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Abstract

Traditional studies emphasize the significance of
context information in improving matting per-
formance. Consequently, deep learning-based
matting methods delve into designing pooling
or affinity-based context aggregation modules to
achieve superior results. However, these mod-
ules cannot well handle the context scale shift
caused by the difference in image size during
training and inference, resulting in matting per-
formance degradation. In this paper, we revisit
the context aggregation mechanisms of matting
networks and find that a basic encoder-decoder
network without any context aggregation mod-
ules can actually learn more universal context ag-
gregation, thereby achieving higher matting per-
formance compared to existing methods. Build-
ing on this insight, we present AEMatter, a mat-
ting network that is straightforward yet very ef-
fective. AEMatter adopts a Hybrid-Transformer
backbone with appearance-enhanced axis-wise
learning (AEAL) blocks to build a basic network
with strong context aggregation learning capa-
bility. Furthermore, AEMatter leverages a large
image training strategy to assist the network in
learning context aggregation from data. Exten-
sive experiments on five popular matting datasets
demonstrate that the proposed AEMatter outper-
forms state-of-the-art matting methods by a large
margin. The source code is available at https:
//github.com/aipixel/AEMatter.
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Figure 1. Illustration of a basic matting network and context aggre-
gation modules. (a) The basic matting network uses an encoder to
extract context features from inputs, and a decoder to predict alpha
mattes. Our AEMatter also follows this scheme. (b) Pooling-based
context aggregation module uses pooling operations to aggregate
contexts from surrounding regions. (c) Affinity-based context ag-
gregation module uses affinity operations to aggregate contexts
from globally related regions.

1. Introduction
Natural image matting is a classic problem that involves es-
timating the alpha matte of the foreground in a given image.
This technology has numerous real-world applications, such
as image editing (Chen et al., 2009; 2018) and film post-
production (Gong et al., 2015; Wang et al., 2021). Formally,
a given image I can be represented as a combination of a
foreground F and background B as

Ii = αiFi + (1− αi)Bi (1)

where αi is the alpha matte at pixel i. Therefore, matting
involves the challenge of regressing alpha matte α based on
image I . This process not only necessitates distinguishing
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between foreground and background but also determining
the weights of the foreground, making it an intricate task.

To address the matting challenge, early researchers (Berman
et al., 1998; Ruzon & Tomasi, 2000; Grady & Westermann,
2005; Levin et al., 2008) explore to estimate alpha mattes
based on location and color similarity or by propagating
color information within a local region. To improve mat-
ting performance, context aggregation technologies, such
as global sampling or non-local propagation, are developed
to leverage context information away from the foreground
boundaries. Recently, deep learning-based methods (Xu
et al., 2017; Lu et al., 2022) employ basic encoder-decoder
networks to extract context features from input data and
estimate alpha mattes, as depicted in Figure 1(a). Due
to the formidable learning capability of neural networks,
these methods outperform traditional matting methods by
a substantial margin. To further improve prediction accu-
racy, researchers emulate traditional methods in designing
context aggregation modules to effectively exploit context
information (Li & Lu, 2020; Forte & Pitié, 2020). These
modules adopt pooling or affinity based operations, as il-
lustrated in Figures 1(b) and 1(c), to aggregate context in-
formation. However, it is rarely acknowledged that these
modules cannot well handle the context scale shift caused
by the difference in image size during training and inference,
resulting in matting performance degradation.

In this paper, we revisit the context aggregation mecha-
nisms of matting networks to inspire future research on
high-performance matting methods. Specifically, we first
evaluate existing matting networks, revealing that networks
with context aggregation modules usually exhibit more er-
rors when inferring on larger images, compared to networks
without such modules. This observation underscores that
while context aggregation modules can effectively aggre-
gate contexts, their sensitivity to context scale restricts
their universality. Subsequently, our assessment extends
to basic encoder-decoder networks, where we observe their
impressive performance. These results suggest that basic
networks possess the capability to aggregate contexts for
high-performance matting. Further exploration reveals that
enhancing context aggregation capability can be achieved
through training with large image patches and incorporating
network layers with a larger receptive field. Building on
these insights, we introduce AEMatter, a matting network
that is both simpler and more powerful than existing meth-
ods. AEMatter adopts a Hybrid-Transformer backbone and
integrates appearance-enhanced axis-wise learning (AEAL)
blocks to build a basic network with strong context aggrega-
tion learning capability. Furthermore, AEMatter employs
a large image training strategy to facilitate the network in
learning context aggregation. Extensive experiments on five
matting datasets demonstrate that AEMatter outperforms
state-of-the-art methods by a large margin.

To summarize, the contributions of this paper are as follows:

• We pioneer an experimental analysis to evaluate the
effectiveness and mechanisms of context aggregation
modules within existing matting networks. Our find-
ings reveal that while context aggregation modules can
effectively aggregate contexts, their sensitivity to the
context scale restricts their universality.

• We empirically find that basic encoder-decoder mat-
ting networks can learn to aggregate contexts for high-
performance matting. Moreover, we demonstrate that
this capability can be enhanced through training with
large image patches and the adoption of network layers
with a larger receptive field.

• We introduce AEMatter, a straightforward yet effec-
tive matting network that expands the receptive field
with appearance-enhanced axis-wise learning (AEAL)
blocks and is trained using large image patches. Experi-
mental results demonstrate that AEMatter significantly
outperforms state-of-the-art methods.

2. Related Work
Traditional matting methods. Traditional matting methods
can be categorized into two approaches: sampling-based
methods and propagation-based methods. Sampling-based
methods involve sampling candidate foreground and back-
ground colors for pixels in unknown regions to estimate
the alpha matte. Bayesian Matting(Chuang et al., 2001)
models foreground and background colors with a Gaussian
distribution and incorporates spatial location information to
enhance accuracy. Global Matting (He et al., 2011) takes
a different approach by sampling pixels in all known re-
gions to prevent information loss and improve robustness.
Propagation-based methods rely on the assumption that fore-
ground and background colors exhibit smoothness in local
regions for alpha matte estimation. Poisson Matting (Sun
et al., 2004) utilizes boundary information from trimap to
solve the Poisson equation, making it capable of estimating
the alpha matte even with a rough trimap. Closed-form mat-
ting (Levin et al., 2008) introduces a color-line assumption
and provides a closed-form solution for estimation.

Deep learning-based matting methods. Deep learning-
based methods train the networks on image matting datasets
to estimate the alpha matte. Early methods (Xu et al., 2017;
Lu et al., 2022) typically employ a basic encoder-decoder
network for matting. DIM (Xu et al., 2017) introduced a
refinement module to the decoder to improve the perfor-
mance. IndexNet (Lu et al., 2022) retains the indices of
the downsampled features for improving the gradient accu-
racy. Recent advancements in deep image matting methods
have designed pooling-based or affinity-based context ag-
gregation modules to refine context features and adopt other
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Figure 2. Inference Patch Size vs Prediction Errors. As the in-
ference patch size increases, the prediction errors of the compared
matting methods first decrease and then show different trends.

techniques to improve performance. Pooling-based meth-
ods (Forte & Pitié, 2020; Yu et al., 2021a; Sun et al., 2021;
Liu et al., 2021a; Park et al., 2022; Cai et al., 2022) use aver-
age pooling to aggregate contexts from surrounding regions
for context feature refinement. FBAMatting (Forte & Pitié,
2020) adopts pyramid pooling module (PPM) (Zhao et al.,
2017) and introduces the groupnorm (Wu & He, 2018) and
weight standardization (Qiao et al., 2019) tricks to improve
the matting performance. MGMatting (Yu et al., 2021a)
adopts ASPP and designs a progressive refinement decoder
to estimate fine alpha mattes from coarse segmentation. Mat-
teFormer (Park et al., 2022) proposes a trimap-guided token
pooling module and adopts the Swin-Tiny (Liu et al., 2021c)
backbone to improve the prediction. Affinity-based meth-
ods (Li & Lu, 2020; Yu et al., 2021; Yu et al., 2021b; Dai
et al., 2022) use the masked correlation to construct an affin-
ity matrix and enhance the context features with the contexts
from globally related regions. GCAMatting (Li & Lu, 2020)
adopts the guided context attention module to improve the
prediction in the transparent region. TIMI-Net (Liu et al.,
2021b) proposes a tripartite information module and multi-
branch architecture to improve predictions.

3. Empirical Study
In this section, we perform experimental analyses on exist-
ing matting networks and basic encoder-decoder matting
networks to explore the context aggregation mechanisms of
matting networks and identify the key factors contributing
to the performance of matting networks.

3.1. Exploring Existing Matting Networks

We assess the performance and robustness of existing mat-
ting networks, observing that both the encoder-decoder and
the context aggregation module within these networks can
effectively aggregate contexts for matting. Nevertheless, the
sensitivity of context aggregation modules to context scale
restricts their universality.

Table 1. Comparison of state-of-the-art matting methods trained
on Adobe Composition-1K using image patches of different sizes.

Method Patch Size SAD MSE Grad Conn

IndexNet (Lu et al., 2022) 256 38.52 8.74 18.02 36.43
IndexNet (Lu et al., 2022) 512 33.64 7.05 14.35 30.21
IndexNet (Lu et al., 2022) 768 31.12 6.40 12.83 27.63
IndexNet (Lu et al., 2022) 1024 30.91 6.73 13.72 27.17

FBAMatting (Forte & Pitié, 2020) 256 43.18 10.41 21.13 42.39
FBAMatting (Forte & Pitié, 2020) 512 33.36 7.26 15.75 29.84
FBAMatting (Forte & Pitié, 2020) 768 29.89 5.73 14.05 26.18
FBAMatting (Forte & Pitié, 2020) 1024 30.76 5.74 15.19 27.03

MatteFormer (Park et al., 2022) 256 28.52 5.51 12.00 24.06
MatteFormer (Park et al., 2022) 512 23.61 3.78 9.23 18.52
MatteFormer (Park et al., 2022) 768 22.78 3.59 8.38 17.50
MatteFormer (Park et al., 2022) 1024 23.68 3.62 8.81 18.66

Patch-based Inference. Existing matting networks usually
include an encoder-decoder network with a context aggre-
gation module. The context aggregation modules, built with
hard-crafted structures, are considered to exhibit better con-
text aggregation capability across images of various sizes
compared to the encoder-decoder network. To validate this
understanding, we conduct a patch-based inference evalu-
ation for existing matting networks. We evaluate existing
matting methods, including IndexNet (Lu et al., 2022) with-
out a context aggregation module and GCAMatting (Li &
Lu, 2020), TIMI-Net (Liu et al., 2021b), FBAMatting (Forte
& Pitié, 2020), and MatteFormer (Park et al., 2022) with
a context aggregation module. The evaluation was con-
ducted on image patches of varying sizes, ranging from
256 × 256, 512 × 512, 768 × 768, and 1024 × 1024, and
on the whole images. As the results summarized in Fig-
ure 2, the IndexNet method without context aggregation
modules exhibits a monotonically decreasing error trend. In
contrast, the matting methods with context aggregation mod-
ules experience a reduction in errors initially as the patch
size increases, followed by a subsequent increase or stabi-
lization. This observation contradicts our understanding and
suggests that both the encoder-decoder network and context
aggregation modules help aggregate contexts. However, it
is evident that context aggregation modules are highly sensi-
tive to the variations in context scale due to the differences
in image sizes between the training and inference phases.
This sensitivity proves detrimental to the performance of
matting networks employing such modules.

Patch-based Training. Matting networks learn to aggregate
context information from the data, during the training phase.
The context aggregation modules in the network, with a
larger receptive field compared to the network layers in
the encoder-decoder, are believed to enhance the utilization
of context information for better predictions. To validate
this understanding, we evaluate matting networks with and
without context aggregation modules that are trained on
image patches of different sizes. Specifically, we evaluated
IndexNet without a context aggregation module, and FBA-
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Figure 3. Trimap Dilation Distance vs Prediction Error. Note
that, * denotes the network does not incorporate context aggrega-
tion modules. As the trimap dilation distance increases, the predic-
tion errors (MSE) of all compared matting methods increase.

Matting as well as MatteFormer with a context aggregation
module. All compared methods are first trained on image
patches with sizes of 256 × 256, 512 × 512, 768 × 768,
and 1024× 1024, and then evaluated on the validation set.
Note that, we train more epochs for those networks that are
trained on smaller image patches. The results are summa-
rized in Table 1. Remarkably, we a decrease in error for
all networks with an increase in patch size, signifying the
advantageous impact of larger training data sizes on matting
networks. Furthermore, the performance of FBAMatting
and MatteFormer, both having context aggregation modules,
does not show further improvement beyond the training im-
age sizes specified in their papers, which suggests that the
context aggregation modules are limited by manually tuned
designs, thereby restricting their universality.

Robustness to Coarse Trimap. Recent advancements in
matting research (Yu et al., 2021a; Dai et al., 2022) under-
score the importance of robustness to coarse trimaps as a
critical performance metric. To assess the impact of context
aggregation modules on handling coarse trimap scenarios,
we evaluate existing state-of-the-art matting methods, in-
cluding GCAMatting, FBAMatting, and MatterFormer, on a
modified Adobe Composition-1K dataset featuring trimaps
with varying dilation distances. The trimap annotations
of this dataset are generated by applying morphological
erosion and dilation operations to the ground truth. Addi-
tionally, we evaluate the network variants without context
aggregation modules. The network variants are trained on
1024 × 1024 image patches. In Figure 3, we present the
results of compared methods, where * denotes network vari-
ants without context aggregation modules. As depicted in
the figure, the performance trend of all matting networks
consistently degrades as the dilation distance increases, sug-

Table 2. Comparison of the basic matting networks with state-of-
the-art matting methods on Adobe Composition-1K. * denotes the
backbone adopts the dilated convolution trick.

Method Backbone SAD MSE Grad Conn

IndexNet (Lu et al., 2022) MobileNet 45.80 13.00 25.90 43.70
BasicNet (Ours) MobileNet 30.91 6.73 13.72 27.17

GCAMatting (Li & Lu, 2020) ResNet-34 35.28 9.00 16.90 32.50
A2UNet (Dai et al., 2021) ResNet-34 32.10 7.80 16.33 29.00
TIMI-Net (Liu et al., 2021b) ResNet-34 29.08 6.00 11.50 25.36
BasicNet (Ours) ResNet-34 28.08 5.06 11.39 24.32

SIM (Sun et al., 2021) ResNet-50* 28.00 5.80 10.8 24.80
FBAMatting (Forte & Pitié, 2020) ResNet-50* 26.40 5.40 10.6 21.50
BasicNet (Ours) ResNet-50 23.82 4.27 8.08 19.02

Transmatting (Cai et al., 2022) Swin-Tiny 26.83 5.22 10.62 22.14
MatteFormer (Park et al., 2022) Swin-Tiny 23.80 4.03 8.68 18.90
BasicNet (Ours) Swin-Tiny 19.72 2.97 6.27 14.43

gesting that the robustness to coarse trimaps is correlated
with the encoder-decoder architecture rather than the pres-
ence of context aggregation modules. Furthermore, matting
methods with context aggregation modules do not outper-
form basic networks without such modules, further high-
lighting their limited universality due to the sensitivity of
context aggregation modules to context scale.

3.2. Exploring Basic Matting Networks

Based on the above experiments, we observe that the
encoder-decoder component in matting networks is less
sensitive to context scale compared to the context aggrega-
tion modules, indicating better universality. To explore the
feasibility of building basic matting networks using encoder-
decoder, we delve into evaluating basic encoder-decoder
networks with various configurations.

Performance of Basic Matting Networks. We first evalu-
ate the performance of the basic encoder-decoder matting
network without context aggregation modules. Specifically,
we adopt the MobileNet (Sandler et al., 2018), ResNet-
34 (He et al., 2016), ResNet-50 (He et al., 2016), and Swin-
Tiny (Liu et al., 2021c) backbones to construct basic matting
networks without any context aggregation modules. Note
that, we simply adopt IndexNet as the MobileNet based ba-
sic matting network. Then, we follow the training pipeline
of TIMI-Net to train these basic matting networks on image
patches with the size of 1024× 1024. Finally, we compare
these basic networks with state-of-the-art networks includ-
ing, IndexNet, GCAMatting, FBAMatting, A2UNet (Dai
et al., 2021), TIMI-Net, FBAMAtting, and MatteFormer.
As shown in Table 2, the basic matting networks (referred
to as BasicNet) outperform state-of-the-art methods, which
suggests the feasibility of building basic matting networks
using encoder-decoder. Furthermore, the Swin-Tiny and
ResNet-50 based networks outperform the MobileNet and
ResNet-34 based networks, which suggests that basic mat-
ting networks with a larger receptive field may learn better
context aggregation to achieve higher performance.
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Figure 4. Visualization of the receptive field of matting networks
trained on image patches of different sizes. (a) Untrained network.
(b) Network trained on 256 × 256 patches. (c) Network trained
on 512× 512 patches. (d) Network trained on 768× 768 patches.
(e) Network trained on 1024× 1024 patches.

Table 3. Experiment on the training image patch sizes.
Backbone Patch Size SAD MSE Grad Conn

Resnet-34 (He et al., 2016) 256 41.74 12.51 22.51 40.14
Resnet-34 (He et al., 2016) 512 33.16 7.08 15.27 29.80
Resnet-34 (He et al., 2016) 768 27.70 5.41 11.23 23.89
Resnet-34 (He et al., 2016) 1024 28.08 5.06 11.39 24.32

Swin-Tiny (Liu et al., 2021c) 256 27.99 5.30 11.23 23.96
Swin-Tiny (Liu et al., 2021c) 512 22.42 3.72 7.46 17.54
Swin-Tiny (Liu et al., 2021c) 768 20.37 2.96 6.55 16.89
Swin-Tiny (Liu et al., 2021c) 1024 19.72 2.97 6.27 14.43

Training Image Patch Sizes. In our previous experiments
on existing matting methods, we observe that matting net-
works trained with larger image patches may achieve better
performance. To explore whether basic matting networks
can benefit from large training images, we train the ResNet-
34 (He et al., 2016) and Swin-Tiny (Liu et al., 2021c) based
basic matting networks with image patches of various sizes,
including 256×256, 512×512, 768×768, and 1024×1024.
Subsequently, we evaluate the performance of these net-
works. The results, presented in Table 3, confirm that the
performance of matting networks improves with larger train-
ing image patches, providing empirical backing for our hy-
pothesis. To delve deeper into the impact of training image
patch sizes on matting networks, we employ the methodol-
ogy proposed by Luo et al.(Luo et al., 2016) to visualize
the effective receptive field of ResNet-34 based networks
trained on image patches of different sizes using gradient
feedback, as shown in Figure4. The visualization demon-
strates that basic matting networks can learn enhanced con-
text aggregation from large image patches.

Receptive Field of Network Layers. In our assessment of
basic matting networks, we observe a positive correlation
between larger receptive fields and improved network per-
formance. This observation leads us to hypothesize that the
context aggregation capability of a network is positively cor-

Table 4. Experiment on the convolution kernel sizes.
Backbone Kernel Size SAD MSE Grad Conn

Resnet-34 (He et al., 2016) 1× 1 31.28 6.14 13.41 28.05
Resnet-34 (He et al., 2016) 3× 3 28.08 5.06 11.39 24.32
Resnet-34 (He et al., 2016) 5× 5 26.72 4.74 10.08 22.75
Resnet-50 (He et al., 2016) 1× 1 28.70 5.79 10.96 24.98
Resnet-50 (He et al., 2016) 3× 3 23.82 4.27 8.08 19.02
Resnet-50 (He et al., 2016) 5× 5 23.34 3.92 7.42 18.89

related with its receptive field size. To verify this hypothesis,
we compare the performance of basic matting networks with
different kernel sizes. Specifically, we build basic matting
networks with ResNet-34 and ResNet-50 backbones. Then,
we replace half of 3×3 convolutions in these networks with
1× 1 convolutions and 5× 5 convolutions to control the re-
ceptive field. Finally, we evaluate the modified networks and
summarize the results in Table 4. The results indicate that
matting networks with larger convolution kernels achieve
better performance, providing evidence that supports our
hypothesis that networks with larger receptive fields exhibit
enhanced context aggregation capability.

3.3. Experimental Findings

Based on the above results, we distill two insights to help
design effective matting networks: (1). Due to manual de-
signs, context aggregation modules are sensitive to changes
in context scale, leading to a lack of universality. (2). Basic
encoder-decoder networks possess the capability to learn
universal context aggregation. This capability can be further
enhanced through training with large image patches and
incorporating network layers with a large receptive field.

4. Proposed Method
Based on our findings, we present a simple yet effective
matting network, named AEMatter. AEMatter adopts a
Hybrid-Transformer backbone with appearance-enhanced
axis-wise learning blocks to build a basic network with
strong context aggregation learning capability, as illustrated
in Figure 5. Additionally, AEMatter leverages a large image
training strategy to help learn context aggregation.

4.1. Encoder

To extract low-level features and context features from the
inputs and enlarge the receptive field of AEMatter, we adopt
a Hybrid-Transformer backbone with appearance-enhanced
axis-wise learning blocks to construct the encoder.

Hybrid-Transformer Backbone. Although the Swin-
Tiny (Liu et al., 2021c) based matting network performs
best in the above experiments, Swin-Tiny is primarily de-
signed for high-level semantic tasks and ignores extracting
low-level features, which limits its effectiveness in image
matting. Prior studies (Park et al., 2022; Dai et al., 2022)
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Figure 5. Overview of AEMatter. The encoder adopts a Hybrid-Transformer backbone with appearance-enhanced axis-wise learning
blocks to extract context features. The decoder adopts Swin blocks to refine the context features and estimate the alpha matte.

address this issue by incorporating additional shortcut mod-
ules to extract low-level features, but their backbones cannot
utilize the shortcut features, resulting in subpar performance.
In contrast, we replace the patch-embedding stem with con-
volution blocks to extract rich low-level features. The struc-
ture of the convolution block is illustrated in Figure 5(b).
To preserve the image details, we omit the normalization
layers in the stem as they affect the information in local
regions, which hurts the matting performance. In addition,
we incorporate PReLU (He et al., 2015) as the activation
function, which introduces learnable negative slopes to fa-
cilitate network training. Afterward, we use the Swin blocks
of Swin-Tiny to extract high-level context features.

Appearance-Enhanced Axis-Wise Learning. The back-
bone of AEMatter adopts a hierarchical structure that is
effective in capturing and integrating context features across
large spatial regions. However, the receptive field of the
Swin blocks adopted is still not large enough to cover high-
resolution images, which limits the context aggregation
capability of the matting network, resulting in sub-optimal
performance. While one possible solution is to employ many
downsampling layers and Swin blocks to extract context fea-
tures across larger regions, such an approach can hinder the
training and increase the risk of overfitting. To address this
issue, we incorporate a few appearance-enhanced axis-wise
learning (AEAL) blocks after the backbone, which leverages
an appearance-enhanced (AE) block to facilitate training
and axis-wise attention to enlarge the receptive fields.

The structure of the AEAL block is illustrated in Figure 5(d).
To mitigate high computational overheads incurred by the

high-dimension context features from the backbone, we
use residual blocks and 1× 1 convolutions to produce the
compact context features Fc from the fourth-stage features
F4 of the backbone. Additionally, we use F4 to guide the
extraction of appearance features from third-stage features
F3 of the backbone with convolution and residual blocks,
generating the context-guided appearance features Fa. Sub-
sequently, we employ three cascaded learning modules to
process Fc and Fa. To facilitate network training, we first
introduce an AE block to generate the appearance-enhanced
context features Fac with Fc and Fa as

Fac = Fc +Conv(Res(Conv(Cat(Fc,Fa)))) (2)

where Cat(·, ·), Conv(·), and Res(·) denote the concatena-
tion, 1 × 1 convolution, residual block, respectively. To
capture context features over large regions, we propose
axis-wise attention, which divides Fac into axis-wise rect-
angular regions and then applies multi-head self-attention.
Specifically, we first zero-pad Fac to a size that is an integer
multiple of width W and split the padded feature Facp into
features Facpx and Facpy along the channel dimension as

(Facpx,Facpy) = SplitChannel(Pad(Fac)) (3)

where SplitChannel(·) and Pad(·) denote the channel wise
splitting and zero padding, respectively. Next, we further
split Facpx and Facpy into two sets of axis-wise features,
applying multi-head self-attention to extract context features
over large regions. These features are then reassembled to
form the refined context feature Frc as:

Frc =Cat(MHA(SplitAxis-X(Facpx(X))),

MHA(SplitAxis-Y(Facpy(X))))
(4)
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where MHA(·) denotes the multi-head attention operation.
SplitAxis-X(·) and SplitAxis-Y(·) denote the x-axis wise split-
ting and y-axis wise splitting, respectively. Finally, we
utilize the MLP network as the feed-forward network (FFN)
for feature transformation, following the vanilla Trans-
former (Vaswani et al., 2017).

4.2. Decoder

To enlarge the receptive field of AEMatter and improve
the alpha matte estimation, we adopt a Transformer-based
decoder that employs Swin blocks which have a large re-
ceptive field to refine the context features from the encoder.
Specifically, we first concatenate the refined context feature
Frc with the fourth-stage features F4 from the encoder, and
apply Swin blocks to generate the initial decoder feature Fd.
We then upsample Fd and concatenate it with the features
of the corresponding scale of the encoder, and apply another
Swin block for feature refinement. This process is repeated
three times to obtain the refined decoder features Frd. To
fuse the image details for alpha matte estimation, we up-
sample Frd and concatenate it with the low-level features
extracted by the stem of the encoder, and process it using
convolution blocks that omit the normalization layers to
prevent the mean or variance of the whole feature map from
affecting the estimation in local regions. We perform this
process twice and then use a 3×3 convolution to predict the
alpha matte α. Finally, we clip the predicted alpha matte α
to the range of 0 to 1.

4.3. Training Strategy

In our empirical study, we observe that basic encoder-
decoder networks can acquire better context aggregation
capability when trained on larger image patches, leading to
improved matting performance. Therefore, we propose to
train the AEMatter network on 1024× 1024 image patches,
which are larger than the existing methods. To help AEMat-
ter learn to predict alpha mattes, we define the loss function
as

Lα = Ll1 + Lcb + Llap (5)

where Ll1, Lcb, and Llap are the L1 loss, Charbonnier L1
loss, and Laplacian loss, which are defined as

Ll1 =
∣∣α−αgt

∣∣ (6)

Lcb =
1

|T U |
∑
i∈T U

√
(αi − αgt

i )2 + ϵ2 (7)

Llap =
∑
j

2j
∣∣Lj(α)− Lj(α

gt)
∣∣ (8)

where α and αgt are the predicted alpha matte and ground
truth alpha matte of the input image I , respectively. Addi-
tionally, we adopt training data augmentation techniques,

Table 5. Quantitative results on Adobe Composition-1K. TTA de-
notes the method adopts the test-time augmentation trick.

Method SAD MSE Grad Conn

DIM (Xu et al., 2017) 50.40 17.00 36.70 55.30
IndexNet (Lu et al., 2022) 45.80 13.00 25.90 43.70
GCAMatting (Li & Lu, 2020) 35.28 9.00 16.90 32.50
TIMI-Net (Liu et al., 2021b) 29.08 6.00 11.50 25.36
SIM (Sun et al., 2021) 27.70 5.60 10.70 24.40
FBAMatting (Forte & Pitié, 2020) 26.40 5.40 10.60 21.50
TransMatting (Cai et al., 2022) 24.96 4.58 9.72 20.16
LFPNet (Liu et al., 2021a) 23.60 4.10 8.40 18.50
MatteFormer (Park et al., 2022) 23.80 4.03 8.68 18.90
dugMatting (Wu et al., 2023) 23.40 3.90 7.20 18.80
DiffusionMat (Xu et al., 2023) 22.80 4.00 6.80 18.40
DiffMatte-ViTS (Hu et al., 2023) 20.52 3.06 7.05 14.85
ViTMatte-B (Yao et al., 2024) 20.33 3.00 6.74 14.78

AEMatter (Ours) 17.53 2.26 4.76 12.46
AEMatter + TTA (Ours) 16.89 2.06 4.24 11.72

Table 6. Generalization results on Distinction-646. All methods
are trained on Adobe Composition-1K.

Method SAD MSE Grad Conn

DIM (Xu et al., 2017) 63.88 25.77 53.23 66.31
IndexNet (Lu et al., 2022) 44.93 9.23 41.30 44.86
TIMI-Net (Liu et al., 2021b) 42.61 7.75 45.05 42.40
GCAMatting (Li & Lu, 2020) 36.37 8.19 32.34 36.00
FBAMatting (Forte & Pitié, 2020) 32.28 5.66 25.52 32.39
LFPNet (Liu et al., 2021a) 22.36 3.41 14.92 20.50
Matteformer (Park et al., 2022) 23.60 3.12 13.56 21.56

AEMatter (Ours) 16.95 1.81 8.28 14.83

similar to those employed by FBAMatting and MGMatting,
to enhance the matting performance.

5. Experiments
In this section, we compare the performance of AEMatter
with existing matting methods on the Adobe Composition-
1K dataset. Additionally, we evaluate the generalization
ability of AEMatter on the Distinctions-646 (Qiao et al.,
2020), Transparent-460 (Cai et al., 2022), Semantic Image
Matting (Sun et al., 2021), and Automatic Image Matting-
500 (Li et al., 2021) datasets. More experimental results
and ablation studies are provided in the appendix.

5.1. Results on Adobe Composition-1K

We compare AEMatter against state-of-the-art methods,
such as MatteFormer (Park et al., 2022), dugMatting (Wu
et al., 2023),and ViTMatte-B (Yao et al., 2024) on the Adobe
Composition-1K dataset. Table 5 and Figure 13 summa-
rize the quantitative and qualitative results of all compared
methods. TTA denotes the method that adopts the test-time
augmentation trick. Quantitative results show that AEMatter
significantly outperforms state-of-the-art methods in terms

7
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(a) Image (b) Trimap (c) Ground Truth (d) IndexNet (e) FBAMatting (f) LFPNet (g) MatteFormer (h) AEMatter (Ours)

Figure 6. Qualitative comparison of the alpha matte results on the Adobe Composition-1K dataset.

Table 7. Generalization results on Transparent-460. All methods
are trained on Adobe Composition-1K.

Method SAD MSE Grad Conn

DIM (Xu et al., 2017) 356.20 49.68 146.46 296.31
IndexNet (Lu et al., 2022) 434.14 74.73 124.98 368.48
TIMI-Net (Liu et al., 2021b) 328.08 44.20 142.11 289.79
MGMatting (Yu et al., 2021a) 344.65 57.25 74.54 282.79
TransMatting (Cai et al., 2022) 192.36 20.96 41.80 158.37

AEMatter (Ours) 122.27 6.92 27.42 112.02

Table 8. Generalization results on Semantic Image Matting. All
methods are trained on Adobe Composition-1K.

Method SAD MSE Grad Conn

DIM (Xu et al., 2017) 95.96 54.25 29.84 100.65
IndexNet (Lu et al., 2022) 66.89 25.75 22.07 67.61
GCAMatting (Li & Lu, 2020) 51.84 19.46 24.16 51.98
FBAMatting (Forte & Pitié, 2020) 26.87 5.61 9.17 22.87
TIMI-Net (Liu et al., 2021b) 54.08 16.59 18.91 53.79
LFPNet (Liu et al., 2021a) 23.05 4.28 23.30 18.19
Matteformer (Park et al., 2022) 23.90 4.73 7.72 19.01

AEMatter (Ours) 19.51 2.82 4.62 14.37

of SAD, MSE, Grad, and Conn metrics. Furthermore, quali-
tative results show AEMatter delivers a visually appealing
alpha matte, especially in regions where the foreground and
background colors are similar.

5.2. Generalization on Various Datasets

To evaluate the generalization ability of AEMatter, we com-
pare AEMatter against existing matting methods on the
Distinctions-646, Transparent-460, Semantic Image Mat-

Table 9. Generalization results on Automatic Image Matting-500.
All methods are trained on Adobe Composition-1K.

Method SAD MSE Grad Conn

DIM (Xu et al., 2017) 39.97 52.83 28.92 40.66
IndexNet (Lu et al., 2022) 26.95 26.32 16.41 26.25
GCAMatting (Li & Lu, 2020) 34.78 38.93 25.73 35.14
SIM (Sun et al., 2021) 27.05 31.10 23.68 27.08
FBAMatting (Forte & Pitié, 2020) 19.43 16.37 12.65 18.75
Matteformer (Park et al., 2022) 26.87 29.00 23.00 26.63

AEMatter (Ours) 14.76 11.69 11.20 14.19

ting, and Automatic Image Matting-500 datasets. It should
be noted that all compared matting methods are pre-trained
on the Adobe Composition-1K dataset for fair comparison.
We evaluate all compared methods and summarized the
quantitative results in Tables 6, 7, 8, and 9. The quantitative
results underscore the significant performance advantages
of AEMatter compared to existing methods, indicative of its
exceptional generalization ability.

6. Limitations
Although AEMatter performs well on multiple datasets,
we have identified some limitations when applying it to
real-world scenarios, which could be due to the network
learning non-generalizable differences between foreground
and background from synthetic data. Specifically, AEMatter
may exhibit lower matting accuracy in scenarios where the
image is affected by degradation such as JPEG compression
or lens blur, or where the trimap is coarse. Qualitative
results illustrating these failure cases are shown in Figures 7
and 8. Future research directions could include adopting
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(a) Image (b) Trimap (c) Alpha Matte

Figure 7. Qualitative results on real-world degraded images. AE-
Matter has lower accuracy at the boundary regions.

strong data augmentation strategies or domain adaptation
techniques and exploring auxiliary semantics networks and
image restoration networks to address these limitations.

7. Conclusion
In this paper, we revisit the context aggregation mecha-
nisms of matting networks and discover that discover that
a basic encoder-decoder network itself can learn universal
context aggregations to achieve high matting performance.
Specifically, we experimentally reveal that while context ag-
gregation modules can effectively aggregate contexts, their
sensitivity to context scale restricts the universality. Simul-
taneously, we notice that basic encoder-decoder networks
can learn context aggregation, leading to impressive matting
performance. Further exploration uncovers that enhancing
the context aggregation capability of the network can be
achieved through training using large image patches and
adopting network layers with a larger receptive field. Build-
ing upon these insights, we introduce a simple yet very
effective matting network, named AEMatter, which expands
the receptive field of the network with simple structures and
is trained using large image patches. Experimental results
on five datasets demonstrate our AEMatter outperforms
state-of-the-art matting methods by a large margin.

(a) Image (b) Trimap (c) Alpha Matte

Figure 8. Qualitative results on images with coarse trimaps. AE-
Matter cannot accurately predict the foreground and background.
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A. Supplementary Introduction to AEAL Block
The appearance-enhanced axis-wise learning (AEAL) block utilizes axis-wise attention to achieve a large receptive field. In
the main text, we introduce the calculation process of axis-wise attention using Equations 3 and 4. For better understanding,
we supplement Figure 9 with an illustration of axis-wise attention. As shown in the figure, axis-wise attention first slices
the features into axis-wise rectangular regions and then applies multi-head self-attention processing. Finally, it merges the
processed features. Since axis-wise attention operates on sliced features, it has a computational complexity of O(hw(h+w)),
which is lower than the O((hw)2) complexity of self-attention.
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Figure 9. Illustration of Axis-wise Attention

B. Implementation details of AEMatter
The proposed AEMatter is implemented using the PyTorch (Paszke et al., 2019) framework. Axis-wise attention with a
width of W = 5 is used in the implementation. The coefficients in the loss functions are set as ϵ = 10−6, and j = 4. The
network weights are initialized using the Kaiming initializer (He et al., 2015). To avoid overfitting, the backbone weights
are initialized with the weights pre-trained on the ImageNet (Deng et al., 2009) dataset. The training is conducted on the
Adobe Composition-1K dataset (Xu et al., 2017), using an NVIDIA RTX 3090 GPU with a batch size of 2 for 100 epochs.
An RAdam optimizer (Liu et al., 2020) is employed to optimize the network weights with weight decay of 10−6 and betas
of (0.5, 0.999). The initial learning rate is set to 2.5× 10−5 and decays to zero using a cosine annealing scheduler. Data
augmentation techniques, including random affine transformation, random saturation transformation, random grayscale
transformation, random gamma transformation, random contrast transformation, and random composition are applied to
the training data. The trimap is generated from the alpha matte ground truth using erosion and dilation with kernel sizes
ranging from 1 to 30 pixels. To facilitate network training, the image and trimap are randomly cropped into patches of size
1024× 1024 and fed to the network. The code and model of AEMatter will be made available to the public later.

C. Additional Experimental Results
In this section, we present the qualitative results of AEMatter on the Distinctions-646, Transparent-460, Semantic Image
Matting, and Automatic Image Matting-500 datasets. Additionally, we explore the potential of the insights of this paper in
the automatic matting tasks with the Distinctions-646 and P3M datasets.

C.1. Generalization on Various Datasets

In the main text, we present the quantitative results of AEMatter across the Distinctions-646, Transparent-460, Semantic
Image Matting, and Automatic Image Matting-500 datasets. Here, we supplement the quantitative results of AEMatter and
existing methods as illustrated in Figures 10, 11, 12, and 13. The figures clearly demonstrate that AEMatter surpasses
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(a) Image (b) Trimap (c) Ground Truth (d) GCAMatting (e) FBAMatting (f) LFPNet (g) MatteFormer (h) AEMatter (Ours)

Figure 10. Qualitative comparison of the alpha matte results on the Distinction-646 dataset.

(a) Image (b) Trimap (c) Ground Truth (d) DIM (e) IndexNet (f) TIMI-Net (g) MGMatting (h) AEMatter (Ours)

Figure 11. Qualitative comparison of the alpha matte results on the Transparent-460 dataset.

(a) Image (b) Trimap (c) Ground Truth (d) GCAMatting (e) FBAMatting (f) LFPNet (g) MatteFormer (h) AEMatter (Ours)

Figure 12. Qualitative comparison of the alpha matte results on the Semantic Image Matting dataset.

existing methods, particularly in scenarios with similar foreground and background colors or when encountering foreground
blur. These results underscore the strong generalization ability of AEMatter.
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(a) Image (b) Trimap (c) Ground Truth (d) GCAMatting (e) FBAMatting (f) LFPNet (g) MatteFormer (h) AEMatter (Ours)

Figure 13. Qualitative comparison of the alpha matte results on the Automatic Image Matting-500 dataset.

(a) Image (b) AEMatter (c) remove.bg

Figure 14. Results on images of semi-transparent objects.

(a) Image (b) AEMatter (c) remove.bg

Figure 15. Results on images of fuzzy objects.

C.2. Comparison with remove.bg

To assess the practicality of AEMatter, we compare it with remove.bg, a commercial automatic matting tool trained on a
private dataset. Since we do not have access to the remove.bg model for evaluation on public matting datasets, we used the
paid service of remove.bg to extract the foreground and qualitatively compared it with the foreground extracted by AEMatter.
It is important to note that AEMatter relies on manually annotated trimaps. The qualitative results are shown in Figures C.1
and C.1. Despite requiring a trimap, AEMatter extracts a finer foreground compared to remove.bg. remove.bg struggles
to eliminate background interference when handling semi-transparent objects such as smoke and flames, and it fails to
accurately extract detailed foreground of fuzzy objects. In contrast, AEMatter performs well in these scenarios, producing
accurate and clean foreground.

D. Ablation Study
To evaluate the effectiveness of the network designs and training hyperparameters of AEMatter, we conduct ablation studies
on the Adobe Composition-1K dataset.

14



Revisiting Context Aggregation for Image Matting

Table 10. Ablation study on the decoder architecture and additional learning blocks. Decoder denotes the decoder adopted, AL denotes
the additional learning block adopted, and AE denotes whether the appearance-enhanced block is used. The additional learning blocks
considered are Vanilla, Window, and Axis, representing vanilla self-attention, window attention, and our axis-wise attention, respectively.

Encoder Decoder AL AE SAD MSE Grad Conn

Resnet-50 Convolution - × 23.82 4.27 8.08 19.02
Swin-Tiny Convolution - × 19.72 2.97 6.27 14.43
Hybrid-Transformer Convolution - × 19.57 2.76 5.84 14.36
Hybrid-Transformer Residual - × 19.23 2.82 5.73 14.09
Hybrid-Transformer Transformer - × 18.91 2.66 5.13 13.87
Hybrid-Transformer Transformer Self-Attention × 19.07 2.65 5.86 13.92
Hybrid-Transformer Transformer Window Attention × 18.30 2.61 5.56 13.11
Hybrid-Transformer Transformer Axis-wise Attention × 17.68 2.33 4.71 12.55
Hybrid-Transformer Transformer Axis-wise Attention ✓ 17.53 2.26 4.76 12.46

Table 11. Ablation study on the sizes of training image patches.
Patch Size SAD MSE Grad Conn

256× 256 24.40 4.06 8.09 19.95
512× 512 21.03 3.26 6.46 15.93
768× 768 19.43 2.79 5.57 14.23
1024× 1024 17.53 2.26 4.76 12.46

D.1. Hybrid-Transformer Backbone

We introduce a Hybrid-Transformer backbone to enlarge the receptive field of AEMatter and helping extract rich low-level
details. To assess the effectiveness of this design, we train and evaluate three AEMatter variants on the Adobe Composition-
1K dataset, utilizing ResNet-50, Swin-Tiny, and our Hybrid-Transformer backbones, respectively. As depicted in Table 10,
the Swin-Tiny backbone outperforms the ResNet-50 backbone due to its larger receptive field, benefitting from its larger
receptive field. Moreover, the Hybrid-Transformer backbone of our AEMatter excels over the Swin-Tiny backbone in
capturing low-level details, resulting in higher performance.

D.2. Transformer-based Decoder

We introduce a Transformer-based decoder to enlarge the receptive field of AEMatter for improving matting performance.
To evaluate the effectiveness of this design, we train AEMatter variants with convolution, residual block, and transformer
based decoders on the Adobe Composition-1K dataset. Then, we evaluate these variants and present the results in Table 10.
Experimental results demonstrate that the transformer-based decoder of our AEMatter outperforms the other designs.

D.3. Appearance-Enhanced Axis-Wise Learning Block

We introduce an appearance-enhanced axis-wise learning (AEAL) block to further enlarge the receptive field of the encoder,
which adopts appearance-enhanced (AE) blocks to enhance the appearance information of context features and axis-wise
attention to learn large-scale context. To assess the effectiveness of these designs, we train AEMatter under different
configurations: AEMatter without AE blocks, AEMatter with self-attention (Vaswani et al., 2017), and AEMatter with
window attention (Liu et al., 2021c) on the Adobe Composition-1K dataset. Subsequently, we evaluate these variants and
summarize the results in Table 10. Experimental findings reveal that AEMatter with axis-wise attention surpasses AEMatter
with vanilla self-attention and window attention. Furthermore, the AE block leads to further performance improvement,
underscoring the effectiveness of the proposed AEAL block.

D.4. Training Image Patch Size

We observe that training image matting networks with large image patches contributes to learning context aggregation,
thereby resulting in improved matting performance. To validate the applicability of this observation to AEMatter, we
evaluate AEMatter models trained with image patches of varying sizes. It is noteworthy that we train AEMatter on smaller
image patches for an extended number of epochs to ensure network convergence. The results, summarized in Table 11,
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Table 12. Comparison of the computational complexity and parameter amounts of matting methods.
Method MACs (T) Params (M) SAD MSE

LFPNet (Liu et al., 2021a) 6.16 112.2 23.60 4.10
MatteFormer (Park et al., 2022) 0.86 44.9 23.80 4.03
VitMatte-S (Yao et al., 2024) 1.69 25.8 21.46 3.30
VitMatte-B (Yao et al., 2024) 6.85 89.2 20.33 3.00
DiffMatte (Hu et al., 2023) 2.08 29.0 20.52 3.06

AEMatter (Ours) 1.15 48.7 17.53 2.26

demonstrate an improvement in network performance as the size of the training image patches increases. This confirms our
observation that training with large image patches enhances the context aggregation capability of matting networks.

E. Model Complexity Analysis
In this section, we compare the computational complexity and parameter amounts of AEMatter and state-of-the-art matting
methods. Specifically, the computational complexity is quantified by the count of multiply-accumulates (MACs) necessitated
by each method for the inference of a 2048×2048 image. The parameter amounts denote the number of trainable parameters
in each model. The results, summarized in Table 12, demonstrate that AEMatter shares a similar computational complexity
and parameter amounts with existing matting methods. This suggests that the performance enhancement achieved by
AEMatter is not attributed to an increase in model complexity.
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