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Abstract

Combination therapy refers to the use of multiple treatments – such as surgery,
medication, and behavioral therapy - to cure a single disease, and has become a
cornerstone for treating various conditions including cancer, HIV, and depression.
All possible combinations of treatments lead to a collection of treatment regimens
(i.e., policies) with mixed scopes, or what physicians could observe and which
actions they should take depending on the context. In this paper, we investigate the
online reinforcement learning setting for optimizing the policy space with mixed
scopes. In particular, we develop novel online algorithms that achieve sublinear
regret compared to an optimal agent deployed in the environment. The regret bound
has a dependency on the maximal cardinality of the induced state-action space
associated with mixed scopes. We further introduce a canonical representation for
an arbitrary subset of interventional distributions given a causal diagram, which
leads to a non-trivial, minimal representation of the model parameters.

1 Introduction

The problem of policy learning is concerned with choosing actions based on the state of the environ-
ment with the goal of optimizing a certain measure of performance. Existing policy learning methods
could be generally categorized into online learning and offline learning. Online reinforcement
learning (RL) learns optimal policies by conducting sequential experimentation, while repeatedly
adjusting the policy that is currently deployed based on the observed outcomes up to a certain point in
time. Effective online algorithms have been developed for various canonical environments, including
multi-armed bandits [26, 13, 1, 14], Markov decision processes (MDPs) [30, 11, 34], and partially
observable MDP [9, 3]. On the other hand, off-policy learning focuses on the offline setting with
the goal of evaluating the effectiveness of candidate policies from history data collected following a
different behavior policy [24, 32, 33]. More generally, the discipline of causal inference (CI) offers
focuses a compelling set of tools and a formal language for offline learning. It allows the agent to
draw conclusions about new policies from a combination of observations and knowledge about the
data-generating mechanisms. Several methods and graphical criteria have been proposed [23, 29, 4].

By and large, almost all methods described above concerns optimizing over a parametric space
of policies with a fixed state-action space, which are called the policy scope. That is, the set of
actions and observed states are pre-specified a priori. However, in many practical applications, this
is possibly somewhat stringent, and the agent has to optimize over candidate policies with varying
state-action spaces; these are called mixed scopes. For concreteness, consider the causal model in
Fig. 1a that describes possible treatments for alcohol use disorder [19]. Based on the condition of
alcohol dependant patients Z, the physician may prescribe a medication X1 to maximize the total
days of abstinence Y . An alternative treatment is to prescribe a behavioral therapy X2, which alters
the social environment W of the patient, and, in turn, changes the pattern of alcohol use. The goal
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Figure 1: (a) A causal diagram G; (b,c,d) policy-induced diagrams obtained from G associated with
scopes S1 = {⟨X1, {Z}⟩}, S2 = {⟨X2, {Z}⟩} and S1,2 = {⟨X1, {Z}⟩, ⟨X2, {Z}⟩}. Red nodes
represent actions, blue nodes represent the reward, and red arrows for functional dependencies
induced by interventions; π are policy indicators, which will be left implicit throughout the paper.

of the analysis is to assess the effect of prescribing a combination treatment of both medication and
behavioral therapy (i.e., a policy π = {π1(X1 | Z), π2(X2 | Z)}, compared to effects of prescribing
each treatment separately (i.e., a policy π = {π1(X1 | Z)} or π = {π2(X2 | Z)}). In this example,
the action scope for all three treatment regimens are different, corresponding to {X1, X2}, {X1},
and {X2}, respectively. The physician has to determine the optimal set of actions to intervene in
order to find the optimal policy so as to maximizing the days of abstinence.

There exists a growing literature concerned with the problem of optimizing mixed policies under
various assumptions about the underlying environment. For instance, in the case of multi-armed
bandits with linear reward functions, effective online algorithms exist for determining an optimal
subset of actions so that intervening on them maximizes the expected reward [6, 5]. More recently,
there exists new developments for policy optimization based on structural constraints in causal
models. Non-parametric knowledge of causal relationships has been exploited to refine the space of
policies with mixed scopes in increasingly relaxed scenarios [16, 17, 18]. In particular, there are now
graphical conditions under which one could (1) identify necessary states for a set of actions, and (2)
determine a partial ordering over policy scopes with regard to their maximum achievable expected
rewards (optimality). These results allow an agent to detect and remove suboptimal and inefficient
scopes, and focus its attention on the possibly optimal actions, accelerating the learning processes.

Despite of the the substantive progress achieved so far, an effective online algorithms for learning
optimal policies with mixed scopes in an arbitrary causal system is still missing. In terms of graphical
characterization, it is also highly non-trivial, and still unknown how the refinement of the candidate
policy space affects the agent’s performance. The goal of this paper is to address these challenges.
We will investigate the online learning of optimal policies with mixed scopes, provided with a causal
diagram associated with the underlying structural causal model (SCM) [23, Ch. 7]. In particular,
our contributions are summarized as follows. (1) We develop a novel online learning algorithm that
identifies an optimal policy with mixed scopes in an unknown SCM, and show that it achieves a
sublinear cumulative regret. (2) We introduce a novel parametrization for SCMs with finite latent
states, which can represent an arbitrary subset of interventional distributions through a minimal
collection of c-components. (3) Leveraging these results, we develop an alternative online algorithm
that is more computational efficient, while achieving the same asympotic bound over the cumulative
regret. Given the space constraints, all proofs are provided in the technical report [42, Appendix A].

1.1 Preliminaries

In this section, we introduce the basic notations and definitions used throughout the paper. We
use capital letters to denote random variables (X), small letters for their values (x) and ΩX for the
domain of X . For an arbitrary set X , let |X| be its cardinality. We denote by P (X) represents
a probability distribution over variables X . Similarly, P (Y | X) represents a set of conditional
distributions P (Y |X = x) for all realizations x. We will consistently use P (x) as abbreviations
for probabilities P (X = x); so does P (Y = y | X = x) = P (y | x). Finally, 1{Z = z} is an
indicator function that returns 1 if event Z = z holds true; otherwise, it returns 0.
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The basic semantical framework of our analysis rests on structural causal models (SCMs) [23, 4].
An SCM M is a tuple ⟨V ,U ,F , P (U)⟩, where V is a set of endogenous variables and U is a set
of exogenous variables. F is a set of functions s.t. each fV ∈ F decides values of an endogenous
variable V ∈ V taking as argument a combination of other variables in the system. That is,
V ← fV (PAV ,UV ),PAV ⊆ V ,UV ⊆ U . Exogenous variables U ∈ U are mutually independent,
values of which are drawn from the exogenous distribution P (U). Naturally, M induces a joint
distribution P (V ) over endogenous variables V , called the observational distribution.

A policy π over a subset X ⊆ V is a sequence of decision rules {π(X | SX)}X∈X , where every
π(X | SX) is a probability distribution mapping from domains of a set of covariates SX ⊆ V to the
domain of an action X . An intervention following a policy π over variables X , denoted by do(π),
is an operation which sets values of every X ∈ X to be decided by policy X ∼ π(X | SX) [37],
replacing the functions fX = {fX : ∀X ∈ X} that would normally determine their values. For
an SCM M , let Mπ be a submodel of M induced by intervention do(π). For a set Y ⊆ V , the
interventional distribution P (Y |do(π)) is defined as the distribution over Y in the submodel Mπ,
i.e., PM (Y |do(π)) ≜ PMπ

(Y ). Subscript M is left implicit when it is obvious from the context.

Each SCM M is also associated with a causal diagram G (e.g., Fig. 1a), which is a directed acyclic
graph (DAG) where solid nodes represent endogenous variables V , empty nodes represent exogenous
variables U , and arrows represent the arguments PAV ,UV of each structural function fV . We
will use standard graph-theoretic family abbreviations to represent graphical relationships such as
parents, children, descendants, and ancestors. For example, the set of parent nodes of X in G is
denoted by pa(X)G = ∪X∈Xpa(X)G ; ch , de and an are similarly defined. Capitalized versions
Pa,Ch,De,An include the argument as well, e.g. Pa(X)G = pa(X)G ∪X . For a subset X ⊆ V ,
G[X] is a vertex-induced subgraph from G, which contains nodes X and edges among them.

For convenience, we define a bidirected arrow Vi ↔ Vj between endogenous nodes Vi, Vj ∈ V as
a sequence of arrows Vi ← Uk → Vk where Uk ∈ U is an exogenous parent shared by Vi, Vj . A
bi-directed path is a consecutive sequence of bi-directed arrows. We will utilize a special type of
clustering of nodes in the diagram G, called the c-component [38]. Formally, a subset C ⊆ V is a
c-component in a causal diagram G if any pair Vi, Vj ∈ C is connected by a bi-directed path in G.
For instance, there exist bidirected paths X1 ↔ X2 ↔ Y and Z ↔ W in the causal diagram G in
Fig. 1a. G thus contains c-components {X1, X2, Y }, {Z,W}. On the other hand, the diagram GS1

in Fig. 1b contains c-components {X1}, {X2, Y }, {Z,W}, since bi-directed arrows X1 ↔ X2 and
Y ↔ X1 are removed. For a detailed survey on SCMs, we refer readers to [23, Ch. 7].

2 Optimizing Mixed Policy Spaces

We are concerned with the decision-making setting where an agent interacts with an SCM to optimize
a reward Y . The agent could intervene on an arbitrary subset of actions X , called intervenable
variables. A policy scope S is a collections of pairs ⟨X,SX⟩ where X ∈ X and covariates
SX ⊆ V ⊆ {Y }. Let X(S) = {X}⟨X,SX⟩∈S denote the subset of actions in scope S; similarly,
S(S) =

⋃
⟨X,SX⟩∈S SX . For instance, for a scope S1 = {⟨X1, {Z}⟩} in Fig. 1b, X(S1) = {X1}

and S(S1) = {Z}. Formally, a policy π associated with scope S is a sequence of decision rules
{π (X | SX)}⟨X,SX⟩∈S . The collection of such policies π define a policy space ΠS . All policies
in ΠS share the same scope S: they intervene on all actions in X(S) based on observed values of
covariates S(S). Policy space ΠS models a general class of decision rules and treatment regimens in
many classic sequential decision making settings, including policies in Markov decision processes
[25], strategy profiles in influence diagrams [12], and dynamic treatment regimes [20].

This paper investigates a more general space of policies that are not restricted to a single scope S . A
mixed policy scope is a combinatorial set of policy scopes over intervenable variables X . Formally,
Definition 1. A mixed policy scope S is a collection of policy scopes S such that X(S) ⊆X .

A policy space ΠS with regard to a mixed policy scope S is the set of all policies compatible with
every scope in S, i.e., ΠS = ∪S∈SΠS . Henceforth, we will consistently refer to ΠS as a mixed policy
space [18]. Our goal is to learn an optimal policy in ΠS that maximize reward Y in an SCM M , i.e.,

π∗ = argmax
π∈ΠS

EM [Y | do(π)] (1)
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The agent does not have access to the parametrization of the underlying SCM M . Instead, the agent
can observe endogenous variables V , the mixed policy space ΠS, and the causal diagram G represent-
ing qualitative knowledge encoded about M . Throughout this paper, we assume that endogenous
variables V are discrete and finite, while exogenous variables U could take any (continuous) value.
Distributions P (V ) and P (V | do(π)) are thus categorical probability measures.

2.1 A Causal Upper Confidence Bound Algorithm

A typical online algorithm evaluates the effectiveness of candidate policies π ∈ ΠS by directly
deploying policies in the actual environment (SCM M ) through repeated rounds of interventions
t = 1, 2, . . . , T . For each round t, the algorithm selects a policy πt ∈ ΠS, performs an intervention
do (πt), and receives a subsequent reward Yt. The cumulative regret for an online algorithm in an
SCM M after T rounds of interventions is defined as R(T,M) =

∑T
t=1 (EM [Y | do(π∗)]− Yt). In

words, R(T,M) measures the cumulative loss incurred since the online algorithm does not always
selects the optimal policy π∗. A reasonable, or desirable property for an online algorithm is to have a
sublinear regret for any SCM M , i.e., limT→∞ R(T,M)/T = 0. If the regret is sublinear, the agent
is known to be selecting the optimal policy almost all of the time as T goes to infinity.

We will introduce a novel online algorithm that optimizes the mixed policy space while achieving a
sublinear regret. It follows the well-celebrated principle of optimism in the face of uncertainty. That is,
for each episode, the agent picks a policy based on upper confidence bounds (UCB) [1, 2, 39, 40, 41],
which evaluate the effectiveness of candidate policies in the most optimistic models, compatible with
past observations, that induces the maximal expected reward. One innovation of our approach is to
leverage the invariances embedded in the causal structure G, which allows us to evaluate a candidate
policy using samples induced by other policies with different scopes.

Formally, let C(G) denote a c-collection containing all (maximal) c-components in a causal diagram G
1. Consequently, C(G) forms a partition {C1, . . . ,Cn} over nodes in G where there is not bi-directed
arrow between every pair Ci and Cj whenever i ̸= j. Consider again the causal diagram G in
Fig. 1a, c-collection C(G) contains c-components C1 = {X1, X2, Y }, C2 = {Z,W}, which forms
a partition over nodes in G. For an arbitrary subset C ⊆ V , the c-factor Q[C] is a function defined
as Q[C](v) = P (c | do (v \ c)) [38], where do(v \ c) is an atomic intervention setting values of
V \C to a constant v \ c [23]. For convenience, we often omit input v and write Q[C]. Fix a policy
scope S ∈ S. For any policy π ∈ ΠS , let set Z = An(Y )GS \X(S). The interventional distribution
P (Y | do(π)) could be decomposed over c-components in subgraph G[Z] as follows:

P (y | do(π)) =
∑
z

∏
X∈X(S)

π(x | sX)
∏

C∈CS

Q[C], (2)

where the c-collection CS = C(G[Z]) contains all c-components in G[Z]. Let a c-collection C =
∪S∈SCS . Among quantities in the above equation, decision rules π(x | sX) are fixed. To evaluate
effects P (Y | do(π)) of candidate policies in ΠS, it is thus sufficient to learn parameters of Q[C]
for components C ∈ C. Consider again the causal diagram G in Fig. 1a; the mixed policy scope S
contains elements S1 = {⟨X1, {Z}⟩}, S2 = {⟨X2, {Z}⟩} and S1,2 = {⟨X1, {Z}⟩, ⟨X2, {X1, Z}⟩}.
For a policy π1(x1|z) characterized with scope S1 = {⟨X1, {Z}⟩}, P (Y |do(π1)) decomposes as:

P (y | do(π1)) =
∑

x1,x2,z,w

π(x1 | z)Q[X2, Y ]Q[Z,W ]. (3)

The c-collection CS1
= {{X2, Y }, {Z,W}}. Similarly, enumerating c-components associated with

every scope S ∈ S gives a c-collection C = {{Z,W}, {X1, Y }, {X2, Y }, {Y }}. For any C ∈ C,
let S(C) be a subset of scopes S ∈ S such that C ∈ CS . Our online algorithm evaluates Q[C] by
directly performing intervention do(π) in the actual SCM M .
Lemma 1. For a causal diagram G, let C ∈ C be a c-component in G. Then, c-factor Q[C] factorizes
over a topological ordering ≺ in G as follows:

Q[C] =
∏
V ∈C

q
(
v | pa+

V

)
(6)

where extended parents PA+
V = Pa(CV ) \ {V }; CV is the c-component containing V in G[{V ′ ∈

C | V ′ ≺ V }]. Moreover, q
(
V | PA+

V

)
= P

(
V | PA+

V , do(π)
)

for any policy π ∈ ΠS(C).

1Generally, a c-collection C is a collection of c-components C contain in a causal diagram G.
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Algorithm 1 CAUSAL-UCB*

Input: Causal diagram G, policy space ΠS, failure tolerance δ ∈ (0, 1).
1: for all episodes t = 1, 2, . . . do
2: For every C ∈ C, compute an empirical estimate Q̂t[C] following Eq. (8).
3: Let Mt be a set of all SCMs M associated with G such that each c-factor QM [C] is close to

its estimate Q̂t[C] in Eq. (8). That is, for every V ∈ C, for any pa+
V ,

∥∥q (· | pa+
V

)
− q̂t

(
· | pa+

V

)∥∥
1
≤

√√√√6
∣∣ΩV

∣∣ ln(2∣∣ΩPA+
V

∣∣∣∣V (C)
∣∣t/δ)

max
{
nt

(
pa+

V

)
, 1
} . (4)

4: Find the optimistic policy πt such that

πt = argmax
π∈ΠS

max
M∈Mt

EM [Y | do(π)] (5)

5: Perform do (πt) and observe V (t).

As an example, consider again the causal diagram G and policy scopes S1,S2,S1,2 described in Fig. 1.
For a c-component C3 = {X2, Y } ∈ CS1 , this implies the policy scope S1 ∈ S(C3). Observe that
CY = {X2, Y }, CX2

= {X2} and extended parents PA+
Y = {X2, Z,W}, PA+

X2
= {Z}. Lem. 1

implies Q[C3] is computable from the sampling process following any policy π1 ∈ ΠS1 , i.e.,
Q[X2, Y ] = P (y | x2, z, w, do(π1))P (x2 | z, do(π1)). (7)

Details of our proposed algorithm, CAUSAL-UCB*, are provided in Alg. 1. It interacts with the
underlying SCM through policies in ΠS in repeated episodes t = 1, . . . , T . At episode t, it computes
an empirical estimate of c-factor Q[C] for each c-component C ∈ C. More specifically, the empirical
estimate of c-factor Q̂t[C] prior to episode t is given by:

Q̂t[C](v) =
∏
V ∈C

q̂t
(
v | pa+

V

)
, where q̂t

(
v | pa+

V

)
=

nt

(
v,pa+

V

)
max

{
nt

(
pa+

V

)
, 1
} . (8)

Among quantities in the above equation, nt

(
v,pa+

V

)
is the event count for observing V =

v,PA+
V = pa+

V after deploying policy π ∈ ΠS(C) prior to episode t. That is, nt

(
v,pa+

V

)
=∑t−1

τ=1 1
{
Vτ = v,

(
PA+

V

)
τ
= pa+

V ,πτ ∈ ΠS(C)

}
and nt

(
pa+

V

)
=

∑
v nt

(
v,pa+

V

)
. At Step 3,

CAUSAL-UCB* maintains a confidence set Mt of all possible SCM compatible with G using convex
intervals centered around each estimate Q̂t[C]. It then finds the optimal policy πt for the most
optimistic instance Mt from Mt that induces the maximal expected reward E[Y | do(π)] (Step 4).
Finally, Step 7 performs do(πt) throughout episode t and collect new samples Vt. Let V (C) be a
union

⋃
C∈C C. It is possible to derive a regret bound of CAUSAL-UCB* after T > 1 episodes.

Theorem 1. For a causal diagram G and a mixed policy scope S, fix a δ ∈ (0, 1). With probability at
least 1− δ, it holds for any T > 1, the regret of CAUSAL-UCB* is bounded by

R(T,M) ≤ 19∆(G,S)
√∣∣S∣∣T ln

(∣∣V (C)
∣∣T/δ). (9)

where function ∆(G,S) = maxS∈S ∆(G,S) and ∆(G,S) =
∑

V ∈V (CS)

√∣∣ΩV ∪PA+
V

∣∣.
Thm. 1 implies that CAUSAL-UCB* is able to achieve a sublinear regret; therefore, policy πt

eventually converges to an optimal policy as episode t→∞. For example, in the causal diagram G
and the mixed policy scope S = {S1,S2,S1,2} described in of Fig. 1, applying Thm. 1 gives a regret

bound O
(
∆(G,S)

√
T lnT

)
. Evaluating ∆(G,S) with the cardinality |ΩX2

| > |ΩX1
| gives

∆(G,S) = ∆(G,S1) =
√∣∣ΩY,X2,Z,W

∣∣+√∣∣ΩX2,Z

∣∣+√∣∣ΩW,Z,X1

∣∣+√∣∣ΩZ

∣∣. (10)

In comparison, applying standard UCB with deterministic polices in ΠS as arms leads to a regret
bound O

(√
|ΠS|T lnT

)
where |ΠS| = |ΩX1

||ΩZ | + |ΩX2
||ΩZ | + |ΩX1

||ΩZ | × |ΩX2
||ΩZ |, which is

dominated by that of CAUSAL-UCB* as the number of endogenous states increases.
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Accelerate Learning Processes In the regret bound of Thm. 1, function
∆(G,S) can be seen as a measure evaluating the difficulty of the learning
task. It has a dependency on the maximal cardinality of the state-action space
associated with policy scopes S in S. There exist a general characterization
of the mixed scope with respect to properties that allow the agent to detect
redundant and suboptimal policy scopes [18]. Doing so, we obtain a refinement
of the agent’s candidate policy scopes so that it converges to the optimal
strategy faster and more robustly. For instance, consider the causal diagram G
described in Fig. 2. We are interested in evaluating policies with mixed scope S = {S1,S2,S1,2}
where S1 = {⟨X1, ∅⟩}, S2 = {⟨X2, ∅⟩} and S1,2 = {⟨X1, ∅⟩, ⟨X2, {X1}⟩}. It is possible to show
that S1,2 is redundant since there always exists an optimal policy with scope S1 or S2. Removing S1,2
leads to a more refined mixes scope S∗ = {S1,S2}. Since ∆(G,S∗) = max{∆(G,S1),∆(G,S1)} ≤
max{∆(G,S1),∆(G,S1),∆(G,S1,2)} = ∆(G,S), applying CAUSAL-UCB* with the refined scope
S∗ achieve a smaller regret than that with S, thus accelerating the online learning process.

3 Optimistic Planning over Mixed Policy Scopes

The optimization problem entailed by CAUSAL-UCB* in the algorithm discussed earlier (Eq. (5))
requires the learner to search over all possible SCMs compatible with the causal diagram and
experimental data. In principle, this entails a challenging task since one does not have access to
the parametric forms of the underlying structural functions F nor the exogenous distribution P (U).
Consequently, it is not clear how the existing optimization procedures can be used.

When domains of endogenous variables are discrete and finite, there exists a canonical family of SCMs
that parametrizes all observational and interventional distributions in any causal diagram using a finite
number of exogenous states [43, 27]. A c-component C ∈ C is said to cover an exogenous variable
U ∈ U if U ∈ ∪V ∈CUV . Let C(U) denote the set of c-components in C covering U . Consider again
the causal diagram in Fig. 1a. For the c-collection C = {{Z,W}, {X1, Y }, {X2, Y }, {Y }}, exoge-
nous node U2 is covered by C(U2) = {{X1, Y }, {X2, Y }, {Y }}; similarly, C(U1) = {{Z,W}}.
Next we present a novel finite-state decomposition representing c-factors in any c-collection C.
Theorem 2. For any SCM M = ⟨V ,U ,F , P (U)⟩, let C be an arbitrary c-collection. For any
C ∈ C, c-factor Q[C] decomposes as follows:

Q[C](v) =
∑
U∈U

∑
u=1,...,dU

∏
V ∈C

1{fV (paV ,uV ) = v}
∏
U∈U

P (u) (11)

where for every exogenous U ∈ U , P (U) is a discrete distribution over a finite domain {1, . . . , dU}
with cardinality dU =

∑
C∈C(U)

∣∣ΩPa(C)

∣∣; C(U) ⊆ C are c-components covering U .

Henceforth, we will refer to the family of SCMs with finite exogenous domain defined in Thm. 2 as
C-canonical SCMs. For concreteness, consider the causal diagram in Fig. 1a with X1, X2, Y, Z,W ∈
{0, 1}. Recall that for C = {{Z,W}, {X1, Y }, {X2, Y }, {Y }}, C(U1) = {{Z,W}} and C(U2) =
{{X1, Y }, {X2, Y }, {Y }}. The cardinality of U1 in C-canonical SCMs is d1 =

∣∣ΩPa(Z,W )

∣∣ =
|ΩZ,X1,W | = 8. Similarly, the cardinality of U2 in C-canonical SCMs is given by:

d2 =
∣∣ΩPa(X1,Y )

∣∣+ ∣∣ΩPa(X2,Y )

∣∣+ ∣∣ΩPa(Y )

∣∣ = 25 + 24 + 24 = 64. (12)
Thm. 2 implies that Q[Z,W ], Q[X2, Y ] in the diagram of Fig. 1a could be written as:

Q[Z,W ] =
∑

u1=1,...,d1

1{fZ(u1) = z}1{fW (z, x1, u1) = w}P (u1) (13)

Q[X2, Y ] =
∑

u2=1,...,d2

1{fX2(z, u2) = x2}1{fY (x2, z, w, u2) = y}P (u2) (14)

where P (U1), P (U2) are distributions over finite domains {1, . . . , d1}, {1, . . . , d2}, respectively.
Following the decomposition in Eq. (3), for any policy π1 ∈ ΠS1

, the interventional distribution
P (Y | do(π1)) is a function of c-factors Q[X2, Y ], Q[Z,W ] and is given by:

P (y | do(π1)) =
∑

x1,x2,z,w

π(x1|z)
∑

u1=1,...,d1

1{fZ(u1) = z}1{fW (z, x1, u1)}P (u1)∑
u2=1,...,d2

1{fX2
(z, u2) = x2}1{fY (x2, z, w, u2) = y}P (u2)

(15)
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Observe in Thm. 2, cardinalities of exogenous domains rely on the total number of c-components in
C. Next we introduce an effective method to reduce the model complexity of canonical SCMs by
exploring identifiable relationships among c-factors Q[C] contained in C.
Definition 2. For a causal diagram G and a c-collection C, c-factor Q[C], ∀C ∈ C, is identifiable if
Q[C] is uniquely computable from other c-factors Q[C ′] in C\{C}. That is, QM1

[C] = QM2
[C] for

every pair of SCMs M1,M2 with GM1
= GM2

= G, and QM1
[C ′] = QM2

[C ′] for any C ′ ∈ C\{C}.

In words, Q[C] is identifiable w.r.t. ⟨G,C⟩ if it could be written as a function of c-factors in the
remainder of the collection C′ = C \ {C}. For instance, consider the the causal diagram of Fig. 1a
and the c-collection C = {{Z,W}, {X1, Y }, {X2, Y }, {Y }}. [36, Lem. 10] implies that c-factor
Q[Y ] is identifiable from Q[X1, Y ] and is given by Q[Y ] =

∑
x1

Q[X1, Y ]. For every pair of
SCMs that generates the same set of c-factors in C′ = {{Z,W}, {X1, Y }, {X2, Y }}, they must also
coincide in parameters of Q[Y ]. It is thus sufficient to focus on representing parameters of c-factors
in the subset C′, which we call a reduction of the original c-collection C.
Definition 3. For a causal diagram G and a c-collection C, a subset C′ ⊆ C is said to be a reduction
of C if it is obtained by successive removals of identifiable c-component C.

Algorithm 2 MINCOLLECT

Input: Causal diagram G, c-collection C.
1: function MINCOLLECT(G,C)
2: while C = FINDID(G,C) ̸= ∅ do
3: Let C = C \ {C}.
4: return C.
5: function FINDID(G,C)
6: for every pair C,C ′ ∈ C s.t. C ⊂ C ′ do
7: if IDENTIFY(C,C ′,G) ̸= FAIL then
8: return C.

A reduction C′ is minimal if there exists no
proper subset C′′ ⊂ C′ such that C′′ is a re-
duction of C′. To reduce the model complexity
of candidate SCMs, it is always preferable to
present c-components in a minimal reduction.
Next we describe a systematic procedure to ob-
tain a minimal reduction of c-collection C in
a causal diagram G. Details of our algorithm,
MINCOLLECT, are described in Alg. 2. It repeat-
edly removes identifiable c-factors Q[C] from
collection C. The subroutine IDENTIFY [36] is
a complete algorithm in determining the identi-
fiability of Q[C] from another c-factor Q[C ′] such that C ⊆ C ′. In particular, IDENTIFY returns a
formula estimating Q[C] from Q[C ′] if the target query is identifiable; otherwise, it returns “FAIL”.
It is possible to show that the greedy procedure in Alg. 2 always returns a minimal reduction of C.
Proposition 1. For a causal diagram G and a c-collection C, MINCOLLECT(G,C) returns a minimal
reduction C∗ of C.

A natural question arising at this point is whether the order of removing c-components C could affect
the output of MINCOLLECT. Fortunately, the next proposition shows that this is not the case.
Proposition 2. For a causal diagram G, any c-collection C has a unique minimal reduction.

Consider again the c-collection C = {{Z,W}, {X1, Y }, {X2, Y }, {Y }} in the causal diagram
G of Fig. 1a. Applying procedure MINCOLLECT(C,G) gives a minimal reduction C∗ =
{{Z,W}, {X1, Y }, {X2, Y }}. Therefore, it is sufficient to consider C∗-canonical SCMs compatible
wtih G when computing the optimistic policy in Eq. (5). Compared with C-canonical SCMs, the
cardinality of U1 in a C∗-canonical SCM remains the same and equates to d1 =

∣∣ΩPa(Z,W )

∣∣ = 8.
On the other hand, C∗(U2) = {{X1, Y }, {X2, Y }} and the cardinality of U2 is given by

d2 =
∣∣ΩPa(X1,Y )

∣∣+ ∣∣ΩPa(X2,Y )

∣∣ = 25 + 24 = 48, (16)

which is smaller than the cardinalty of U2 in C-canonical SCMs given by Eq. (12). One could then
obtain an optimistic policy in Eq. (5) by solving a series of equivalent polynomial programs. For a
more detailed survey on canonical SCMs and related work, we refer readers to the complete technical
report [42, Appendix C].

3.1 Thompson Sampling

The canonical representation of c-factors allows the optimization problem in Eq. (5) to be reducible to
a series of equivalent polynomial programs. Nevertheless, solving polynomial optimization is NP-hard
in general [8], which means that applying CAUSAL-UCB* is still computationally challenging. This
section introduces an alternative online algorithm that is computationally feasible, while achieving a
similar asymptotic bound on the cumulative regret.
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Our algorithm is based on the heuristics of Thompson sampling (TS) [35, 31, 21]. It maintains a prior
distribution ρ(M) over all possible SCMs M compatible with the causal diagram G. One may surmise
that it is challenging to define such a prior ρ since the agent does not have access to the parametric
forms of the underlying SCM. Fortunately, it follows from the decomposition in Thm. 2 that we could
assume the exogenous domain to be discrete and finite without loss of generality. Particularly, we
will consider a family of C∗-canonical SCMs where C∗ is a minimal reduction of c-collection C in G.
The cardinality of domain of every U ∈ U is given by dU =

∑
C∈C∗(U)

∣∣ΩPa(C)

∣∣. We assume that
probabilities of P (U) are drawn from uninformative Dirichlet priors; and F are drawn uniformly
from the finite class of possible structural functions. That is, for every U ∈ U and every V ∈ V ,

P (U) ∼ Dir (α1, . . . , αdU
) , fV ∼ Unif (ΩPAV

× ΩUV
7→ ΩV ) , (17)

where α1 = · · · = αdU
= 1; ΩPAV

× ΩUV
7→ ΩV is a class containing all functions mapping from

finite domains of PAV ,UV to V , which must also contain only a finite number of elements.

Algorithm 3 CAUSAL-TS*

1: Input: Causal diagram G, policy space ΠS, prior ρ.
2: for all episodes t = 1, 2, . . . do
3: Sample an SCM Mt ∼ ρ

(
M | V̄t

)
.

4: Compute an optimal policy πt such that

πt = argmax
π∈ΠS

EMt [Y | do(π)] (18)

5: Perform do (πt) and observe V (t).

Details of our algorithm, CAUSAL-TS*,
are described in Alg. 3. At each episode
t, it updates the posterior distribution
ρ(M |V̄t) from collected samples V̄t =
{V1, . . . ,Vt−1} prior to episode t, and
draws an estimate Mt from the updated
posteriors. Similar to Bayesian causal in-
ference approaches [7, 43], we will obtain
a posterior sample M ∼ ρ(M | V̄t) using
Gibbs sampling [10]. In Step 4, CAUSAL-
TS* computes an optimistic policy πt that
maximizes the expected outcome E[Y | do(π)] induced by the sampled SCM Mt. Finally, the agent
executes πt throughout episode t and new samples Vt are collected.

Following previous work [28, 21, 22], we will assess the performance of TS using the Bayesian
cumulative regret up to episode T , i.e., R(T, ρ) = E [R(T,M) |M ∼ ρ(M)], where the expectation
is taken with respect to the prior distribution over M . There exists a general relationship between TS
and UCB algorithms in many model classes [28]. This allows one to convert regret bounds developed
for CAUSAL-UCB* into Bayesian regret bounds for CAUSAL-TS*. Formally,

Theorem 3. Given a causal diagram G, a mixed policy scope S, and a prior distribution ρ, it holds
for any T > 1, the regret of CAUSAL-TS* is bounded by

R(T, ρ) ≤ 26∆(G,S)
√∣∣S∣∣T ln

(∣∣V (C)
∣∣T ). (19)

Compared with Thm. 1, the above regret bound implies that CAUSAL-TS* achieves a similar
asymptotic performance as CAUSAL-UCB*. Particularly, Alg. 3 requires one only has to find an
optimal policy πt in a specific SCM Mt, while in Alg. 1, parameters of Mt are imprecise, bounded
in the hypothesis class Mt. There exist effective planning algorithms in finding optimal policies in
a structured environment provided with detailed parameterization of the underlying SCM [15, 12].
This implies that CAUSAL-TS* is more computationally feasible compared to CAUSAL-UCB*.

4 Simulations

In this section, we evaluate the performance of our algorithms on randomly generated SCMs in
various types of causal diagrams. After all, our algorithms can consistently find the corresponding
optimal policies with mixed scopes. Further leveraging causal relationships in the underlying
environment accelerates the convergence rate of online learners. In all experiments, we evaluate the
novel CAUSAL-TS*, with uninformative Dirichlet priors over exogenous probabilities and uniform
priors over structural functions, which we label as c-ts*. As a baseline, we also include randomized
trials (rct) allocating treatments in all possible scopes uniformly at random, standard Thompson
sampling algorithm (ts) using all deterministic policies as arms, and Thompson sampling over a
simplified mixed scope (ts*), which is obtained by applying graphical conditions in [18]. For all
algorithms, we measure their cumulative regrets over T = 1.1× 103 episodes. We refer readers to
the technical report [42, Appendix B] for a more detailed discussion on the experimental set-up.
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 3: Simulations comparing online learners that are randomized (rct), adaptive (ts), adaptive
with simplified policy scopes (ts*), and causally enhances (c-ts*). x-axle represents total episodes
and y-axle for the cumulative regret. Figures are rendered in high resolution and can be zoomed in.

Experiment 1 Consider again the causal diagram and policy scopes described in Fig. 1. We ran-
domly generate 100 instances of SCMs in Fig. 1a with binary X1, X2, Z,W, Y ∈ {0, 1}. Exogenous
variables U1, U2 are discrete, taking values in finite domains with cardinalities d1 = 16, d2 = 48
respectively. Thm. 2 and Prop. 1 implies that this parametric family is sufficient to generate all
possible effected reward of candidate policies in Fig. 1. The cumulative regrets averaging over random
SCMs are reported in Fig. 3a. Our analysis reveals that c-ts* consistently outperforms ts and ts* since
it is able to reuse samples induced by policies with mixed scopes by exploiting underlying causal
knowledge. The performance of ts and ts* coincide since none of scopes S1,S2,S1,2 is consistently
redundant or suboptimal. Unsurprisingly, rct performs the worst among all algorithms.

X1

X2

W

Y

U1

U2

U3

Figure 4

Experiment 2 Consider the causal diagram in Fig. 4 where where Y rep-
resents cardiovascular disease, W blood pressure, X1 taking an antihyper-
tensive drug, and X2 the use of an anti-diabetic drug [18]. Our goal is to
evaluate policies with scopes S1 = {⟨X1, ∅⟩}, S2 = {⟨X2, ∅⟩} and S1,2 =
{⟨X1, ∅⟩, ⟨X2, {X1}⟩}. We randomly generate 100 SCMs in Fig. 4 with bi-
nary X1, X2,W, Y ∈ {0, 1}. Exogenous variables U1, U2, U3 are drawn from
distributions over finite domains with cardinalities d1 = 8, d2 = 12, d3 = 16
respectively. It follows from Thm. 2 such a parametric family is able to gen-
erate all expected rewards of policies with scopes S1,S2,S1,2. Simulation
results, shown in Fig. 3b, reveal that the performance of ts and ts* coincide; the causal approach c-ts*
consistently dominates ts and ts*; and finally, rct performs the worst among all strategies.

Experiment 3 Consider the causal diagram in Fig. 2 and policy scopes S1 = {⟨X1, {Z}⟩},
S2 = {⟨X2, {Z}⟩} and S1,2 = {⟨X1, {Z}⟩, ⟨X2, {X1, Z}⟩}. We randomly generate 100 SCMs in
Fig. 2 with binary X1, X2, Z, Y ∈ {0, 1}. Exogenous variables U1, U2 are drawn from categorical
distributions over domains with cardinalities d1 = 2, d2 = 24 respectively. Fig. 3c shows cumulative
regrets averaging over random SCMs for all algorithms. Simulation results reveal that c-ts* consis-
tently dominates other algorithms; ts* improves over ts since it does not explore the redundant policy
scope S1,2. As expected, rct performs the worst among all learning strategies.

5 Conclusions

This paper investigated the online reinforcement learning for selecting an optimal treatment regimen
from a policy space characterized with mixed state-action scopes. We first presented an online
algorithm (Alg. 1) that achieves a sublinear regret but is computationally intractable for any moderated-
size instance. We further introduced a novel type of parametrizations for general SCMs (Thm. 2),
with finite observed and latent domains, that could represent an arbitrary subset of interventional
distributions in a causal diagram using the minimal number of decomposing factors, called c-
components. We then developed a more computationally efficient online algorithm (Alg. 3), based
on the heuristics of Thompson sampling, that identifies an optimal policy with the same sample
complexity. In today’s healthcare, the growing use of combination therapies opens new opportunities
in designing effective regimens by combining multiple treatments. The additional degrees of freedom
present challenges in comparing different treatment regimens. We believe that our results constitute a
significant step towards the development of a more principled science of personalized medicine.
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