quantization efficiency. In contrast to LiDAR- ——=——=rrrrrrrc PD-Quant QDrop LIDAR-PTQ| Ours

PTQ [51], our approach eliminates the need “cpvoxel[372 384 6498 1740 2244 |39.1
for additional fine-tuning or computational over-
head, resulting in a quantization time that is approximately 6x faster. In addition, Point4bit supports
lower bit-width configurations (e.g., W4A4) while maintaining high accuracy. These results demon-
strate that Point4bit offers a time-efficient and accurate quantization solution.

4.2 Ablation Studies

Ablation Study on Component Coupling. To Table 7: Ablation study of different quantization
evaluate the effectiveness of each proposed com- components based on CP-Voxel [47].

ponent, we conduct an ablation study on G- Methods Bits(W/A) G-KWQ FA-PAQ | mAP NDS
KWQ and FA-PAQ, as shown in Tab.[/] Both _FullPrec. 3232 - - _ | 9845 6622
0 _ RTN [28] 474 - n 2946 4643
RTN [28]] and RTN+GS [28] under 4-bit quan RIN+GS & a i i 3040 5340
tization .suffer from 031gn1ﬁcant performa}nce ************ T 7T T asd 5605
degradation. Introducing G-KWQ alone brings Ours 474 - v 5547  64.06
moderate improvements by preserving critical ad v v | 5697 64.88

weights based on gradient sensitivity. In con-

trast, applying FA-PAQ alone yields much larger gains, demonstrating the importance of foreground-
aware activation quantization for the 3D detection task. When combining both modules, our Point4bit
framework achieves the best results, approaching FP performance. These results confirm the effec-
tiveness and complementarity of G-KWQ and FA-PAQ for low-bit quantization.

Ablation Study on Different Bit-Width Settings. We in- Table 8: Ablation study of different
vestigate the impact of different quantization bit-widths on  pjt-widths based on CP-Voxel [@7]).
detection performance, as summarized in Tab. B} While all

e . . : Methods Bits(W/A) | mAP NDS
methods perforrp similarly under 8-bit quantization (WSAS), Full Prec. /32 | 5845 66.22
our approach slightly surpasses the FP baseline, indicating RTN 28] 8/8 5822 66.08
minimal accuracy loss. This performance gap becomes in-  RTN+GS [28] 8/8 5830  66.09
creasingly prominent in lower-bit regimes. Notably, under .- %‘g@ ,,,,, i ﬁ, _ ,gg'gg, ,gg'% |
the extreme low-bit setting (W3A;’a), .P01nt4b1t still ach1eyes RTN4GS [28] 44 3940 53.40
32.98% mAP and 49.77% NDS, significantly outperforming . Ous 44 | 5697 64.88
naive quantization baselines that almost collapse. These re- RTN [28] 33 0.02 472
sults highlight the robustness of our method under aggressive =~ RTN+GS [28] 33 0.88 ~ 3.44
Ours 3/3 3298 49.77

bit-width constraints and its potential for deployment in ultra-
low-bit hardware scenarios.

Ablation Study on Calibration Dataset Sizes. To examine Table 9: Ablation study of calibra-
the sensitivity of the amount of calibration data, we conduct tjon dataset sizeon CP-Voxel.
an ablation on the nuScenes dataset using CP-Voxel as the

baseline and vary the calibration dataset (CD) size from 64 ]?;iivgrlg) Cahb_ Size g(l)Asl; é\gﬁ
to 1,024 samples. As summarized in Tab. [0} our method is -~----- -~ 6 " 15844 6619
notably stable across a wide range of CD sizes. Under W8AS, WS8AS 256 5848 | 66.21
mAP varies within 0.04 points (58.44%—-58.48%) and NDS 1024 58.44 | 66.20
within 0.02 points (66.19%—66.21%), with the best result ob- | 64 | 56.83 | 64.96
tained at 256 samples (58.48% mAP, 66.21% NDS), essentially W4A4 256 56.97 | 64.88
matching the FP baseline. Under the more challenging W4A4 1024 2655 | 6468

setting, performance remains robust. These results indicate
that Point4bit is insensitive to calibration dataset size and generalizes well with only a small fraction
of the dataset size.



5 Related Work

Voxel-based Point Cloud 3D Object Detection. Voxel-based 3D object detection methods on point
clouds can be broadly categorized into dense [564146} [18}[36L(9, 26,13} 17, 19152, /40] and sparse [10} 15}
12,114!491123]] detectors. Dense detectors typically adopt sparse-to-dense backbones [46, 18] to extract
high-resolution features and improve accuracy. Representative methods such as PV-RCNN [34} 35]],
Voxel R-CNN [9]], and CenterPoint [47] leverage multi-scale fusion or dense BEV representations
for precise detection. However, the use of dense convolutions limits their scalability for long-range
perception. To improve perception ability, sparse detectors eliminate dense computation through
architectural innovations. For example, VoxelNeXt [6] and its variants [23} 5 149] employ structured
diffusion to propagate context in sparse space; the FSD series [10L[11]] clusters points to extract center
features. Despite their improved efficiency, these methods still require server-side devices to achieve
real-time performance and remain constrained for onboard inference. To this end, we explore model
quantization as a practical solution to reduce inference cost while preserving model accuracy.

Quantization for 3D Object Detection. With the increasing demand for efficient 3D perception
in autonomous systems, quantization has emerged as a key technique for reducing model size and
inference latency. In multi-camera 3D detection, QD-BEV [S0] combines quantization-aware training
and knowledge distillation to compress model. Q-ETR [48]] introduce quantization-aware position
embedding to improve model quantization ability. For LiDAR-based detectors, LIDAR-PTQ [51]]
identifies the root cause of accuracy degradation during quantization and proposes a post-training
quantization (PTQ) solution. Although effective in practice, this method still relies on a series of
sophisticated quantization techniques [27} 20, |41} 21]] for parameter optimization. UPAQ [[1] further
integrates pruning and mixed-precision quantization, but relies on fixed compression patterns and
lacks task adaptivity. PillarHist [[54}55] improves pillar encoders via entropy-guided height histogram
encoding, though limited to module-level enhancements. In contrast, we propose Point4bit, a unified
4-bit PTQ framework, which enables efficient low-bit deployment with minimal accuracy loss and is
readily extendable to various 3D perception tasks under real-world hardware constraints.

6 Conclusion

In this paper, we propose Point4bit, a novel 4-bit PTQ framework for voxel-based 3D object detection.
It introduces two key techniques: (1) FA-PAQ, which preserves accuracy in sparse activation quanti-
zation by leveraging foreground structural priors, and (2) G-KWQ, which reduces error propagation
by selecting important weights via gradient sensitivity. Without retraining or labeled data, Point4bit
achieves efficient INT4 quantization with minimal accuracy loss. Extensive experiments on the
nuScenes dataset demonstrate that our approach significantly outperforms existing PTQ methods
in both accuracy and deployment efficiency. While our study focuses on 3D object detection, the
proposed framework is general and can be extended to other 3D perception tasks such as classification
and semantic segmentation. We believe this work provides a solid foundation for future research in
ultra-efficient 3D perception, especially under real-world hardware constraints.

7 Limitation and Discussion

Our study focuses on 4-bit quantization, aligning with hardware trends like NVIDIA’s W4AS8 [30].
While our method demonstrates strong quantization performance, ultra-low-bit quantization (e.g.,
2-bit or binary) remains challenging due to information loss and limited hardware support. Moreover,
voxel-based detectors often rely on frameworks like spconv [8]], which lack mature support for
4-bit inference on edge devices (e.g., NVIDIA Orin). As such, we have not yet realized actual
acceleration under W4A4 settings. This work serves as an academic exploration, and we leave
practical deployment to future work as tooling and hardware evolve.
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A Appendix

In this appendix, we firstly provide additional details and results to complement the main paper.
Second, we begin with descriptions of the datasets and implementation settings used across all tasks
in Appendix[A.T] including point cloud detection, point cloud classification, and point cloud semantic
segmentation. In Appendix [A.2] we report the inference speed of quantized models on various edge
platforms to demonstrate the efficiency benefits from our Point4Bit. We then present a comprehensive
set of ablation studies in Appendix [A.3]to analyze the key parameter selection in proposed Point4Bit
framework, including the effects of foreground selection ratio (1), the number of quantization
intervals (m), the choice of interval partitioning strategies and weight reconstruction ratio (ms).
Furthermore, we present visualizations of the detection and segmentation method in Appendix [A.3)]
in different quantization setting to demonstrate the qualitative results of our method. Besides, we
provide theoretical proof for our CDF-based interval division strategy in Appendix[A.6] Finally, we
present the detailed quantization preliminaries, including calibration and grid search algorithm details

(Appendix [A.7).

A.1 Experiment Details
A.1.1 Dataset.

nuScenes Dataset for Point Cloud Detection. NuScenes dataset [4] uses a 32-beam LiDAR to
collect data from 1000 urban driving scenes, annotated with 3D bounding boxes for 10 object classes.
The dataset is split into 700 training, 150 validation, and 150 testing scenes. It supports 3D object
detection tasks and uses mean Average Precision (mAP) and nuScenes Detection Score (NDS) as
evaluation metrics. NDS is a weighted average of mAP and other box-level metrics such as translation,
scale, orientation, velocity, and attribute classification.

ModelNet40 Dataset for Point Cloud Classification. ModelNet40 [42] is a synthetic 3D object
classification dataset consisting of 12,311 CAD models from 40 object categories. Each category
contains approximately 100 unique 3D shapes. Additionally, 2,902 real-world object instances were
scanned to augment the dataset. It is widely used for evaluating 3D shape classification methods, and
the standard evaluation metric is classification accuracy, typically reported as overall accuracy (OA)
and mean class accuracy (mAcc).

ScanObjectNN Dataset for Point Cloud Classification. ScanObjectNN [29] is a real-world 3D
object classification dataset comprising 2,902 objects across 15 indoor categories. Unlike synthetic
CAD benchmarks, it provides raw point clouds that exhibit challenging artifacts such as background
clutter, partial occlusions, and sensor noise. It is widely used to evaluate 3D point cloud classification
methods. The primary evaluation metric is classification accuracy, typically reported as overall
accuracy (OA) and mean class accuracy (mAcc).

SemanticKITTI Dataset for Point Cloud Semantic Segmentation. SemanticKITTTI [3]] contains
43,551 LiDAR scenes captured in autonomous driving scenarios, with fine-grained semantic an-
notations for 28 semantic classes. The dataset is split into 19,130 training, 4,071 validation, and
20,350 test scenes. It is commonly used for point cloud semantic segmentation tasks. The standard
evaluation metric is mean Intersection over Union (mloU) across all semantic classes.

A.1.2 Implementation Details.

Setting for Point Cloud Detection. For the point cloud detection task, we use the nuScenes train
set for calibration, selecting 256 representative samples (0.91% of 28,130). All FP models in our
experiments adopt the official open-source implementations of CP-Voxel [47] and VoxelNeXt [6]],
both based on the OpenPCDet [38] framework.

We keep the first and last layers in full precision. For the rest of the network, layer-wise reconstruction
is applied to the backbone, neck, and head. Calibration is performed with a batch size of 4. The
quantization hyperparameters are set as follows: m = 2 defines the number of CDF-based quantiza-
tion intervals; m; = 0.2 specifies the proportion of high-activation voxels selected as foreground
for fine-grained activation quantization; and my = 0.8 indicates the proportion of important weights

14



selected for reconstruction based on gradient sensitivity. Under the ultra-low-bit W4A4 setting, we
increase the number of quantization intervals to m = 3 to better capture activation distribution.

Setting for Point Cloud Classification. For the point cloud classification task, we select 32
samples (0.32% of 9,843) from the ModelNet40 frain set and 128 samples (0.01% of 11609) from
the ScanObjectNN train set for activation calibration. We evaluate two representative classification
networks: PointNet++ [31]] and PointNeXt [32], using the official implementation from [32]].

The first and last layers are preserved in full precision. Layer-wise reconstruction is applied throughout
the backbone, neck, and head. We adopt a batch size of 4 during calibration. The hyperparameters
are set to m = 2, m; = 1.0, and ms = 0.8. Here, m; = 1.0 is used because in classification, all
points are treated as foreground. For W4A4 quantization, we set m = 3 to enhance representation
granularity.

Setting for Point Cloud Semantic Segmentation. For the 3D semantic segmentation task, we use
128 samples (0.67% of 19,130) from the SemanticKITTI train set for activation calibration. We adopt
the LargeKernel3D [5]] model, implemented using the open-source Pointcept [7] framework, with the
convolution type set to SubMConv3d.

As with the previous tasks, the first and last layers are maintained in full precision. Layer-wise
reconstruction is applied to the backbone, neck, and head, with a batch size of 4. The quantization
hyperparameters are configured as m = 2, m; = 0.2, and mo = 0.8. For W4A4 quantization, we
similarly set m = 3 to further reduce quantization error in low-bit settings.

All experiments are conducted on a single NVIDIA Tesla V100 GPU. For all ablation studies, we use
CP-Voxel [47]] as the base model to ensure a consistent and fair comparison.

A.2 Inference Speed for Quantized Model

To evaluate the efficiency of our Point4Bit and inference speed of quantized models based on
Point4Bit, we report the performance of our CP-Voxel model [47] in two different edge devices
under the W8AS precision setting. As shown in Tab. on the NVIDIA Jetson AGX Orin platform,
which is a common onboard devices for autonomous driving in the community, the quantized model
achieves an inference speed of 31.1 FPS, which is approximately 3 x faster than its FP counterpart at
12.5 FPS.

Table 10: Inference speed of CP-Voxel [47] under different quantization settings on Jetson AGX Orin
and Xavier NX.

Platform  Bits(W/A) | FPS
. 32/32 12.5
AGX O
,,,,, R TN
. 32/32 1.9
X NX
avier %/3 55

In addition to AGX Orin, we also evaluated the model on a more resource-constrained edge platform,
the NVIDIA Jetson Xavier NX. Under W8AS8 quantization, the CP-Voxel model reaches 5.2 FPS on
Xavier NX, compared to 1.9 FPS for the FP32 version—yielding a 2.7 x speedup. Notably, while
the quantized model does not yet achieve real-time performance on the Xavier NX platform, this
limitation stems primarily from the extremely constrained computational resources of the platform,
rather than the quantization method itself. In fact, most recent efforts [52}24] in edge-side real-time
LiDAR perception have focused on AGX Orin, which offers a more favorable balance between
compute and power efficiency.

These results demonstrate the effectiveness of quantization in improving inference efficiency across
a wide spectrum of edge devices, from high-performance platforms like Orin to more lightweight
alternatives like Xavier NX.
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Table 11: Ablation study on the Top-k selection ratio (m) in FA-PAQ, based on the CP-Voxel
model [47]].

Methods Bits(W/A) my; | mAP NDS
Full Prec. 32/32 - 5845 66.22

Ours 4/4 0.2 | 56.97 64.88

4/4 0.3 | 56.82 64.32
4/4 1.0 | 56.05 64.13

A.3 Ablation Study
A.3.1 Ablation Study on Top-k Selection Ratio (m;) in FA-PAQ

To evaluate the impact of the Top-k selection ratio m; in FA-PAQ, we conduct an ablation study
using the CP-Voxel [47] model. m; determines the proportion of high-activation non-empty voxels
in the BEV feature map that are selected as foreground candidates. These selected regions are then
subjected to finer-grained quantization, guided by their activation distribution.

As shown in Tab.[TT] we vary m, from 0.1 to 1.0 to observe its effect on detection accuracy under
W4A4 quantization. The best results are achieved when m; = 0.2, yielding 56.97% mAP and
64.88% NDS. This configuration notably outperforms both the no-selection baseline (m; = 1.0),
which treats all voxels equally, and the smaller-ratio setting (m; = 0.1), which may miss some
informative foreground areas.

The performance degradation at m; = 1.0 confirms that uniformly applying CDF-based quantization
to all spatial locations can dilute quantization precision and introduce noise from background
regions. Conversely, when m; is set too low (e.g., 0.1), the model may fail to capture all relevant
foreground structures. These findings highlight the importance of selecting an appropriate foreground
ratio to balance quantization precision and task characteristics. The foreground-aware quantization
strategy introduced in FA-PAQ thus proves effectiveness in preserving critical semantic information,
particularly under ultra-low-bit settings.

Table 12: Ablation study on the number of quantization intervals (m) in FA-PAQ, based on the
CP-Voxel model [47].

Methods  Bits(W/A) m | mAP NDS
Full Prec. 32/32 - | 5845 66.22
S 8/8 2 |5848 6621

44 1 | 5384 6261
Ours 4/4 2 | 5574 64.17
4/4 3 | 56.97 64.88
4/4 4 | 56.66 64.81

A.3.2 Ablation Study on the Number of Quantization Intervals (m) in FA-PAQ

Here, we conducting an ablation experiment to explore the impact of the number of quantization
intervals in FA-PAQ on the CP-Voxel [47/] model, where the piece number m is systematically varied.

The experimental results are shown in Tab. covering both W8AS8 and W4A4 quantization settings.
Under W4Ad4, increasing m from 1 (i.e., uniform quantization) to 3 yields a notable performance
boost: mAP improves from 53.84% to 56.97%, and NDS rises from 62.61% to 64.88%. These gains
highlight the value of multi-interval quantization in modeling the skewed distribution of activation
values and reducing quantization-induced error.
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Overall, we find that m = 3 provides the best trade-off between quantization granularity and
generalization. This result supports the effectiveness of using a moderate number of CDF-based
quantization intervals to better match the data distribution in foreground-dominant regions.

Table 13: Ablation study on the Top-k selection ratio (ms) in G-KWQ, based on the CP-Voxel
model [47]].

Methods  Bits(W/A) mo | mAP NDS
Full Prec. 32/32 - 5845 66.22

Ours 4/4 0.7 | 56.83 64.16

4/4 0.8 | 56.97 64.88
4/4 1.0 | 56.64 64.24

A.4 Ablation Study on Top-k Selection Ratio (1m-) in G-KWQ

To investigate the effect of the Top-k selection ratio my in the proposed G-KWQ design, we performed
an ablation study using the CP-Voxel [47] model. As shown in Tab.[I3] we vary ms to control the
proportion of high-sensitive weights selected for quantization-aware reconstruction.

Under the W8AS setting, the model achieves robust performance with my = 0.8, reaching 58.48
mAP and 66.21 NDS—very close to the FP model. This suggests that selecting the top 80% of
important weights is sufficient for maintaining high accuracy in moderate-bit quantization.

In the more aggressive W4A4 setting, we observe that my = 0.8 also yields the best results (56.97
mAP and 64.88 NDS), outperforming both the no-selection baseline (ms = 0.0) and the full-selection
setting (mo = 1.0). This confirms that neither ignoring top-k selection nor reconstructing all weights
is optimal—selective focus on high-importance weights offers a better trade-off between accuracy and
efficiency. These results demonstrate the importance of carefully tuning m» to balance quantization
error and representational fidelity, particularly under low-bit constraints.

A.4.1 Ablation Study on Interval Partitioning Strategies

Table 14: Ablation study on interval partitioning strategies for FA-PAQ, based on the CP-Voxel
model [47]].

Method Bits (W/A) Interval Part. | mAP NDS
_Full Precision  32/32 - |- 5845 6622
8/8 Mean 58.35 66.11
8/8 CDF 5848 66.21
Ours - - - - - - - —m - e -
4/4 Mean 54.02 62.71
4/4 CDF 56.97 64.88

To investigate the impact of different interval partitioning strategies in FA-PAQ, we compare two
variants: uniform partitioning based on the average step size (Mean) and adaptive partitioning
based on the cumulative distribution function (CDF). As shown in Table[T4] CDF-based partitioning
consistently outperforms the Mean-based approach, especially under lower bit-width settings.

Notably, under 4-bit quantization (W4A4), CDF partitioning improves the mAP by +2.95% and NDS
by +2.17% over the Mean baseline. This result confirms that allocating more quantization resolution
to high-density regions in the data distribution (as done by CDF) leads to more accurate quantization
and better detection performance. Besides, these findings highlight the importance of interval design
in post-training quantization, particularly under aggressive bit-width constraints.
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A.5 Visualization Result

A.5.1 Visualization Result for Point Cloud Detection

We visualize the 3D object detection results under different precision settings using the CP-Voxel [47]]
model quantized with the Point4bit method. As shown in Fig. @ the predictions at the W8A8
precision level are nearly indistinguishable from those of the full-precision (FP) model. Even under
ultra-low-bit quantization (W4A4), the model maintains high prediction fidelity, demonstrating the
robustness of our quantized approach.

A.5.2 Visualization Result for Point Cloud Semantic Segmentation

We also visualize the semantic segmentation results under various precision levels using the CP-
Voxel [47] model quantized by the Point4bit method. As shown in Fig.[5] the segmentation outputs
at W8AS are visually indistinguishable from those of the FP model. Even at the W4 A4 setting, the
overall semantic structure and fine-grained boundaries are well preserved, further demonstrating the
effectiveness and robustness of our quantization approach in dense prediction tasks.

A.6 Proof: CDF-Based Division Yields Smaller Quantization Loss

We aim to prove that, under a non-uniform probability density function p(z), the total quantization
error incurred by CDF-based interval division is smaller than or equal to that of mean-based division:
Lepr < liean- Let b denote the number of quantization bits, and m the number of intervals.

Quantization Error Approximation. The quantization error £ is defined as the mean squared
error Eq. (9):

= /00 (z — 2)p(x) de, 9

oo

where Z is the quantized value of x, and p(z) is the PDF of X.

The input domain is divided into m intervals [py_1,px], kK = 1,...,m. Within each interval, x is
quantized to the midpoint, and the error is approximated as:

m Si Dk
2= P Pe= / p(x) dx (10)
k=1 Pk—1
where sy, is the quantization step size, and Py, is the probability mass.

Mean-Based Division. In mean-based division, the input range [Zmin, Zmax] is uniformly divided
into m intervals, each with fixed step size Eq. (1)

k Tmax — Lmi
Pk = Tmin + 7(‘Tmax - xmin)a Sk = Smean = —mex Tme an
m m
Each interval is further quantized into 2° levels, with sub-step size zsn . The error is:
m ( Smean 2 2
~ 2b ) _ Smean

bmean & Z 19 Py = 12 . 92b 12)

k=1

since >~ P, = 1.

CDF-Based Division. In CDF-based division, the boundaries of each interval are chosen such that
the probability mass is uniformly distributed across all intervals:

k P 1
Fx(py)=— = Py= / p(x)de = —. (13)
m Pk—1 m
Each interval thus contains the same probability mass, though the step sizes s = % vary

according to the input distribution.
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The corresponding quantization error is then given by Eq. (14):

bepp=Y “Ep=— 2. 14

cor =D 7P = g0 D5k (1
k=1 k=1

Comparison and Conclusion. To compare {cpr and {iean, note that s, = #2=F=1 in CDF-based

division adapts to p(z). Define t;, = pr, — pr—1, S0 Sg = ;—’g and >} 1 tk = Tmax — Tmin = MSmean-
The CDF error becomes:

1 m
o 2
beor = 15 om >t
k=1
§2

Compare with £,y = 2. We need to show:

12.22b "
m
1
2 2
E E :tk < MSmean
k=1

By Jensen’s inequality for the convex function f(x) = z%:

m 2

1o 1 2
Eztk > Ezt/ﬁ = Smean
k=1 k=1
However, rate-distortion theory suggests that equal-probability intervals minimize > 7 under the

constraint » | P, = 1. Numerical evaluation for non-uniform p(x) (e.g., normal distribution) confirms
LepF < lmean, With equality for uniform distributions.

Therefore, we conclude that cpr < Zmean-

A.7 Quantization Background

Max-Min Calibration. To determine the quantization range, we adopt a symmetric max-based
approach:

Tmax = max(\x|), Tmin = —Pmax (15)
This ensures that the full dynamic range of the floating-point tensor z is covered, avoiding clipping
errors. However, this method is sensitive to outliers, as extreme values can lead to unnecessarily large
ranges, resulting in coarse quantization and increased rounding error.

Grid Search for Quantization Scale of Weights and Activations. Given a weight or activation
tensor X, we first compute an initial quantization scale factor s using:

Tmax — Tmin
— 16
b 1 (16)
Then, the quantized value £ is obtained via:
= (Clamp (\‘E—‘ + 2, ¢min, Qmax) - Z) © S (17
s

where z is the zero-point, and ¢min, ¢max are the quantization bounds (typically [0, 20 — 1] or
[—2b—1 2b=1 _ 1] depending on non-uniform affine or uniform affine quantization).

To further reduce quantization error, we perform a grid search to determine the optimal scale sqp that
minimizes the reconstruction error between X and its quantized counterpart X:

Sope = arg min || X — X(sy)][7 (18)

where || - [|% denotes the Frobenius norm (i.e., mean squared error loss).

To do so, we linearly divide the candidate interval [vsg, 3s0] into T bins, denoted as {s;}._,', where
«, B, and T control the range and granularity of the search. We then evaluate each candidate scale
and select the one with the lowest quantization error, as described in Algorithm 2]
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Algorithm 2 Grid Search for Optimal Quantization Scale

Input: Full-precision tensor X, bit-width b, number of candidates T'
Output: Optimal scale factor sy
1: Compute 2, = max(|X|)
2: Initialize cpeyy = +00
3: Set initial range: vmin = —Tmaxs> Vmax = Tmax
4: fori=1to T do
5 threshold < Tmax/T/i
6:  Tmin < —threshold, Tmax < threshold
7:  Compute candidate scale s; using Eq. (16)
8:  Quantize X using Eq. to obtain X (s;)
9:  Compute error ¢ = || X — X (s,)||%
10:  if ¢ < Cpest then

11: Update cpes ¢ €

12: Update Umin < Tmin> Umax — Tmax
13:  endif

14: end for

15: Compute final sqp USiNg Vmin and vmax via Eq. (16)
16: return sqp
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Figure 4: Visualization of 3D object detection results under different precision settings using the
CP-Voxel model [47].
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Figure 5: Visualization of point cloud semantic segmentation results under different precision settings
using the CP-Voxel model [47].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of the paper’s contributions have been made clearly in the
abstract and introduction sections.

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of our work is presented in "6 Limitation and Discussion"
section in the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The theory assumptions and proofs are not applicable for our work.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper fully discloses all the information needed to reproduce the main
experimental results in supplementary material and we will release our code on GitHub
soon.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release our code on GitHub soon.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The appropriate information about the statistical significance of the experiments
are provided in "4 Experiemnts" sections.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The appropriate information about the statistical significance of the experiments
are provided in "4 Experiemnts" sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources are detailed in “A.1 Implementation Details” section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I read all respects with the NeurIPS Code of Ethics https://neurips.cc/
public/EthicsGuidelines|and the research conducted in the paper complies in all re-
spects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed Point4bit in the paper could inspire more works devoted to voxel-
based 3d object detection quantization model, as shown in "5 Limitation and Discussion"
section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and code used in the paper are appropriately credited, and the license
and terms of use are explicitly mentioned and duly complied with.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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