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ABSTRACT

Vision-language retrieval (VLR), involving the use of text (or images) as queries
to retrieve corresponding images (or text), has been widely used in multime-
dia and computer vision tasks. However, ambiguous or complex concepts con-
tained in queries often confuse retrievers, making it difficult to effectively align
these concepts with visual content, thereby limiting their performance. Exist-
ing query optimization methods neglect the feedback of retrievers’ preferences,
thus resulting in sub-optimal performance. Inspired by the powerful ability of
Multimodal Large Language Models (MLLMs), we propose a Multimodal LLM-
Guided Query Rewriter (MGQRe) for query optimization. Specifically, MGQRe
first utilizes MLLM to explore the retriever’s weakness and perform targeted itera-
tive optimizations to capture the retriever’s expressive preferences. Subsequently,
we develop a trainable rewriter that learns this preference knowledge through a
three-step tuning strategy: supervised fine-tuning, preference learning, and re-
inforcement learning. This ensures that the queries generated by the rewriter
align with the retriever’s preferences, thereby enhancing the retriever’s perfor-
mance. Extensive VLR benchmark experiments have demonstrated the superior-
ity of MGQRe, as well as its generalizability and transferability. This work show-
cases the potential of using advanced language models to overcome the inherent
limitations in current VLR technology.

1 INTRODUCTION

Vision-language retrieval (VLR), which involves the using of text/image as queries to retrieve cor-
responding image/text, has garnered significant attention from both academia and industry. Existing
methods (Radford et al., 2021; Li et al., 2022; Yu et al., 2022) mainly focus on how to align text and
image modalities within a shared semantic space.

Despite the progress in VLR, existing methods still face challenges on complex or ambiguous con-
cepts in queries, due to the heterogeneity of data. For example, as illustrated in Fig 1, the retriever
failed to perceive the visual features associated with the term “anticipate”, thus resulting in irrelevant
images. This confusion often leads to the retriever’s inability to accurately align these concepts with
corresponding visual features, which typically limits the performance of multimodal retrieval. To
alleviate such issues, it is expected to utilize a rewriter to optimise complex concepts in the query.
However, traditional rewriting methods struggle to effectively adapt queries based on the retriever’s
preferences, leading to suboptimal retrieval results (see Fig 1). Ensuring that the rewriter gener-
ates queries that align with the retriever’s understanding preferences poses a significant challenge.
Typically, exploring the retriever’s preferences requires extensive human analysis and repetitive iter-
ations to adapt queries, which is both time-consuming and costly. Multimodal large language models
(MLLMs) (Wang et al., 2024; Jin et al., 2024) have demonstrated impressive analytical capabilities
for addressing complex issues. Therefore, employing MLLMs as agents to capture the retriever’s
fine-grained preferences offers an efficient and practical solution.

Based on these observations, we propose the MLLMs-Guided Query Rewriter (MGQRe) for VLR.
First, MLLMs capture the fine-grained preferences of the retriever, and a rewriter is then developed
to learn preference knowledge. Specifically, we employ MLLMs as agents that mine the retriever’s
preferences. Based on the feedback from the retriever on the query, MLLMs continuously explore
the retriever’s weaknesses and iteratively optimize the query based on these weaknesses, obtaining
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(a) Direct Retrieval (b) Traditional Query Rewriter

(c) MLLMS-Guided Query Rewriter
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Figure 1: Comparison of different retrieval paradigms. (a) Direct retrieval and (b) traditional rewrit-
ing methods yield poor results because the retriever cannot accurately interpret the visual concept
“anticipate”. In contrast, our (c) MLLMs-Guided Query Rewriter adapts “anticipate” into a visual
description that the retriever understands better, ensuring accurate retrieval.

high-quality queries that match the retriever’s preferences. To distill the preference knowledge into
the rewriter, we design a three-step tuning strategy: starting with Supervised Fine-Tuning (SFT) for
initial warm-up, followed by Preference Rank Optimization (PRO)(Schulman et al., 2017) to align
with the retriever’s fine-granted preferences, and concluding with Proximal Policy Optimization
(PPO)(Song et al., 2024) to further enhance the collaboration between the rewriter and the retriever.
Through the above training strategies, MGQRe can generate high-quality queries that match the
retriever’s preferences. In summary, our contributions are as follows:

• We introduce a novel query optimizer for VLR: MLLMs-Guided Query Rewriter
(MGQRe), which refines user-input queries to better align with the preferences of the re-
triever, thereby enhancing the alignment between the queries and the visual content and
improving retrieval performance.

• We develop an automated system for constructing high-quality query datasets for VLR
tasks using MLLMs. We deploy MLLMs as agents that analyze the feedback from the
retriever to explore its weaknesses and iteratively optimize queries, ensuring that the refined
queries align with the retriever’s preferences.

• We develop a three-step learning strategy for the rewriter, consisting of Supervised Fine-
Tuning (SFT), Preference Rank Optimization (PRO), and Proximal Policy Optimization
(PPO). This strategy enables the rewriter to precisely adjust queries to fit the retriever’s
expressive preferences.

• Extensive experiments show that our method significantly outperforms other query opti-
mization methods. Additionally, our method is generalizable and transferable, performing
well across various VLR tasks.

2 RELATED WORK

2.1 VISION-LANGUAGE RETRIEVAL

In the task of VLR, the primary objective is to establish alignment between the visual and textual
modalities. Previous vision-language models can be categorized into three classes: single-stream,
double-stream, and dual-encoder models. Most of the single-stream models (Chen et al., 2020; Li
et al., 2020; Kim et al., 2021) perform multi-modal interaction via self-attention alignment. These
models first concatenate different modalities to produce an integrated sequence, and then perform
fine-grained interaction for multi-modal alignment using the transformer’s self-attention. Double-
stream models (Li et al., 2021; 2022; Yang et al., 2022; Zeng et al., 2022) often apply the intra-
modality processing along with a shared fusion encoder. This approach decouples the intra-modal
and cross-modal modeling processes. They perform multi-modal interaction via the transformer’s
co-attention alignment, where the query vectors are from one modality, and the key and value vec-
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tors are from the other. Due to the high demand for inference efficiency in visual language retrieval
tasks, some scholars have proposed using the dual-encoder architectures for multi-modal align-
ment through contrastive learning (Radford et al., 2021; Xie et al., 2022; Ma et al., 2022b). In this
approach, the visual embedding and text embedding are projected into the same semantic space
to calculate similarity scores. Due to their efficient retrieval, dual-stream architectures are gaining
more and more attention in VLR.

2.2 PROMPT ENGINEERING FOR VISION-LANGUAGE MODEL

Prompt engineering has become a vital technique with the rise of large pretrained models, optimiz-
ing queries into formats comprehensible by multimodal models like CLIP. Research mainly focuses
on enhancing model understanding by incorporating additional knowledge, such as entity concepts
from WordNet (Shen et al., 2022; Yao et al., 2022) or domain-specific insights (Ma et al., 2022a).
With the emergence of LLMs, studies increasingly leverage their knowledge bases for query aug-
mentation, including visual descriptions (Menon & Vondrick, 2022; Pratt et al., 2023) to support
text-image alignment. Some research(Xie et al., 2023) also emphasizes retrieval-enhanced tech-
niques that retrieve relevant images for cross-modal understanding. Existing approaches primarily
address image classification and object detection, these coarse-grained methods struggle with com-
plex text queries containing multiple entities and fine-grained interactions. This paper proposes a
fine-grained query optimization scheme for multimodal retrieval, aimed at improving model com-
prehension of complex queries.

3 METHODOLOGY

(a) Step1 : Prompt-pairs Construction

(b) Step2 : SFT

(c) Step3 : Preference Rank Optimization

(d) Step4: PPO

(e) Step5: Our Rewrite-Retrieval 
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Figure 2: The framework of our method. First, we construct the high-/low-quality query pairs by
the interaction of MLLMs and CLIP. Second, we conduct supervised fine-tuning (SFT) for rewriter
on the query pairs. Third, we align fine-grained preferences through preference rank optimization.
Fourth, we apply Proximal Policy Optimization (PPO) to the rewriter using designed rewards for
further enhancement. Finally, we integrate the rewriter with CLIP to perform VLR.

Given an input query, our prompt optimizer automatically rewrites it to better match the retriever’s
understanding preferences, while preserving the original intent. Fig 2 provides an overview of our
method, with the rewriter built upon a language model. First, we employ MLLMs to capture the
retriever’s preferences and gather high-quality query examples (section 3.1). These examples are
then used to perform Supervised Fine-Tuning (SFT) to prepare the rewriter (section 3.2). To refine
our understanding of the retriever’s fine-grained preferences, we implement Preference Rank Opti-
mization (section 3.3), followed by reinforcement learning to overcome the limitations of synthetic
data (section 3.4). The trained rewriter is then integrated into the multimodal retrieval framework to
perform query optimization (section 3.5).
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3.1 DATASET CONSTRUCTION

This section outlines the collection process of data used for training the rewriter. As shown in Fig 2
(a.1), queries that align with the retriever’s preferences are defined as high-quality queries. The
goal of this step is to collect high-quality/low-quality query pairs with similar semantics. The data
originates from Flickr30k and MSCOCO, which contain only unpaired raw queries. Initially, we
categorize the queries into low and high quality based on the evaluation from the retriever.

As depicted in Fig 2 (a.2), for low-quality queries, we employ MLLMs as agents to generate high-
quality queries that are easier for the retriever to understand. The specific process includes four steps:
1) Candidate Recall: retrieve candidate images using low-quality queries; 2) Submission: Submit
incorrect candidates and ground truth for comparison; 3) Review: MLLMs optimize and rewrite the
erroneous concepts through chain-of-thought, analyzes the differences between recalled images and
correct images, identifies concepts that retriever failed to understand, and optimizes these deficien-
cies; 4) Feedback: Retest the rewritten queries to determine if they meet high-quality standards. This
process iterates multiple turns until we get multiple high-quality queries for each low-quality query.
In the above approach, MLLMs identify the retriever’s shortcomings more deeply by analysing hard
negative samples of the retriever, thus more accurately capturing and understanding the retrieval
model’s expression preferences.

Similarly, for high-quality queries, we blur concepts using MLLMs and simplify the rewriting of
queries with MLLMs to decrease their similarity to images, thereby generating corresponding low-
quality queries. Finally, we calculate the textual similarity (Reimers, 2019) between low and high-
quality queries and filter out examples with low similarity. Detailed implementation specifics and
prompt templates can be found in the Appendix A.1.

3.2 SUPERVISED FINE-TUNING

With the low-quality/high-quality query pairs established, we can train a query optimizer to develop
basic query optimization capabilities. A parallel query corpus consists of low-quality query x and
high-quality query y, referred to as the DSFT . If a low-quality query x corresponds to multiple
high-quality queries, we take the highest-quality query as y. π(·) and θ denote the query rewriter
to be trained during SFT and its parameters, which can be any pretrained language model. We train
the rewriter by minimizing the cross-entropy loss. The training objective for SFT is to optimize the
following loss function:

LSFT(θ) = −E(x,y)∼DSFT

∑
t

log π (yt|y<t, x; θ) (1)

SFT can be viewed as a warm-up phase, and thus, the effectiveness of the supervised fine-tuning
model is generally moderate. To further enhance model performance, we proceed with preference
optimization.

3.3 PREFERENCE OPTIMIZATION

To enhance the rewriter’s understanding of the model’s fine-grained conceptual preferences, we per-
formed preference optimization. This process requires constructing a dedicated preference dataset
DPRO. As described in Appendix A.1, we generate multiple high-quality queries for each low-
quality query and obtain text-image similarity scores from the retrieval system, which serve as re-
wards for preference learning. These scores allow us to rank the enhanced queries from high to low.
To minimize bias from the reward model and enhance fine-grained preference comparisons from a
global perspective, we introduce Preference Rank Optimization (PRO) based on the Bradley-Terry
model(Song et al., 2024). This method guides the model to learn the ranking of rewrites according
to feedback from the retriever. According to the Bradley-Terry model, the probability of choosing
a policy is proportional to its corresponding reward. Given the partial order relation y1 ≻ y2, the
preference probability can be expressed as:

PBT =
exp(r(y1, x))

exp(r(y1, x)) + exp(r(y2, x))
(2)

where r(·) is the reward function, which is defined as the normalized log probability of the rewrite
generated in PRO. PRO extends pairwise partial order into general listwise partial order. The PRO
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loss is expressed by the equation:

LPRO(θ) = −E(x,y)∼DPRO

k−1∑
j=1

log

exp

(
πPRO(yj |x;θ)

T j
j

)
∑k

i=j exp
(

πPRO(yi|x;θ)
T i
j

) (3)

where T i
j = 1

r(yj)−r(yi)
and T j

j = mini>j(T
i
j ) are used to measure ranking difference. k denotes the

number of candidate high-quality queries, πPRO and θ refer to the policy model and its parameters.

3.4 REINFORCEMENT LEARNING

Due to the limited datasets collected and inherent noise, relying solely on constructing query pairs
is insufficient for effectively guiding the rewriter. Consequently, we propose using reinforcement
learning to enable the rewriter to explore freely and better adapt to the retriever. Initially, we define
the rewards for reinforcement learning, focusing on the improvement in cross-modal similarity as a
measure of query quality. The reward is then defined as follows:

r(x, y) = 20 ∗ (sclip(y, vx)− sclip(x, vx)) (4)

where sclip(·) denotes the similarly score between query and image, vx represents the ground image
related to query x. After obtaining the predefined reward, we suggest using Proximal Policy Opti-
mization (PPO) during reinforcement learning training to enhance our retriever. The PPO algorithm
directly optimizes the expected reward:

LPPO(θ) = −Ex∼DPPO,y∼πPPO(·|x)[r(x, y)− β · log πPPO(y|x)
πPRO(y|x)

] (5)

Following (Ziegler et al., 2019), we adopt an adaptive KL penalty strategy with parameter β, which
is used to prevent the policy from deviating too far from the initial distribution πPRO.

3.5 INTEGRATION OF THE REWRITER FOR VLR

In our work, we select the simple yet effective dual-encoder model CLIP as the foundational model
(a detailed introduction and training for CLIP can be found in Appendix A.2). We incorporate the
trained rewriter into the CLIP framework, as illustrated in Fig 2 (e). During CLIP fine-tuning, we
freeze the rewriter and randomly perform query rewriting with probability p. For inference, given
an input text query, we utilize the rewriter to generate the opted-query. This opted-query is modeled
through the text encoder to obtain text feature, which is then computed with the features of candidate
images for similarity score. Finally, images are recalled in descending order of similarity.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

4.1.1 DATASETS

We primarily evaluate on two benchmark datasets: Flickr30k and MSCOCO, to validate its effec-
tiveness. (1) Flickr30k (Plummer et al., 2015) contains 31,000 images, each with 5 captions, and is
divided into 29K/1K/1K images for training, validation, and testing, respectively (Li et al., 2021). (2)
MSCOCO (Lin et al., 2014) consists of 123,287 images, also with 5 captions each, and is split into
114K/5K/5K for training, validation, and testing. To further assess the transferability of our method,
we evaluate its performance on other visual-text retrieval datasets, including (3) MSR-VTT (Xu
et al., 2016), which includes 10,000 videos with a total of 200,000 text descriptions. We utilize 9K
videos for training and evaluation on a 1K test set. Additionally, (4) SBU30k (Ordonez et al., 2011)
contains 36,000 image-text pairs randomly sampled from SBU Captions, divided into 30K/3K/3K
for training, validation, and testing. Furthermore, we randomly sample from CC12M (Changpinyo
et al., 2021) and YFCC15M (Thomee et al., 2016) to obtain (5) CC30K and (6) YFCC30K. Details
on the query pair dataset constructed for the rewriter can be seen in Appendix A.1.
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4.1.2 BASELINES

We will validate our method on advanced dual-encoder retrieval models, specifically: (1)
CLIP(Radford et al., 2021), a powerful dual-encoder model pre-trained through contrastive learn-
ing; (2) CoCa(Yu et al., 2022), a framework that integrates various pre-training paradigms, utilizing
its image encoder and unimodal text decoder for retrieval; and (3) EVA-02-CLIP (Sun et al., 2023),
which employs novel representation learning techniques to enhance CLIP’s performance.

Our approach will be compared with current query optimization methods, including: (1) Det-
CLIP (Yao et al., 2022): An entity knowledge enhancement method that integrates WordNet concep-
tual knowledge into query entities. (2) CLIP-GPT (Maniparambil et al., 2023) An entity description
enhancement scheme that incorporates visual descriptions generated by LLMs into query entities.
(3) RACLIP (Xie et al., 2023): A retrieval augmentation approach that uses relevant images to en-
rich the query with cross-modal semantics. (4) LLMsRewrite: A description rewriting scheme that
utilizes LLMs for query optimization. We have designed templates to guide LLMs, which include
task descriptions and crafted examples.

To evaluate the effectiveness of our dataset generation strategy, we compared three dataset construc-
tion scenarios: (1) Direct Generation Strategy: Queries are generated directly based on image
content using MLLMs. (2) Feedback Enhancement Strategy: MLLMs generate queries based
on the image, then refine these queries using the in-retriever similarity score between the generated
query and the image as a metric for feedback and subsequent optimization. (3) Challenge Response
Strategy: Our implementation involves using challenging negative and positive samples from the
retriever to identify its weaknesses, allowing for continuous query adjustment and optimization.

In addition, we explore various open-source LLMs for rewriters, including Qwen-7B (Bai et al.,
2023) (“Qwen-7B-chat”), Baichuan2-7B (Yang et al., 2023) (“Baichuan2-7B-chat”), Llama (Tou-
vron et al., 2023) (“Llama2-7B-chat”), and Vicuna (Chiang et al., 2023) (“vicuna-7B-v1.3”).

4.1.3 IMPLEMENTATION DETAILS

We fine-tune a pre-trained retrieval (e.g., CLIP) directly without the pretraining, making the process
lightweight. The settings for fine-tuning the retrieval are as follows: we use the Adam optimizer
with a weight decay of 1e-3 and a batch size of 256. The total number of fine-tuning epochs is set to
20. The initial learning rate is 1e-6, with a cosine learning rate scheduler, and a warm-up strategy is
applied for the first 2k steps. The probability of random rewriting during retrieval fine-tuning p is set
to 0.6. In our experiments, the visual encoder includes two variants: Vision Transformer (ViT-B/32,
ViT-B/16, and ViT-L/14) and ResNet (RN50 and RN101). For the text encoder, we use the vanilla
Transformer from CLIP (Vaswani et al., 2017). Input images are resized to 224 × 224, and input
sequences are truncated or padded to 77 tokens.

For the prompt-pairs construction, we use GPT-4V as the MLLM. The details for constructing low-
quality/high-quality query pairs can be found in Appendix A.1. Unless otherwise specified, we use
Llama2-7b as the query rewriter. For the SFT phase, we set the learning rate to 1e-5, the batch size
to 32, and run for 10 epochs. In the DPO phase, the learning rate is set to 5e-7, with a batch size
of 16, across 5 epochs, and a rank length of 5. For the PPO phase, CLIP with ViT-B/32 is used
for reward calculation. The learning rate is set to 5e-6, with a batch size of 32, and 1 epoch of
fine-tuning. The KL coefficient β is set to 0.1. Following previous work (Radford et al., 2021), we
use recall R@h(h = 1, 5, 10) as the evaluation metric.

4.2 MAIN RESULT

We conduct evaluations of our method on two benchmark datasets, Flickr30K and MSCOCO, uti-
lizing advanced VLR dual-encoder frameworks. As shown in Table 1, we compare various query
optimization methods, analyzing the results to draw several conclusions:

Entity Enhancement Surpass Image Retrieval Enhancements: Our experiments demonstrate
that various query optimization methods enhance vision-language retrieval performance. Notably,
methods incorporating entity visual descriptions (CLIP-GPT) and entity knowledge (DetCLIP) sig-
nificantly outperform enhancements based on related images (RACLIP). We speculate that because
the description of entities and knowledge are more granular than the global information provided by

6
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Table 1: Fine-tuning results for image-text retrieval on the Flickr30K (1K) test set and MSCOCO
(5K) test set. Notations: V-Encoder: vision encoder; # PT Data: the pre-training datasets.

Methods V-Encoder # PT Data
Flickr30K(1K) MSCOCO(5K)

I2T Retrieval T2I Retrieval I2T Retrieval T2I Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP ViT-B/32 NA 64.8 85.7 92.5 49.2 79.3 86.8 43.7 73.5 82.6 32.7 63.3 75.0
DetCLIP ViT-B/32 NA 65.2 86.3 93.5 50.7 79.2 86.8 45.2 73.7 83.4 33.4 63.5 75.0

CLIP-GPT ViT-B/32 NA 66.5 88.1 93.6 51.2 80.1 87.8 46.1 74.0 83.7 34.1 63.7 75.3
RACLIP ViT-B/32 NA 65.1 86.2 93.0 50.2 79.4 87.1 45.1 73.6 82.7 33.1 63.4 74.9

LLMsRewrite ViT-B/32 NA 66.5 87.6 93.3 50.8 79.8 87.3 45.7 73.9 83.5 33.5 63.5 75.1
MGQRe ViT-B/32 NA 67.1 88.7 94.2 52.2 80.6 87.7 46.7 74.6 84.3 35.2 64.4 75.8

CLIP ViT-B/32 Laion400M 89.1 97.8 98.9 74.1 92.6 95.9 65.3 85.9 91.9 48.1 75.0 83.7
DetCLIP ViT-B/32 Laion400M 89.2 97.8 99.1 74.6 92.8 96.0 65.5 85.9 92.1 48.3 75.1 83.7

CLIP-GPT ViT-B/32 Laion400M 89.7 98.7 99.2 75.2 93.1 96.1 66.2 86.2 92.3 48.8 75.3 84.3
RACLIP ViT-B/32 Laion400M 89.2 98.0 98.9 74.4 92.8 96.0 65.3 86.1 92.1 48.5 75.2 83.8

LLMsRewrite ViT-B/32 Laion400M 89.3 98.1 99.0 74.5 92.9 96.0 65.3 86.0 91.9 48.3 75.2 84.0
MGQRe ViT-B/32 Laion400M 90.8 99.2 99.6 75.7 93.6 96.5 66.8 86.9 92.7 49.5 76.0 84.6

CoCa ViT-B/32 Laion-2B 85.5 96.5 98.7 72.0 91.2 95.4 63.9 85.6 91.0 45.6 72.1 82.2
DetCoCa ViT-B/32 Laion-2B 85.6 96.5 98.7 72.2 91.2 95.4 63.8 85.5 91.0 45.8 72.1 82.1

CoCa-GPT ViT-B/32 Laion-2B 86.2 97.0 98.8 72.2 91.6 95.3 64.3 85.7 91.0 46.0 72.2 82.3
RACoCa ViT-B/32 Laion-2B 85.8 96.6 98.8 72.1 91.2 95.3 64.1 85.6 91.1 45.7 72.1 82.0

LLMsRewrite ViT-B/32 Laion-2B 86.1 96.7 98.8 72.1 91.3 95.5 64.2 85.6 91.1 45.8 72.1 82.2
MGQRe ViT-B/32 Laion-2B 86.8 97.3 98.9 72.7 91.6 95.8 65.0 85.9 91.5 46.6 72.7 82.5

EVA-02-CLIP ViT-B/16 Merged-2B 90.8 98.7 99.2 78.9 94.7 97.0 69.1 89.2 94.0 52.6 78.5 86.8
DetEVA-02-CLIP ViT-B/16 Merged-2B 90.9 98.6 99.1 79.1 94.6 97.0 69.3 89.2 94.0 52.7 78.5 86.7

EVA-02-CLIP-GPT ViT-B/16 Merged-2B 91.1 98.7 99.2 79.3 94.7 97.1 69.4 89.3 94.3 52.6 78.6 86.8
RAEVA-02-CLIP ViT-B/16 Merged-2B 90.7 98.6 99.1 79.0 94.6 97.0 69.1 89.0 94.0 52.6 78.5 86.6

LLMsRewrite ViT-B/16 Merged-2B 91.0 98.6 99.2 79.2 94.7 97.0 69.2 89.2 94.1 52.8 78.6 86.8
MGQRe ViT-B/16 Merged-2B 91.5 98.7 99.5 79.7 95.0 97.3 69.9 89.8 94.4 53.6 79.1 87.2

images, they better capture the fine-grained cues required for text-image alignment. In VLR, visual
description of entities proves more advantageous than conceptual knowledge, because it provides
more detailed perceptual information that helps the model capture specific visual details.

MGQRe Outperforms All Existing Approaches: As shown in Table 1, our method (MGQRe)
improves the retrieve’s performance best. Compared to entity enhancement methods that provide
only entity knowledge and retrieval enhancement methods that provide global coarse-grained per-
ception, our approach can optimize fine-grained concepts within queries, covering not only entities
but also interactive and descriptive concepts. Therefore, our method displays superior performance
in multimodal retrieval tasks.

Unoptimized rewriters (LLMsRewrite) show underperformance in VLR. The main reason is that
these rewriters do not adjust based on retriever’s feedback, thus generating queries that may not
align with the retriever’s understand preferences, and may even distort the original queries’ intent.
MGQRe, learning from retriever’s preferences, identifies which expressions are more effective for
retrievers and performs targeted optimizations, thus enhancing queries’ quality.

Significant Improvements Across Different Retrievers: Further experiments on CLIP-like mod-
els, detailed in Table 1, demonstrated that models like CoCa and EVA-02-CLIP achieved significant
performance improvements on most metrics after adopting our method. This underscores our ap-
proach’s generalizability and effectiveness. Furthermore, in Appendix A.3, we show that our method
is applicable to retrievers with various vision encoders.

4.3 ABLATION STUDY

Using CLIP with ViT-B/32, pre-trained on Laion400M, as our baseline, we conducted comprehen-
sive ablation studies on MGQRe to evaluate the impact of data collection, training strategies, and
large language models on performance.

Table 2: Ablation studies on dataset collection
strategies. The Fine-tuning dataset is Flickr30k.

Methods I2T Retrieval T2I Retrieval
R@1 R@5 R@1 R@5

Baseline 89.1 97.8 74.1 92.6
Direct Generation 89.2 98.1 74.5 92.8

Feedback Enhancement 90.5 98.8 75.1 93.4
Challenge Response 90.8 99.2 75.7 93.6

Table 3: Ablation studies on training strategies.
The Fine-tuning dataset is Flickr30k.

Methods I2T Retrieval T2I Retrieval
R@1 R@5 R@1 R@5

Freeze 89.3 98.1 74.5 92.9
SFT 89.6 98.4 75.0 93.3

SFT + PRO 90.4 98.9 75.3 93.6
SFT + PRO + PPO 90.8 99.2 75.7 93.6
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4.3.1 DATA COLLECTION STRATEGIES

In this section, we evaluate different data generation strategies. As shown in Table 2, Direct Gener-
ation ignores the preferences of the retrieval model, resulting in limited performance improvements
due to the lack of task-specific tuning. Feedback Enhancement considers the retrieval model’s pref-
erences during query rewriting but fails to explore the model’s weaknesses, limiting its effective-
ness in more challenging scenarios. Challenge Response leverages MLLMs to analyze the model’s
weaknesses by focusing on difficult negative and positive samples, enabling targeted optimization
to address these shortcomings and further enhance overall performance.

4.3.2 TRAINING STRATEGIES

We conducted ablation studies on different training strategies to assess their impact on the perfor-
mance of our rewriter. The experimental results are shown in Table 3.

Initially, using only Supervised Fine-Tuning (SFT), the model demonstrated basic rewriting capa-
bilities and adapted to preliminary query optimization. However, this method had its limitations
as it relied heavily on existing data, preventing the model from fully understanding the retriever’s
fine-grained preferences and thus limiting performance improvements. By incorporating Prefer-
ence Rank Optimization (PRO), the model gained a deeper understanding of the retriever’s detailed
preferences, enabling the generation of higher-quality queries and significantly enhanced retrieval
performance. Finally, the introduction of reinforcement learning overcame the limitations of data,
allowing the model to dynamically explore and adapt to the retriever’s preferences, further improving
performance. This progression illustrates the effectiveness of layering advanced learning strategies
to significantly boost the capabilities of the query rewriter.

Table 4: Ablation studies on language mod-
els.The Fine-tuning dataset is Flickr30k.

Methods LLMs I2T Retrieval T2I Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

CLIP NA 89.1 97.8 98.9 74.1 92.6 95.9

MGQRe

Vicuna-7B 90.5 99.1 99.3 75.2 93.3 96.4
Baichuan2-7B 90.5 99.0 99.5 75.5 93.3 96.5

Qwen-7B 90.6 98.9 99.4 75.6 93.4 96.4
Llama2-7B 90.8 99.2 99.6 75.7 93.6 96.5

Llama2-13B 90.9 99.2 99.6 75.8 93.7 96.5

Table 5: Performance on various VLR datasets.

Data Methods I2T Retrieval T2I/T2V Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

MSR-VTT CLIP - - - 34.6 63.1 73.7
MGQRe - - - 35.8 63.8 74.7

CC30k CLIP 59.0 81.2 88.3 58.5 80.5 87.1
MGQRe 61.2 81.8 88.5 59.8 81.5 87.6

SBU30k CLIP 43.8 66.3 74.3 43.4 65.7 74.4
MGQRe 45.2 67.7 75.3 44.7 67.3 74.6

YFCC30k CLIP 37.4 56.3 64.3 35.8 56.6 64.6
MGQRe 39.1 56.7 64.7 36.6 57.2 64.4

4.3.3 LARGE LANGUAGE MODELS

We conduct ablation studies using various large language models as rewriters to assess the capa-
bilities and limitations of query editing techniques. As shown in Table 4, the performance across
all tested LLMs is relatively consistent, with LLama2 showing significantly better results. Impor-
tantly, the performance of LLama2-7B is comparable to that of LLama2-13B, suggesting that under
our training strategy, smaller language models are sufficiently effective for query optimization tasks
without significantly impacting efficiency. This finding highlights the potential for optimising re-
trieval efficiency without compromising the quality of queries.

4.4 TRANSFERABLE OF REWRITER

We further explore the transferability of our rewriter across various visual language retrieval datasets.
As shown in Table 5, we perform experimental validations on the video-text retrieval dataset MSR-
VTT as well as other image-text retrieval datasets. Despite the rewriter being trained on the
Flickr30K and MSCOCO datasets, it still enhances the performance of the retrievers on these differ-
ent datasets.

This result shows that the model preferences and optimisation capabilities learned by the rewriter
from a specific dataset are transferable. These capabilities can be effectively transferred to other
visual language retrieval tasks, indicating that the rewriter has broad applicability in improving the
retrieval performance of diverse visual language datasets.
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two german shepherds 
snarling at each other

two german shepherds showing 
their teeth and growling at each 

other in an aggressive stance

two females in a sitting down in a 
highly populated area

two females sitting down among a 
crowd of people in a busy area

CLIP MGQRe CLIP MGQRe

(b)(a)

Figure 3: Visualization example of text-to-image retrieval, showcasing heatmaps corresponding to
different text queries. The image inside the dashed box is the retrieved result of the query. MGQRe
optimizes user-input queries into queries that are more comprehensible to the retriever, facilitating
better alignment between the queries and the visual content of images.

4.5 VISUALIZATION ANALYSIS

To gain a deeper understanding of how MGQRe improves the matching of queries to images, we
have visually demonstrated that MGQRe helps the retriever to focus on image regions relevant to the
query semantics. We utilize the Integrated Gradients algorithm (Qi et al., 2019), which calculates
and evaluates the impact of each feature on the final prediction.

As shown in Fig 3 (a), the heatmap clearly indicates that CLIP struggles with the visual concept
of “snarling”, as it fails to match “snarling” with the corresponding visual content in the image,
leading to inaccurate retrieval results. MGQRe optimizes the query by rewriting “snarling” into a
more retriever-friendly visual description, such as “showing their teeth”. This helps the retriever
better understand the concept and focus its attention on the relevant visual content, resulting in
accurate retrieval. Similarly, Fig 3 (b) demonstrates that CLIP also has difficulty aligning the term
“populated” with its corresponding visual content. MGQRe optimizes the query into a description
that fits CLIP’s visual preferences, aiding the retriever in more accurately aligning the query with
the image content. This visualization underscores MGQRe’s effectiveness in improving retrieval
accuracy by refining queries to match the retriever’s comprehension preferences.

4.6 LIMITATIONS

While MGQRe effectively rewrites queries to align better with the preferences of the retriever, it can
occasionally introduce additional information that may act as noise in multimodal matching, poten-
tially affecting the performance of cross-modal alignment. Addressing this issue is a key direction
for future optimization. Additionally, MGQRe faces challenges in retrieval efficiency. We believe
that with the rapid advancement in large language models, the emergence of more lightweight, high-
performance language models (Hu et al., 2024) will gradually mitigate this issue.

5 CONCLUSION

In this paper, we introduce a query optimizer named MGQRe for visual-text retrieval, designed
to rewrite query concepts that are difficult for retrievers to understand into expressions that align
with their comprehension preferences. Specifically, we utilize multimodal large language models to
capture the preferences of retrievers, analyze their performance weaknesses, and iteratively optimize
to generate high-quality queries that meet these preferences. We then implement a three-phase
optimization strategy that effectively distills the retriever’s preferences into the rewriter, ensuring
that user-input queries are optimized into forms more easily understood by the retriever. Extensive
experimental results demonstrate that our method outperforms other query optimization strategies,
showcasing strong generalizability and transferability. These contributions provide valuable insights
for future research in visual-text retrieval. Future research directions could further explore how to
integrate user preferences and domain-specific knowledge into the rewriter to enrich the application
scenarios of query optimization in multimodal retrieval.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568, 2021.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX,
pp. 104–120. Springer, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on
pattern analysis and machine intelligence, 45(1):87–110, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin
Tan, Zhenye Gan, et al. Efficient multimodal large language models: A survey. arXiv preprint
arXiv:2405.10739, 2024.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International Conference on Machine Learning, pp. 5583–5594.
PMLR, 2021.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference
on Machine Learning, pp. 12888–12900. PMLR, 2022.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXX 16, pp. 121–137. Springer, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Haoyu Ma, Handong Zhao, Zhe Lin, Ajinkya Kale, Zhangyang Wang, Tong Yu, Jiuxiang Gu, Sunav
Choudhary, and Xiaohui Xie. Ei-clip: Entity-aware interventional contrastive learning for e-
commerce cross-modal retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 18051–18061, 2022a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-
end multi-grained contrastive learning for video-text retrieval. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 638–647, 2022b.

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, and Noel E
O’Connor. Enhancing clip with gpt-4: Harnessing visual descriptions as prompts. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 262–271, 2023.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
arXiv preprint arXiv:2210.07183, 2022.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing images using 1 million
captioned photographs. Advances in neural information processing systems, 24, 2011.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE international conference on computer vision, pp.
2641–2649, 2015.

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
ating customized prompts for zero-shot image classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15691–15701, 2023.

Zhongang Qi, Saeed Khorram, and Fuxin Li. Visualizing deep networks by optimizing with inte-
grated gradients. In CVPR Workshops, volume 2, pp. 1–4, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sheng Shen, Chunyuan Li, Xiaowei Hu, Yujia Xie, Jianwei Yang, Pengchuan Zhang, Zhe Gan,
Lijuan Wang, Lu Yuan, Ce Liu, et al. K-lite: Learning transferable visual models with external
knowledge. Advances in Neural Information Processing Systems, 35:15558–15573, 2022.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 18990–18998, 2024.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin, Haiteng Zhao, Yongfei Liu, Bohan Zhai,
Jianbo Yuan, Quanzeng You, and Hongxia Yang. Exploring the reasoning abilities of multimodal
large language models (mllms): A comprehensive survey on emerging trends in multimodal rea-
soning. arXiv preprint arXiv:2401.06805, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chen-Wei Xie, Jianmin Wu, Yun Zheng, Pan Pan, and Xian-Sheng Hua. Token embeddings align-
ment for cross-modal retrieval. In Proceedings of the 30th ACM International Conference on
Multimedia, pp. 4555–4563, 2022.

Chen-Wei Xie, Siyang Sun, Xiong Xiong, Yun Zheng, Deli Zhao, and Jingren Zhou. Ra-clip:
Retrieval augmented contrastive language-image pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19265–19274, 2023.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5288–5296, 2016.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15671–15680, 2022.

Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, Chunjing
Xu, and Hang Xu. Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-
world detection. arXiv preprint arXiv:2209.09407, 2022.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning
texts with visual concepts. In International Conference on Machine Learning, pp. 25994–26009.
PMLR, 2022.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12


	Introduction
	Related Work
	Vision-language retrieval
	Prompt engineering for vision-language model

	Methodology
	Dataset Construction
	Supervised Fine-tuning
	Preference Optimization
	Reinforcement Learning
	Integration of the Rewriter for VLR

	Experiments
	Experiment setting
	Datasets
	Baselines
	Implementation details

	Main result
	Ablation study
	Data Collection Strategies
	Training Strategies
	Large language models

	Transferable of Rewriter
	Visualization Analysis
	Limitations

	Conclusion
	Appendix
	The low-quality/high-quality query pairs Construction
	Dual-encoder framework CLIP
	Ablation studied on vision encoder




