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ABSTRACT

Process Reward Model (PRM) is widely used in the post-training of Large Lan-
guage Model (LLM) because it can perform fine-grained evaluation of the reason-
ing steps of generated content. However, most PRMs lack long-term reasoning
and deep thinking capabilities. On the other hand, although a few works have
tried to introduce Chain-of-Thought capability into PRMs, the annotation cost of
CoT-PRM data is too expensive to play a stable role in various tasks. To address
the above challenges, we propose VRPRM, a process reward model via visual rea-
soning, and design an efficient two-stage training strategy. Experimental results
show that using only 3.6K CoT-PRM SFT data and 50K non-CoT PRM RL train-
ing data, VRPRM can surpass the non-thinking PRM with a total data volume of
400K and achieved a relative performance improvement of up to 118% over the
base model in the BoN experiment. This result confirms that the proposed com-
bined training strategy can achieve higher quality reasoning capabilities at a lower
data annotation cost, thus providing a new paradigm for PRM training with more
efficient data utilization.

1 INTRODUCTION

Reward Models (RMs) are a core component in the post-training process of Large Language Models
(LLMs) through Reinforcement Learning with Human Feedback (RLHF). However, most current
reward models are Outcome Reward Models (ORMs) that are oriented towards evaluating the final
result. They can only provide a holistic score for the entire generated content, making it difficult
to supervise the critical reasoning steps and internal logical structure of the generation process. As
a result, they fail to provide stable reward signals about the quality of the reasoning chain during
reinforcement learning.

Therefore, an increasing number of Process Reward Models (PRMs) have been proposed to directly
score each step of the generated content. Yet, they face a critical problem: how can a reward model
that lacks reasoning ability itself be used to guide a thinking policy model?

To address the poor capability and generalization of reward models, many works on Chain-of-
Thought Reward Models (CoT-RMs) have been proposed. As shown in Table |1} the vast major-
ity of these are CoT-ORM models, with only a few study [Zhao et al.| (2025)) training a PRM by
synthesizing CoT-PRM supervised fine-tune (SFT) data, which rely on manual annotation or costly
distillation methods. This data bottleneck has become a key obstacle hindering the improvement of
PRM performance and generalization across multiple tasks and scenarios.

RL presents a promising approach to not only address the data cost problem but also enhance gener-
alization capabilities beyond what supervised fine-tuning can achieve Chen et al.[(2025a); Chu et al.
(2025). As shown in the Fig[2] previous studies typically used outcome-level data for reinforcement
learning, where result-based rewards encourage the model to guess the correct answer, enabling easy
reward through guessing. In contrast, training with process-level data requires evaluating the entire
process, with higher scores awarded only for correctly predicting all steps. This reduces the reliance
on random guesses, promoting more accurate and structured process evaluation.

In this paper, we propose Visual Reasoning PRM (VRPRM)), a first visual PRM with CoT capability,
and we design an efficient two-stage training data leveraging strategy. First, supervised fine-tuning
(SFT) is performed using a small amount of high-quality CoT-PRM data to activate the model’s
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Reward Model PRM MM CoT RL
RRM|Guo et al. (2025] v
RM-RT|Chen et al. [(2025a) v v
Think-RM|Hong et al. (2025) v v
RI1-Reward|Zhang et al. (2025a) v v v
UnifiedReward|Wang et al. (2025¢] v v v
Qwen-Math-PRM|Zhang et al. (2025b) v

GenPRM |Zhao et al. (2025] v v
VisualPRM|Wang et al. (2025b) v v

VRPRM (ours) v v v v

Figure 1: The comparison of different RMs.
Our VRPRM is the first multi-model PRM
with advanced reasoning capabilities enhanced
through RL scaling. MM represents whether
the RM is multi-modal. CoT represents whether
the RM has thinking capability. RL represents
whether reinforcement learning is used when
training the model.
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I Which of these states is farthest east?

1 A. Kentucky B. Oklahoma C. Oregon D. lowa

g Q D Step 0: To determine which state is farthest east, we need to consider their

| ~ positions relative to the Prime Meridian or the easternmost points of each state.
| = Step 1: - Oregon is located on the West Coast of the U.S. - lowa is located in the
1 midwestern United States. - Kentucky is located in the eastern United States. -

1 Oklahoma is located in the central United States.

! D Step 2: Comparing these positions, Kentucky is clearly the farthest east among

| them
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Figure 2: Process-level supervision provides a
discriminative RL reward signal. However, un-
der ORM-reward supervision, even when guess-
ing at random, the model still maintains a 50%
probability of being rewarded.

initial long-term reasoning and process evaluation capabilities; then, non-CoT PRM data is used
to perform reward verification in reinforcement learning, reducing the demand for CoT-PRM data
and further enhancing the model’s deep thinking ability. Experimental results show that using only
3.6K CoT-PRM SFT data and 50K non-CoT PRM RL training data, VRPRM can surpass the non-
thinking PRM with a total data volume of 400K. This result confirms that the proposed combined
training strategy can achieve higher quality reasoning capabilities at a lower data annotation cost,
thus providing a new paradigm for PRM training with more efficient data utilization.

Our contributions can be summarized as follows:

* Pioneering the Integration of CoT RL in Visual PRMs. We are among the first to sys-
tematically address the need for deep thinking in PRMs. We introduce VRPRM, the first-
ever multimodal CoT-PRM trained by RL, explicitly designed to enhance the fine-grained
reasoning and evaluation capabilities of reward models.

* A Data-Efficient Two-Stage Training Strategy. This method demonstrates remarkable
data efficiency, enabling our model to surpass a traditional PRM trained on 400K data
while using less than one-eighth of that amount (specifically, 3.6K CoT-PRM and 50K
non-CoT PRM data).

* A Novel and Effective Test-Time Scaling Approach. Our VRPRM also serve as a
highly effective test-time scaling strategy. It achieves significant performance improve-
ments across multiple multimodal benchmarks, yielding a relative gain of up to 118% over
the base model and substantially outperforming current state-of-the-art (SOTA) methods.
This showcasing a new avenue for scaling model capabilities.

2 RELATED WORK

Process Reward Models. Process reward models (PRMs) are playing an increasingly critical
role in reinforcement learning (RL) optimization and test time scaling (TTS). Unlike traditional
Outcome Reward Models (ORMs) Whitehouse et al.| (2025); [Wang et al.| (2025d:a); Zhang et al.
(2024a), which assign a single score to the final output, PRMs evaluate each intermediate step in
the generation process. These step-level signals are then aggregated into a final reward, providing
more detailed supervision and reducing the issue of “spurious correctness,” where a model reaches
the correct answer through flawed reasoning. This enables PRMs to show better generalization
and stability in complex reasoning tasks. Qwen-Math-PRM |Zhang et al.| (2025b)) combines Monte
Carlo estimation with large language model judgments to filter and select a large set of process-level
annotated data for supervised fine-tuning. VisualPRM [Wang et al.| (2025b) uses the InternVL2.5
model series to generate solution steps, applying Monte Carlo sampling to assess step-level accuracy.
The model is trained by discretizing the output space into specific tokens. In summary, these studies
mainly rely on process-level annotated data for fine-tuning foundation models, giving them process
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evaluation capabilities. However, these PRMs lack deep reasoning abilities and struggle to capture
the logical structures underlying complex reasoning paths.

Chain-of-Thought Reward Models. In recent years, research in reward modeling has shifted from
traditional scalar scoring models to Chain-of-Thought Reward Models (CoT-RMs), which generate
reasoning chains to assist in preference judgment. RRM |Guo et al.| (2025) treats reward modeling
as a reasoning task, using long-chain reasoning before generating the final reward, and introduces
a reinforcement learning (RL) framework to enhance reasoning ability. Many CoT-ORM studies
follow a two-stage training approach: first, supervised fine-tuning (SFT) for initialization, and then
RL to further improve performance. RM-R1 |Chen et al.|(2025a)) and Think-RM |Hong et al.| (2025)
use high-quality long-chain reasoning data to guide the model via SFT and apply RL to improve
performance in the second stage. Later work extended CoT-ORM to multimodal settings. R1-
Reward Zhang et al.|(2025a)) uses GPT-40 to annotate a multimodal dataset and applies RL to en-
hance performance on complex reward tasks. UnifiedReward-Think Wang et al.| (2025c|) combines
multimodal preference data with RL to improve reasoning across text and images. The CoT ap-
proach is also used in Process Reward Models (PRMs), like GenPRM |Zhao et al.| (2025), which
uses explicit CoT reasoning and code verification but does not apply RL. CoT-enhanced reward
models improve interpretability and generalization, but they require high-quality CoT data, which is
costly to acquire and annotate.

3 METHODOLOGY

3.1 PROMBLEM FORMULATION

In this section, we introduce the preliminary setting of our research problem. Let D = {(I, P, S)}
denote a dataset consisting of a problem P, image I, and solution .S. Each solution is composed of
multiple steps, denoted as S = (s1, sa, ..., S, ), where s; represents the i-th step.

Visual PRM. In VisualPRM |Wang et al.|(2025b), in order to effectively utilize the generation capa-
bility of MLLM, the process evaluation is regarded as a multi-round dialogue, and the probability
value predicted by token 1 is used as the score of the step. Let M is a visual prm. Formally, the
output of the PRM can be represented as:

yi ~ M(1|1, P,s<;), )]

where y; denotes the score of i-th step. By setting a threshold to determine whether the step is
correct.

Visual Reasoning PRM. By equipping Visual PRM with an explicit reasoning process such as
CoT |Wei et al.| (2022), we have Visual Reasoning PRM. Before evaluating a step, we assume that
the model’s thinking about a problem P, image I, and solution S is 7, then the output of VRPRM
is,

R ~mo(I, P, (s1,82,---,8n), T), )
where T ~ mo(I, P, (s1, S2, .-, Sn)), We extract the formatted output R to obtain process reward
(T17...7’I"n).

3.2 CoLD START ACTIVATION CAPABILITY

Although instruction-tuned LLMs have strong generalization capabilities and can complete basic
process evaluation tasks through prompts, these models often find it difficult to stably generate
structured and parsable evaluation results without cold start. Specifically, the model may not be able
to return evaluation results in the expected format, the process evaluation cannot be aligned with
the actual number of steps. Therefore, in this section, our main purpose is to stimulate the model
CoT and process evaluation capabilities. It mainly includes two parts: (1) synthesis of high-quality
CoT-PRM data and (2) SFT based on CoT-PRM data.

3.2.1 SYNTHETIC COT-PRM DATA

VisualPRM400K |Wang et al.| (2025b) is a dataset of multimodal reasoning data with process la-
bel. We select data that is easy for the model to think and reason about, including science, ge-
ometry, functions, physics, biology and other fields. We select about 10K data, each of which
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Figure 3: Overall framework of VRPRM. We first use Claude-3.7-Sonnet to generate CoT-PRM
data with long-horizon reasoning on a small amount of VisualPRM400K data. Two-stage training
pipeline: (1) Cold Start: We use CoT-PRM data to fine-tune the base model, helping it learn
basic thinking and process evaluation capabilities. (2) RL Scaling: Then we use non-CoT PRM
data to perform RL fine-tuning, further strengthening the model’s process evaluation and reasoning
capabilities.

contains a prompt P, a step-by-step solution S = (s1,...,5s,), and a process-level annotation
G, = (g91,---,9n). Therefore, we can use a LLM to construct evaluation data with long-horizon
reasoning and process-level annotations. In this study, we choose Claude-3.7-Sonnet as the data
generator.

As shown in Fig 3] to ensure that the data is clearly structured and labeled consistently, we design
a systematic prompting strategy that includes the following key steps: Step 1, we guide the model
to conduct thinking part to fully understand the problem background, image information and the
requirements of the evaluation task. The model’s thinking content needs to be placed between
<think>and </think>tokens. Step 2, we then guide the model to perform a fine-grained analysis
of each solution step and annotate the correctness of each step in a unified format, in the form of
\boxed{1} (correct) or \boxed{0} (incorrect). Step 3, the model must also return the intermediate
results of the evaluation process in a standardized JSON format, such as {“Score”:[r1,...,7,]1};

Based on the above process, we build a batch of PRM data with clear structure and complete long-
horizon reasoning. For each generated sample, we implement a strict data quality inspection process
to ensure the format specification and label consistency; all data that did not strictly follow the spec-
ified format output or the evaluation results deviated from the reference label were eliminated. We
finally obtained a dataset containing about 3.6K high-quality question-answer pairs, with a positive-
negative sample ratio of about 1:1. For detailed prompt and statistics, please see the Appendix A.

3.2.2 SUPERVISED FINE TUNING

We use the above high-quality data to perform SFT on the target model to help the model master
basic long-horizon reasoning and initial process assessment capabilities. Its training objectives are
defined as follows:

ro = argminE(; ps,c)~pspr [—log Po(CII, P, S)], 3)

Where Dgpr is a constructed CoT-PRM dataset, P is the problem, S is the candidate solution, and
C' is the target output, including the chain-of-thinking, step-level judgement, and final result output.

3.3 RL SCALING WITH NON-COT PRM DATA

To further enhance the model’s evaluation ability, we recommend reinforcement learning of the fine-
tuned model ry on step-level annotated data. We directly use the fine-tuned process reward model
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rg as the policy model for optimization, and its objective function is as follows:
max E(1,P,5,G,)~Dprm,0~re(1,P,5) [R(Gr; O)] — BDkL (76 ||7rer) “4)

Where 7. is the reference reward model. In practice, we use the checkpoint before RL training as
Tref, that is, the model checkpoint obtained after fine-tuning. I, P, S represents the image, problem,
and solution extracted from the data Dy, G = (91, - - -, gn) represents the step-level annotation
result, and O represents the text generated by the reward model, which includes the thought chain
and process judgment and result output. R(G,, O) is the reward function, and Dy, is the KL
divergence. In practice, we use Group Relative Policy Optimization (GRPO) |Shao et al.| (2024)) to
optimize the objective in the formula.

3.3.1 REWARD FUNCTION DESIGN

The rule-based reward mechanism has proven effective in enhancing the model’s reasoning ability.
In our approach, we design two reward rules when using step-level annotated data for RL: format
compliance and process accuracy.

First, the model output must follow a predefined format, which we regard as a reflection of the
model’s basic evaluation capabilities. Specifically, the model output should contain the following
structural elements: the <think>. .. </think>token for the thought chain, the \boxed{0 or 1} used
for step-by-step judgment, and the JSON format output of the final evaluation result, including
{“Score™[...]}. The existence of these tokens facilitates the structured extraction of the model’s
evaluation results. Therefore, if the model does not follow the format requirements, its format reward
will be set to zero:

R format(O) = has_think(O) A has_step_judge(O) A has_final_judge(O) )

Since this reward primarily prevents format violations, we assign it a lower weight, as our main focus
during the RL stage is improving the model’s evaluation capability rather than format adherence.

While format compliance reflects basic output skills, we further introduce process accuracy to eval-
uate each step of the model’s reasoning. This reward is based on the accuracy of the model’s predic-
tions for each step. If the final judgment is incorrect, the process reward is set to zero:

0, if 1[90 = ro} =0

Ryprocess(Gr, 0) = { 1 ¢ .
’ — 1lg; = ri|, th .
- ;:1 [g;: = ri], otherwise

(6)

Here, 1[] is the indicator function, g, is defined by the process annotation G.. (as in Eq , and r, is
defined by the process reward extracted from O, similar to g,.

0, if0e G,
— b T 7
Jo {1, otherwise. M
The final reward function is,
R(G’!'y O) =wy *x Rformat + Wy * Rprocess (8)

Where w and w,, correspond to the weights of R rormat and Rprocess respectively. In the work we
setwy = 0.1 and w, = 0.9.

3.4 TEST-TIME SCALING

We follow VisualPRM’s setup for BoN [Wang et al.| (2025b), we set the critic model as a Process
Reward Model (PRM) to select the best response from multiple candidate responses.

In the inference phase, PRM scores the generation process of each response step by step: for a
response S = (81, 82,...,8,), we let the PRM model predict the next token at each position and
use the probability of token “1” as the reward for that step. Formally, the reward score at each step
is defined as:

Ty = P9(1|$, S<t) 9
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Table 1: VisualProcessBench results reported with FEI and AEL Bold indicates the best result,
underlined indicates the second best result. w/o CoT means VRPRM does not perform explicit
reasoning, w/o RL means VRPRM does not perform RL training

MMMU MathVision MathVerse-VO  DynaMath WeMath FEI AEI

Model Name # Samples ‘

| FEI AEI | FEI  AEI | FEI AEI | FEI AEI | FEI = AEI | Avg.  Avg,
Proprietary Models
GPT-40-mini unk 4045 3527|2739 35.10 | 28.36  34.44 | 4035 37.46 | 45.70 37.30 | 36.45 35091
Gemini-2.0-Flash unk 43.07 43.04 | 3048 40.68 | 36.16  40.89 | 5579 43.25 | 5292 4299 | 43.68 42.17
Open-source Models
InternVL2.5-8B unk 41.63 49.59 | 30.67 42.61 | 4296 43.62 | 48.88 51.24 | 55.33 43.35 | 43.89 46.08
Qwen2.5-VL-7B unk 44.57 46.88 | 36.94 39.54 | 46.69 4275 | 52.81 52.89 | 60.82 44.76 | 48.37 45.36
Qwen2.5-VL-72B unk 46.44 51.31 | 3427 41.88 | 4250 4592 | 51775 5325|5773 46.74 | 46.54 47.82
MiMo-VL-7B unk 50.94 5845|3827 61.60 | 48.71 66.15 | 60.50 066.81 | 57.05 63.87 | 51.09 63.38
VisualPRM-8B 400K 30.71 59.01 | 2458 6291 | 2456 60.93 | 30.00 62.08 | 18.21 60.22 | 25.61 61.03
Ours
VRPRM-7B-Qwen 53.6K 52.06 63.16 | 42.98 67.34 | 40.94 63.80 | 53.51 6795 | 59.11 67.76 | 49.72 66.00
- w/o CoT 53.6K 46.44 52.66 | 26.83 51.95 | 3480 5472 | 41.05 53.06 | 41.58 5590 | 38.14 53.66
- w/oRL 3.6K 47.57 5594|3399 61.82|4396 6243 | 5246 63.08 | 50.86 67.30 | 45.77 62.11
- w/o RL & w/o CoT 3.6K 49.06 50.69 | 33.15 54.57 | 41.72 5170 | 50.18 55.26 | 48.80 48.79 | 44.58 52.20
VRPRM-7B-MiMo 53.6K 53.94 64.84 | 40.32 64.28 | 43.86 6542 | 56.37 69.48 | 63.21 68.20 | 51.54 66.44
- w/o CoT 53.6K 5431 64.88 | 40.59 63.45 | 43.96 64.81 | 5632 69.10| 63.92 69.94 | 51.82 66.44
-w/oRL 3.6K 50.26 57.63 | 39.36 60.51 | 48.46 61.87 | 60.04 61.67 | 55.73 61.38 | 50.77 60.61
- w/o RL & w/o CoT 3.6K 5431 58.67 | 39.47 6042 | 49.51 60.57 | 59.65 62.09 | 56.01 65.78 | 51.79 61.51

where z is the input prompt, s, represents the previous ¢ — 1 steps. For the N candidate responses
{51, 53,..., SN} generated by the model, we input each candidate response into PRM for process
scoring and obtain the corresponding average score. Finally, the response with the highest score is
selected as the output through the following formula:

S = P, 1 10
argSE{SISZ, SN}HZ o (1], s<t (10)

4 EXPERIMENTS

In this section, we aim to answer the following questions:

* Q1: How does the performance of VRPRM compare to previous PRMs?
* Q2: How does VRPRM benefit policy model test-time scaling?
* Q3: Can VRPRM effectively exploit CoT reasoning to improve its performance?

4.1 EXPERIMENT SETTINGS

Base Model. We followed the setup of VisualPRM [Wang et al.| (2025b), selecting Qwen2.5-
7B-Instruct and MiMo-VL-7B-SFT-2508 as the initial base model. MiMo-VL-7B-SFT-2508 is a
multimodal model with reasoning capabilities. We first performed SFT to give the model prelimi-
nary process scoring capabilities and obtained Cold Start Model. Then we performed RL training
on it to strengthen the model capabilities and generate VRPRM-Qwen and VRPRM-MiMo.

Benchmarks. We chose VisualProcessBench [Wang et al.| (2025b), a widely used multimodel pro-
cess reward model evaluation benchmark. Each test example in the dataset contains a problem, a
step-by-step solution, and a step-level label that reflects whether each step is correct or not. Follow-
ing the setup of VisualPRM |Wang et al.| (2025b)), we evaluate the best-of-N results of our VRPRM
on five benchmarks: MathVista|Lu et al.|(2024), MathVision Wang et al.| (2024), MathVerse Zhang
et al.| (2024b)), WeMath|Qiao et al.[(2024), and LogicVista Xiao et al.| (2024])), which will be described
in Appendix B.

Training Settings. In the SFT stage, for both Qwen2.5-7B-Instruct and MiMo-VL-7B-SFT-2508
the LoRA rank was set to 16 with an alpha value of 32, the learning rate was 1.0e~4, and the
model was fine-tuned for 3 epochs. We set the per-device batch size to 1 and used 4 gradient
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accumulation steps. In the RL stage, we use verl|Sheng et al.|(2024)) as our training framework. We
train for 2 episodes using the AdamW optimizer with a learning rate of 1.0e ¢ and KL penalty with
a coefficient of 1.0¢~%. The RL training operated with a global batch size of 512. We use four S0GB
NVIDIA A800 GPUs for SFT and eight for RL.

Evaluation Metrics. Inspired by [Wang et al.| (2025b)); [Zheng et al.| (2024), we use the First
Error Identification (FEI) and All Error Identification (AEI) to evaluate the performance of the PRM
process evaluation. FEI requires the PRM to identify the first error encountered during reasoning.
AEI assesses the PRM’s ability to identify all errors in a given solution. Both of them are calculated
by F1 scores. This comprehensive error identification is crucial for providing fine-grained rewards
during training, enabling effective reinforcement learning.

4.2 VISUALPROCESSBENCH RESULTS

Table[I|shows the performance of the PRM model on VisualProcessBench, where VRPRM signifi-
cantly outperforms all existing methods, including both proprietary and open-source models.
Specifically, VRPRM-7B-MiMo and VRPRM-7B-Qwen lead across all sub-datasets. VRPRM-7B-
MiMo achieves an average AEI of 66.44 and an average FEI of 51.54, outperforming the leading
multimodal PRM, VisualPRM, by 5.41 in AEI and 25.93 in FEI. VRPRM-7B-Qwen also shows
improvements of 4.97 in AEI and 24.11 in FEI, despite using only 13.4% of the training data. This
highlights the effectiveness of our combined training scheme in boosting performance while keeping
data requirements low.Notably, VRPRM without RL (VRPRM-7B-Qwen w/o RL and VRPRM-7B-
MiMo w/o RL), trained on just 3.6K samples, achieved strong average AEIs of 62.11 and 60.61, out-
performing all other open-source and proprietary models except MiMo-VL-7B. However, VRPRM-
7B-MiMo w/o RL showed a slight performance drop compared to its base model, indicating that the
initial SFT phase may have partially disrupted its CoT structure. Nevertheless, the subsequent RL
training phase helped to recover this gap. See the Ablation Analysis for more details, and Appendix
C for responses to VRPRM.

4.3 BEST-OF-N EVALUATION RESULTS

We use VRPRM as the evaluation model for the BoN task with N set to 8. The InternVL2.5 |Chen
et al.| (2025b) policy model generates N responses through a Chain of Thought (CoT) reasoning
process with a temperature of 0.7. The highest-scoring response is selected as the final result. Some
results are sourced from the OpenCompass leaderboard Buitrago & Nystroml (2019).

As shown in Table 2f VRPRM significantly improves performance on multiple multimodal rea-
soning benchmarks. When integrated into the InternVL2.5-8B model, VRPRM led to substantial
improvements across all sub-datasets, achieving an overall relative improvement of up to 41.82%
over the state-of-the-art VisualPRM. Using VRPRM as a critic model, the InternVL2.5-8B model,
with fewer than 10B parameters, outperformed leading proprietary models such as GPT-40, Claude-
3.5, and Gemini-2.0-Flash in reasoning tasks. This demonstrates that test-time scaling can unlock
the latent reasoning potential of foundation models. Similar trends were observed for the larger
InternVL2.5-26B and InternVL2.5-38B models.

In summary, the open-source InternVL2.5 model, combined with VRPRM, outperforms proprietary
models across multiple tasks using the Best-of-8 strategy, especially in tasks requiring advanced
logical reasoning, such as MathVerse-VO and LogicVista. This confirms that VRPRM, trained using
our hybrid data method, significantly enhances process evaluation and cross-task transferability in
large multimodal models for complex tasks.

4.4 ABLATION STUDIES
4.4.1 EFFECTS OF BON

In this experiment, we conducted BoN experiments on the InternVL2.5-8B model on the Logic Vista,
MathVerse-VO, MathVista, MathVision datasets, systematically examining the performance of dif-
ferent critic models in multi-round response selection. We set the candidate number N to 2, 4, §,
16, 32, 64, and 128, and used VisualPRM, VRPRM-7B-Qwen w/o RL, and VRPRM-7B-Qwen as
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Table 2: Results on five multimodal reasoning benchmarks. For MathVerse, we report the perfor-
mance on Vision-Only (VO) split. The overall score is the average score of the above benchmarks.

Model MathVista MathVision MathVerse-VO WeMath LogicVista Overall
Proprietary Models

GPT-40 60.00 31.20 40.60 45.80 52.80 46.08

Gemini-2.0-Flash 70.40 43.60 47.80 47.40 52.30 52.30

Claude-3.5-Sonnet 65.30 35.60 46.30 44.00 60.40 50.32

Open-source Models

InternVL2.5-8B 64.50 17.00 22.80 23.50 36.38 32.84

+VisualPRM 68.50 25.70 35.80 36.50 43.80 42.06
+4.00 +8.70 +13.00 +13.00 +7.80 +9.30

+VRPRM w/o RL 72.60 33.95 39.85 44.29 64.43 51.02
+8.10 +16.95 +17.05 +20.79 +28.05 +18.19

+VRPRM 79.10 51.44 51.52 36.71 79.46 59.65
+14.60 +34.44 +28.72 +13.21 +43.08 +27.23

InternVL2.5-26B 68.20 23.40 24.00 30.90 39.64 37.23

+VisualPRM 73.10 29.60 39.10 40.80 51.00 46.72
+4.9 +6.20 +15.10 +9.90 +11.40 +9.50

+VRPRM w/o RL 77.40 37.99 44.29 48.76 68.90 55.47
+9.20 +14.59 +20.29 +17.86 +29.26 +18.24

+VRPRM 81.20 55.79 53.55 40.14 83.00 62.74
+13.00 +32.39 +29.55 +9.24 +43.36 +25.51

InternVL2.5-38B 71.90 32.20 36.90 38.30 47.90 45.44

+VisualPRM 73.90 35.20 46.70 46.20 53.70 51.14
+2.00 +3.00 +9.80 +7.90 +5.80 +5.70

+VRPRM w/o RL 78.40 43.45 51.52 51.43 70.02 58.96
+6.50 +11.25 +14.62 +13.13 +22.12 +13.52

+VRPRM 83.50 59.41 58.76 46.86 84.78 66.66
+11.60 +27.21 +21.86 +8.56 +36.88 +21.22

evaluation models to select the final inference results. We also provide the Pass@K result as an
upper bound. For more experimental results, please see the Appendix C.

As shown in Figure [ the inference accuracy of InternVL2.5-8B significantly improves with in-
creasing the number of response candidates N, while the performance gap between the critic models
also widens. VRPRM achieves the most significant improvement. Taking LogicVista as an example,
under the best-of-2 evaluation setting, VRPRM outperforms VisualPRM and VRPRM without RL
by 5.49 and 5.36 points, respectively. Furthermore, this performance gap widens with increasing
N, reaching 51.14 and 25.78 points when N is set to 128, indicating that VRPRM is more effective
at identifying the optimal answer from candidate responses. Notably, when N increases to larger
values (such as 64 and 128), model performance saturates overall, and all three critic models exhibit
diminishing marginal gains. VRPRM consistently outperforms VisualPRM and the VRPRM w/o
RL across all BoN settings, achieving the highest performance gains. This highlights the value of
mixed-data training strategies in building PRM models with greater generalizability and transfer-
ability.

LogicVista MathVerse-VO MathVista MathVision
100 80 100 %0
£ £% E 80 E60
o (=} (=} (=}
£ 60 £ £ =
& $40 g 70 240
40 60 20
1 2 4 8 16 32 64128 1 2 4 8 16 32 64128 1 2 4 8 16 32 64128 1 2 4 8 16 32 64128
Best of N Best of N Best of N Best of N
Pass@K —e— VRPRM VRPRM w/o RL VisualPRM

Figure 4: Best-of-N results of InternVL2.5-8B across four multimodel reasoning benchmarks using
VisualPRM, VRPRM-7B-Qwen w/o RL, and VRPRM-7B-Qwen as critic models. The result of
Pass@K is the upper bound.
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4.4.2 EFFECTS OF CoT

In this experiment, we removed the model’s chain of thought reasoning module so that the model
no longer performs explicit reasoning when evaluating multi-step solutions. This aims to observe
whether VRPRM can effectively utilize CoT reasoning to improve its performance.

The results for VRPRM-7B-Qwen w/o CoT in Table [T] show a significant performance drop across
all subtasks after removing the CoT module. Similarly, VRPRM without RL training (VRPRM-
7B-Qwen w/o RL) also exhibits a performance decline. However, VRPRM-7B-MiMo w/o RL
performs better after removing CoT, suggesting that the model’s reasoning ability was negatively
impacted during supervised fine-tuning (SFT). After RL training, comparing VRPRM-7B-MiMo
and VRPRM-7B-MiMo w/o CoT shows that the model’s reasoning ability improves.

These results highlight the importance of the CoT reasoning mechanism in enhancing reward mod-
eling performance. It allows the model to better understand causal relationships and logic between
steps, improving its ability to evaluate complex reasoning and make more accurate judgments. With-
out this capability, the model is more prone to misunderstand intermediate steps, leading to lower
evaluation quality.

4.4.3 EFFECTS OF RL

In this experiment, we investigated whether reinforcement learning (RL) could improve a model’s
process evaluation capabilities. The performance of the VRPRM model without RL training (VR-
PRM w/o RL) is reported on the VisualProcessBench and BoN test sets in Tables[T] and [2] respec-
tively.

On the VisualProcessBench, the VRPRM w/o RL, trained with CoT-PRM data during supervised
fine-tuning (SFT), outperformed VisualPRM, the state-of-the-art multimodal PRM, in both average
FEI and AEI. We then applied RL training to the VRPRM w/o RL using PRM data, creating the com-
plete VRPRM model. This resulted in a 3.92% average performance improvement on VisualPro-
cessBench, with gains across all sub-datasets. In the BoN test, VRPRM consistently outperformed
VRPRM without RL across various InternVL model scales, with a maximum relative improvement
of 9.04

These results show that RL training based on non-CoT PRM data significantly enhances process
evaluation capabilities. By incorporating RL, we can effectively train a PRM model with improved
evaluation skills at a relatively low data cost.

5 CONCLUSION

In this paper, we introduce VRPRM, the first Visual Reasoning Process Reward Model capable of
incorporating RL reasoning. We have designed a two-stage training strategy for this model. The first
stage involves supervised fine-tuning (SFT) on a small set of high-quality CoT data to “activate” the
model’s reasoning potential. This is followed by a second stage of “reinforcement” through rein-
forcement learning (RL) using a large volume of lower-cost non-CoT data. Our approach addresses
the common deficiency in deep reasoning abilities found in existing process reward models and
mitigates the prohibitively high data annotation costs associated with introducing CoT capabilities.

Experimental results demonstrate that VRPRM comprehensively outperforms non-thinking visual
process reward models trained on 400K data instances, while using only one-eighth of the training
data. This proves the exceptional data efficiency of our method. Furthermore, VRPRM exhibits
outstanding test-time scaling capabilities, achieving up to a 118% relative performance improvement
on multiple multimodal reasoning benchmarks. This demonstrates that VRPRM is also an effective
test-time scaling strategy.

In conclusion, VRPRM offers a novel training paradigm for the future development of process re-
ward models, which can significantly enhance the model’s complex reasoning and evaluation ca-
pabilities while substantially reducing annotation costs. We believe that this data-efficient training
strategy not only carves out a new path for multimodal reward modeling but also provides valuable
insights for building more powerful and generalizable reward models in a broader range of fields in
the future.
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6 ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics and affirm that our work complies with its principles. Our
research does not raise any immediate ethical concerns. We have considered the potential broader
impacts of our work, and we detail our considerations below.

About data usage and privacy, the datasets used in this study are publicly available and were collected
in accordance with their original licenses. Our work does not involve the collection of personal data.
We have adhered to best practices in data anonymization and privacy preservation where applicable.

About potential biases and fairness, the methods proposed in this work has little risk on introducting
biases and unfairness. We have taken steps to mitigate such risks. We encourage further scrutiny
and responsible use of our methodology.

About social impact, we believe our research contributes positively. We do not foresee our work
being used for malicious purposes, but we acknowledge that any technology can be misused. We
encourage the community to use our work responsibly.

About human subjects, this study did not involve human subjects, and no ethical approval was
required.

About conflicts of interest: The authors declare no conflicts of interest.

7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made the following efforts:

About availability, we provide a complete, anonymized implementation of our proposed VRPRM
framework, including training and evaluation scripts, as supplementary material. The code will be
made publicly available upon publication. The code, models and datasets used in our work are
almost all open source and can be easily accessed from the internet.

About experimental setup, our experimental setup is comprehensively documented in the experiment
section and appendix to allow for exact replication of our results.
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A ROLLOUT PROMPT AND DATA STATISTICS

In this section we give a Prompt for synthetic data and an example of synthetic data. The prompt for
using Claude-3.7-Sonnet to synthetic COT-PRM Data is shown in Fig[7] The example of CoT-PRM
Data is shown in Fig|§]

We report the statistics of CoT-PRM Data. As shown in Fig[5] in CoT-PRM Data, more than 90%
of the responses have a thought length of more than 1500 characters, which shows that CoT-PRM
Data has good response quality and is a high-quality long-range reasoning process label dataset.

The step distribution statistics of CoT-PRM Data are shown in Fig[6] We observe that most solutions
consist of fewer than 15 steps. Among these solutions with fewer than 15 steps, the number of steps
has a sample distribution.
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Figure 5: Distribution of think Content Length

B MULTIMODAL REASONING BENCHMARKS

We selected five multimodal reasoning benchmarks:

MathVista|Lu et al|(2024) is a benchmark specifically designed to evaluate the capabilities of Mul-
timodal Large Language Models (MLLMs) in visual mathematical reasoning. The dataset contains
6,141 examples, sourced from 28 existing multimodal math-related datasets, along with three newly
created subsets: IQTest, FunctionQA, and PaperQA. MathVista covers a wide range of tasks, includ-
ing image interpretation, chart reasoning, geometry problem solving, and function graph analysis,
aiming to assess models’ abilities in processing complex visual information and performing compo-
sitional mathematical reasoning. We selected its mini test set, about 1000 samples.

MathVision [Wang et al (2024) is a meticulously constructed high-quality benchmark dataset de-
signed to evaluate the visual mathematical reasoning abilities of MLLMs. The dataset contains 3,040
mathematical problems, all sourced from real-world math competitions. It spans 16 distinct mathe-
matical disciplines and is categorized into 5 levels of difficulty, offering a comprehensive assessment
across a wide range of topics and complexities. Its complete test set has about 3,000 samples.

MathVerse Zhang et al. (2024b) is a comprehensive visual math benchmark designed to pro-
vide fair and in-depth evaluation of mathematical diagram understanding and reasoning abilities
in MLLMSs. The dataset consists of 2,612 high-quality, multi-subject math problems with accompa-
nying diagrams. Each problem is manually transformed into six distinct multimodal versions, vary-
ing in the degree of visual and textual information provided, resulting in a total of approximately

13
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Figure 6: Distribution of Step Count

15,000 test samples. This design enables MathVerse to rigorously assess whether, and to what ex-
tent, MLLMs truly rely on visual diagrams for mathematical reasoning. We report the performance
on the Vision-Only split.

WeMath |Qiao et al. (2024) is the first benchmark specifically designed to explore the underlying
problem-solving mechanisms of Multimodal Large Language Models (MLLMs) in visual math-
ematical reasoning. Rather than focusing solely on final answer accuracy, We-Math emphasizes
how models apply knowledge during the reasoning process. The dataset consists of 6,500 care-
fully curated visual math problems, covering 67 hierarchical knowledge concepts across 5 levels of
knowledge granularity, forming a structured and comprehensive knowledge evaluation framework.
We report ”Score (Strict)” as the main indicator on its mini-test set of about 1740 samples.

LogicVista [Xiao et al| (2024) is a benchmark specifically designed to evaluate the fundamental
logical reasoning abilities of Multimodal Large Language Models (MLLMs) within visual contexts.
It focuses on five core categories of logical reasoning tasks: spatial reasoning, deductive reason-
ing, inductive reasoning, numerical reasoning, and mechanical reasoning, offering a comprehensive
assessment across key dimensions of logic.The dataset comprises 448 multiple-choice visual ques-
tions drawn from diverse sources and question types, aiming to systematically assess the strengths
and limitations of current MLLMs in solving visual logic problems.

C MORE ABLATION RESULTS

In Tab[3] we give detailed Best-of-N results on InternVL2.5-8B across four multimodel reasoning
benchmarks using VisualPRM, VRPRM w/o RL, and VRPRM as a critic model.

D EXAMPLE OF VRPRM OUTPUT

In Fig 0] we present an evaluation of a VRPRM solution to a geographical problem, including
thought-of-chain and process evaluation.

14
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Model BoN | LogicVista MathVerse-VO MathVista MathVision
1 36.38 22.80 64.50 17.00
2 54.14 37.44 69.40 30.76
4 72.26 48.98 77.50 43.98
Pass @K 8 85.68 57.74 83.20 56.55
16 92.62 65.48 87.90 68.75
32 96.64 71.83 90.60 76.81
64 98.21 76.14 92.90 82.34
128 98.66 78.55 94.10 86.28
1 36.38 22.80 64.50 17.00
2 41.83 29.70 64.00 22.63
4 40.49 31.85 67.30 24.18
. 8 43.80 35.80 68.50 25.70
VisualPRM 16| 4250 36.40 69.90 27.30
32 43.40 37.80 70.40 29.60
64 45.40 38.20 69.60 30.60
128 45.40 39.30 70.80 30.30
1 36.38 22.80 64.50 17.00
2 41.96 31.98 63.10 23.65
4 52.01 37.44 67.70 28.42
8 62.60 39.85 72.60 33.95
VRPRMw/oRL ¢ 64.06 43.53 74.20 37.11
32 65.85 46.83 75.40 41.25
64 70.54 49.75 75.30 45.26
128 70.76 48.98 75.80 47.89
1 36.38 22.80 64.50 17.00
2 47.32 35.15 66.60 28.09
4 63.84 43.27 72.30 38.72
8 79.46 51.52 79.10 51.44
VRPRM 16 86.83 58.25 83.20 61.02
32 91.52 63.32 86.60 69.57
64 96.21 68.27 89.30 75.79
128 96.54 69.54 90.60 80.13

Table 3: Best-of-N results of InternVL2.5-8B across four multimodel reasoning benchmarks using
VisualPRM, VRPRM w/o RL, and VRPRM as critic models. The result of Pass@K is the upper
bound.
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Prompt for Synthetic CoT-PRM Data

[User]:

You are a reasoning evaluator. Your task is to analyze problem-solving steps one by one. At
the same time, according to the analysis process, judge whether the entire problem-solving
is correct.

For each solution step, you need to evaluate:

Score (0 or +1):

* +1: Completely correct reasoning

*(0: Completely incorrect

* Use two integers to determine whether the step is correct

For the entire problem-solving, you need to evaluate:
* +1: Completely correct reasoning
* 0: Completely incorrect

Requirements:

- Analysis each step independently and provide scores as integer numbers. After analyzing
each step, the analysis results of each step are given in the form of \boxed{Score}

- Evaluate the entire problem-solving and determine whether it is correct

- The scores of the evaluation steps are returned in strict JSON format: ’Score”: [scores],
Ensure arrays have the same length with the number of solution steps

- Consider logical accuracy, mathematical coherence, and solution efficiency

Example output format:

<Step judgment >

Analysis of each step, \boxed {1}
<The score of all steps >
{"Score": [1, 1, 01}

Question:
{question}
Answer:
{answer}

You will gradually receive each step:

[User]:
Step {i}: {the i-th step}

Figure 7: Prompt for Synthetic CoT-PRM Data

E THE USE OF LLMS

During the writing and editing of this paper, the author(s) utilized Large Language Models (such
as ChatGPT) for text refinement to improve the clarity and accuracy of the language. These tools
were primarily used for grammar checking, optimizing phrasing, and enhancing readability. All core
ideas, the research design, data analysis, and conclusions are the original work of the author(s). The
author(s) take full responsibility for the final content of the manuscript and have carefully reviewed
all Al-assisted modifications.
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An example of CoT-PRM Data

<think >

I need to evaluate each step of the problem-solving process and determine if it’s correct. Let
me analyze each step:

Step 0: This step correctly explains that we need to consider the temperature difference
between the liquid and room temperature, and that dew forms on cold surfaces. This is a
good setup of the problem.

Step 1: Container A calculation:- Liquid temperature: 36°C - Room temperature: 25°C -
Temperature difference: 36°C - 25°C = 11°C. This calculation is mathematically correct.
Step 2: Container B calculation: - Liquid temperature: 63°C - Room temperature: 25°C -
Temperature difference: 63°C - 25°C = 38°C. This calculation is mathematically correct.
Step 3: Container C calculation: - Liquid temperature: 83°C - Room temperature: 25°C -
Temperature difference: 83°C - 25°C = 58°C. This calculation is mathematically correct.
Step 4: This is where the reasoning error occurs. The step claims that Container A will form
dew first because it has the smallest temperature difference. However, this is incorrect. Dew
(water droplets) forms on surfaces that are COLDER than the surrounding air, not warmer.
All containers have liquids that are warmer than room temperature (25°C).

For dew to form on the inner walls of the containers, the inner wall temperature would need
to be below the dew point of the air inside the container. Since all liquids are warmer than
room temperature, they will be warming the air inside their containers, not cooling it. When
warm, humid air comes in contact with a cold surface, condensation occurs.

Therefore, Container C should show droplets first because it has the highest temperature
difference, which creates the greatest potential for condensation when the warm, humid air
inside contacts the relatively cooler walls.

Step 5: The final answer A is incorrect based on the faulty reasoning in Step 4.

So: - Steps 0-3: Correct (+1 each) - Step 4: Incorrect (0) - Step 5: Incorrect (0) since it’s
based on the incorrect reasoning from Step 4

The entire problem-solving process is incorrect because the core reasoning about how
condensation forms is flawed.

</think >

<Step judgment >

Step 0: This step correctly explains that droplet formation involves temperature differences
between the liquid and room temperature. However, there’s a fundamental misunderstand-
ing about when condensation occurs. Dew forms when warm, moist air contacts a surface
that’s cooler than the dew point temperature. \boxed {1}

Step 1: The calculation for Container A is mathematically correct (36°C - 25°C = 11°C).
But simply calculating the temperature difference doesn’t determine which container will
form droplets first. \boxed {1}

Step 2: The calculation for Container B is mathematically correct (63°C - 25°C = 38°C).
Again, simply calculating the difference is not incorrect, but the application of this will be
important. \boxed {1}

Step 3: The calculation for Container C is mathematically correct (83°C - 25°C = 58°C).
The mathematical operation is performed correctly. \boxed {1}

Step 4: This step contains the critical error. The reasoning incorrectly concludes that the
container with the smallest temperature difference (Container A) will form dew first. In
reality, when hot liquid is placed in a container at room temperature, the warmer liquid
creates water vapor. The container with the highest temperature (Container C) will produce
the most vapor, which will condense on the relatively cooler inner walls of the container
(which are closer to room temperature). The larger the temperature difference, the more
pronounced this effect will be. \boxed {0}

Step 5: The final answer A is incorrect as a result of the flawed reasoning in Step 4.
Container C (the hottest) would be expected to show condensation first due to the greatest
temperature differential producing the most water vapor. \boxed {0}

< The score of all steps >

{"Score": [1, 1, 1, 1, O, 01}

Figure 8: An Example of CoT-PRM Data
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An example of CoT-PRM Data

[Question]

Which of these states is farthest east?
A. Kentucky

B. Oklahoma

C. Oregon

D. Iowa

[Solution]

Step 0:

To determine which state is farthest east, we need to consider their positions relative to the
Prime Meridian or the easternmost points of each state.

Step 1:

- Oregon is located on the West Coast of the U.S. - Iowa is located in the midwestern United
States. - Kentucky is located in the eastern United States. - Oklahoma is located in the
central United States.

Step 2:

Comparing these positions, Kentucky is clearly the farthest east among them.

Step 3:

Answer: \boxed{A}

[Answer]

<think >

I’ll analyze each step of this problem-solving process to determine if the reasoning is
correct.

Step O: This step correctly establishes the approach - comparing the relative positions of the
states on the map to determine which is farthest east. The reasoning is sound. \boxed {1}
Step 1: This step accurately describes the geographic positions of each state as shown in the
map. Kentucky is indeed in the east, Jowa and Oklahoma are in the central/midwest, and
Oregon is on the west coast. \boxed {1}

Step 2: This step correctly concludes that Kentucky is the farthest east among the four
options based on their positions on the map. \boxed {1}

Step 3: The answer selection A (Kentucky) is correct based on the analysis of positions
shown in the map. \boxed {1}

The entire problem-solving process is correct. The solver properly analyzed the map,
identified the relative positions of all four states, and correctly determined that Kentucky is
the farthest east.

</think >

<Step judgment >

Step 0: This step correctly establishes the approach to compare the positions of the states
relative to eastward direction. The methodology is appropriate for solving the problem.
\boxed {1}

Step 1: This step accurately describes the geographic positions of each state as shown
in the map. The states are correctly categorized based on their location relative to east.

\boxed {1}

Step 2: The reasoning correctly identifies Kentucky as the farthest east among the four
options based on the map. \boxed {1}

Step 3: The conclusion correctly selects option A (Kentucky) as the answer. \boxed {1}

< The score of all steps >
{"Score": [1, 1, 1, 1]}

Figure 9: An Example of VRPRM Output
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