On the Representation Power of Set Pooling Networks

Christian Bueno Alan G. Hylton
Department of Mathematics Space Communications and Navigation
University of California, Santa Barbara NASA Glenn Research Center
Santa Barbara, CA 93106 Cleveland, OH 44135, USA
christianbueno@ucsb.edu alan.g.hylton@nasa.gov
Abstract

Point clouds and sets are input data-types which pose unique problems to deep learn-
ing. Since sets can have variable cardinality and are unchanged by permutation, the
input space for these problems naturally form infinite-dimensional non-Euclidean
spaces. Despite these mathematical difficulties, PointNet [18] and Deep Sets [31]
introduced foundational neural network architectures to address these problems.
In this paper we present a unified framework to study the expressive power of
such networks as well as their extensions beyond point clouds (partially addressing
a conjecture on the extendibility of DeepSets along the way). To this end, we
demonstrate the crucial role that the Hausdorff and Wasserstein metrics play and
prove new cardinality-agnostic universality results to characterize exactly which
functions can be approximated by these models. In particular, these results imply
that PointNet generally cannot approximate averages of continuous functions over
sets (e.g. center-of-mass or higher moments) implying that DeepSets is strictly
more expressive than PointNet in the constant cardinality setting. Moreover, we ob-
tain explicit lower-bounds on the approximation error and present a simple method
to produce arbitrarily many examples of this failure-mode. Counterintuitively, we
also prove that in the unbounded cardinality setting that any function which can
be uniformly approximated by both PointNet and normalized-DeepSets must be
constant. Finally, we also prove theorems on the Lipschitz properties of PointNet
and normalized-DeepSets which shed insight into exploitable inductive bias in
these networks.

1 Introduction

The architectures introduced in PointNet [18] and Deep Sets [31] are foundational contributions to the
direct analysis of point clouds and sets via deep learning. These works provided two of the earliest
such methods and continue to be of theoretical interest since both provide simple architectures which
are permutation-invariant by construction. In addition to this, a single invariant model of either
approach can handle sets of differing sizes and can theoretically scale to any cardinality with enough
computational resources.

In either case the procedure to process a point cloud A in R™ is simply as follows: (1) apply a
network ¢ to each element of A, (2) apply a permutation-invariant pooling operation to aggregate
these point-features into a global feature for A (i.e. max-pooling for PointNet, sum-pooling for
DeepSets), and lastly (3) pass this global feature to the second network p to obtain the final output.
For general PointNet and DeepSets permutation-invariant models, this can be concisely expressed
mathematically as

,(/}POintNet(A) =p (maXSO(a)) and wDeepSets(A) =p <Z QD(CL)))

acA
acA

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

respectively. Depending on the output layer of p this can be used for either set-regression or set-
classification. Note that arbitrarily large point clouds can be passed through and that the permutation-
invariance of the max/sum-pooling operations ensure that rearrangement of the elements of A do not
alter the output.

Importantly, each of these prior works provide their own universal approximation theorems (UATSs)
to support the empirical success of their methods. In this work we prove substantial extensions of
these results motivated by the following points:

Unified Approach and Minimal Universality: The pre-existing universality results use very differ-
ent approaches. Additionally, these results do not explore the minimum architecture requirements
needed for universality. In this paper we present a proof method that applies to more than one model
and provides universal “shallow” examples.

Cardinality Limitations: The universality results in [18, 31] both assume that the cardinality of the
inputs are fixed to some size n and thus do not make use of the cardinality-agnostic nature of these
models. This gap is of worthy of investigation because (1) real-world point cloud datasets can have
heterogeneous cloud sizes and (2) it may happen that the deployed model encounters point clouds
with cardinalities that did not exist in the training data (e.g. if better sensors become available). It
is not immediately clear whether one should expect these model classes to have enough power to
universally approximate the functions of interest when allowing for such changes in set size.

Infinite Input-Layer Width Limit: One approach for learning with mesh inputs is to sample the
mesh and feed the resulting point cloud into a suitable neural network [18, 19, 9]. Although PointNet
and DeepSets can readily accept samples of any size and via any sampling method, the computation
graph at the input layers necessarily widens as the point clouds get larger. Understanding the
expressiveness and consistency as sampling cardinality (and hence input-layer size) grows to infinity
may provide theoretical insight on this approach to learning from meshes. Models such as Neural
ODEs [6] and Neural Tangent Kernels [11] have benefited from similar considerations (infinite depth
and infinite hidden-layer width limits respectively).

DeepSets Extension Conjecture: It was conjectured in the supplementary materials of [31] (below
their proof Theorem 9) that the DeepSets invariant model should be extendable to input sets of
countably infinite or even uncountably infinite size and retain universality in that setting. However,
they note that there are fundamental topological obstructions to answering this question. We provide
partial resolutions to this conjecture by showing that a change in the pooling function allows for
inputs beyond finite sets (Sec. 3.4).

Comparison of Representational Power: In this work we slightly modify the permutation-invariant
DeepSets model by use of average-pooling instead of sum-pooling. The only change is re-scaling by
the set size before applying p so we call this version normalized-DeepSets. We find that:

* PointNet (normalized-DeepSets) can uniformly approximate only the functions which are
uniformly continuous with respect to the Hausdorff (Wasserstein) metric (Theorem 3.4).

* Only the constant functions can be simultaneously uniformly approximated by both PointNet
and normalized-DeepSets when input sets are allowed to be arbitrarily large (Theorem 4.1).

» Even when cardinality is fixed to size k there is a substantial difference in approximation
power. In particular, PointNet cannot uniformly approximate averages of continuous func-
tions over sets such as the center-of-mass or higher moments for £ > 3. We prove an explicit
error lower bound for learnability of these functions by PointNet and provide a simple
method for generating examples of problematic inputs for this failure-mode (Theorem 4.2).

Lipschitz Properties and Inductive Bias. In this work we also show that PointNet and normalized-
DeepSets are Lipschitz with respect to the Hausdorff and 1-Wasserstein metrics (Theorem 3.7).
This result can be seen as a quantitative generalization of the qualitative stability theorem in [18].
Moreover, the Lipschitz-ness of these models suggest an interpretable inductive bias which we exploit
in the experiments in Sec. 5.

Related work. Besides permutation-invariant networks, there also exists permutation-equivariant
networks which have the property that a permutation of the inputs results in a corresponding permu-
tation of the output. In addition to the invariant PointNet model in [18] and the invariant DeepSets
model in [31], equivariant models are also introduced. Though these equivariant networks are also

commonly referred to as PointNet and DeepSets networks, they are fundamentally different and are
in general not permutation-invariant. In this paper, we will only consider the invariant models.

After the introduction of PointNet and DeepSets, other deep learning approaches for sets and point
clouds quickly appeared. These include hierarchical variants such as PointNet++ [19] and attention-
based models such as Set Transformer [13]. Models which were additionally equivariant to 3D rigid
motions were also developed such as the hierarchical Tensor Field Networks [24] and the attention-
based SE(3)-Transformer [8]. There is also the closely related field of graph neural networks (GNNs)
which shares many similar difficulties and questions as do neural networks for sets. See [9] and [27]
for comprehensive surveys on deep learning methods for point clouds and graphs respectively.

Whether a permutation-invariant function £’ can be exactly represented by sum-decomposition — i.e.
whether F/(A) = p(>°,c 4 ¥(a)) for some p and ¢ — has been addressed by [31, 26, 28] with positive
and negative results depending on whether the point clouds come from a countable or uncountable
universe. In particular, [31] proves that sum-decomposition is possible when the sets are drawn from
a countable universe and [26] shows that there are continuous permutation-invariant functions that
are not sum-decomposable when the latent space is too small (and similarly for max-decomposition).

Approximation results for other permutation-equivariant/invariant models have also been presented
in the literature. In [22] and [15] special kinds of equivariant models are introduced and proofs of
universality are provided. In [29] polynomial-based G-invariant networks are introduced for which a
fixed-cardinality universal approximation results are proved via the Stone-Weierstrass theorem and
Hilbert’s finiteness theorems from classical invariant theory.

Lastly, there has been much closely related work on the expressiveness of GNNs. GNN universality
results are proved in [12, 1], the degree to which GNNs can generalize to graphs of varying sizes is
investigated in [30], and the relative power of max/mean/sum-pooling in GNNss is studied in [28].

2 Preliminaries

Our focus will be on understanding which functions can be uniformly approximated by architectures
like that of PointNet and Deep Sets. Although tasks such as point cloud segmentation or point cloud
generation are not directly addressed, some results may apply depending on architecture details. All
presented theorems have proofs in the paper’s main body or in the supplementary materials.

2.1 Set Pooling Networks: PointNet, DeepSets, & Normalized-DeepSets

In addition to the max-pooling of PointNet and sum-pooling of DeepSets, we also consider average-
pooling. For A C R™ a finite point cloud, the network architectures are respectively given by

Yumax(4) = p (glgg w(a)) , Yave(4) =p <|—;| > w(a)> , Yeam(A) = p (Z Lp(a)) :

acA acA

Here ¢ : R™ — R™ creates features for each point in A which gets symmetrically pooled and
then passed to p : R™ — R’ (where max is the component-wise maximum). For simplicity, we
will usually take £ = 1 and in practice we want both p and ¢ to be neural networks or some other
parametrized model with learnable parameters. Once again, note that because of the pooling operation
before p, the output will not depend on the ordering of points in the point cloud, and the size of the
point cloud is not an issue because the pooling operations scale to arbitrary finite cardinalities. In
general, we call these and any other network of the form p(pool, . 4¢(a)) a set pooling network.

It may at first seem that the use of average-pooling instead of sum-pooling makes no difference.
Indeed, this is true when cloud cardinality is fixed since then the | A| ™" factor is constant and can be
absorbed into p. However, when cardinality is free to change this factor can no longer be absorbed
and makes a difference. To see this, imagine a finer and finer uniform sampling of the unit circle with
¢ > 0 everywhere. If we use average-pooling, the inside of p will converge to the average value of
0 on the circle, but will explode if we use sum-pooling. This good behavior in the large cardinality
limit will be critical later on.

It will be useful to introduce some abstractions and simplifying notation. Let F(£2) denote the set of
all nonempty finite subsets of a set € (i.e. point clouds in §2), F<¥(Q) the set of nonempty subsets of

size < k, and F ’“(Q) the set of k-point subsets. Now consider a set €2, a function f : Q — R"™, and
define maxg, aveg, sumy : F(€2) — R™ as the set-functions given by component-wise pooling

- @ 3 fla), sumg(4) = f(a).

acA acA

maxy(A) = max fla), avegp(A)

With these conventions, p o max,,, p o sum,, and p o ave,, will be the general form of what we call
PointNet, DeepSets, and normalized-DeepSets architectures respectively. The case of p o sum,, will
prove difficult to treat in the same manner as the others and so will get a separate treatment (Sec. 3.4).

2.2 Function Spaces and Uniform Approximation

Here we review some standard functional analysis. For more detailed background see [21, 20, 3].

Let C(X, X') and U (M, M") denote respectively the set of all continuous functions from topological
space X to topological space X’ and the set of all uniformly continuous functions from metric space
(M, d) to metric space (M’,d"). Unless otherwise specified we always assume that R™ carries the
standard Euclidean norm ||-|| and for simplicity we let C(X) := C(X,R) and U(M) := U(M,R).

For any set A, we define B(A) to be the set of all R-valued bounded functions on A. With this we can
define the bounded function spaces C,(X) = C(X) N B(X) and Uy, (M) = U(M) N B(M). When
X is compact or M is precompact (i.e. has compact metric completion) then we have C(X) = Cp(X)
and U(M) = Uy (M). We can endow all of these R-valued functions spaces with the fopology of
uniform convergence by equipping them with the supremum norm' given by ||| f||| , = sup,e 4 |f(a)|.
In particular, the bounded families U, (M), Cy(X), B(A) are all Banach spaces with this norm.

The uniform closure of a family of R-valued functions A is the set of all functions which can be
uniformly approximated via members of A, i.e. the topological closure with respect to ||-]|. One of
our key focuses will be determining the uniform closure of families of set pooling networks as this
tells us exactly which functions can and can’t be approximated.

Lastly, given an injective map i : A — X, we say that ¢ : A — R (uniquely) continuously extends
to X if there is a (unique) ¢ € C(X) such that ¢ o i = . We say a family of functions N on
A (uniquely) continuously extends to X if every ¢ € A (uniquely) continuously extends to X.
One nice property of uniformly continuous functions on a metric space (M, d) is that they uniquely
continuously extend to the metric completion (M, d) i.e. U (M) uniquely continuously extends to M.

2.3 Topologies and Metrics for Point Clouds

From now on we will assume (2, d) is a compact metric space unless otherwise stated and when
Q C R™ it will be a compact set equipped with the Euclidean metric (e.g. [0, 1]™). Let K(2) denote
the set of all compact subsets of 2 and P(2) denote the set of all Borel probability measures on €.
The Hausdorff metric dy [17, 16] is a natural metric for IC(£2) and 1-Wasserstein metric dyy [25]
(also called the Earth-mover distance) is a natural metric for P(€2). With these metrics, K(£2) and
P(£2) become compact metric spaces of their own whenever (€2, d) is compact [10, 25]. From now
on we will assume these two spaces are always equipped with the aforementioned metrics.?

We also briefly mention M (2), the Banach space of finite signed regular Borel measures on €.
By the Riesz-Markov theorem it is the topological dual space of C(£2). Of interest to us is that
P(Q) C M(£) and that the weak-* topology on P(£2) coincides with the topology induced by dyy .
This means that dy (fn, 1) — 0iff [fdu, — [fduforall f € C(Q).

Next, note that F(2) C () and let ix denote the natural inclusion map. We can also define
an injective map ip : F(£2) — P(Q2) by mapping A € F(€2) to its associated empirical measure
ip(A) = pg = ﬁ Y acada € P(2) where J, is the Dirac delta measure supported at a. The
injective maps ix and ip allow us to induce the dy and dy metrics on F(2). We will denote the
metrized versions by Fx () and Fyy (Q) respectively and use the same convention for the bounded

'In general, ||-||| will not always be a true norm on C(X) or U (M) since there may unbounded functions.

*The topology induced on KC(£2) and () by dzr and dw depends only on the topology of (€2, d) and not
on the choice of metric d. These topologies are called the Vietoris [16] and weak-* topologies [21] respectively.
Indeed, in parts of this paper we could have proceeded without metrics at all and directly used these topologies.
However, the particular metrics d;, and dy will be necessary to prove certain results such as those in Sec. 3.3.

cardinality spaces e.g. F& () and FE, (Q). Importantly, ix and ip embed F () as a dense subset
of () and P () respectively. The former follows from compactness of the members of K(2) and
the latter is true because you can approximate any distribution with samples (see [7, 25] for details).

For f € C(), define Max; : K(Q) — R and Ave; : P(2) — R as the functions given by
Max(K) = maxyex f(x) and Aver(p) = [, f dp = Eprp[f(2)].
Lemma 2.1. Let (2, d) be compact, f € C(Q). Then Max; € C(K(2)) and Avey € C(P(?)) and

Maxy o ix = maxy and Avey o ip = avey. As a consequence, PointNet and normalized-DeepSets
are uniformly continuous on F (Q) and Fy (Q) respectively.

This lemma tells us that max and avey continuously extend to /C(€2) and P(2) and hence PointNet
and normalized-DeepSets must as well (since composing with the continuous p preserves continuity).
Thus, we will be able analyze such architectures as continuous functions on compact metric spaces,
which is mathematically a much better setting than set-theoretic functions on an un-metrized F(£2).

2.4 Notation for Families of Neural Networks

In this section we will introduce notation to help abstract away neural network architecture details
and instead focus on classes of neural networks and the functions they can represent.

For a collection A of functions from X to Y and a collection B of functions from Y to Z, we denote
the set of all compositions by Bo A = {fog| f € B,g € A}. In the case of a single function
c:Y > ZweletcoA={c}toA={oof|fe A}. Foracollection of R-valued functions A,
span A is the set of all linear combinations of the functions in .A.

Next, let /7 denote the set of all functions which can be written as f(z) = Y., a;0(w; - © + b;),
i.e. the set of single-hidden layer neural networks with activation ¢ and linear scalar output-layer.
Deeper H-layered network classes are denoted by N9 where & = (01, ...,0p) is a list of H-many
activation functions which can be deepened like so N7 := N 71957 := gpan (7 o N7).

:= span{maxy | f € N9} then define

M rﬁ(‘; := span (7 o NZ,..). We use the subscript ‘max’ to recall which pooling is used and to remind
ourselves that these networks take set-inputs, not vector-inputs. As before, we can inductively define

Next we define various classes of PointNets. Let N

max

deeper networks and denote them via vector-bold activations as in N, SLZ, but we now also distinguish
by the placement of ‘|” whether the depth occurs before or after the pooling.

. = span{aves | f € N7}. Note that
avey + ave, = avesiq and aaves = ave,s. Thus since N7 is a linear space, taking the span
has no effect and so NG, = {aves | f € N?}. Adding a layer post-pooling yields the new family

Next we do the same for normalized-DeepSets. Let N7

N;‘V‘J := span (T o M) which gets us new functions. Like with PointNet, we can inductively
develop deeper families by deepening pre-pooling or post-pooling.

By Lemma 2.1 we can extend all the operations of our neural networks to /C(€2) and P(€2) in a natural
way. This let’s us talk about about PointNet networks on (€2) and normalized-DeepSets networks
on P(£2). We define them analogously by replacing max; with Maxy and aves with Aves. Thus

N7 = span (7o NGy), NEIL = span (T o VT,

where N7, = span {Max; | f € N7} and N, = span {Aves | f € N7}. As before, the linear
structure of N’ means N, could have been defined without the span. Here the pooling subscripts
matter much more as a ‘Max’ subscript implies that the networks take compact sets as inputs and an
‘Ave’ subscript implies that the networks take probability measures as inputs.

For further explanation of this notation and examples it describes see Appendix C.

3 Universality Results

3.1 Topological UAT

In [14] it is proven that A'° with o € C(R) has the universal approximation property iff o is not a
polynomial. For this reason, we will say a o € C(R) is ‘universal’ if it is non-polynomial and denote
the set of all such such functions by {{(R). Using this theorem and Stone-Weierstrass we prove a UAT

for certain kinds of generalized neural networks on an abstract compact Hausdorff space. Though we
independently arrived at this theorem, we later discovered this result was essentially proven in [23]
(Theorem 5.1) for a different context.> However, our proof is slightly different and so we provide a
detailed proof in the supplementary materials for completeness and the benefit of the reader.

Recall that a family of functions S on 2 separates points if for any x # y there is an f € S so that
f@) # f(y).
Theorem 3.1 (Topological-UAT). Let X be a compact Hausdorff space and o € $(R). If S C C(X)

separates points and contains a nonzero constant, then span(o o span.S) is dense in C(X). Addi-
tionally, if S also happens to be a linear subspace, then span(o o S) is dense in C(X).

3.2 Point Cloud UAT

With the following lemma, we will have met all the conditions required to use the topological-UAT
on () and P(Q).

Lemma 3.2 (Separation Lemma). Let Q C RY be compact and o € U(R). Then the set of functions
Smax = {Maxy | f € N7} and Save = {Avey | f € N} separate points and contain constants.

The following theorems show that one hidden layer in the inner network ¢ and one hidden layer
in the outer network p suffice to prove the universal approximation theorems for PointNet and
normalized-DeepSets (for further explanation see Appendix C).

Theorem 3.3. Let Q C RY be compact and o, € (R). Then Nf,[zx and /\/XLTC are dense in C(A)
and C(B) respectively, whenever A C KC(Q2) and B C P(Q) are closed subsets.

Proof. Recall N7 = span {7 o span Syay } and N!T = span {7 0 Save}. Since K(€2) and P(Q)
are compact metric spaces, and A and B are closed, they must be also be compact Hausdorff. By
Lemma 3.2 we know Syax and Saye separate points and contain nonzero constants and so the
topological-UAT (Theorem 3.1) yields the desired result. O

Now we restrict this result to F(2). For f : F(©2) — R the following result tells us that under mild
hypothesis that (1) PointNets can uniformly approximate f iff f is d z-uniformly continuous and (2)
normalized-DeepSets can uniformly approximate f iff f is dyy -uniformly continuous.

Theorem 3.4 (Point-Cloud-UAT). Let Q C RY be compact. If o, € U(R), then the uniform closure
of NSI and NI within B(F(S)) isU(Fu(Q)) and U (Fw (Q)) respectively.

Proof. Fg () and Fy () are isometrically isomorphic to ix (F(£2)) and ip(F(€2)) which are in
turn dense in (K(£2), dy;) and (P(£). dy). By Lemma 2.1 we have that N;3h and NV continuously

extend to () and P(€2) as N7_and N/, By Theorem 3.3 we know N7" and N7 are dense
in C(K(£2)) and C(P(Q?)). Finally, by Lemma A.1 we have the desired result. O

It is worth noting that we could have directly used another UAT proven in [23] for neural networks on
locally convex spaces [23](Corollary 5.1.2) for the universality of normalized-DeepSets since P(2)
naturally lives within a topological vector space and Ave; is always a continuous linear functional.
However this result would not directly work for PointNet since (€2) lacks a natural vector space
structure. Hence we chose the above route for consistency of technique and to be self-contained.

We now prove as a corollary a refinement of the universal approximation theorems of [18] and
[31], both of which applied to the the case of k-point point clouds (for fixed k). In this version
of the theorem we are able to restrict the depth of the neural network to just three hidden layers.
Additionally, as with the above, this result simultaneously establishes which functions cannot be
uniformly approximated by these architectures. The proof is essentially the same as Theorem 3.4.

Corollary 3.5. Let Q C RY be compact. If o,7 € (R), then the uniform closure of N,fll(fx and
N within B(F*(Q)) are U(FE(Q)) and U(FE,(Q)) respectively.

31n [23], the motivation was to study expressiveness of neural networks on all of R™ (not just a compact
subset of it) and this necessitated an extension of the classical UAT.

Proof. F%(Q) and FE,(Q) are isometrically isomorphic to ix(F*(2)) and ip (F*()), which are
in turn dense in their respective closures which we denote Gy () C K(Q) and Gy () C P(Q).

Thus by Lemma 2.1 and Theorem 3.3 we have that Nf/{ZX and J\/X\‘; are dense in C(Gy(§2)) and
C(Gw (£2)). Finally, by Lemma 2.1 we have the desired result. a

3.3 Stability and Lipschitz Property

A function f from a metric space (M;,d;) to a metric space (Ms,ds) is Lipschitz if there is a
constant K (called the Lipschitz constant) such that da(f (), f(y)) < Kdi(z,y) forall z,y € M;.
This is a valuable property for understanding how rapidly f can vary with respect to the inputs,
especially in the absence of differentiability. By refining the continuity arguments for Max; and
Avey, we can deduce the Lipschitz constant of these maps from the Lipschitz constant of f.

Lemma 3.6. Suppose (S0, d) is compact and f : Q — R is Lipschitz continuous with Lipschitz
constant L. Then Maxy € IC(Q) and Avey € P(2) have Lipschitz constant 2L and L.

As a consequence of Lemma 3.6, we can show that whenever the activation functions are Lipschitz,
the whole neural network architecture will be Lipschitz. This is particularly valuable in the variable
cardinality case since derivatives with respect to cardinality do not make sense.

Theorem 3.7. Suppose Q2 C RY is compact. Then every PointNet and normalized-DeepSets network
with Lipschitz activation functions is Lipschitz on Fg () and Fy () respectively.

In particular, this means that for a PointNet F},, and a normalized-DeepSets F,y. there exists
constants K.« and K, so that

||Fmax(A) - Fmax(B)” S Kmade(A7 B)7 and HFavc(A) - Favc(B)H S I(avcdH(Aa B),

where the constants K ,,x and K,y are determined by architectures of F)y,,x and Fy. respectively.

One implication of this is that if one were to sample a mesh sufficiently well, and knew the Lipschitz
constant of the whole PointNet/normalized-DeepSets network, then it would be possible to bound
how big a difference could be produced in the output under two different samplings of the same object.
This bound would not depend on the cardinality, but on the quality of the sample with respect to the
metrics di and dyy. This makes Theorem 3.7 something of a quantitative analogue and extension of
the stability theorem for PointNet presented in Theorem 2 of [18].

Theorem 3.7 also provides us with a qualitative way to understand what these networks are most
responsive to. For example, if two point clouds A and B had very large dy (A, B) but very small
dw (A, B), it would stand to reason that PointNet would more readily be able to tell them apart than
normalized-DeepSets. We explore this promising inductive bias further in Sec. 5.

3.4 DeepSets Conjecture and Theoretical Issues with Standard DeepSets

To use the universal approximation results developed here, it was key for the there to exists an
underlying compact Hausdorff space on which to study the networks. In the case of PointNet and
normalized-DeepSets, the compact Hausdorff space was not obvious, but we identified the appropriate
extension spaces KC(£2) and P(£2) to which we could unambiguously and continuously extend the
networks. This gave a partial answer to the DeepSets extension conjecture of [31] in the sense that if
we replace sum-pooling with max-pooling then these networks can be made to theoretically accept
sets of uncountably infinite cardinality (so long as they are compact i.e. members of X(€2)). Similarly,
for sufficiently nice sets like compact smooth manifolds M C R™ (e.g. a sphere) one can feed the
uniform probability measure 5, of M to the extension of normalized-DeepSets to P(€2).

However, we were not able to do this for standard DeepSets. This is because, generally speaking,
there is no compact Hausdorff space to which we can continuously extend sum for all reasonable
neural networks f. This is because a continuous function on a compact space is necessarily a bounded
function but sum; : F(Q) — R is generally unbounded. To illustrate this, let @ = [0, 1] C R and let
f be a continuous function, e.g. a neural network, which is not identically zero. Then there must be a
closed interval K on which |f| > e for some e > 0. From this we can see that sum(A4) for A C K
grows arbitrarily large in absolute value as the size of A increases. Thus, in this case, every sumy
except sumy is unbounded on F(2) meaning there is no compact extension space.

One potential way to address this issue would be to only consider bounded non-linearities such as the
sigmoid or arctan in the second network as a way to control the wild behavior as cloud size gets large.
Even so, it is not immediately clear what the natural underlying compact Hausdorff space for such a
model would be and it may very well depend on the activation functions. Alternative tools that do not
depend on compactness may be needed.

4 Limitations of PointNets and Normalized-DeepSets

Unlike the classical UAT, we cannot expect to be able to approximate all continuous functions.
This is because U (M) C C(M) for non-compact metric spaces M, and both Fg () and Fy (Q)
are non-compact when (2, d) is an infinite compact metric space e.g. the Euclidean unit ball.
Since the Point-Cloud-UAT says we can only approximate the uniformly continuous functions, this
will immediately impose some surprising limitations on the approximation power of PointNet and
normalized-DeepSets.

The following is a counter-intuitive limitation that occurs when considering arbitrarily
large point clouds. Define the point cloud diameter and center-of-mass functions by
Diam(A) = maxg,yea d(z,y) and Cent(4) = 75 >, 4 .

Theorem 4.1. Suppose (2, d) has no isolated points. Then f : F(2) — R is continuous with respect
to both dg and dyy iff it is constant. Thus, for Q = [0, 1|", there is no non-constant function on F ()
which can be uniformly approximated by both PointNets and normalized-DeepSets. In particular,
PointNets can uniformly approximate Diam but not Cent and normalized-DeepSets can uniformly
approximate Cent but not Diam.

At a high level, this dramatic disagreement in approximation power over JF(£2) stems from how
dg and dy handle infinite cardinality limits. Both metrics allow for sequences A,, € F(£2) with
lim,,, | 45| = 0o which nonetheless converge to some finite A € F(£2). However, they in general
do not agree on what the the limiting point cloud A should be. As a result, which functions count as
continuous “at infinity,” and hence on all of F(£), are radically different.

While it is interesting to know that these neural networks describe dramatically different kinds of
functions in the unbounded cardinality setting, in practice there is always a bound due to computational
limitations. Nevertheless, the above result sheds some light on the differences between PointNet
and normalized-DeepSets in the limit of large cloud size. The next results show that under mild
assumptions, and even when we bound point cloud cardinality, PointNet still cannot uniformly
approximate many interesting yet simple functions.

Theorem 4.2. Suppose (S, d) is has no isolated points, f € C(Q,RN), and F € C(F5"(Q),RN).
Then for every p,q € Q and T € (0, 1] there exists a k-point set A such that p,q € A C Q and

IF() ~aves(4)] > (- (552) 1) - fl.

In terms of supremum norm, this simplifies to

k—2 _.
I — el gy > o Diam(7(2).
In particular, this error bound inequality applies to PointNets. Thus for k > 3 and f : [0,1]" — RN
continuous, avey is uniformly approximable by PointNets on F* ([0, 1]") iff f is constant.*

This theorem considerably sharpens prior results on what cannot be represented by PointNet. In the
proof of Theorem B.1 of [26], the fixed cardinality case for 2 = [0, 1] is considered and it is shown
that sumjq(A) = >, 4 a cannot be exactly represented as p o max; when the output dimension
of f is too small. With Theorem 4.2, we can now say (without any additional assumptions on the
architecture details) that PointNets cannot even approximate sumy and avey if f is non-constant.
Moreover, Theorem 4.2 can quantify how badly attempts at approximation must fail.

Notably, the function class which is being missed by PointNet is very broad and contains some
important functions. For example in 1D, if f(z) = 2™ then ave; computes the m-th statistical

“Note that we can obtain a version of this result for sum 7 by dividing both sides by k.

moment. This suggest that if the learning task requires making use of statistical properties of the
point cloud that PointNet may struggle or even fail (see Fig. 2 and Sec. 5). By the fixed cardinality
universality result of [31], this implies that normalized-DeepSets and standard DeepSets are strictly
more expressive function classes than PointNet in the fixed cardinality setting.

For some intuition as to why the result works, let’s sketch why PointNet cannot uniformly approximate
Cent. Let p # q be two points in a k-point set. Continuously moving and merging the other k£ — 2
points entirely to p or entirely to ¢ results in the same 2-element set {p, ¢} in a dy-continuous way.
By dp-continuity, this means PointNet must output similar predictions for the center-of-mass as we
approach this 2-element set along each of these two paths. However, this will lead to conflicting
estimates for the center of mass along the way. Quantifying this discrepancy leads to Theorem 4.2.

Upon an initial reading of Theorem 1 of [18] it is easy to overstep and conclude that every continuous
permutation-invariant function is uniformly approximable by PointNets. However, this is not the case.
Moreover, in light of Theorem 4.2 we can see that this fails to be true for a large class of functions.

5 Experiments

In all the experiments, cloud cardinality is fixed
so there is no theore.tlcal difference between Problematic Example Errors vs Predicted Error Lower Bound
DeepSets and normalized-DeepSets and so we o PointNet(500-500-500)

will use the terms interchangeably. i

Lower Bound 7=0.01
Problematic Example Error

Testing the Error Lower Bound. The proof — 0
of Theorem 4.2 not only establishes the error
bound but also suggest an algorithmic approach
to finding point clouds that exhibit the failure of
uniform approximation. This let’s us produce
difficult examples for the centor-of-mass prob-
lem for PointNet (even if the weights change).
When (2 is additionally convex — e.g. the unit |
disk D in R? — it becomes fairly easy to con- 000 025 050 075 100 125 150 175 2.00
struct many examples of Ag and Ag explicitly llo=all

for a given PointNet model, allowing us to em-
pirically verify the uniform-norm error lower
bound. In the following experiment, we train a
simple PointNet architecture to learn the center-
of-mass for 10-element point clouds in D. We
train on a synthetic dataset of 1 million point
clouds (each element uniformly sampled from D) labeled with their center-of-mass. The PointNet
architecture has 500K trainable parameters. The network has the form F(A) = p(maxgea p(a))
where ¢ has 2-D input layer, 500-D hidden layer, and 500-D linear output layer, and p has 500-D
input layer, 500-D hidden layer and 2-D linear output layer (in accordance with the Point-Cloud-UAT).
The hidden layer activation functions of ¢ and p are ReLU. Since it is not possible to train with
respect to the uniform-norm, we opt to train with the traditional L? loss.

0.6

Error

0.4 4

0.2 4

Figure 1: Generated problematic examples (blue)
for a PointNet trained to compute the center-of-
mass. The method always produces errors at least
as large as the theoretical guarantee (orange).

To form our problematic examples, we pick a nonzero 7 = 0.01 and two distinct points p, g € D at
random. We set & = 7 ||p — ¢|| /4. We then sample D another 8 times and then linearly pull those 8
points towards p and towards ¢ to within é. This {p, ¢} adjoined with the 8 points pulled towards p
and ¢ form AJ and A (resp). So that the criteria in the proof of Theorem 4.2 is satisfied, we continue

pulling the 8 points closer until F(A2) and F(A2) are within 6 of F({p,q}). We are theoretically
ensured one of these two will have error larger than our bound. In Fig. 1 we plot the the produced
error vs ||p — g|| for the p, ¢ € D that were used in A) and AJ. As predicted, all the errors for the
discovered problematic examples lie above the line representing the uniform-norm error lower bound.

Lipschitz Constants and Inductive Bias. Theorem 3.7 showed us that PointNet and normalized-
DeepSets are Lipschitz with respect to d i and dyy respectively. Intuitively, if dg (A, B) is small this
means that A and B have similar shapes, and if dy (A, B) is small then this means A and B has
similar distribution of points (in the statistical sense). In this experiment we create two synthetic
binary classification datasets: one where the two classes have similar shape but differing distributions

Validation Cross-Entropy Loss for Set Pooling Net Validation Cross-Entropy Loss for Set Pooling Net
of parameters = 2274 # of parameters = 2274

— PointNet
DeepSets
06 P
05
4 — PointNet
03 DeepSets

Loss

0.2

01

0.0

0 10 20 30 40 50 60 ’ 0 10 20 30 40 50 60
Epoch Epoch

(a) Similar shape, different distributions (b) Similar distributions, different shapes

Figure 2: Learning curves for RingLine (left) and DiscSquare (right) binary classification datasets.

(Fig. 2a), and one where the two classes have similar distribution but differeing shapes (Fig. 2b).
These datasets are designed to produce advantages and disadvantages for PointNet and DeepSets.

Each dataset contains 2000 examples per class, and the per-example cardinality is kept fixed to 1500
points per cloud for both datasets. The first dataset, RingLine, is comprised of 750 samples from
a unit square + 750 samples from a small ring or small vertical line (see right panel of Fig. 2a).
The class labels are determined by whether the point cloud contains a ring or a line. Here the main
difference is the internal distribution of points because the point clouds both have square shape. The
second dataset, DiscSquare, is comprised of 1000 samples from a small internal disc + 500 samples
from an ambient large disc or large square (see right panel of Fig. 2b). The class labels are determined
by whether the ambient shape was a disc or square. Here the most salient difference is the cloud
shape because the interal distributions are similar (concentrated in the center, sparse elsewhere).

In each experiment we train PointNet and DeepSets to correctly classify the two classes on an 80-20
train-test split. The set pooling networks involved have identical architecture except for the choice of
pooling (max vs average). In each experiment, we train both for 60 epochs with cross-entropy loss
via SGD with learning rate 0.1 and 32 point clouds per batch.

When training on RingLine, DeepSets rapidly learns how to perfectly classify the the dataset, but
PointNet never progresses beyond random guessing (Fig. 2a). Because PointNet is fundamentally
incapable of approximating avey (Theorem 4.2), it struggles to compute anything which could help it
distinguish two squares with different internal distributions. Conversely, PointNet rapidly learns to
perfectly classify DiscSquare, but DeepSets takes about 10x as long to reach the same performance
(Fig. 2b). Notably, in this case DeepSets does eventually learn how to solve the dataset, but languishes
for a long while. We suspect this has to do with the fact that DeepSets has more expressive power
than PointNet. This let DeepSets eventually learn the right thing to do, but it also means it had to
waste many epochs trying out useless possibilities. On the DiscSquare dataset, PointNet’s inability
to see beyond shape became a powerful inductive bias.

6 Conclusion

The failure of the perceptron to learn XOR was a blow that raised the spectre of limited representation
power until UATSs arose to ease concerns. In this paper we studied analogous impossibility and
universality questions for three kinds of set pooling networks. By carefully choosing the underlying
topologies and metrics we showed how the choice of pooling function can have a dramatic impact on
the expressivity of these networks. In future works it would be valuable to further unify, systematize,
and generalize this topological approach to handle all pooling functions and perhaps even other
architectures such as transformers.

7 Acknowledgements
The first author would like to acknowledge partial support from grant DOE ASCR PhILMS DE-

SC0019246, as well as support from NASA SCAN during their internships at NASA Glenn Research
Center. Additional thanks to Arturo Deza, Garo Sarajian, and Steve Trettel for invaluable discussions.

10

References

[1] Waiss Azizian et al. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations, 2020.

[2] Michael Fielding Barnsley. Superfractals. Cambridge University Press, 2006.

[3] Vladimir I Bogachev, Oleg Georgievich Smolyanov, and VI Sobolev. Topological vector spaces
and their applications. Springer, 2017.

[4] Christian Bueno. Universal Approximation for Neural Nets on Sets. PhD thesis, University of
California, Santa Barbara, 2021.

[5] Christian Bueno and Alan G. Hylton. Limitations of deep learning on point clouds. NeurIPS
Sets & Partitions Workshop, 2019.

[6] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. arXiv preprint arXiv:1806.07366, 2018.

[7] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability Theory and Related Fields, 162(3-4):707-738, 2015.

[8] Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

[9] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence, 2020.

[10] Jeff Henrikson. Completeness and total boundedness of the hausdortf metric. MIT Undergradu-
ate Journal of Mathematics, 1(69-80):10, 1999.

[11] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[12] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32:7092-7101, 2019.

[13] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744-3753. PMLR, 2019.

[14] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
networks, 6(6):861-867, 1993.

[15] Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric
elements. In International Conference on Machine Learning, pages 6734—6744. PMLR, 2020.

[16] Ernest Michael. Topologies on spaces of subsets. Transactions of the American Mathematical
Society, 71(1):152-182, 1951.

[17] James Raymond. Munkres. Topology. Prentice Hall, 2000.

[18] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652660, 2017.

[19] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5099-5108. Curran Associates, Inc., 2017.

[20] W. Rudin. Functional Analysis. International series in pure and applied mathematics. Tata
McGraw-Hill, 1974.

11

[21] Walter Rudin. Real and complex analysis. Tata McGraw-hill education, 2006.

[22] Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International
Conference on Learning Representations, 2019.

[23] M.b. Stinchcombe. Neural network approximation of continuous functionals and continuous
functions on compactifications. Neural Networks, 12(3):467-477, 1999.

[24] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[25] Cedric Villani. Optimal transport: old and new. Springer, 2009.

[26] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and Michael Osborne. On
the limitations of representing functions on sets. arXiv preprint arXiv:1901.09006, 2019.

[27] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEFE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

[28] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[29] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. arXiv
preprint arXiv:1804.10306, 2018.

[30] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In International Conference on
Machine Learning, pages 11975-11986. PMLR, 2021.

[31] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 3391-3401. Curran Associates, Inc., 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? The work
is of a theoretical nature and so it is difficult to say exactly what impact it could have
on society if any.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Full proofs can be
found in main paper or in supplemental materials.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Will be included
with supplemental.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The experiment was with synthetic data so was mostly a sanity
check for the theorems so there was not much to describe.

12

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] The sole experiment is not of a nature that lends itself to
error bars. It merely checks whether every single case has an error above the theoretical
prediction. A single violation of this would suggest there is an error in the code or

proof.
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? It is a deliberately lightweight

experiment so this was omitted.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [IN/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

