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Abstract

In recent years, geometric deep learning has gained attraction due to both the
need for machine learning on structured data (e.g., graphs) and the increasing
availability of this type of data. Extensions of deep convolutional architectures to
non-Euclidean domains in particular are a powerful technique in sensor network
applications — which can be seen as graphs — and 3D model analysis — which
can be seen as manifolds. While recent works have provided a better theoretical un-
derstanding of why convolutional neural network architectures work well on graphs
of moderate size, in the large-scale regime that is the setting of most problems of
interest, their behavior is not as well understood. In this paper, we bridge this gap
by modeling large graphs as samples from manifolds and studying manifold neural
networks (MNNs). Our main contribution is to define a manifold convolution oper-
ation which, when “discretized” in both the space and time domains, is consistent
with the practical implementation of a graph convolution. We then show that graph
neural networks (GNNs) can be particularized from MNNs, which in turn are the
limits of these GNNs. We conclude with numerical experiments showcasing an
application of the MNN to point-cloud classification.

1 Introduction

Convolutional neural networks (CNNs) have achieved impressive success in a wide range of appli-
cations, including but not limited to natural language processing [33], image denoising [43] and
video analysis [41]. Due to their remarkable performance, CNNs are recognized as the de facto deep
learning model to process data lying in Euclidean domains. However, many modern problems of
practical interest — e.g., detection and recommendation in social networks [1, 9], resource allocation
over wireless networks [35], and point cloud analysis for shape segmentation [40, 34] — require
processing data that is non-Euclidean. In light of this, recent works on geometric deep learning
[11, 5, 22, 20] have focused on extending convolutional models to such domains.

Among these models, graphs are commonly used to construct a discrete model that captures the
underlying geometric structure. Convolutions can be readily extended to graph convolutions, which
allows defining graph neural networks (GNNs) [13, 11, 44, 30, 7]. In graphs of moderate size, GNNs
work well empirically, which is backed by recent theoretical findings on their expressive power
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[15, 42] and stability [14, 31, 29, 16]. However, in the large-scale regime which is the setting of
most problems of practical interest, their behavior is not as well understood. Even if CNNs on
manifolds, from which graphs can be seen as samples [3, 5], have also been proposed [37, 20, 22],
the relationship between CNNs on graphs and CNNs on manifolds remains elusive. In this paper,
we make this relationship explicit by defining a manifold convolution which can be particularized to
graphs sampled from the manifold. This allows interpreting the convolution operation in both the
graph and manifold domains, and seeing GNNs as samples from manifold neural networks (MNNs).
Because graphs can be shown to converge to manifolds [3, 6, 8], we can further show that GNNs
built from these convolutions converge to MNNs.

Our definition of manifold convolution is based on the linear combination of the heat diffusion
process. By cascading layers consisting of manifold convolutions and pointwise nonlinearities, we
then define manifold neural networks (MNNs). Since we do not have access to the whole manifold
— only a discrete set of its points — we show how the MNN particularizes a GNN on the graph
connecting the sampled points from the manifold, i.e., how to go from manifolds to graphs. We also
show how this GNN converges to the underlying MNN when the input data is bandlimited, i.e., how
to go from graphs to manifolds. For practical implementation purposes, we further discretize the
time axis of the heat diffusion process, recovering the usual (learnable) parametrization of the spatial
graph convolution [13] when the time horizon is finite. Finally, we verify the performance of our
proposed architecture with numerical experiments on a point cloud dataset.

Related works include neural networks built on graphons [27, 28], which are limits of sequences of
dense graphs. Different from manifolds, graphons only represent the limits of graphs with unbounded
degrees [19, 4]. The convergence of GNNs on random graphs is proposed in [16] while the limit is a
constructed continuous GNN. The results in [18] show the convergence and transferability of GNNs
if the graphs are sampled with a specific sampling operator from a continuous topological space.
However, the sampling operator requires the knowledge of the spectrum of the underlying topological
space, which in practice is often inaccessible. CNNs on manifolds have been constructed in [20] with
geodesic polar coordinates and in [22] with mixtures of Gaussian kernels. Both works only focus
on spatial approaches. Stability of MNNs has also been studied, by considering the perturbations to
the Laplace-Beltrami operator [37, 36] in a spectral approach. All these works on MNNs lack the
explicit relationship with GNNs, which are commonly implemented for realizations on manifolds
[5, 22]. A general framework for algebraic neural networks has been proposed for architectures with
commutative algebras [25].

The rest of the paper is organized as follows. We start with some preliminary concepts and define
the manifold convolutions as well as the manifold neural networks in Section 2. In Section 3, we
implement the discretization in space and time domains to make the MNNs realizable which also
bring back GNNs and we also prove the convergence of GNNs to MNNs. Our proposed MNN is
verified in a model classification problem in Section 4. The conclusions are presented in Section 5.

2 Manifold Convolutions and Manifold Neural Networks

2.1 Manifold Convolution

We consider a compact, smooth, and differentiable d-dimensional submanifold M embedded in RN .
The embedding induces a Riemannian structure [10] on M which endows a measure µ over the
manifold. Manifold data supported on M are smooth scalar functions f : M → R, which we refer
to as manifold signals in the following. We consider f belongs to L2(M) in which we define the
inner product as

⟨f, g⟩L2(M) =

∫
M

f(x)g(x)dµ(x) (1)

with the norm defined as ∥f∥2L2(M) = ⟨f, f⟩L2(M), representing the energy of manifold signal f .
We consider manifold signals f with finite energy.

The manifold is locally Euclidean and we denote the local Euclidean space around x ∈ M as
tangent space TxM. We use TM to represent the disjoint union of all tangent spaces on M. The
intrinsic gradient for differentiation is a local operator [5] and can thus be written as an operator
∇ : L2(M) → L2(TM) mapping scalar functions to tangent vector functions on M. The adjoint
operator of intrinsic gradient is the intrinsic divergence defined as div : L2(TM) → L2(M). Based

2



on these two differentiation operators, the Laplace-Beltrami (LB) operator L : L2(M) → L2(M)
can be defined as the intrinsic divergence of the intrinsic gradient [26], formally as

Lf = −div ◦ ∇f = −∇ · ∇f. (2)

Similar to the Laplacian operator in Euclidean domains or the Laplace matrix in graphs [23], the LB
operator evaluates how much the function value at point x differs from the average function value
of its neighborhood [5]. Since L, like ∇, is a local operator depending on the tangent space TxM
of each point x ∈ M, in the following we make this dependence explicit by writing L = Lx and
∇ = ∇x.

The LB operator is essential to capture the heat diffusion over manifolds by the heat equation

∂u(x, t)

∂t
+ Lu(x, t) = 0, (3)

where u(x, t) ∈ L2(M) measures the temperature at x ∈ M at time t ∈ R+. This can be interpreted
to mean that, at point x, the rate at which the manifold “cools down” is proportional to the difference
between the temperature of x and the local average of the temperature of the points in its neighborhood.
With initial condition given by u(x, 0) = f(x), the solution can be expressed as u(x, t) = e−tLf(x).
We define the manifold convolution with a filter impulse response function h̃ and input manifold
signal f as follows.

Definition 1 (Manifold convolutional filter) Let h̃ : R+ → R and let f ∈ L2(M) be the data
supported on M. The manifold filter with impulse response h̃, denoted as h, is given by

g(x) = (hf)(x) :=

∫ ∞

0

h̃(t)u(x, t)dt =
∫ ∞

0

h̃(t)e−tLf(x)dt = h(L)f(x), (4)

where u(x, t) is the solution of the heat equation (3) with u(x, 0) = f(x).

Manifold filters are local spatial operators operating directly on points on the manifold based on the
LB operator. The exponential term e−tL can be interpreted as a shift operator like the time delay in a
Linear-Time Invariant (LTI) filter [24] and the graph shift in a Linear-Shift Invariant (LSI) graph filter
[11]. In fact, manifold filters can recover graph filters by discretization, which we discuss thoroughly
in Section 3.

The LB operator L is self-adjoint and positive-semidefinite. Considering that manifold M is compact
without boundary, the operator L possesses a real discrete spectrum {λi}∞i=1 with the eigenvalues λi

and the corresponding eigenfunctions ϕi satisfying Lϕi = λiϕi. Eigenvalue λi can be interpreted as
the canonical frequency and the eigenfunction ϕi as the canonical oscillation mode. By projecting a
manifold signal f onto the eigenfunction, we can write the frequency representation f̂ as

[f̂ ]i = ⟨f,ϕi⟩L2(M) =

∫
M

f(x)ϕi(x)dµ(x). (5)

Based on this concept, we can define the bandlimited manifold signal as follows.

Definition 2 (Bandlimited manifold signal) A manifold signal f ∈ L2(M) is defined as λM -
bandlimited if [f̂ ]i = 0 for all i such that λi > λM .

The spectrum and eigenbasis of the LB operator help to understand not only the frequency behavior of
manifold signal but the manifold filter h(L). The frequency representation of manifold filter output g
can be similarly written as

[ĝ]i =

∫
M

∫ ∞

0

h̃(t)e−tLf(x)dtϕi(x)dµ(x). (6)

By substituting e−tLϕi = e−tλiϕi, we can get

[ĝ]i =

∫ ∞

0

h̃(t)e−tλidt[f̂ ]i. (7)

The function solely dependent on λi is defined as the frequency response of the filter h(L), which
can be stated formally as follows.
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Definition 3 (Frequency response of manifold filter) The frequency response of the filter h(L) is
given by

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt, (8)

which leads (7) to [ĝ]i = ĥ(λi)[f̂ ]i.

Definition 3 indicates that the frequency response of manifold filter is point-wise in frequency domain.
Combining the frequency representation of ĝ over the whole spectrum, we can obtain the frequency
representation of manifold filter h as

g = h(L)f =

∞∑
i=1

ĥ(λi)⟨f, ϕi⟩L2(M)ϕi. (9)

If we consider the input manifold signal f as λM -bandlimited (Definition 2), the output signal g can
be written as

g = h(L)f =

M∑
i=1

ĥ(λi)⟨f, ϕi⟩L2(M)ϕi, (10)

where M = #{λi ≤ λM}i counts the number of eigenvalues within the bandwidth.

Remarks. We note that the diffusion equation, i.e. u(x, t) = e−tLf(x), has itself a spectral
representation, which is the motivation for the Fourier analysis carried out in this paper. In the
context of GNNs or MNNs, the frequency representation of the diffusion equation is pointed out in
[5], however, this is different from what we have defined as a manifold convolution. We show that
convolutions are defined as linear combinations of the elements of the diffusion process [cf. (4)],
which are generalizations of convolutions in the time domain [38] and graph convolutions when the
manifold is discretized (Section 3). Our definition of manifold convolutional filters also has a spectral
representation (10), which generalizes the classical Fourier transform and the graph Fourier transform
to manifold signals.

2.2 Manifold Neural Networks

Manifold neural networks (MNNs) augment manifold filters as we have defined in Definition 1 with
a point-wise nonlinear activation function σ : R → R which is an independent application on each
point of the manifold. We further make an assumption on its continuity as follows.

Assumption 1 (Normalized Lipschitz activation functions) The activation function σ is normal-
ized Lipschitz continuous, i.e., |σ(a)− σ(b)| ≤ |a− b|, with σ(0) = 0.

Note that this assumption is rather reasonable, since most common activation functions (e.g., the
ReLU, the modulus and the sigmoid) are normalized Lipschitz by design.

In a single-layer MNN, the manifold signal f is passed through a manifold filter followed by a
point-wise nonlinearity as

f1(x) = σ

(
h(L)f(x)

)
, (11)

which can be seen as a basic nonlinear processing of the input manifold signal. By stacking this
procedure in layers, a multi-layer MNN can be constructed which can be formally written as a
function composition. The output manifold signal of a layer becomes the input signal of the next
layer. Let l = 1, 2, · · · , L stand for the index for the layer and hl(L) as the manifold filter on each
layer. For a specific layer l, filter hl(L) takes the output fl−1(x) as the input produces the output of
layer l as

fl(x) = σ

(
hl(L)fl−1(x)

)
, (12)

where f0(x) = f(x) is the given input manifold signal. After a recursive applications through L
layers, we can get the output of the MNN as fL(x).
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When considering multiple features in each layer to increase the representation power of MNN, the
manifold filters map the input Fl−1 features from layer l − 1 to Fl intermediate features in layer l
with a bank of manifold filters, i.e.,

ypl (x) =

Fl−1∑
q=1

hpq
l (L)fq

l−1(x), (13)

where hpq
l (L) is the filter mapping the q-th feature from layer l − 1 to the p-th feature of layer l, for

1 ≤ q ≤ Fl−1 and 1 ≤ p ≤ Fl. The intermediate features are then processed by the nonlinearity σ as

fp
l (x) = σ

(
ypl (x)

)
. (14)

The output of layer L is the output of MNN with FL features. To represent the MNN more precisely,
we gather the impulse responses of all the manifold filters hpq

l as a function set H and define the
MNN as a map Φ(H,L, f). This map emphasizes that the neural network is parameterized by both
the filter functions H and the LB operator L.

3 Discretization in the Space and Time Domains

MNNs are built from manifold convolutional filters (Definition 1) operating on a continuous manifold
and over an infinite continuous time horizon. This makes it impractical to implement directly the
neural network architecture described by (14) in applications. In this section, we discuss the practical
application of MNNs and the connections with GNNs (14) over a set of discrete samples from the
manifold in a finite and discrete time frame.

3.1 Discretization in the Space Domain

In practice, to operate on a continuous topological space, it is natural to access the underlying
geometric structure by sampling points over the continuous domain. Therefore we sample uniformly
on the manifold and connect the sampled points as a graph to approximate the underlying manifold
[8, 3]. Specifically, we model the set of n sampled points as X = {x1, x2, . . . , xn} which are
sampled i.i.d. from measure µ of manifold M ⊂ RN . A complete weighted symmetric graph Gn

can be constructed by seeing the sampled points as the vertices of the graph. The edge weight wij

connecting point xi and xj is defined as a graph signal

wij =
1

n

1

tn(4πtn)k/2
exp

(
−∥xi − xj∥2

4tn

)
, (15)

with ∥xi − xj∥ representing the Euclidean distance between xi and xj . Parameter tn controls the
chosen Gaussian kernel [3]. The adjacency matrix of Gn is thus defined as [An]ij = wij for
1 ≤ i, j ≤ n with An ∈ Rn×n. The correspondent graph Laplacian matrix Ln [21] thus can be
calculated as Ln = diag(An1)−An.

We define a uniform sampling operator Pn : L2(M) → L2(Gn) to discretize the signal f on
manifold (Definition 2) as the data supported on the graph Gn, which is denoted as

xn = Pnf with [xn]i = f(xi), xi ∈ X, (16)

where the i-th entry of the graph signal xn is the manifold signal f evaluated at the sampled point xi.

Considering that the discrete points {x1, x2, . . . , xn} are uniformly sampled from manifold M with
measure µ, the empirical measure associated with dµ can be denoted as pn = 1

n

∑n
i=1 δxi , where δxi

is the Dirac measure supported on xi. Similar to the inner product defined in the L2(M) space (1),
the inner product on L2(Gn) is denoted as

⟨u, v⟩L2(Gn) =

∫
u(x)v(x)dpn =

1

n

n∑
i=1

u(xi)v(xi). (17)

The norm in L2(Gn) is therefore ∥u∥2L2(Gn)
= ⟨u, u⟩L2(Gn), with u, v ∈ L2(M). For signals

u,v ∈ L2(Gn), the inner product is therefore ⟨u,v⟩L2(Gn) =
1
n

∑n
i=1[u]i[v]i.
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The parametrization of manifold filter (Definition 1) enables us to replace the LB operator with the
graph Laplacian operator Ln and turns h to a graph convolutional filter, i.e.,

zn =

∫ ∞

0

h̃(t)e−tLndtxn = h(Ln)xn, xn, zn ∈ Rn, (18)

where zn is the output graph signal. By cascading the layers containing the graph convolutional filters
as defined in (18) and point-wise nonlinearities, we can define a neural network on this constructed
graph Gn as

xp
n,l = σ

Fl−1∑
q=1

hpq
l (Ln)x

q
n,l−1

 . (19)

Similarly, we can represent this neural network as a map Φ(H,Ln,xn) parametrized by the filter
functions H and the graph Laplacian Ln. As the number of sampling points n goes to infinity, the
discrete graph signal xn converges to the manifold signal f while the discrete graph Laplacian matrix
Ln has also been proved to converge to the LB operator L of the underlying manifold [3, 6, 8]. By
introducing the definition of Lipschitz continuous manifold filters in Definition 4, we can combine
the convergence of signals (xn

p→ f ) and Laplace operators (Ln
p→ L) to derive the convergence of

Φ(H,Ln,xn)
p→ Φ(H,L, f).

Definition 4 (Manifold filter with Lipschitz continuity) A manifold filter is C-Lispchitz if its fre-
quency response is Lipschitz continuous with constant C, i.e,

|ĥ(a)− ĥ(b)| ≤ C|a− b| for all a, b ∈ (0,∞). (20)

We conclude that the outputs of the neural network on the graph converge to the outputs of the
continuous MNN as Theorem 1 shows under the mild assumption on the amplitude of the Lipschitz
continuous manifold filter frequency response (Assumption 2).

Assumption 2 (Non-amplifying filters) A manifold filter is non-amplifying if for all λ ∈ (0,∞),
its frequency response ĥ satisfies |ĥ(λ)| ≤ 1.

Note that this assumption is reasonable, because the filter function ĥ(λ) can always be normalized.

Theorem 1 Let X = {x1, x2, . . . , xn} be a set of points sampled i.i.d. from a d-dimensional
manifold M ⊂ RN . Let Gn be a graph constructed from X with weight values set as (15) with
tn = n−1/(d+2+α) and α > 0. Let xn be the data supported on Gn sampled by operator Pn as (16)
from a bandlimited manifold signal f . Let Φ(H, ·, ·) be the neural network parameterized by the LB
operator L of manifold M (14) or by the graph Laplacian Ln of Gn. Under the assumption that the
filters in H are Lipschitz continuous and non-amplifying, it holds that

lim
n→∞

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥L2(Gn) = 0, (21)

where the limits are taken in probability.

Proof. See Supplementary material.

Theorem 1 states that, for bandlimited input signals, neural networks on graphs generated from a
manifold actually converge to MNNs under certain assumptions as the graph size grows to infinity.
Neural networks supported on large graphs have been proved to be stable and transferable empirically
in many applications [35, 12]. Our result provides a critical theoretical support for understanding
these properties of large graph neural networks regardless of graph sparsity by considering the MNN
as their limit. We remark that the definition of graph convolutional filter in (18) is a continuous form
based on the integration over the whole time domain.
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Figure 1: Point cloud models with n = 300 sampling points in each model. Our goal is to identify
chair models from other models such as toilet and table.

3.2 Discretization in the Time Domain

Generally, we operate on the neural networks in practice in digital systems with digital filters. This
indicates that the time horizon on which the convolutional filters are usually defined is not continuous,
but discrete. Therefore we discretize the impulse response function h̃(t) of the manifold filter with a
fixed sampling interval Ts = 1 and replace the filter response function with a series of coefficients
hk = h̃(k), k = 0, 1, 2 . . . . In order to make the digital filters learnable and realizable, we further fix
a finite time horizon with K samples and rewrite the manifold filter as (22)

h(L)f(x) =
K−1∑
k=0

hke
−kLf(x), (22)

which corresponds to the form of a finite impulse response (FIR) filter with a shift operator e−L.

The manifold convolution in the discrete time domain can therefore be written as a summation over K
time steps instead of the integration form. If we discretize the time domain of the graph convolutional
filter defined in (18), this leads to a completely practical manifold filter supported on a constructed
graph model and discrete finite time steps, i.e.,

zn = h(Ln)xn =

K−1∑
k=0

hke
−kLnxn, xn, zn ∈ Rn. (23)

We observe that (23) recovers the form of graph convolution [11, 31] with e−Ln seen as the graph
shift operator. By replacing the filter hpq

l (Ln) in (19) with the form of (23), we further recovers
GNNs with MNNs in this discrete finite time frame. Up until now, we have completed our process of
building MNNs from graphs and back, i.e., we relate GNNs with MNNs in a two-way connection.
We have shown that neural networks on the graphs sampled from the manifold converge to neural
networks built on the manifold when the input manifold signal is bandlimited. This provides a
theoretical support for analyzing the stability and transferability of large graph neural networks
supported either on dense or sparse graphs. The discretization over the space and time domains
enables the particularization as GNNs constructed on the sampled points over the manifold and the
practical implementation of MNNs. We remark that Theorem 1 also indicates that our proposed
MNN can be well approximated by a large enough GNN sampled from the MNN, which supports
our simulation setup in the following section theoretically.

4 Numerical Experiments

We evaluate the performance of our proposed MNN structure with approximated GNNs. We carry
out a classification problem with ModelNet10 dataset [39]. The dataset contains 3,991 meshed CAD
models from 10 categories for training and 908 models for testing.

We sample n points from each meshed model uniformly and construct a dense graph. Explicitly, we
see each point as a node and the edge weights are calculated with (15). The point cloud models are
approximated by the constructed graphs. The edge weights are calculated according to (15) with tn
set as n−1/5. The Laplacian matrix is calculated for each point cloud model. Our goal is to identify
the models for chair from other models as illustrated in Figure 1. We implement graph filters with
1 (GF1Ly) and 2 layers (GF2Ly) along with graph neural networks with 1 (GNN1Ly) and 2 layers
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Architecture error rates

GNN1Ly 8.04%± 0.88%

GNN2Ly 4.30%± 2.64%

GF1Ly 13.77%± 6.87%

GF2Ly 12.22%± 7.89%

Table 1: Classification error rates
averaged over 5 data realizations.
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Figure 2: Classification error rates for different architectures
on graphs with n = 100, 200, 300, 400 over 5 realizations.

(GNN2Ly) respectively. The single layer architectures of graph filters and graph neural networks
contain F0 = 3 input features which are the coordinates of every point in 3d space. The output
features are set as F1 = 64. The architectures with 2 layers include another layer with F2 = 32
features. The number of filter taps in each layer are set as K = 5. The nonlinearity is a ReLu function.
All the architectures are concluded with a linear readout layer mapping the output features to a binary
scalar to estimate the classifications. We train all the architectures with an ADAM optimizer [17]
with the learning rate as 0.005 and decaying factor as 0.9, 0.999 to minimize the entropy loss. The
training model set is divided into batches with 10 models over 40 epochs. We repeat 5 sampling
realizations for all the architectures and calculate the average classification error rates as well as the
standard deviation.

The classification error rates for n = 300 are shown in Table 1. We observe that GNNs perform better
than the GFs while architectures with more layers learn more accurate models with more parameters
learned. The averaged error rates for different architectures are shown in Figure 2 for increasing
value of number of sampling points n. We observe that, for all architectures the error rates decrease
with n. This indicates that GNN constructed on Ln converges as the graphs Gn grow, as expected
from Theorem 1.

5 Conclusions

We have defined a manifold convolution operation with the heat diffusion controlled by the Laplace-
Beltrami operator. We have further constructed a manifold neural network architecture by conscading
the manifold filters and nonlinearities. To realize the MNN in practice, we have carried out dis-
cretization in both space and time domains which recovers the convolution and neural networks on
graphs. We have proved the convergence of neural networks on sampled graphs to the MNN when the
input signal is bandlimited. We have connected GNNs with MNNs by showing that the sequence of
GNNs sampled from the manifold converge to MNN and the discretization of MNN brings back the
particularization on GNNs. We finally verified the performance of MNN with a model classification
problem.
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A Supplementary material

A.1 Proof of Theorem 1

For ease of presentation, we denote the norm ∥ · ∥L2(Gn) as ∥ · ∥ for short.

We first import the existing results from [2] which indicate the spectral convergence of the constructed
graph Laplacian operator to the LB operator of the underlying manifold.

Theorem 2 (Theorem 2.1 [2]) Let X = {x1, x2, ...xn} be a set of n points sampled i.i.d. from a
d-dimensional manifold M ⊂ RN . Let Gn be a graph approximation of M constructed from X
with weight values set as (15) with tn = n−1/(d+2+α) and α > 0. Let Ln be the graph Laplacian of
Gn and L be the Laplace-Beltrami operator of M. Let λn

i be the i-th eigenvalue of Ln and ϕn
i be

the corresponding normalized eigenfunction. Let λi and ϕi be the corresponding eigenvalue and
eigenfunction of L respectively. Then, it holds that

lim
n→∞

λn
i = λi, lim

n→∞
|ϕn

i (xj)− ϕi(xj)| = 0, j = 1, 2 . . . , n (24)

where the limits are taken in probability.

From the definitions of neural networks on the constructed graph Gn and manifold M respectively,
the output difference can be written as

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f))∥ =

∥∥∥∥∥
FL∑
q=1

xq
n,L −

FL∑
q=1

Pnf
q
L

∥∥∥∥∥ ≤
FL∑
q=1

∥∥∥xq
n,L −Pnf

q
L

∥∥∥ . (25)

By inserting the filter definition, we have

∥∥∥xp
n,l −Pnf

p
l

∥∥∥ =

∥∥∥∥∥∥σ
Fl−1∑

q=1

hpq
l (Ln)x

q
n,l−1

−Pnσ

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥ (26)
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with xn,0 = Pnf as the input of the first layer. Since the point-wise nonlinearity is normalized
Lipschitz according to Assumption 1, we have

∥xp
n,l −Pnf

p
l ∥ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpq
l (Ln)x

q
n,l−1 −Pn

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥ (27)

≤
Fl−1∑
q=1

∥∥∥hpq
l (Ln)x

q
n,l−1 −Pnh

pq
l (L)fq

l−1

∥∥∥ . (28)

The difference can be further decomposed as
∥hpq

l (Ln)x
q
n,l−1 −Pnh

pq
l (L)fq

l−1∥
≤ ∥hpq

l (Ln)x
q
n,l−1 − hpq

l (Ln)Pnf
q
l−1 + hpq

l (Ln)Pnf
q
l−1 −Pnh

pq
l (L)fq

l−1∥ (29)

≤
∥∥∥hpq

l (Ln)x
q
n,l−1 − hpq

l (Ln)Pnf
q
l−1

∥∥∥+ ∥∥hpq
l (Ln)Pnf

q
l−1 −Pnh

pq
l (L)fq

l−1

∥∥ (30)

The first term can be bounded as ∥xq
n,l−1 −Pnf

q
l−1∥ with the initial condition ∥xn,0 −Pnf0∥ = 0.

Let us denote the second term as Dn
l−1. By induction, we have

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥ ≤
L∑

l=0

L∏
l′=l

Fl′D
n
l .

Therefore, we can focus on the difference term Dn
l , so we omit the feature and layer index to work

on a general form. Considering that the input manifold signal f is λM -bandlimited, we can write the
convolution operation as follows.

∥h(Ln)Pnf −Pnh(L)f∥ ≤

∥∥∥∥∥
M∑
i=1

ĥ(λn
i )⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i −

M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥ (31)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λn
i )⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i −

M∑
i=1

ĥ(λi)⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi)⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i −

M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥ . (32)

The first term in (32) can be bounded by leveraging the C-Lipschitz continuity of the frequency
response. From the convergence in probability stated in (24), we can claim that for each eigenvalue
λi ≤ λM , for all ϵi > 0 and all δi > 0, there exists some Ni such that for all n > Ni, we have

P(|λn
i − λi| ≤ ϵi) ≥ 1− δi, (33)

Letting ϵi < ϵ with ϵ > 0, with probability at least
∏M

i=1(1− δi) := 1− δ, the first term is bounded
as ∥∥∥∥∥

M∑
i=1

(ĥ(λn
i )− ĥ(λi))⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i

∥∥∥∥∥ ≤
M∑
i=1

|ĥ(λn
i )− ĥ(λi)||⟨Pnf,ϕ

n
i ⟩Gn

|∥ϕn
i ∥ (34)

≤
M∑
i=1

C|λn
i − λi|∥Pnf∥∥ϕn

i ∥2 ≤ MCϵ, (35)

for all n > maxi Ni := N .

The second term in (32) can be bounded combined with the convergence of eigenfunctions in (37) as∥∥∥∥∥
M∑
i=1

ĥ(λi)⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i −

M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i − ⟨Pnf,ϕ

n
i ⟩Gn

Pnϕi)

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨Pnf,ϕ
n
i ⟩Gn

Pnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥ (36)
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From the convergence in probability stated in (24), we can claim that for some fixed eigenfunction
ϕi, for all ϵi > 0 and all δi > 0, there exists some Ni such that for all n > Ni, we have

P(|ϕn
i (xj)− ϕi(xj)| ≤ ϵi) ≥ 1− δi, ∀xj ∈ X. (37)

Therefore, letting ϵi < ϵ with ϵ > 0, with probability at least
∏M

i=1(1 − δi) := 1 − δ, for all
n > maxi Ni := N , the first term in (36) can be bounded as∥∥∥∥∥

M∑
i=1

ĥ(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨Pnf,ϕ

n
i ⟩MPnϕi)

∥∥∥∥∥ ≤
M∑
i=1

∥Pnf∥∥ϕn
i −Pnϕi∥ ≤ Mϵ, (38)

considering that frequency response function is non-amplifying stated in Assumption 2. The last
equation comes from the definition of norm in L2(Gn). The second term in (36) can be written as∥∥∥∥∥

M∑
i=1

ĥ(λn
i )(⟨Pnf,ϕ

n
i ⟩Gn

Pnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

M∑
i=1

|ĥ(λn
i )| |⟨Pnf,ϕ

n
i ⟩Gn

− ⟨f,ϕi⟩M| ∥Pnϕi∥. (39)

Because {x1, x2, · · · , xn} is a set of uniform sampled points from M, based on Theorem 19 in [32]
we can claim that

lim
n→∞

P (|⟨Pnf,ϕ
n
i ⟩Gn

− ⟨f,ϕi⟩M| ≤ ϵ) ≥ 1− δ, (40)

for all ϵ > 0 and δ > 0. Taking into consider the boundedness of frequency response |ĥ(λ)| ≤ 1 and
the bounded energy ∥Pnϕi∥. Therefore, we have for all ϵ > 0 and δ > 0,

lim
n→∞

P

(∥∥∥∥∥
M∑
i=1

ĥ(λn
i ) (⟨Pnf,ϕ

n
i ⟩Gn − ⟨f,ϕi⟩M)Pnϕi

∥∥∥∥∥ ≤ Mϵ

)
≥ 1− δ. (41)

Combining all these results, we can claim that for all ϵ′ > 0 and δ > 0, there exists some N , such
that for all n > N , we have

P(∥h(Ln)Pnf −Pnh(L)f∥ ≤ ϵ′) ≥ 1− δ. (42)

With lim
n→∞

Dn
l = 0 in high probability, this concludes the proof.
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