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Abstract

Integrating large language models as proof as-
sistants with theorem provers has shown great
promise. However, one of the major challenges
in this field is the scarcity of training data. To
address this, we release a new open-source tool,
Leandtrace, for training data extraction from
Lean 4 sources. Unlike previous approaches,
Lean4trace is deeply integrated into the Lean elab-
orator, allowing us to modify proofs on-the-fly.
Leveraging this feature, we propose two methods
of data augmentation in Lean: (1) decomposing
composite proof steps into multiple simpler steps;
(2) testing existing proof automation tactics at
each proof state and collecting the successful ones.
Models trained on this augmented data are capa-
ble of proving 58.0% of theorems from a hold-out
subset of Mathlib and 35.6% of the test subset of
the MiniF2F benchmark.

1. Introduction

One of the advantages of mathematics over other sciences
is that the correctness of its results can, in principle, be
verified mechanically. This is particularly desirable because
the standard peer review process inevitably sometimes re-
sults in invalid proofs. However, in practice, formalizing
mathematics is a labor-intensive and time-consuming task.
The standard approach involves using interactive theorem
proving (ITP) systems, among which it is worth mentioning
Lean (de Moura et al., 2015), Isabelle (Nipkow et al., 2002),
Coq (Barras et al., 1997), and Metamath (Megill & Wheeler,
2019). The process of theorem proving in such a system is
similar to programming in an IDE: a user interacts with the
system via commands in a formal language, and the system
provides feedback on whether the proof is successful.

In recent years, significant efforts have been made to sim-
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plify the formalization process. The most developed li-
braries of formalized mathematics now contain more than
100,000 theorems. One example is Mathlib (mathlib Com-
munity, 2020), a user-maintained mathematical library for
the Lean theorem prover, which covers a wide range of
mathematical fields.

From another perspective, formal theorem proving, as well
as reasoning in general, remains a significant challenge
for Al systems. Recently, several approaches to this task
have been proposed, all of which are based on transformer
(Vaswani et al., 2023) language models. Modern natural
language models are typically trained on large corpora of
data, while the training data extractable from proofs is rel-
atively scarce. In our paper, we address this challenge by
proposing two methods of data augmentation specific to the
task of formal theorem proving.

In our study, we focus on the Lean' theorem prover as an
ITP system and Mathlib as the main source of training data.
Theorems in Lean are typically proved using a sequence of
commands called tactics>. When Lean processes a proof
code, it initially parses it into a syntax tree, then elaborates
the tree into an expression, and finally sends the expression
to the kernel to verify that it has the correct type, ensuring
that the provided proof actually proves the claimed theorem.
Specifically, the elaborator processes the sequence of tactics
and constructs a proof term.

Extracting data from Lean source code is technically com-
plex. Among recent projects that facilitate data extrac-
tion, notable examples include lean-training-data (Morri-
son, 2023a) and LeanDojo (Yang et al., 2023). Both projects
are implemented in Lean and utilize Lean’s internal structure
known as InfoTree. The Lean elaborator uses this structure
to store various pieces of information, such as intermediate
proof states and positional information, which are later used
in the user interface. This method offers the advantage of
not requiring the recompilation of the source code; how-
ever, it also has two disadvantages. Firstly, certain internal
temporal information that could be useful for training is not
available. Secondly, this setup does not allow us to modify

'In our paper we work only with Lean version 4.6.0.
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the proof. For a more reliable and customizable option, we
chose to integrate tracing code into the Lean elaborator’s
source code. This approach enables us to apply various
proof modifications and trace training data during the elabo-
ration process, with full access to the elaborator’s state. We
release our extraction tool called Leandtrace.

Most prior studies (Polu et al., 2023; Lample et al., 2022;
Yang et al., 2023) in theorem proving in Lean exclusively
relied on human-written proofs from Mathlib as the main
source of training data. Although it is the largest and highest-
quality source of formalized math in Lean, the proofs in
Mathlib are often compressed, meaning that we can poten-
tially extract more than one proof state from a single tactic.
For example, the most frequently used tactics in the library
are rw and simp, both of which take a list of lemmas and
apply them one by one. Thus, they can be replaced by a
sequence of individual tactic applications. Even humans,
when searching for a proof, would likely try to apply lem-
mas one by one. Therefore, such proof rewriting not only
provides more training data for the model but also makes
the data more meaningful and easier for the model to under-
stand. This could be especially useful for retrieval models,
as the model is then trained to retrieve lemmas that are
conceptually related to the current state, rather than some
intermediate one. We refer to this as tactic decomposition
data augmentation.

Some tactics in Lean, such as rw, apply, and exact,
perform basic operations corresponding to single reasoning
steps. Others, which we refer to as ’automatic’ in this
paper, are capable of more complex reasoning. Examples of
such tactics include solve_by_elim, which recursively
discharges the goal using the local context; tauto, which
derives the goal from hypotheses in propositional logic; and
aesop, which performs tree-based proof search using a set
of predefined rules. There are many other automatic tactics,
including domain-specific ones. Although they are relatively
rare in Mathlib, we found that these tactics can prove a
notable fraction of goals. Several factors contribute to their
limited presence in human-written proofs: some of them are
relatively new, proofs using automatic tactics are less robust,
and these tactics generate longer proof terms. Nonetheless,
they appear useful for automated proof search. Therefore,
we tested each automatic tactic against each proof state in
the data and collected all successful examples. We refer to
this process as automatic tactic data augmentation.

In summary, this paper makes the following contributions:

¢ We introduce Leandtrace, a novel tool for data extrac-
tion from Lean 4 source code, seamlessly integrated
into the Lean elaborator. It enables interaction with
existing proofs (e.g., testing automatic tactics) and ex-
tracts more proof states than previous extraction tools.

* We propose two methods of data augmentation in au-
tomated theorem proving: automatic tactic data aug-
mentation and tactic decomposition data augmenta-
tion.

* We demonstrate that the proposed data augmenta-
tions enhance the performance of the ReProver model
on Mathlib (+9.4% Pass@1) and MiniF2F (+9.1%
Pass@1) benchmarks.

2. Related work

The available data for Lean is rather scarce but complex to
learn as it requires advanced reasoning abilities. To tackle
this problem, some papers try to improve, modify or enlarge
training data. For example, in GPT-f (Polu et al., 2023)
they used Expert Iteration to generate new proofs for the
theorems from the training set using the model at the current
iteration. Some of the generated proofs are shorter than
the original ones. This makes the proof search faster as
the model tends to find shorter proofs. In (Wu et al., 2022)
they tried to mine new theorems with proofs by utilizing
large language model (LLM). The idea is to take theorems
in natural language and prompt LLM to translate them to
formal language, and then search for the proofs using pre-
trained theorem prover. As a result, they obtained larger
dataset with theorems from different domain. Some papers
generate synthetic data (most commonly, equalities and
inequalities as it is easy in this case to generate the proof),
e.g. (Polu et al., 2023), (Lample et al., 2022).

The GPT-f model was trained on additional proof artifacts
collected as described in (Han et al., 2022). The artifacts
are some artificially generated problems, for example, pre-
dicting missing proof term or type. Such data is not directly
connected to proof generation but allows to pretrain the
language model on formal language domain.

Another interesting idea was proposed in (Jiang et al., 2022).
The authors modified the proofs by using hammers (Pauls-
son & Blanchette, 2012) where possible. As a result, the
model trained on such data learns to call hammer and finds
more proofs.

Most recent papers almost fully rely on LLM’s capabilities
to few-shot learning. In (Thakur et al., 2023) the pre-trained
language model serves as an intellectual proof step generator.
It is prompted to generate proof steps for the current proof
state given previous attempts, error messages and retrieved
lemmas.

While most of the previously described models generate
proof step-by-step, there are few papers that attempt to
generate the whole proof at once. In (Jiang et al., 2023)
they assumed that each formal theorem is equipped with
informal statement. Having this they first prompt LLM
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to generate informal proof sketch, i.e. high-level proof
plan in natural language, and then use SledgeHammer to
proof individual high-level steps in the proof. The papers
(Zheng et al., 2023; First et al., 2023) prompts LLM to
interact with the proof assistant in a chat manner. The idea
is to provide feedback to the language model to fix the
error in the proof. The work (Xin et al., 2023) follows
(Jiang et al., 2023) assuming that each formal statement has
its corresponding informal statement and informal proof.
They decompose the proof into steps, formalize and prove
each step using LLM and evolving library of skills (verified
lemmas database, problems statements and newly generated
lemmas by prover).

The authors of (Azerbayev et al., 2023) collect large dataset
of math and code related texts and train LLM called Llemma.
The model can be used to solve various math problems
beyond formal theorem proving.

The vast majority of recent papers rely on large language
models. While they are very useful at generating proof
plans, they can be too expensive to solve individual steps.
This can be done more efficiently with smaller language
models, like in (Yang et al., 2023), as we can generate and
check more tactics at the same amount of time. To improve
such models, we aim to generate larger and simpler training
dataset.

3. Methods

3.1. Experimental setup and baseline

The main goal of our paper is to propose and evaluate vari-
ous training data modifications for automated theorem prov-
ing in Lean. We chose LeanDojo and ReProver, proposed in
(Yang et al., 2023), as the baseline data extraction tool and
prover, respectively, for two reasons: the experiments do
not require large computational resources, and the code is
open-sourced, making it easy to build upon. Note, however,
that we use LeanDojo only for interaction with Lean, while
utilizing Lean4trace for data extraction.

In our experiments we follow the simplified pipeline of Re-
Prover (Yang et al., 2023). We fine-tune the ByT5-small
model (Xue et al., 2022) on the data extracted from Math-
lib. The model is trained to generate a proof step, i.e., a
single tactic application, conditioned on a proof state that
includes the local context—information that appears in the
InfoView as a user proves the theorem. Note, that in Re-
Prover the prover consists of 2 models: tactic generator and
retriever that tries to retrieve relevant lemmas. However, in
our work use only tactic generator. We evaluate the model
on the LeanDojo benchmark, which consists of 2,000 ran-
domly selected theorems from Mathlib, and on the MiniF2F
benchmark (Zheng et al., 2021). During the proving process,
the model generates multiple tactic candidates at each step,

which are used in a standard best-first search algorithm to
find a proof with a cumulative log-prob as a ranking crite-
rion, see details in (Polu & Sutskever, 2020). We evaluate
the Pass@ 1 metric: the fraction of theorems which can be
proven by the prover within 10 minutes in one attempt.

3.2. Data extraction in Lean

The elaborator is a part of the Lean system that infuses
syntactic objects with meaning. In particular, the elaborator
processes tactic blocks, applying tactics and constructing a
proof term as a result. We modify the Lean elaborator so
that at each tactic invocation, it traces:

* The current proof state, obtained from the elaborator’s
state.

* The proof step (tactic) that the elaborator is going to
process.

* The used premises, which we extract by finding all
named constants in the proof step.

Additionally, we trace some meta information such as the
name of the file, module, theorem being processed, and the
position of the proof step.

To enable the use of Leandtrace for generating training data
for retrieval-augmented models as described in (Yang et al.,
2023), we take the following steps. First, we utilize the
import-graph (Morrison, 2023b) tool to extract the import
structure, which is necessary for determining which lemmas
are accessible within a given theorem. Finally, to build
the corpus of all declared definitions that can be used as
premises, we use the lean-training-data (Morrison, 2023a)
tool.

From the traced data, we build a canonical dataset, where
“canonical” means that this data is obtained from the origi-
nal human-written proofs for further comparison with aug-
mented data. It contains all proof states visible to the user.

3.3. Tactic decomposition data augmentation

To test if tactic decomposition can help the model learn
better, we focus on the two most frequent tactics in Mathlib:
simp and rw. Both of these tactics take a list of rules as
an argument but process them differently. The rw tactic
takes a list of rules and rewrites the goal by applying them
in a given order. Meanwhile, the s imp tactic, given a set of
rules, applies them in an order determined by its heuristics
and can apply each rule multiple times. Therefore, we
decompose proof steps containing these tactics in different
ways, which we describe below. These two tactics are the
most frequent tactics in Mathlib, and in most cases they are
applied to the list of multiple rules, so their decomposition
gives a notable amount of new data.
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The decomposition procedure for rw is straightforward: we
replace a proof step of the form rw [hy, ..., h,] witha
sequence of proof steps rw [hi],...,rw [hy]. The rw
tactic is implemented as a thin wrapper over rewrite,
which attempts to close the goal with r£1 at the end. To
decompose rw, we modify the code of rewrite so that
when it takes a list of rules containing more than one rule, it
applies single-rule rw multiple times, tracing intermediate
proof states. As a result, our modification affects rw and
some of its variations, such as erw and nth_rw.

simp [h1, h2, h3] simp [h1] /" simp [h2]

* X

simp [h2] simp [h1]/ simp [h2]

simp [h1]

simp [h2]

simp [h1

@

Figure 1. Process of expanding the simp tactic. In the original
proof, the proof state s> is obtained by applying simp [h;, h3,
hs] in state s;. Using BFS, we find a sequence simp [h»];
simp [hi]; simp [hz] which also leads to s3. In this ex-
ample, h, is used twice, and h3 can be omitted. Such situations
actually occur in Mathlib proofs.

The case of simp is more complex because the order of rule
applications is not determined by the user. While the order
could be extracted after the tactic’s invocation using Lean
meta-programming, we use a different approach here. Given
the list of rules, we employ a Breadth-First Search algorithm,
treating proof states as vertices with edges corresponding to
single-rule simp applications with rules from the list, see
the Figure 1. Once a sequence leading to the target proof
state is found, the search stops, and the proof states forming
the sequence are traced. This method has the additional
advantage of finding the shortest such sequence.

3.4. Automatic tactics data augmentation

To train our model to use automatic tactics, we mine ad-
ditional data using the following procedure: at each tactic
invocation, before applying the original tactic, we attempt
to apply tactics from a fixed list of automatic tactics. If
the application is successful, meaning the tactic has closed
the goal, we trace this automatic proof step. If multiple

automatic tactics are able to close the goal, we trace all of
them.

In some cases, a single automatic tactic can replace a se-
quence of multiple tactics in the original proof. Typically,
the automatic tactic can close the goal from each intermedi-
ate proof state. Instead of keeping only the first automatic
tactic application that closes the goal, we retain all these data
points to ensure that the model learns when the automatic
tactic is applicable.

Sometimes, tactics can take a very long time or even hang
indefinitely. To address this, we set a time limit of 10 sec-
onds for each automatic tactic application. Since Lean 4
does not yet support timeouts internally, we use an external
Python script as a temporary solution. This script monitors
the building process and restarts it if it gets stuck in a proof
state, adding the problematic proof state to a blacklist. Proof
states on the blacklist are not tested again.

4. Experiments and results
4.1. Dataset’s statistics

Firstly, to give an overview of our dataset, we provide the
frequencies of the most popular tactics in Mathlib in Table 1.
Notably, rw and simp cover more than 28% of all proof
states extracted from Mathlib, which motivates us to focus
on them in tactic decomposition augmentation.

Tactic Frequency, %
™w 15.2
simp 13.1
- (cdot) 10.1
exact 9.8
have 5.1
apply 3.6
refine” 3.4
intro 3.0
simpa 2.1
rfl 2.0
ext 1.9
obtain 1.8
rintro 1.8
rcases 1.6
dsimp 14
simp_rw 14
cases 1.3
refine 1.1
let 1.0

Table 1. Most frequent tactics in Mathlib

Next, we present statistics on the usability of each automatic
tactic in Table 2. Note that the ae sop tactic alone can close
more than 20% of proof states in Mathlib. Unfortunately,
different general-purpose automatic tactics tend to close
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similar sets of goals. In total, the automatic tactics we used
can close 23.6% of proof states. This demonstrates that
such tactics are quite powerful, and any prover could benefit
from using them. Additionally, they can be considered as a
baseline in automated theorem proving in Lean.

Automatic tactic  Solved goals, %

aesop 21.8
simp-all 16.6
simp [*] 13.5
simp_arith 9.6
tauto 8.9
solve_by_elim 7.8
continuity 5.7
norm_num 5.6
abel 1.5
omega 1.4
nlinarith 1.1
linarith 1.0
ring 0.8
decide 0.6
group 0.5

Table 2. Number of goals can be solved by auto tactics.

4.2. Comparison with LeanDojo extraction

We compare our approach with LeanDojo, our main base-
line. The number of extracted proof states and the resources
required for each augmentation are provided in Table 3.
We refer to the dataset extracted by our tracing without
augmentations as canonical. Note that our approach re-
quires considerably less RAM, making it possible to run
on a regular PC. The key factor that slows down our data
augmentation mining is the lack of timeout mechanisms in
Lean 4, the implementation of which would greatly speed
up the process.

The difference in the number of traced proof states between
the LeanDojo approach and ours mainly comes from tac-
tic combinators. For example, the construction tac; <; >
tacso in Lean means that tacy should be applied to all
goals produced by tac;. In LeanDojo tracing, such a con-
struction is treated as a single proof step, while we trace
separate proof steps for each produced goal.

The last three rows in Table 3 refer to augmentations, which
we mix with the canonical subset during training. The
provided number of proof states represents the number of
new proof states in relation to the canonical subset.

3The time is measured using 32-core CPU.

“This does not include time spent for building Mathlib.

SLeanDojo tracing requires 48 GB even when running on a
single core.

Dataset #proof states Time® RAM, GB
LeanDojo tracing 273k 1h* 48°
Canonical 352k 31 min 17
rw decomposition 110k 34 min 18
simp decomposition 37.7k 11h 24
Automatic tactics 318k 7 days 10

Table 3. Resources required for tracing.

4.3. Theorem proving

In this subsection we discuss models trained on augmented
datasets and their proving capabilities. The Pass@ 1 metric
is provided in Table 4 (note, that the numbers are for the
model without retrieval). Automatic tactics augmentation
provides +1.7% improvement over canonical tracing, while
tactics decomposition gives +2% improvement on Mathlib
dataset.

Model & training data Mathlib ~ MiniF2F
ReProver
LeanDojo data® 48.6 26.5
Canonical 56.3 35.6
Canonical + Tactics decomposition 58.0 30.0
Canonical + Automatic tactics 57.6 33.6
Thor + expert iteration (Wu et al., 2022) 352
COPRA + GPT-4 (Thakur et al., 2024) 30.7
Thor (Jiang et al., 2022) 29.9
Lean Expert Iteration (Polu et al., 2023) 29.6

Table 4. Pass@1 for theorem proving.

In addition to Mathlib, we test our models on a test subset
of the MiniF2F benchmark, which consists of formalized
Olympiad-level mathematics problems. A notable feature of
this benchmark is that its Lean 4 version was released after
all the data the model was trained on (including pre-training)
had been gathered. Therefore, there are no Lean 4 proofs for
MiniF2F available on the internet so far, ensuring that the
model has never encountered these proofs during training.

There is a notable increase in metrics on MiniF2F, even
though no extra fine-tuning was performed specifically for
it. We achieve our best results with the model trained on data
without augmentations: it proves 87 of the 244 theorems
presented in the MiniF2F test subset. We examined the
successful proofs found by the model and discovered that
most of them rely on automatic tactics (see the Figure 2).

5The results are taken from the paper (Yang et al., 2023) and
pertain to a model that also relies on an additional model, which
retrieves potentially useful auxiliary theorems and definitions at
each step.

"This results were obtained using the Lean 3 version of the
MiniF2F benchmark.
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This demonstrates that modern tools for proof automation
in Lean are powerful enough to enable a model equipped
with them to prove a significant portion of the dataset with
minimal inherent reasoning.

At the same time, the quality degrades when we apply aug-
mentations. This requires further investigation, but it might
be explained as follows. The domain of MiniF2F prob-
lems differs from that of Mathlib, and when augmentations
are applied, the proportion of proof steps that are useful
for MiniF2F decreases: for example, simp is very rare in
found proofs for MiniF2F but occur frequently in both aug-
mentations. In contrast, norm_num is widely used tactic in
MiniF2F which is rare in Mathlib. This reduction in rele-
vant proof states could lead to the observed degradation in
performance.

For comparison we also provide the Pass@1 metric on
MiniF2F reported in prior studies.

5. Conclusion

In this paper, we present Leandtrace, a novel tool for data
extraction and augmentation tailored for training neural the-
orem provers in Lean. Our experimental results demonstrate
that models trained using our dataset achieve a 9% higher
performance on the MiniF2F benchmark compared to Re-
Prover (Yang et al., 2023), when trained and evaluated under
identical conditions. While proposed augmentations pro-
vides improvements on Mathlib dataset, they may degrade
the model when evaluated on a dataset from different distri-
bution. Nevertheless, our tool allows gathering a more com-
plete set of proof states in canonical setup and significantly
reduces computational resource requirements compared to
LeanDojo (Yang et al., 2023), making it feasible to run on a
modern PC. We believe that these advancements will lower
the barrier to entry in this field, fostering more accessible
and widespread research in neural theorem proving.
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