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ABSTRACT

Vision-language retrieval (VLR), involving the use of text (or images) as queries
to retrieve corresponding images (or text), has been widely used in multime-
dia and computer vision tasks. However, ambiguous or complex concepts con-
tained in queries often confuse retrievers, making it difficult to effectively align
these concepts with visual content, thereby limiting their performance. Exist-
ing query optimization methods neglect the feedback of retrievers’ preferences,
thus resulting in sub-optimal performance. Inspired by the powerful ability of
Multimodal Large Language Models (MLLMs), we propose a Multimodal LLM-
Guided Query Rewriter (MGQRe) for query optimization. Specifically, MGQRe
first utilizes MLLM to explore the retriever’s weakness and perform targeted itera-
tive optimizations to capture the retriever’s expressive preferences. Subsequently,
we develop a trainable rewriter that learns this preference knowledge through a
three-step tuning strategy: supervised fine-tuning, preference learning, and re-
inforcement learning. This ensures that the queries generated by the rewriter
align with the retriever’s preferences, thereby enhancing the retriever’s perfor-
mance. Extensive VLR benchmark experiments have demonstrated the superior-
ity of MGQRe, as well as its generalizability and transferability. This work show-
cases the potential of using advanced language models to overcome the inherent
limitations in current VLR technology.

1 INTRODUCTION

Vision-language retrieval (VLR), which involves the using of text/image as queries to retrieve cor-
responding image/text, has garnered significant attention from both academia and industry. Existing
methods (Radford et al.| 2021} |L1 et al.| 2022; |Yu et al.,2022) mainly focus on how to align text and
image modalities within a shared semantic space.

Despite the progress in VLR, existing methods still face challenges on complex or ambiguous con-
cepts in queries, due to the heterogeneity of data. For example, as illustrated in Fig|l} the retriever
failed to perceive the visual features associated with the term “anticipate”, thus resulting in irrelevant
images. This confusion often leads to the retriever’s inability to accurately align these concepts with
corresponding visual features, which typically limits the performance of multimodal retrieval. To
alleviate such issues, it is expected to utilize a rewriter to optimise complex concepts in the query.
However, traditional rewriting methods struggle to effectively adapt queries based on the retriever’s
preferences, leading to suboptimal retrieval results (see Fig[I). Ensuring that the rewriter gener-
ates queries that align with the retriever’s understanding preferences poses a significant challenge.
Typically, exploring the retriever’s preferences requires extensive human analysis and repetitive iter-
ations to adapt queries, which is both time-consuming and costly. Multimodal large language models
(MLLMs) (Wang et al.l 2024} Jin et al.||2024) have demonstrated impressive analytical capabilities
for addressing complex issues. Therefore, employing MLLMs as agents to capture the retriever’s
fine-grained preferences offers an efficient and practical solution.

Based on these observations, we propose the MLLMs-Guided Query Rewriter (MGQRe) for VLR.
First, MLLMs capture the fine-grained preferences of the retriever, and a rewriter is then developed
to learn preference knowledge. Specifically, we employ MLLMs as agents that mine the retriever’s
preferences. Based on the feedback from the retriever on the query, MLLMs continuously explore
the retriever’s weaknesses and iteratively optimize the query based on these weaknesses, obtaining
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Figure 1: Comparison of different retrieval paradigms. (a) Direct retrieval and (b) traditional rewrit-
ing methods yield poor results because the retriever cannot accurately interpret the visual concept
“anticipate”. In contrast, our (c) MLLMs-Guided Query Rewriter adapts “anticipate” into a visual
description that the retriever understands better, ensuring accurate retrieval.

high-quality queries that match the retriever’s preferences. To distill the preference knowledge into
the rewriter, we design a three-step tuning strategy: starting with Supervised Fine-Tuning (SFT) for
initial warm-up, followed by Preference Rank Optimization (PRO)(Schulman et al.| 2017) to align
with the retriever’s fine-granted preferences, and concluding with Proximal Policy Optimization
(PPO)(Song et al.| to further enhance the collaboration between the rewriter and the retriever.
Through the above training strategies, MGQRe can generate high-quality queries that match the
retriever’s preferences. In summary, our contributions are as follows:

e We introduce a novel query optimizer for VLR: MLLMs-Guided Query Rewriter
(MGQRe), which refines user-input queries to better align with the preferences of the re-
triever, thereby enhancing the alignment between the queries and the visual content and
improving retrieval performance.

* We develop an automated system for constructing high-quality query datasets for VLR
tasks using MLLMs. We deploy MLLMs as agents that analyze the feedback from the
retriever to explore its weaknesses and iteratively optimize queries, ensuring that the refined
queries align with the retriever’s preferences.

* We develop a three-step learning strategy for the rewriter, consisting of Supervised Fine-
Tuning (SFT), Preference Rank Optimization (PRO), and Proximal Policy Optimization
(PPO). This strategy enables the rewriter to precisely adjust queries to fit the retriever’s
expressive preferences.

* Extensive experiments show that our method significantly outperforms other query opti-
mization methods. Additionally, our method is generalizable and transferable, performing
well across various VLR tasks.

2 RELATED WORK

2.1 VISION-LANGUAGE RETRIEVAL

In the task of VLR, the primary objective is to establish alignment between the visual and textual
modalities. Previous vision-language models can be categorized into three classes: single-stream,
double-stream, and dual-encoder models. Most of the single-stream models
et al. 2020} [Kim et al.l 2021)) perform multi-modal interaction via self-attention alignment. These
models first concatenate different modalities to produce an integrated sequence, and then perform
fine-grained interaction for multi-modal alignment using the transformer’s self-attention. Double-
stream models (Li et al 2021}, 2022} [Yang et al.| 2022} [Zeng et al, [2022)) often apply the intra-
modality processing along with a shared fusion encoder. This approach decouples the intra-modal
and cross-modal modeling processes. They perform multi-modal interaction via the transformer’s
co-attention alignment, where the query vectors are from one modality, and the key and value vec-
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tors are from the other. Due to the high demand for inference efficiency in visual language retrieval
tasks, some scholars have proposed using the dual-encoder architectures for multi-modal align-
ment through contrastive learning (Radford et al., [2021} |Xie et al., [2022; Ma et al., [2022b). In this
approach, the visual embedding and text embedding are projected into the same semantic space
to calculate similarity scores. Due to their efficient retrieval, dual-stream architectures are gaining
more and more attention in VLR.

2.2 PROMPT ENGINEERING FOR VISION-LANGUAGE MODEL

Prompt engineering has become a vital technique with the rise of large pretrained models, optimiz-
ing queries into formats comprehensible by multimodal models like CLIP. Research mainly focuses
on enhancing model understanding by incorporating additional knowledge, such as entity concepts
from WordNet (Shen et al., 2022; |Yao et al., [2022)) or domain-specific insights (Ma et al., 2022a)).
With the emergence of LLMs, studies increasingly leverage their knowledge bases for query aug-
mentation, including visual descriptions (Menon & Vondrick, [2022; |Pratt et al., |2023)) to support
text-image alignment. Some research(Xie et al., [2023) also emphasizes retrieval-enhanced tech-
niques that retrieve relevant images for cross-modal understanding. Existing approaches primarily
address image classification and object detection, these coarse-grained methods struggle with com-
plex text queries containing multiple entities and fine-grained interactions. This paper proposes a
fine-grained query optimization scheme for multimodal retrieval, aimed at improving model com-
prehension of complex queries.

3 METHODOLOGY
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Figure 2: The framework of our method. First, we construct the high-/low-quality query pairs by
the interaction of MLLMs and CLIP. Second, we conduct supervised fine-tuning (SFT) for rewriter
on the query pairs. Third, we align fine-grained preferences through preference rank optimization.
Fourth, we apply Proximal Policy Optimization (PPO) to the rewriter using designed rewards for
further enhancement. Finally, we integrate the rewriter with CLIP to perform VLR.

Given an input query, our prompt optimizer automatically rewrites it to better match the retriever’s
understanding preferences, while preserving the original intent. Fig[2] provides an overview of our
method, with the rewriter built upon a language model. First, we employ MLLMs to capture the
retriever’s preferences and gather high-quality query examples (section [3.1). These examples are
then used to perform Supervised Fine-Tuning (SFT) to prepare the rewriter (section [3.2). To refine
our understanding of the retriever’s fine-grained preferences, we implement Preference Rank Opti-
mization (section [3.3)), followed by reinforcement learning to overcome the limitations of synthetic
data (section[3.4). The trained rewriter is then integrated into the multimodal retrieval framework to
perform query optimization (section [3.3).
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3.1 DATASET CONSTRUCTION

This section outlines the collection process of data used for training the rewriter. As shown in Fig
(a.1), queries that align with the retriever’s preferences are defined as high-quality queries. The
goal of this step is to collect high-quality/low-quality query pairs with similar semantics. The data
originates from Flickr30k and MSCOCO, which contain only unpaired raw queries. Initially, we
categorize the queries into low and high quality based on the evaluation from the retriever.

As depicted in Fig 2| (a.2), for low-quality queries, we employ MLLMs as agents to generate high-
quality queries that are easier for the retriever to understand. The specific process includes four steps:
1) Candidate Recall: retrieve candidate images using low-quality queries; 2) Submission: Submit
incorrect candidates and ground truth for comparison; 3) Review: MLLMs optimize and rewrite the
erroneous concepts through chain-of-thought, analyzes the differences between recalled images and
correct images, identifies concepts that retriever failed to understand, and optimizes these deficien-
cies; 4) Feedback: Retest the rewritten queries to determine if they meet high-quality standards. This
process iterates multiple turns until we get multiple high-quality queries for each low-quality query.
In the above approach, MLLMs identify the retriever’s shortcomings more deeply by analysing hard
negative samples of the retriever, thus more accurately capturing and understanding the retrieval
model’s expression preferences.

Similarly, for high-quality queries, we blur concepts using MLLMs and simplify the rewriting of
queries with MLLMs to decrease their similarity to images, thereby generating corresponding low-
quality queries. Finally, we calculate the textual similarity (Reimers, [2019) between low and high-
quality queries and filter out examples with low similarity. Detailed implementation specifics and
prompt templates can be found in the Appendix

3.2 SUPERVISED FINE-TUNING

With the low-quality/high-quality query pairs established, we can train a query optimizer to develop
basic query optimization capabilities. A parallel query corpus consists of low-quality query  and
high-quality query y, referred to as the Dgpr. If a low-quality query = corresponds to multiple
high-quality queries, we take the highest-quality query as y. 7(-) and 6 denote the query rewriter
to be trained during SFT and its parameters, which can be any pretrained language model. We train
the rewriter by minimizing the cross-entropy loss. The training objective for SFT is to optimize the
following loss function:

Lspr(0) = —E(z,y)~Dspr Zlogw (Yely<t, z;0) (D
¥

SFT can be viewed as a warm-up phase, and thus, the effectiveness of the supervised fine-tuning
model is generally moderate. To further enhance model performance, we proceed with preference
optimization.

3.3 PREFERENCE OPTIMIZATION

To enhance the rewriter’s understanding of the model’s fine-grained conceptual preferences, we per-
formed preference optimization. This process requires constructing a dedicated preference dataset
Dpro. As described in Appendix we generate multiple high-quality queries for each low-
quality query and obtain text-image similarity scores from the retrieval system, which serve as re-
wards for preference learning. These scores allow us to rank the enhanced queries from high to low.
To minimize bias from the reward model and enhance fine-grained preference comparisons from a
global perspective, we introduce Preference Rank Optimization (PRO) based on the Bradley-Terry
model(Song et al.2024). This method guides the model to learn the ranking of rewrites according
to feedback from the retriever. According to the Bradley-Terry model, the probability of choosing
a policy is proportional to its corresponding reward. Given the partial order relation y; > 2, the
preference probability can be expressed as:

_ exp(r(y1, 7))
exp(r(y1, @) + exp(r(yz2, )

where 7(-) is the reward function, which is defined as the normalized log probability of the rewrite
generated in PRO. PRO extends pairwise partial order into general listwise partial order. The PRO

2

Ppr
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loss is expressed by the equation:

exp (WPRO({%‘ 93;9))
J

k TprRo (Yi|236)
S exp (el

k=1
Lpro(0) = —E(x,y)~Dpro Zlog 3)
=1

where T; = m and Tj = min; ; (T;) are used to measure ranking difference. k denotes the
J K3
number of candidate high-quality queries, mpro and 6 refer to the policy model and its parameters.

3.4 REINFORCEMENT LEARNING

Due to the limited datasets collected and inherent noise, relying solely on constructing query pairs
is insufficient for effectively guiding the rewriter. Consequently, we propose using reinforcement
learning to enable the rewriter to explore freely and better adapt to the retriever. Initially, we define
the rewards for reinforcement learning, focusing on the improvement in cross-modal similarity as a
measure of query quality. The reward is then defined as follows:

7“(1’, y) =20 * (Sclip(y, Ux) - Sclip(xa Um)) (4)

where s, () denotes the similarly score between query and image, v, represents the ground image
related to query z. After obtaining the predefined reward, we suggest using Proximal Policy Opti-
mization (PPO) during reinforcement learning training to enhance our retriever. The PPO algorithm
directly optimizes the expected reward:

WPPO(CU|I)]
mpro (Y|T)

Lppo(0) = —ExnDppo,y~mmol-o) [7(T,y) — B - log ©))
Following (Ziegler et al.,|2019), we adopt an adaptive KL penalty strategy with parameter 3, which
is used to prevent the policy from deviating too far from the initial distribution mpgo.

3.5 INTEGRATION OF THE REWRITER FOR VLR

In our work, we select the simple yet effective dual-encoder model CLIP as the foundational model
(a detailed introduction and training for CLIP can be found in Appendix [A.2). We incorporate the
trained rewriter into the CLIP framework, as illustrated in Fig[2| (¢). During CLIP fine-tuning, we
freeze the rewriter and randomly perform query rewriting with probability p. For inference, given
an input text query, we utilize the rewriter to generate the opted-query. This opted-query is modeled
through the text encoder to obtain text feature, which is then computed with the features of candidate
images for similarity score. Finally, images are recalled in descending order of similarity.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING
4.1.1 DATASETS

We primarily evaluate on two benchmark datasets: Flickr30k and MSCOCO, to validate its effec-
tiveness. (1) Flickr30k (Plummer et al., 2015) contains 31,000 images, each with 5 captions, and is
divided into 29K/1K/1K images for training, validation, and testing, respectively (Li et al., 2021)). (2)
MSCOCO (Lin et al.,[2014) consists of 123,287 images, also with 5 captions each, and is split into
114K/5K/5K for training, validation, and testing. To further assess the transferability of our method,
we evaluate its performance on other visual-text retrieval datasets, including (3) MSR-VTT (Xu
et al.l2016), which includes 10,000 videos with a total of 200,000 text descriptions. We utilize 9K
videos for training and evaluation on a 1K test set. Additionally, (4) SBU30k (Ordonez et al.,[2011)
contains 36,000 image-text pairs randomly sampled from SBU Captions, divided into 30K/3K/3K
for training, validation, and testing. Furthermore, we randomly sample from CC12M (Changpinyo
et al.,[2021) and YFCC15M (Thomee et al., 2016)) to obtain (5) CC30K and (6) YFCC30K. Details
on the query pair dataset constructed for the rewriter can be seen in Appendix
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4.1.2 BASELINES

We will validate our method on advanced dual-encoder retrieval models, specifically: (1)
CLIP(Radford et al.,|2021)), a powerful dual-encoder model pre-trained through contrastive learn-
ing; (2) CoCa(Yu et al.| |2022)), a framework that integrates various pre-training paradigms, utilizing
its image encoder and unimodal text decoder for retrieval; and (3) EVA-02-CLIP (Sun et al.||[2023)),
which employs novel representation learning techniques to enhance CLIP’s performance.

Our approach will be compared with current query optimization methods, including: (1) Det-
CLIP (Yao et al.,[2022)): An entity knowledge enhancement method that integrates WordNet concep-
tual knowledge into query entities. (2) CLIP-GPT (Maniparambil et al.,[2023) An entity description
enhancement scheme that incorporates visual descriptions generated by LLMs into query entities.
(3) RACLIP (Xie et al.,|2023): A retrieval augmentation approach that uses relevant images to en-
rich the query with cross-modal semantics. (4) LLMsRewrite: A description rewriting scheme that
utilizes LLMs for query optimization. We have designed templates to guide LLMs, which include
task descriptions and crafted examples.

To evaluate the effectiveness of our dataset generation strategy, we compared three dataset construc-
tion scenarios: (1) Direct Generation Strategy: Queries are generated directly based on image
content using MLLMs. (2) Feedback Enhancement Strategy: MLLMs generate queries based
on the image, then refine these queries using the in-retriever similarity score between the generated
query and the image as a metric for feedback and subsequent optimization. (3) Challenge Response
Strategy: Our implementation involves using challenging negative and positive samples from the
retriever to identify its weaknesses, allowing for continuous query adjustment and optimization.

In addition, we explore various open-source LLMs for rewriters, including Qwen-7B (Bai et al.,
2023) (“Qwen-7B-chat”), Baichuan2-7B (Yang et al., 2023) (“Baichuan2-7B-chat”), Llama (Tou-
vron et al., [2023) (“Llama2-7B-chat”), and Vicuna (Chiang et al., [2023)) (“vicuna-7B-v1.3”).

4.1.3 IMPLEMENTATION DETAILS

We fine-tune a pre-trained retrieval (e.g., CLIP) directly without the pretraining, making the process
lightweight. The settings for fine-tuning the retrieval are as follows: we use the Adam optimizer
with a weight decay of 1e-3 and a batch size of 256. The total number of fine-tuning epochs is set to
20. The initial learning rate is 1e-6, with a cosine learning rate scheduler, and a warm-up strategy is
applied for the first 2k steps. The probability of random rewriting during retrieval fine-tuning p is set
to 0.6. In our experiments, the visual encoder includes two variants: Vision Transformer (ViT-B/32,
ViT-B/16, and ViT-L/14) and ResNet (RN50 and RN101). For the text encoder, we use the vanilla
Transformer from CLIP (Vaswani et al.l 2017). Input images are resized to 224 x 224, and input
sequences are truncated or padded to 77 tokens.

For the prompt-pairs construction, we use GPT-4V as the MLLM. The details for constructing low-
quality/high-quality query pairs can be found in Appendix Unless otherwise specified, we use
Llama2-7b as the query rewriter. For the SFT phase, we set the learning rate to le-5, the batch size
to 32, and run for 10 epochs. In the DPO phase, the learning rate is set to Se-7, with a batch size
of 16, across 5 epochs, and a rank length of 5. For the PPO phase, CLIP with ViT-B/32 is used
for reward calculation. The learning rate is set to 5e-6, with a batch size of 32, and 1 epoch of
fine-tuning. The KL coefficient f is set to 0.1. Following previous work (Radford et al., 2021), we
use recall R@h(h = 1,5, 10) as the evaluation metric.

4.2 MAIN RESULT

We conduct evaluations of our method on two benchmark datasets, Flickr30K and MSCOCO, uti-
lizing advanced VLR dual-encoder frameworks. As shown in Table I} we compare various query
optimization methods, analyzing the results to draw several conclusions:

Entity Enhancement Surpass Image Retrieval Enhancements: Our experiments demonstrate
that various query optimization methods enhance vision-language retrieval performance. Notably,
methods incorporating entity visual descriptions (CLIP-GPT) and entity knowledge (DetCLIP) sig-
nificantly outperform enhancements based on related images (RACLIP). We speculate that because
the description of entities and knowledge are more granular than the global information provided by
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Table 1: Fine-tuning results for image-text retrieval on the Flickr30K (1K) test set and MSCOCO
(5K) test set. Notations: V-Encoder: vision encoder; # PT Data: the pre-training datasets.

Flickr30K(1K) MSCOCO(5K)
Methods V-Encoder  # PT Data I2T Retrieval T2I Retrieval 12T Retrieval T2I Retrieval
R@] R@5 R@I0|R@]l R@5 R@I0| R@] R@5 R@I10|R@]l R@5 R@I0

CLIP ViT-B/32 NA 648 857 925 492 793 868 437 735 826 327 633 750
DetCLIP ViT-B/32 NA 652 863 935 507 792 868 452 737 834 334 635 750
CLIP-GPT ViT-B/32 NA 66.5 88.1 93.6 512 80.1 878 46.1 740 837 341 637 753
RACLIP ViT-B/32 NA 65.1 862 93.0 502 794 87.1 451 736 827 33.1 634 749
LLMsRewrite ViT-B/32 NA 66.5 87.6 933 50.8 79.8 873 457 739 835 335 635 751
MGQRe ViT-B/32 NA 67.1 88.7 942 522 806 877 467 74.6 843 352 644 758
CLIP ViT-B/32  Laion400M | 89.1 97.8 989 741 926 959 653 859 919 481 750 837
DetCLIP ViT-B/32  Laion400M | 89.2 97.8  99.1 746 928 96.0 655 859 921 483 751 837
CLIP-GPT ViT-B/32  Laion400M | 89.7 98.7 99.2 752 931 96.1 66.2 862 923 488 753 843
RACLIP ViT-B/32  Laion400M | 89.2 98.0  98.9 744 928 96.0 653 86.1 92.1 485 752 838
LLMsRewrite ViT-B/32  Laion400M | 89.3 98.1  99.0 745 929 96.0 653 860 919 483 752 840
MGQRe ViT-B/32  Laion400M | 90.8 99.2  99.6 757 936 96.5 66.8 869 92.7 495 76.0 84.6
CoCa ViT-B/32 Laion-2B 855 965 987 720 912 954 639 856 910 456 721 822
DetCoCa ViT-B/32 Laion-2B 85.6 965 987 722 912 954 638 855 91.0 458 72.1 821
CoCa-GPT ViT-B/32 Laion-2B 862 97.0 988 722 916 953 643 857 910 460 722 823
RACoCa ViT-B/32 Laion-2B 858 96.6 988 72.1 912 953 64.1 856 9.1 457 721 820
LLMsRewrite ViT-B/32 Laion-2B 86.1 96.7 988 72.1 913 955 642 856 9.1 458 721 822
MGQRe ViT-B/32 Laion-2B 86.8 97.3 989 727 916 958 650 859 915 46.6 727 825
EVA-02-CLIP ViT-B/16 Merged-2B | 90.8 98.7 99.2 789 947 97.0 69.1 892 940 526 785 868
DetEVA-02-CLIP  ViT-B/16 Merged-2B | 90.9 98.6 99.1 79.1 946 97.0 693 89.2 940 527 785  86.7
EVA-02-CLIP-GPT  ViT-B/16 Merged-2B | 91.1 987 99.2 793 947 971 694 893 943 526 786 868
RAEVA-02-CLIP  ViT-B/16 Merged-2B | 90.7 98.6 99.1 79.0 946 97.0 69.1 89.0 94.0 526 785 86.6
LLMsRewrite ViT-B/16 Merged-2B | 91.0 98.6 99.2 792 947 970 692 892 941 528 78,6 86.8
MGQRe ViT-B/16 Merged-2B | 91.5 98.7 99.5 797 950 973 699 898 944 536 791 872

images, they better capture the fine-grained cues required for text-image alignment. In VLR, visual
description of entities proves more advantageous than conceptual knowledge, because it provides
more detailed perceptual information that helps the model capture specific visual details.

MGQRe Outperforms All Existing Approaches: As shown in Table |1} our method (MGQRe)
improves the retrieve’s performance best. Compared to entity enhancement methods that provide
only entity knowledge and retrieval enhancement methods that provide global coarse-grained per-
ception, our approach can optimize fine-grained concepts within queries, covering not only entities
but also interactive and descriptive concepts. Therefore, our method displays superior performance
in multimodal retrieval tasks.

Unoptimized rewriters (LLMsRewrite) show underperformance in VLR. The main reason is that
these rewriters do not adjust based on retriever’s feedback, thus generating queries that may not
align with the retriever’s understand preferences, and may even distort the original queries’ intent.
MGQRe, learning from retriever’s preferences, identifies which expressions are more effective for
retrievers and performs targeted optimizations, thus enhancing queries’ quality.

Significant Improvements Across Different Retrievers: Further experiments on CLIP-like mod-
els, detailed in Table[I] demonstrated that models like CoCa and EVA-02-CLIP achieved significant
performance improvements on most metrics after adopting our method. This underscores our ap-
proach’s generalizability and effectiveness. Furthermore, in Appendix[A.3] we show that our method
is applicable to retrievers with various vision encoders.

4.3 ABLATION STUDY

Using CLIP with ViT-B/32, pre-trained on Laion400M, as our baseline, we conducted comprehen-
sive ablation studies on MGQRe to evaluate the impact of data collection, training strategies, and
large language models on performance.

Table 2: Ablation studies on dataset collection Table 3: Ablation studies on training strategies.
strategies. The Fine-tuning dataset is Flickr30k. The Fine-tuning dataset is Flickr30k.

12T Retrieval | T2I Retrieval 12T Retrieval | T2I Retrieval
Methods R@I R@5 | R@I R@S5 Methods R@I R@5 | R@l R@5
Baseline 89.1 97.8 | 741 92,6 Freeze 893 981 | 745 929

Direct Generation 892 981 | 745 9238 SFT 89.6 984 | 750 933
Feedback Enhancement | 90.5 988 | 75.1 934 SFT + PRO 904 989 | 753 93.6
Challenge Response 90.8 99.2 [ 757 93.6 SFT+PRO+PPO | 90.8 99.2 | 757 93.6
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4.3.1 DATA COLLECTION STRATEGIES

In this section, we evaluate different data generation strategies. As shown in Table 2] Direct Gener-
ation ignores the preferences of the retrieval model, resulting in limited performance improvements
due to the lack of task-specific tuning. Feedback Enhancement considers the retrieval model’s pref-
erences during query rewriting but fails to explore the model’s weaknesses, limiting its effective-
ness in more challenging scenarios. Challenge Response leverages MLLMs to analyze the model’s
weaknesses by focusing on difficult negative and positive samples, enabling targeted optimization
to address these shortcomings and further enhance overall performance.

4.3.2 TRAINING STRATEGIES

We conducted ablation studies on different training strategies to assess their impact on the perfor-
mance of our rewriter. The experimental results are shown in Table

Initially, using only Supervised Fine-Tuning (SFT), the model demonstrated basic rewriting capa-
bilities and adapted to preliminary query optimization. However, this method had its limitations
as it relied heavily on existing data, preventing the model from fully understanding the retriever’s
fine-grained preferences and thus limiting performance improvements. By incorporating Prefer-
ence Rank Optimization (PRO), the model gained a deeper understanding of the retriever’s detailed
preferences, enabling the generation of higher-quality queries and significantly enhanced retrieval
performance. Finally, the introduction of reinforcement learning overcame the limitations of data,
allowing the model to dynamically explore and adapt to the retriever’s preferences, further improving
performance. This progression illustrates the effectiveness of layering advanced learning strategies
to significantly boost the capabilities of the query rewriter.

Table 4: Ablation studies on language mod- Table 5: Performance on various VLR datasets.
els.The Fine-tuning dataset is Flickr30k.

Data Methods 12T Retrieval TZI/TZVV Retrieval

I2T Retrieval T2I Retrieval CLIP Rel Res Rel0 3R4@6] 23@]5 7Rg@7] 0
Methods LLMs R@l R@5 R@I0|R@l R@5 R@I0 MSRVTT | yicope | - _ _ 358 638 747
CLIP NA 89.1 97.8 989 741 926 959 CLIP 500 812 883 585 80.5 87.1
Vicona7B [ 905 99.1 993 | 752 933 964 CC30k | NiGQRe | 612 818 885 | 598 815 876
Baichuan2-7B | 90.5 99.0 99.5 | 755 933 965 CLIP | 438 663 743 |44 657 744
MGQRe | Qwen7B | 90.6 989 994 |756 934 964 SBUSOK | NiGQRe | 452 677 753 | 447 673 746
Llama2-7B | 908 992 99.6 | 757 936 965 Vrccaon |CLP [ 374 563 643 | 358 566 646
Llama2-13B | 90.9 992 996 | 758 937 96.5 30k | MGQRe | 39.1 567 647 | 366 572 644

4.3.3 LARGE LANGUAGE MODELS

We conduct ablation studies using various large language models as rewriters to assess the capa-
bilities and limitations of query editing techniques. As shown in Table {] the performance across
all tested LLMs is relatively consistent, with LLama2 showing significantly better results. Impor-
tantly, the performance of LLama2-7B is comparable to that of LLama2-13B, suggesting that under
our training strategy, smaller language models are sufficiently effective for query optimization tasks
without significantly impacting efficiency. This finding highlights the potential for optimising re-
trieval efficiency without compromising the quality of queries.

4.4 TRANSFERABLE OF REWRITER

We further explore the transferability of our rewriter across various visual language retrieval datasets.
As shown in Table[5] we perform experimental validations on the video-text retrieval dataset MSR-
VTT as well as other image-text retrieval datasets. Despite the rewriter being trained on the
Flickr30K and MSCOCO datasets, it still enhances the performance of the retrievers on these differ-
ent datasets.

This result shows that the model preferences and optimisation capabilities learned by the rewriter
from a specific dataset are transferable. These capabilities can be effectively transferred to other
visual language retrieval tasks, indicating that the rewriter has broad applicability in improving the
retrieval performance of diverse visual language datasets.
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Figure 3: Visualization example of text-to-image retrieval, showcasing heatmaps corresponding to
different text queries. The image inside the dashed box is the retrieved result of the query. MGQRe
optimizes user-input queries into queries that are more comprehensible to the retriever, facilitating
better alignment between the queries and the visual content of images.

4.5 VISUALIZATION ANALYSIS

To gain a deeper understanding of how MGQRe improves the matching of queries to images, we
have visually demonstrated that MGQRe helps the retriever to focus on image regions relevant to the
query semantics. We utilize the Integrated Gradients algorithm 2019), which calculates
and evaluates the impact of each feature on the final prediction.

As shown in Fig 3] (a), the heatmap clearly indicates that CLIP struggles with the visual concept
of “snarling”, as it fails to match “snarling” with the corresponding visual content in the image,
leading to inaccurate retrieval results. MGQRe optimizes the query by rewriting “snarling” into a
more retriever-friendly visual description, such as “showing their teeth”. This helps the retriever
better understand the concept and focus its attention on the relevant visual content, resulting in
accurate retrieval. Similarly, Fig[3](b) demonstrates that CLIP also has difficulty aligning the term
“populated” with its corresponding visual content. MGQRe optimizes the query into a description
that fits CLIP’s visual preferences, aiding the retriever in more accurately aligning the query with
the image content. This visualization underscores MGQRe’s effectiveness in improving retrieval
accuracy by refining queries to match the retriever’s comprehension preferences.

4.6 LIMITATIONS

While MGQRe effectively rewrites queries to align better with the preferences of the retriever, it can
occasionally introduce additional information that may act as noise in multimodal matching, poten-
tially affecting the performance of cross-modal alignment. Addressing this issue is a key direction
for future optimization. Additionally, MGQRe faces challenges in retrieval efficiency. We believe
that with the rapid advancement in large language models, the emergence of more lightweight, high-

performance language models 2024) will gradually mitigate this issue.

5 CONCLUSION

In this paper, we introduce a query optimizer named MGQRe for visual-text retrieval, designed
to rewrite query concepts that are difficult for retrievers to understand into expressions that align
with their comprehension preferences. Specifically, we utilize multimodal large language models to
capture the preferences of retrievers, analyze their performance weaknesses, and iteratively optimize
to generate high-quality queries that meet these preferences. We then implement a three-phase
optimization strategy that effectively distills the retriever’s preferences into the rewriter, ensuring
that user-input queries are optimized into forms more easily understood by the retriever. Extensive
experimental results demonstrate that our method outperforms other query optimization strategies,
showcasing strong generalizability and transferability. These contributions provide valuable insights
for future research in visual-text retrieval. Future research directions could further explore how to
integrate user preferences and domain-specific knowledge into the rewriter to enrich the application
scenarios of query optimization in multimodal retrieval.
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