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ABSTRACT

Recent studies have investigated attention dynamics in large vision language models
(LVLMs), yet existing methods remain limited in reliably distinguishing halluci-
nated from correct outputs — primarily because they rely solely on forward-pass
attention, ignoring gradient-based signals that reveal how token influence prop-
agates through the model. To bridge this gap, we introduce LVLMs-Saliency,
an gradient-aware diagnostic tool that quantifies the grounding strength of each
output token by fusing attention weights with their gradients. Through analysis,
we identify a decisive pattern: Hallucinations occur when prior output tokens
shows low saliency to the next token prediction, indicating a failure of contextual
memory. Building on this insight, we propose a dual-mechanism inference-time
framework: (1) Saliency-Guided Rejection Sampling (SGRS), which dynami-
cally filters candidate tokens during decoding by rejecting those with saliency
below a context-adaptive threshold, thereby preventing coherence-breaking tokens
from entering the sequence; and (2) Local Coherence Reinforcement (LocoRE),
a lightweight plug-and-play module that strengthens attention from the current
token to its most recent outputs, actively counteracting the “forgetting” behavior
identified by LVLMs-Saliency. Experimental results demonstrate that our method
significantly reduces hallucinations across multiple LVLMs, offering a robust and
interpretable solution to improve model reliability.

1 INTRODUCTION

Large Vision Language Models (LVLMs) have made significant strides in cross-modal tasks. However,
hallucinations remain a key challenge, particularly in visual question answering and image captioning.
Current mitigation strategies such as incorporating external knowledge, retraining with additional data
Li et al. (2023a); Liu et al. (2023); Park et al. (2024) or training-free methods Neo & Chen (2024); Li
et al. (2025a;b); Zhang et al. (2025a); Wu et al. (2025a); Liu et al. (2024c); Gong et al. (2024); Zhou
et al. (2024); Shang et al. (2024); Min et al. (2024); Liu et al. (2024b); Fang et al. (2025); Wu et al.
(2025b). Although the above methods have made great progress, their interpretability is insufficient,
especially without a clear explanation of the causes of hallucinations in the autoregressive generative
model.

Recent studies on attention sinks have provided new perspectives for understanding hallucinations.
For example, OPERA Huang et al. (2024), DOPRA Wei & Zhang (2024), PAI Liu et al. (2024d),
FastV Chen et al. (2024b), EAH Zhang et al. (2024a), TAME Tang et al. (2025a) and Farsight Tang
et al. (2025b) have revealed the relationship between attention sinks and hallucinations. They prove
that when a token continues to attract high attention weights in subsequent tokens, this over-reliance
may cause hallucinations in the model output. However, the relationship between attention maps and
hallucinated tokens remains inadequately explained. This is because attention maps only reflect the
model’s decision-making in the forward pass, without capturing how changes in input tokens influence
the final output. Moreover, existing methods often overlook gradient information, which is essential
for understanding the interdependencies among different tokens during the generation process. As
illustrated in Figure 1, it is nearly impossible to discern meaningful patterns in attention maps that
distinguish correct outputs from hallucinated ones. Therefore, a token-level, interpretable observation
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Please describe this image in detail

The image depicts a cozy, vintage-style room 
with a mix of traditional and rustic elements. 
The room features a sloped ceiling with a 
striped wallpaper pattern in shades of blue, 
white, and red. The walls are also adorned 
with similar striped wallpaper.

pattern1

System P Output

pattern1

System P OutputSystem P OutputSystem P Output

Attention map

No pattern No pattern

 Saliency mapSaliency map

Token1 Token1 Token1 Token2.... Next token

System Prompt Output
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low 
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Attention map
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Figure 1: Attention vs. Saliency Maps for Correct and Hallucinated Tokens (Qwen2-VL-7B).
Left (correct token wallpaper): Attention maps show no distinctive pattern, while our LVLMs-
Saliency maps reveal strong, structured grounding to prior outputs. Right (hallucinated token blue):
Attention maps remain visually similar, but saliency maps collapse, signaling loss of contextual
dependency.

tool is essential to uncover the mechanistic origins of hallucinations in large vision-language models,
revealing not just when they occur, but why and where in the generation process they emerge.

To address this limitation mentioned above, we draw inspiration from the concept of information
flow introduced in “Label Words” Wang et al. (2023), which highlights how information within
LLMs tends to converge on specific user-specified tokens. Adapting this insight to the autoregressive
generation setting of LVLMs, we propose an unsupervised metric called LVLMs-Saliency, defined
as the element-wise product of attention weights and their corresponding gradients. This measure
quantifies how strongly each previously generated output token influences the prediction of the next
token, offering a fine-grained, token-level view of contextual grounding — or its absence — during
generation. As shown in Figure 1 and Figure 2, we observe saliency patterns in Qwen2-VL and
LLaVA-1.5 that are distinct from conventional attention maps:

Pattern: Hallucinations occur when prior output tokens shows low saliency to the next token.

which reveals a breakdown in contextual grounding that attention-only methods fail to capture. When
generating the correct token, the model maintains high saliency on previous related tokens, thereby
ensuring the coherence of context tokens. However, hallucinations occur when the model “forgets”
the past context, resulting in weak dependencies between tokens and low saliency of previous output.
By the way, although there is a noticeable difference in the saliency of user prompts for correct
versus hallucinated tokens, our analysis of 500 samples indicates that these saliency scores do not
significantly affect the model’s predictive accuracy. This finding suggests that although prompt
saliency plays a role in the model’s behavior, it is not the primary cause of hallucinations.

Unlike previous methods of intervening in image attention (Zhang et al., 2024a; Liu et al., 2024d;
Jiang et al., 2024; Tang et al., 2025a;b) to alleviate hallucinations, we focus exclusively on the
dynamics of output token saliency during autoregressive generation. To mitigate hallucinations
caused by context loss when the model outputs tokens, we propose a dual-intervention approach in
the inference phase that incorporates saliency:
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Figure 2: Output Token Saliency Patterns in Qwen2-VL-7B. When generating a correct token
(e.g., wallpaper), the current token assigns high saliency to recent output tokens, typically decaying
with distance. In contrast, when generating a hallucinated token (e.g., blue), saliency toward all prior
outputs collapses — signaling contextual disconnection.

Saliency-Guided Rejection Sampling (SGRS): A proactive filtering mechanism that evaluates
the grounding quality of each candidate output token before it is committed to the sequence. By
computing the token’s saliency, SGRS rejects candidates that exhibit weak contextual dependencies
(i.e., low saliency), forcing the model to resample until a contextually grounded token is selected. This
directly prevents the injection of “coherence-breaking” tokens that trigger cascading hallucinations.

Local Coherence Reinforcement (LocoRE): A reactive stabilization mechanism that activates after
a token is accepted. LocoRE strengthens the attention weights from the current query token to the
most recent ws output tokens, using a distance-aware gain factor γ(P )

j = 1 + β · I ((P − j) ≤ ws).
This ensures that even as the sequence grows, the model maintains strong attentional links to its
immediate past, counteracting the “forgetting” behavior observed in Pattern 1.

Together, SGRS and LocoRE form a closed-loop coherence preservation system: SGRS acts as a
gatekeeper, blocking low-saliency tokens at the point of entry; LocoRE acts as a stabilizer, reinforcing
contextual dependencies after commitment. With extensive experiments, our method demonstrates
significant hallucination-mitigating performance across different LVLMs on image hallucination and
generation benchmarks, proving its effectiveness. Our contributions are as follows:

• We propose LVLMs-Saliency, an unsupervised, gradient-based metric for quantifying token-level
hallucination in autoregressive LVLMs. Through systematic analysis, we establish a direct causal
link between low output token saliency and hallucination: when the model fails to maintain attention
on recently generated tokens (Pattern 1), contextual memory collapses, leading to semantically
inconsistent outputs.

• We introduce Saliency-Guided Rejection Sampling (SGRS), the first inference-time mechanism
that dynamically filters candidate tokens based on their saliency with respect to prior output context.
By rejecting low-saliency tokens before commitment, SGRS proactively prevents the injection of
coherence-breaking elements into the generation stream — directly mitigating the root cause of
context-drift hallucinations.

• We introduce Local Coherence Reinforcement (LocoRE), a lightweight, plug-and-play module
that strengthens attention from the current token to its most recent ws predecessors. Unlike prior
methods that rebalance cross-modal attention, LocoRE operates purely within the output stream.
SGRS ensures only coherent tokens enter, LocoRE ensures they are not forgotten.
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2 ANALYSIS AND MOTIVATION

2.1 HALLUCINATION TOKEN SALIENCY ANALYSIS

We propose a gradient-based attention analysis framework for quantifying token-level hallucination
saliency in autoregressive language models. Given an input sequence x ∈ Vn, where V denotes the
vocabulary space and n represents the sequence length, we process x through the modelM to obtain:

(y, {A(l,h)}L,H
l=1,h=1, s) =M(x), (1)

where A(l,h) ∈ [0, 1]n×n denotes the attention weight matrix at layer l ∈ {1, . . . , L} and head h ∈
{1, . . . ,H}, s ∈ R|V| represents the logits corresponding to the target hallucination token, y ∈ R|V|

is the model’s output probability distribution. The cross-entropy loss function L : R|V| ×R|V| → R+

is defined as:

L(y, s) = −
T∑

t=1

yt log σ(st), (2)

where σ(·) denotes the softmax function and t indexes the token position in the sequence. The
gradient of the loss with respect to attention matrices is computed as:

∇A(l,h) =
∂L

∂A(l,h)
∈ Rn×n. (3)

The saliency matrix S(l,h) ∈ Rn×n for each attention head is obtained through the Hadamard product
followed by triangular masking:

S(l,h) = tril
(∣∣∣A(l,h) ⊙∇A(l,h)

∣∣∣) , (4)

where tril(·) : Rn×n → Rn×n preserves the lower triangular portion to maintain causal structure,
and ⊙ denotes element-wise multiplication. The layer-wise normalized saliency S̄(l) ∈ Rn×n is
computed by averaging across attention heads and applying ℓ2-normalization:

S̄(l) =

∑H
h=1 S

(l,h)∥∥∥∑H
h=1 S

(l,h)
∥∥∥
2

. (5)

As demonstrated in Figures 1, 2, and 6, our quantitative analysis reveals statistically significant
differences in saliency patterns between veridical and hallucinated tokens across both Qwen2-VL-
7B Yang et al. (2024) and LLaVA1.5-7B Liu et al. (2024a) architectures.

3 METHODOLOGY

3.1 SALIENCY-GUIDED REJECTION SAMPLING (SGRS)

SGRS dynamically evaluates the grounding quality of each candidate token before commitment; the
complete algorithm is formalized in Algorithm 1. At the decoding step corresponding to absolute
position P , given context x<P and image I, the model produces logits s(P ) ∈ R|V|. We sample K
candidates C(P ) via top-K sampling. For each ci ∈ C(P ), we compute its hallucination saliency S(ci)
as:

S(ci) =
1

|Ltarget| · |J |
∑

l∈Ltarget

∑
j∈J

S̄
(l)
P,j , (6)

where S̄(l) is the layer-wise normalized saliency matrix defined in Section 2.1, Ltarget denotes the set
of target layers (e.g., middle-to-deep layers), and J = {j | SysL + ImgL ≤ j < P} is the set of
positions corresponding to previously generated output tokens, with SysL = 35 and ImgL = 576 for
LLaVA-1.5.

A candidate is accepted only if S(ci) ≥ τ (P ), where the adaptive threshold is computed over the
most recent W output tokens:
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τ (P ) = α · 1

|H|
∑
j∈H
S(xj), H = {j ∈ J | (P − 1)− j ≤W}, (7)

with α ∈ (0, 1) controlling sensitivity and W the history window size. It scales the historical average
saliency to control: "How many times the saliency of the current candidate token needs to reach
the historical average before it is accepted". If all candidates are rejected, we fall back to selecting
the token with the highest saliency score. This mechanism directly operationalizes our finding in
Pattern 1: low output-token saliency precedes hallucination. By rejecting such tokens, SGRS enforces
a generation path grounded in textual context — specifically, the model’s own prior outputs.

3.1.1 LOCAL COHERENCE REINFORCEMENT (LOCORE)

While SGRS ensures token-level grounding, LocoRe addresses sequence-level context drift by
explicitly reinforcing attention dependencies among output tokens, the complete algorithm is
formalized in Algorithm 2. Formally, at absolute position P (where P > SysL + ImgL), let
JP = {j ∈ N | SysL + ImgL ≤ j < P} denote the set of positions corresponding to previously
generated output tokens. For the prediction of token at position P + 1, we enhance the attention
weights from query P + 1 to keys in JP within a local window of size ws.

Define the distance-weighted gain for each j ∈ JP as:

γ
(P )
j = 1 + β · I ((P − j) ≤ ws) , (8)

where β ≥ 0 is the reinforcement strength, and I(·) is the indicator function. Let A(P+1) ∈
RB×nh×(P+1)×(P+1) denote the attention weight matrix computed during the forward pass for
position P +1. We modify the submatrix corresponding to attention from query P +1 to keys in JP :

A(P+1)[b, h, P + 1, j]← A(P+1)[b, h, P + 1, j] · γ(P )
j , ∀b ∈ [B], h ∈ [nh], j ∈ JP . (9)

Equivalently, in vectorized form, let γ(P ) ∈ R|JP | be the gain vector with entries γ
(P )
j , and let

A
(P+1)
P+1,JP

∈ RB×nh×|JP | denote the slice of attention weights from query P + 1 to keys in JP . The
update is:

A
(P+1)
P+1,JP

← A
(P+1)
P+1,JP

⊙ γ(P ), (10)

where ⊙ denotes element-wise multiplication broadcasted over batch and head dimensions. The
modified attention weights are then used in the softmax and weighted sum operations of the self-
attention mechanism, ensuring that the model’s prediction for token P+1 is more strongly grounded in
its recent output history. This operation amplifies the influence of recent context on the prediction of
token P +1, directly countering the saliency decay observed in Pattern 1. Crucially, LocoRE operates
purely on the attention structure — no gradient computation or model parameter modification is
required.

Synergistic Workflow. SGRS and LocoRE operate sequentially at each decoding step: SGRS filters
and selects the current token xP based on its saliency to prior outputs; LocoRE then modifies the
attention weights used in the next forward pass (for position P + 1) to reinforce dependencies on
recent tokens. This closed-loop design ensures that each accepted token is both well-grounded
(SGRS) and unlikely to be forgotten (LocoRE).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Baselines. To demonstrate the broad applicability of our method in LVLM architecture, we applied
and evaluated the latest models, including LLaVA-v1.5-7/13B Liu et al. (2024a), Qwen2-VL-7B
Wang et al. (2024) and Intern-VL-7/13B Chen et al. (2024d). This study used the following data sets
as evaluation sets, representing the expertise in reducing hallucination and general fields.

Evaluation Benchmarks. We conduct evaluations on image benchmarks. For image benchmarks,
we assess three categories: (1) Comprehensive benchmarks (LLaVAW Liu et al. (2024a), MM-Vet
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Algorithm 1 SGRS
Require: M,x,K,R, α,W,L, S=35, I=576, H
Ensure: xP : accepted token at position P
1: logits←M(xinput,KV)[:,−1, :]
2: C ← TopK(softmax(logits),K), accepted ←

False
3: for r = 1 to R do
4: c ∼ Sample(C)
5: S(c)← SALIENCY(M, c,Ltarget, P, S, I) ▷

Eq. (1)
6: JP ← {j | S + I ≤ j < P} ▷ Output token

positions
7: HP ← {j ∈ JP | (P − 1)− j ≤W} ▷

Recent W outputs
8: τ ← α · 1

|HP |
∑

j∈HP
H[j] ▷ Eq. (2)

9: if S(c) ≥ τ then
10: xP ← c, H.append(S(c)), accepted ←

True, break
11: else
12: C ← C \ {c}
13: end if
14: end for
15: if not accepted then
16: xP ← argmaxc∈original C S(c) ▷ Fallback:

best saliency
17: end if
18: return xP

Algorithm 2 LOCORE

Require:
1: A(P+1) ∈ RB×nh×(P+1)×(P+1): attention

weights for step P + 1
2: S = 35, I = 576: system and image token

lengths
3: ws: local window size, β ≥ 0: gain strength

Ensure: A(P+1): modified attention weights for step
P + 1

4: P ← current position ▷ Last generated token
position

5: t← P − (S + I)

6: if t ≤ 0 then return A(P+1)

7: end if ▷ No output yet
8: JP ← {j | S + I ≤ j < P} ▷ Historical output

positions
9: if JP = ∅ then return A(P+1)

10: end if
11: for all j ∈ JP do
12: dj ← P − j ▷ Distance to current position
13: γj ← 1 + β · I(dj ≤ ws) ▷ Eq. (3)
14: for all b ∈ [B], h ∈ [nh] do
15: A(P+1)[b, h, P + 1, j] ←

A(P+1)[b, h, P + 1, j] · γj ▷ Eq. (4)
16: end for
17: end for
18: return A(P+1)

Table 1: Compare results of LocoRE with other SOTA methods on POPE, CHAIR and MME
datasets. The best performances within each setting are bolded, baseline: LLaVA-1.5-7B.

POPE CHAIR MMEMethod Venue F1↑ Acc↑ CS↓ CI↓ Recall↑ length Exist.↑ Count↑ Pos.↑ Color↑ Total↑
Beam Search - 85.4 84.0 51.0 15.2 75.2 102.2 175.67 124.67 114.00 151.00 565.34
Dola Chuang et al. (2023) ICLR 2024 80.2 83.1 57.0 15.2 78.2 97.5 180.10 127.40 119.30 154.60 594.10
VCD Leng et al. (2024) CVPR 2024 85.3 85.0 51.0 14.9 77.2 101.9 184.66 137.33 128.67 153.00 603.66
OPERA Huang et al. (2024) CVPR 2024 84.2 85.2 47.0 14.6 78.5 95.3 180.67 133.33 111.67 123.33 549.00
DOPRA Wei & Zhang (2024) MM 2024 84.6 84.3 46.3 13.8 78.2 96.1 185.67 138.33 120.67 133.00 577.67
HALC Chen et al. (2024c) ICML 2024 83.9 84.0 50.2 12.4 78.4 97.2 190.00 143.30 128.30 160.00 621.60
CCA-LLaVA Xing et al. (2024) NeurIPS 2024 86.4 86.5 43.0 11.5 80.4 96.6 190.00 148.33 128.33 153.00 641.66
RITUAL Woo et al. (2024) Arxiv 2024 85.2 84.3 45.2 13.2 78.3 99.2 187.50 139.58 125.00 164.17 616.25
EAH Zhang et al. (2024a) EMNLP 2025 85.7 86.0 36.4 9.9 74.9 97.7 190.00 108.33 145.00 160.66 603.99
SID Huo et al. (2025) ICLR 2025 85.6 85.8 44.2 12.2 73.0 99.4 183.90 132.20 127.80 155.90 599.80
TAME Tang et al. (2025a) ICLR 2025 85.4 85.7 41.3 12.2 74.4 98.8 193.00 137.33 139.00 164.67 634.00
Vissink Kang et al. (2025) ICLR 2025 86.0 86.5 52.4 14.5 79.1 103.0 190.00 148.33 138.33 155.00 631.33
CausalLLM Zhou et al. (2025) ICLR 2025 86.0 86.5 - - - - 195.00 156.00 135.00 170.00 656.00
AGLA An et al. (2024) CVPR 2025 84.6 85.5 43.0 14.1 78.9 98.8 195.00 153.89 129.44 161.67 640.00
FarsightTang et al. (2025b) CVPR 2025 - - 41.6 13.2 75.5 100.6 - - - - -
MemVR Zou et al. (2024) ICML 2025 87.1 87.4 46.6 13.0 80.8 99.6 190.00 155.00 133.33 170.60 648.30
ONLY Wan et al. (2025) ICCV 2025 85.5 85.1 49.8 14.3 75.9 99.7 191.67 145.55 136.66 161.66 635.55
Reverse-VLM Wu et al. (2025b) NeurIPS 2025 - - 35.3 9.3 75.2 70.4 - - - - -
LocoRE - 86.9 87.3 38.4 11.2 75.4 98.2 190.00 158.33 133.33 175.00 656.66
SGRS + LocoRE - 87.0 87.5 35.6 8.2 75.4 98.2 195.00 158.33 140.00 175.00 668.33

Yu et al. (2023), MME Yin et al. (2023); (2) General VQA benchmarks (VizWiz Gurari et al. (2018),
ScienceQA Lu et al. (2022); (3) Hallucination benchmarks (POPELi et al. (2023b), CHAIR Rohrbach
et al. (2018)).

4.2 EVALUATION RESULTS ON HALLUCINATION BENCHMARKS

CHAIR and POPE Evaluations. As shown in Table 1, methods for mitigating hallucinations can
be broadly categorized into third groups. The first group, including OPERA Huang et al. (2024),
DOPRA Wei & Zhang (2024), DOLAChuang et al. (2023), VCD Leng et al. (2024), HALC Chen
et al. (2024c), An et al. (2024), ICD Zhang et al. (2023), RITUAL Woo et al. (2024), AGLA An et al.
(2024), SID Huo et al. (2025), Only Wan et al. (2025), focuses on modifying the decoding process to
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Table 2: Comparison of different LVLMs and LocoRE across all image benchmarks. Notably, in
the Hallucination Benchmark, lower scores on CHAIRI and CHAIRS indicate better performance,
while higher scores are preferable for other metrics.

Comprehensive Benchmark General VQA Hallucination BenchmarkMethod LLaVAW MM-Vet↑ VizWiz↑ SQA↑ CHAIRS ↓ CHAIRI ↓ POPE-R↑ POPE-F1↑ POPE-A↑

LLaVA-1.5-7B 72.5 30.5 48.5 65.5 48.0 13.9 87.0 85.4 84.0
+ICD 69.7 30.4 46.9 62.8 47.7 13.6 87.9 84.9 84.0
+VCD 70.9 29.5 43.4 63.3 46.8 13.2 87.0 85.3 85.0
+OPERA 72.0 31.4 50.0 64.9 45.2 12.7 88.8 84.2 85.2
+SID 73.4 31.2 50.9 67.8 44.2 14.0 89.4 85.6 85.8
+TAME 73.9 30.5 51.6 66.0 41.3 12.2 88.9 85.4 85.7
+Vissink 74.1 33.5 53.8 67.0 52.4 14.5 87.7 84.9 85.8
+FarSight 74.7 32.5 50.8 67.4 41.6 13.2 90.5 85.5 85.8
+LocoRE 74.8 (+2.3) 33.8 (+3.3) 54.8 (+6.3) 67.5 (+2.0) 38.4 (+9.6) 10.2 (+3.7) 89.5 (+2.5) 86.9 (+1.5) 87.3 (+3.3)
+SGRS+LocoRE 76.7 (+4.2) 36.0 (+5.5) 54.9 (+6.4) 67.8 (+2.3) 35.6 (+12.4) 8.2 (+5.7) 89.8 (+2.8) 87.0 (+1.6) 87.5 (+3.5)
LLaVA-1.5-13B 72.5 36.1 60.5 71.6 47.2 13.6 82.5 86.6 87.2
+ LocoRE 74.0 (+1.5) 38.4 (+2.3) 62.1 (+1.6) 72.5 (+0.9) 43.8 (+3.4) 12.8 (+0.8) 87.8 (+5.3) 87.7 (+1.1) 87.4 (+0.2)
SGRS + LocoRE 76.8 (+4.3) 42.0 (+5.9) 64.0 (+3.5) 75.5 (+3.4) 39.8 (+7.4) 8.8 (+4.8) 88.0 (+5.5) 88.1 (+1.5) 87.6 (+0.4)
Intern-VL-7B 51.6 31.2 51.7 66.2 46.6 12.4 80.0 85.3 86.2
+ LocoRE 52.8 (+1.2) 33.7 (+2.5) 54.5 (+2.8) 66.4 (+0.2) 40.2 (+6.4) 10.5 (+1.9) 85.8 (+5.8) 87.2 (+1.9) 87.3 (+1.1)
SGRS + LocoRE 55.5 (+3.9) 35.0 (+5.0) 56.2 (+4.5) 67.9 (+1.7) 34.4 (+12.2) 7.5 (+3.9) 86.0 (+6.0) 87.6 (+2.3) 87.7 (+1.5)
Intern-VL-13B 53.2 33.7 47.4 70.1 45.4 12.7 82.8 86.4 86.9
+ LocoRE 54.1 (+0.9) 35.4 (+1.7) 50.1 (+2.7) 70.4 (+0.3) 43.6 (+1.8) 12.5 (+0.2) 86.3 (+3.5) 87.2 (+0.8) 87.3 (+0.4)
SGRS + LocoRE 56.8 (+3.6) 37.3 (+3.6) 52.0 (+4.6) 71.0 (+0.9) 45.2 (+3.4) 14.0 (+2.7) 87.0 (+4.2) 88.1 (+1.7) 88.8 (+1.9)
Qwen2-VL-7B 75.6 63.2 57.3 74.1 25.0 7.3 79.1 86.6 87.6
+ LocoRE 77.8 (+2.2) 64.8 (+1.6) 59.4 (+2.1) 74.2 (+0.1) 23.5 (+1.5) 6.8 (+0.5) 81.3 (+2.2) 87.5 (+0.9) 88.2 (+0.6)
SGRS + LocoRE 79.7 (+4.1) 67.7 (+4.5) 60.3 (+3.0) 75.3 (+1.2) 19.3 (+5.7) 5.1 (+2.2) 82.6 (+3.5) 88.0 (+1.4) 89.0 (+1.4)
Qwen2.5-VL-7B 76.8 62.2 60.9 79.0 27.2 9.0 80.4 87.4 88.4
+LocoRE 77.9 (+1.1) 64.8 (+2.6) 61.6 (+0.7) 80.8 (+1.8) 23.0 (+4.2) 8.5 (+0.5) 80.9 (+0.5) 87.8 (+0.4) 88.7 (+0.3)
SGRS +LocoRE 80.0 (+3.2) 66.2 (+4.0) 62.7 (+1.8) 82.1 (+3.1) 21.0 (+6.2) 6.5 (+2.5) 81.5 (+0.5) 88.3 (+0.9) 89.5 (+1.1)
Qwen2.5-VL-32B 81.2 72.2 70.8 89.0 43.6 9.5 79.1 86.7 87.8
+LocoRE 82.7 (+0.5) 73.1 (+0.9) 71.2 (+0.4) 89.3 (+0.3) 41.8 (+1.8) 8.5 (+1.0) 79.5 (+0.4) 86.9 (+0.2) 88.0 (+0.2)

address hallucinations. The second group, represented by SFT methods such as LESS is more Yue
et al. (2024), CCA-LLaVA Xing et al. (2024) and Reverse-VLM Wu et al. (2025b), adjusts the logits
of the end-of-sequence (EOS) symbol to control its positioning, allowing the model to terminate
earlier, thus reducing hallucinations. The third group includes Vissink Kang et al. (2025), EAH
Zhang et al. (2024a), TAME Tang et al. (2025a), MemVR Zou et al. (2024) and Farsight Tang et al.
(2025b), which aim to enhance the truthfulness of the model’s output during inference by adjusting
attention heads. Among these methods,reaching SOTA on the POPE dataset, and achieved significant
results second only to EAH on descriptive datasets such as CHAIR. Compared with EAH’s approach
of directly replacing the attention head, LocoRE has a higher recall because it does not change the
internal representation of the model, and therefore does not affect the diversity of the model output.

Compared to Vissink Kang et al. (2025) and TAME Tang et al. (2025a), which also allocate attention,
LocoRE’s CHAIR performance is more prominent. TAME allocates the attention on the system
token to other tokens, but still ignores the visual information, while Vissink only intervenes with
the visual attention sink and ignores the contextual association of the text output. As a result, both
of them perform not that well on long text output datasets such as CHAIR, while this also proves
the effectiveness of our approach, which is able to address the shortcomings of both of them, i.e.,
enhancing the visual information as well as enhancing the contextual dependencies between text
outputs.

4.3 EVALUATION RESULTS ON GENERATION BENCHMARK

MME and Other Benchmarks Evaluations. As shown in Table 1 and Table 2, we tested on several
popular LVLMs’ general ability benchmarks. MME comprises ten subtasks to evaluate models’
perceptual capabilities and four subtasks for assessing recognitive abilities in the form of yes/no
questions. LocoRE can maintain and improve the multimodal capability on LVLMs benchmarks. Our
method achieve a much higher score (corresponds to less hallucination) across all categories. This
underscores its effectiveness in addressing a broader range of multimodal hallucination challenges
beyond objects. Combining SGRS with LocoRE further improves reasoning-intensive tasks, as
demonstrated by the cognitive categories of MME. This performance is particularly pronounced on
the "Existence" and "Position" tasks, as SGRS directly suppresses hallucinations while LocoRE
focuses solely on contextual coherence.
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Figure 3: Effect of LocoRE on output token saliency map (Qwen2-VL-7B). Without LocoRE:
When generating an incorrect token(clock), saliency scores assigned to prior output tokens are
low — indicating weak contextual grounding. With LocoRE: The same position now generates
a correct token(watch), accompanied by significantly higher saliency scores to recent outputs —
demonstrating LocoRE’s ability to restore contextual coherence and prevent hallucination via attention
reinforcement.

4.4 ABLATION STUDY

Effect of LocoRE on other LVLMs As shown in Table 2, the integration of LocoRE as a plug-in
into LLaVA-1.5-7B/13B Liu et al. (2024a), Qwen2-VL-7B/13B/32B Wang et al. (2024) and Intern-
VL-7/13B Chen et al. (2024d), was effective in improving results in both integrated and generalized
VQA tasks. In addition, it achieved a significant improvement in hallucination metrics. These results
indicate that LocoRE is effective in reducing hallucinations in both structured and unstructured
environments.

Saliency map Visualization with LocoRE. As shown in Figure 3, which visualizes the LVLMs-
Saliency maps from prior output tokens to the current token, applying LocoRE significantly increases
the saliency scores assigned to recently generated context tokens — particularly those within the local
coherence window. This demonstrates that LocoRE effectively strengthens the model’s dependency
on its immediate output history, counteracting the “forgetting” behavior observed in the baseline. The
saliency boost under LocoRE confirms our design principle: by explicitly reinforcing attention to
recent outputs, the model maintains stronger contextual links during autoregressive generation. This
prevents the decay of intra-output saliency that leads to hallucinations, ensuring that each new token
remains grounded in its textual predecessors.

4.4.1 INFERENCE-TIME EFFICIENCY

While our full framework (SGRS + LocoRE) achieves the strongest hallucination suppres-
sion, it incurs higher latency due to the backward pass required for saliency computation in
SGRS — typically adding 30–40% overhead per token compared to standard greedy decoding.

Figure 4: Generation time of a single response.

While the full SGRS+LocoRE framework
achieves the strongest hallucination suppression,
its reliance on gradient computation introduces
non-negligible latency overhead — making it
less suitable for real-time applications. In prac-
tice, however, LocoRE alone serves as a highly
effective compromise: as a forward-only mod-
ule that manipulates attention weights in-place,
it incurs <2% latency increase while still signif-
icantly mitigating context-drift hallucinations.

As shown in Figure 4, compared to prior
plug-and-play methods — such as VCD Leng
et al. (2024), OPERA Huang et al. (2024), Far-
sight Tang et al. (2025b), HALC Chen et al. (2024c), and EAH Zhang et al. (2024a) — LocoRE
requires no auxiliary models, no external detectors, and no multi-pass decoding. By operating entirely
within the standard autoregressive loop, it achieves superior speed-efficiency trade-offs.
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Figure 5: Ablation study of α: trade-offs be-
tween hallucination rate, recall, and latency.

α β

LLaVA-1.5 Qwen2-VL-7B

CHAIR POPE CHAIR POPE

S↓ I↓ F1↑ Acc↑ S↓ I↓ F1↑ Acc↑

0.0 0.0 48.0 13.9 85.4 84.0 25.0 7.3 86.6 87.6
0.0 0.15 38.4 10.2 86.9 87.3 — — — —
0.0 0.20 — — — — 23.5 6.8 87.5 88.2
0.6 0.0 36.5 9.0 86.9 87.4 20.5 5.6 87.9 88.9
0.6 0.15 35.6 8.2 87.0 87.5 — — — —
0.6 0.20 — — — — 19.3 5.1 88.0 89.0
0.6 1.0 50.2 20.9 60.3 57.8 37.5 18.5 55.3 54.6

Table 3: Ablation study on α (SGRS) and β
(LocoRE). Best in bold. β: 0.15 (LLaVA-1.5),
0.20 (Qwen2-VL).

4.5 ABLATION STUDY ON KEY HYPERPARAMETERS

We evaluate α (SGRS) and β (LocoRE) on both CHAIR and POPE benchmarks. As shown in
Table 3 and Figure 5, our full method (α = 0.6, β = 0.15) reduces CHAIR hallucination rate by
28.3% (LLaVA-1.5) and 22.8% (Qwen2-VL) compared to baseline. SGRS alone (α = 0.6, β = 0.0)
contributes most of the improvement, but LocoRE adds further gains (e.g., POPE F1− score from
85.4% to 86.9% in LLaVA-1.5). Increasing α to 0.9 yields marginal improvement at high latency cost
(+33%). We recommend α = 0.6, β = 1.2 as the optimal balance. While increasing α to 0.9 further
reduces hallucination rates (CHAIRS : 35.6% → 30.0%; POPE: 87.0% → 87.1%), it incurs a 33%
higher latency cost (30.8 ms/token → 41.2 ms/token) and risks degrading generation fluency due
to over-rejection. In extreme cases, correct but moderately salient tokens may be rejected, leading
to fallback-generated outputs that are less diverse or natural. We thus recommend α = 0.6 as the
optimal trade-off — it suppresses 28.3%+ of hallucinations while maintaining practical inference
speed and output quality.

5 RELATED WORK

5.1 NEXT TOKEN PREDICTION

After obtaining the next token probability, different decoding strategies are proposed to predict the
next token. The decoded token Huang et al. (2024); Chuang et al. (2023); Chen et al. (2024a) is
concatenated with the last of the original input text for the next-token generation until the generation
ends.

5.2 INFORMATION FLOW OF IN LVLMS

Some researchHuang et al. (2024); Wei & Zhang (2024); Zhang et al. (2024b; 2025c;b) uses Grad-
CAM and attention maps to visualize the interaction between images and text in complex reasoning
tasks. Attention scores highlight relevant areas through forward propagation. The EAH Zhang et al.
(2024a) identifies that most hallucinations stem from the attention sink pattern marked by images in
the attention matrix. Based on this insight, EAH proposes a method that enhances attention heads
without additional training. TAME Tang et al. (2025a) and Farsight Tang et al. (2025b) investigate
the causes of hallucinations by analyzing local self-attention patterns of “anchor tokens” and defines
the degree of attentional localization as the probability of token propagation.

6 CONCLUSION

In this work, we revisit the conventional explanations linking attention sinks to hallucinations and
propose a saliency-based framework to complement existing analyses. Our findings reveal that
hallucinations frequently correlate with weak saliency in prior output tokens. To this end, we
introduce SGRS and LocoRE, a plug-and-play intervention that dynamically boosts visual attention
and reinforces local coherence during text generation. Experiments confirm that LocoRE consistently
improves output accuracy across various benchmarks without requiring model retraining.
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Figure 6: Attention map and saliency map of LLaVA1.5-7B.

A RELATED WORK

A.1 SALIENCY SCORE

To reveal why the MLLM produces a hallucination token, it is necessary to elucidate the infor-
mation flow. In this section, we use saliency score to analyze the information flow across the
different tokens(system, image, prompt, and output). In this section, we examine 4 types of to-
ken(system/image/prompt/output). We can use a Taylor expansion to compute the saliency score for
each element of the attention matrix:

Sl =

∣∣∣∣∣∑
h

Ah,l ⊙
∂L(x)
∂Ah,l

∣∣∣∣∣ , (11)

where Ah,l denotes the value of the attention matrix for the Ah,l attention head in layer l, and x
denotes the input. L(x) is the loss function of the task, e.g., the cross-entropy of the quiz task
objective. The saliency matrix Sl for layer l is obtained by averaging all heads of attention. More
saliency maps and attention maps of LLaVA 1.5/Qwen2-VL are shown in Figure 6 and Figure 13 and
Figure 14.

A.2 INFORMATION FLOW OF IN LLMS

Information flow provides an intuitive method of understanding the internal mechanisms of the
black-box models of LVLM. Label words Wang et al. (2023), and ACT Yu et al. (2024) are early
works that explore the mechanism of LLMsZhu et al. (2023); Devlin et al. (2018); Touvron et al.
(2023) by rving information flow patterns. By calculating saliency scores, it is possible to visualize
the information flow.

StreamingLLM Xiao et al. (2023) introduces the concept of attention sink, observing an intriguing
phenomenon: Initial tokens, despite their seemingly minor role in content generation, consistently
receive high attention scores. This is visualized in the attention map as columns with notably high
attention scores, which is counterintuitive. Due to the autoregressive nature of generative models,
these initial tokens continue to attract attention from subsequent tokens, amplifying their impact on
the generation process. To address this, StreamingLLM leverages attention-sink tokens during the
pre-training phase to enhance the model’s performance.

Massive activationsSun et al. (2024) highlights that, while there are approximately 40,000 activations
per hidden state, only four are recognized. In the feature dimension of language models, large
activations consistently occur in a very small number of fixed dimensions. LLMs are categorized into
three types based on the location of massive activations: (a) occurring only at the onset, (b) occurring
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Figure 7: The structure of Local Coherence Reinforcement (LocoRe): attention from the next token
to recent outputs is enhanced to preserve contextual coherence.

at the onset of lexical elements and the first "strong separator" word (e.g. “.”, “/n”), or (c) occurring
at the onset, separator words (e.g., “.”, “/n”), and the first "strong separator" word, as well as some
semantically weaker words (e.g., “and”, “from”, “of”).

A.3 INFORMATION FLOW OF IN LVLMS

LLaVA-CAM Zhang et al. (2024b; 2025c;b); Wei & Zhang (2024) utilizes Grad-CAM and attention
maps to visualize the interaction between images and text in complex reasoning tasks. Attention
scores highlight relevant areas through forward propagation, while Grad-CAM captures gradient
changes through backpropagation, revealing the salience of image features. These complementary
approaches provide a comprehensive understanding of the dynamics of information flow by assessing
the importance of input and demonstrating their specific impact on model predictions.

The EAH study Zhang et al. (2024a) identifies that most hallucinations stem from the attention sink
pattern marked by images in the attention matrix. To address this, EAH proposes a method that
enhances attention heads without additional training. By strengthening attention heads with visual
depression characteristics in shallow layers, the method improves attention distribution for image
tokens, effectively reducing hallucinations across various LVLMs.

TAME Tang et al. (2025a) investigates the causes of hallucinations by analyzing local self-attention
patterns of "anchor points" and defines the degree of attentional localization as the probability of token
propagation. The analysis reveals that over-propagation of anchor tokens occurs when the eigenvalue
distributions of the query and key matrices exhibit a non-zero mean and polarized variance, leading
to an over-reliance on anchor tokens while ignoring visual information, resulting in hallucinations.

As illustrated in Figure 8, in summary, EAH Zhang et al. (2024a) differs from existing methods while
remaining non-conflicting and even complementary. Existing methods primarily adjust decoding
strategies by modifying logits. OPERA Huang et al. (2024) and DOPRA Wei & Zhang (2024)
identify that anchor output tokens can lead to hallucinated token generation and try to penalize anchor
tokens’ logits. TAME Tang et al. (2025a) focuses on the propagation of the anchor token in all layers,
dynamically adjusting these anchor tokens.

A.4 LIMITATIONS

The primary limitation of our Saliency-Guided Rejection Sampling (SGRS) framework lies in its
computational demands: computing token-level saliency requires storing intermediate activations
and performing backward passes during inference, which consumes significant GPU memory. As a
result, we are currently unable to deploy SGRS on very large models such as 72B-parameter LLMs,
where gradient computation exceeds the memory capacity of even high-end GPUs (e.g., A100 80GB).
This restricts our evaluation to models up to 7B–13B parameters (e.g., LLaVA-1.5, Qwen2-VL-7B),
limiting the generalizability of our full framework to the largest-scale architectures.

However, we emphasize that our LocoRE module remains fully applicable to any model size,
as it operates purely in the forward pass and requires no gradient computation. For large models
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Figure 8: The information flow of different models.

where SGRS is infeasible, LocoRE alone provides a lightweight, plug-and-play solution that still
significantly mitigates context-drift hallucinations.

A.5 VIDEO BENCHMARKS EVALUTION

In Zero-Shot Video Question Answering Tasks, LocoRE achieves significant improvements over
video MLLM such as Video-LLaVA Lin et al. (2023) and Video-LLaMA2 Cheng et al. (2024) in
three key benchmark datasets. As shown in Table 4, on the MSRVTT-QA dataset, our method delivers
an average accuracy gain.

Table 4: Comparison of different Video LVLMs and LocoRE across all video benchmarks. In the
Video-Based Text Generation Benchmark, five scores are assessed: Cr. (Correctness of Information),
Cs. (Consistency), De. (Detail Orientation), Ct. (Contextual Understanding) and Te. (Temporal
Understanding). Following Maaz et al Maaz et al. (2023), we use the GPT-3.5 Turbo model to assign
a relative score to the model outputs, with scores ranging from 0 to 5.

Method MSVD-QA MSRVIT-QA ActivityNet-QA Video-Based Text GenerationMethod Accuracy ↑ Score↑ Accuracy↑ Score↑ Accuracy ↑ Score↑ Cr.↓ Cs.↓ De.↓ Ct.↓ Te.↓
Video-LLaVA 64.8 3.7 59.0 3.5 41.5 3.3 2.32 2.34 2.65 2.75 2.09
+ LocoRE (Ours) 65.9 (+1.1) 3.8 61.3 (+2.3) 3.5 41.9 (+0.4) 3.5 2.36 2.42 2.88 2.87 2.12
Video-LLaMA2 70.9 3.8 67.2 3.6 49.9 3.3 3.13 3.23 2.70 3.42 2.45
+ LocoRE (Ours) 71.8 (+0.9) 3.9 69.9 (+2.7) 3.7 52.2 (+2.3) 3.6 3.36 3.41 2.91 3.55 2.66

Differences with other fusion strategies: We compared the other three fusion strategies:

• Addition: After the attention and gradient are added, the visualized image shows an overall
high state, and the pattern cannot be distinguished at all. It is a meaningless pattern.
The fusion scores of many tokens are concentrated in the middle range, and the overall
appearance is "gray", making it difficult to distinguish the key tokens.

• Maximum value (Max): Take the larger of the attention and gradient. Although it can
amplify individual high values, the visualization result still cannot distinguish the effective
pattern.

• Concat + MLP: Gradient and attention are spliced and then adaptively fused through the
neural network. The score distribution is rich. The visualization is similar to the addition.
The lower triangle shows a color close to the same, and the effective pattern cannot be
distinguished.

In contrast, attention*gradient fusion is: clearer in distinguishing important from unimportant
tokens.
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Figure 9: The saliency map of output token. We compared the other three fusion strategy including
Addition, Maximum value (Max) and concat attention+gradient by mlp, there is no pattern between
normal and hallucination token, in contrast, attention*gradient fusion is clearer in distinguishing
important from unimportant tokens.

USE OF LLM

The authors used generative AI tools (e.g., Grammarly, ChatGPT) solely for grammar checking and
language polishing of the manuscript. All technical content, experimental design, data analysis, and
conclusions were generated and verified exclusively by the human authors. The use of AI tools does
not affect the originality or authorship of this work.

B ETHICS STATEMENT

This work focuses on improving the reliability of large vision-language models (LVLMs) by mitigating
hallucination through inference-time interventions. Our method, SGRS+LocoRE, operates solely
on publicly available models (e.g., LLaVA-1.5, Qwen2-VL) and benchmark datasets (e.g., CHAIR,
POPE, MME), without collecting or using any private, sensitive, or human-subject data. The proposed
techniques do not introduce new biases beyond those already present in the base models, and they are
designed to enhance — not replace — human oversight in critical applications. We acknowledge
that while our method reduces hallucination, it does not eliminate all risks of harmful or misleading
outputs. Users should exercise caution when deploying LVLMs in high-stakes scenarios such as
medical diagnosis, legal advice, or autonomous decision-making.

C REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the following resources: (1) Code: Complete implemen-
tation of SGRS and LocoRE, including saliency computation, rejection sampling, and attention
reinforcement modules, will be released publicly on GitHub upon publication. (2) Hyperparameters:
All key hyperparameters (α = 0.6, β = 0.15 for LLaVA-1.5; β = 0.20 for Qwen2-VL-7B) and
training-free inference protocols are detailed in Section 4.5. (3) Evaluation: We use standard,
publicly available benchmarks (CHAIR, POPE, MME) with official evaluation scripts. All results are
averaged over 500 samples with fixed random seeds. (4) Compute: Experiments are conducted on
NVIDIA A100 80GB GPUs; average latency is reported in ms/token (Figure 5). (5) Models: We
evaluate on open-source LVLMs: LLaVA-1.5 (13B) and Qwen2-VL-7B, using official checkpoints
from Hugging Face Model Hub. No proprietary data or models are used in this work.
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D MORE EXPERIMENTS IN REBUTAL

D.1 STATISTICAL VALIDATION OF THE SALIENCY-HALLUCINATION RELATIONSHIP

Figure 10: Statistical analysis of output-token saliency vs. hallucination. (a) Mean saliency for
correct vs. hallucinated tokens across three models. (b) Hallucination probability as a function of
saliency bin (per model average).

To rigorously test our core hypothesis: "The saliency score of hallucination tokens is often relatively
low." — we conduct three complementary quantitative analyses at the token level across three diverse
VLMs: LLaVA-v1.5-7B, Qwen2-VL-7B, and InternVL-7B. All experiments are performed on the
POPE and CHAIR benchmarks, with hallucination labels assigned via human annotation.

(1) Token-level saliency distribution: hallucinated vs. correct tokens. For each generated token yt
in our dataset (∼12,000 tokens total), we compute the saliency score from the immediately preceding
output token to the current token. We then group tokens by label (correct or hallucinated) and report
mean ± standard deviation.

As shown in Figure 10(a) and Table 5, a consistent and statistically significant pattern emerges across
all models:

Table 5: Mean saliency scores for correct vs. hallucinated tokens across models.

Model Correct Tokens Hallucinated Tokens

LLaVA-v1.5-7B 0.472± 0.136 0.193± 0.087
Qwen2-VL-7B 0.664± 0.158 0.355± 0.103
InternVL-7B 0.508± 0.124 0.224± 0.095

These results confirm that the significantly lower saliency scores of hallucinated tokens, compared
with correct tokens, is a phenomenon that generalizes across different model architectures.

(2) Saliency score and negative correlation with hallucination: As shown in Figure 10(b), we
divide the saliency score of the previous output token into 10 equally wide intervals and calculate
the conditional probability P of hallucination in each interval. All three models (LLaVA-v1.5-
7B, Qwen2-VL-7B, and InternVL-7B) showed a strong negative correlation: the hallucination
rate systematically decreased with increasing saliency. A clear, smooth, and monotonic negative
correlation is evident: <1> In the lowest saliency [0.0, 0.1), hallucination rates reach 68%–76%;
<2> In the highest [0.9, 1.0], rates drop to 18%–28%. The trend holds across all models, with no
non-monotonic jumps or plateaus.

(3) Saliency Intervention Experiment: As shown in Table 6, we also conducted an intervention
experiment on the LLaVA-v1.5-7B model. For each sample in the POPE and CHAIR datasets, highly
significant correct tokens were selected for intervention (these tokens came from the correct tokens
with saliency > 0.45 in Step 1). The intervention method was as follows: after generating the target
token, its saliency output in the decoder was scaled (multiplied by a factor r ∈1.0,0.8,0.6,0.4,0.2) to
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Table 6: Hallucination experiments that artificially lower saliency scores

Decay rate r CHAIRs ↓ POPE-F1 ↑ POPE-A ↑
1.0 35.6 87.0 87.5
0.8 (decay 20%) 37.9 86.5 86.8
0.6 (decay 40%) 42.1 85.4 85.6
0.4 (decay 60%) 47.8 84.8 84.0
0.2 (decay 80%) 56.0 83.0 83.8

simulate the process of its saliency being weakened. The results showed that after the saliency value
was artificially reduced, the hallucination rate increased significantly."

Conclusion. These findings support our claim that hallucinations are not triggered by a single
threshold event, but rather emerge gradually as contextual saliency decays. This gradient nature
suggests that saliency can serve as a continuous diagnostic signal.

D.2 FAILURE CASE: HIGH-SALIENCY HALLUCINATION

Figure 11: Failure example. Even though it’s an hallucination token, the output saliency is still high.

Regarding our core claim that hallucinated tokens overwhelmingly exhibit low saliency, although
this is strongly supported by extensive statistical evidence, we also identify several failure cases in
which hallucinated tokens instead display relatively high saliency scores. Figure 11(a) illustrates
such an instance: on Qwen2-VL-7B, the ground-truth answer is “a traffic cone”.This contradicts the
low-saliency hypothesis and reveals two fundamental limitations:

(1) Context-independent generated content: The effectiveness of the method may decrease when the
content generated by the model deviates significantly from or is inconsistent with the current context.
Specifically, when the saliency of a candidate token is low, indicating that the currently generated
content lacks relevance to the previously generated content, SGRS will reject these tokens. However,
in some cases, if the context itself is ambiguous or the input information is insufficient, the model
may generate irrelevant content, which may not pass the SGRS filter even if it conforms to the rules
of language generation.

(2) Some incorrect tokens may have high saliency because the model believes that the token it outputs
at this time is correct (high confidence). This observation is consistent with the conclusion proposed
by Adam et al. of Openai Kalai et al. (2025): "The model will make mistakes with confidence". The
reason for this problem is that <1> the model is trained to output seemingly reasonable answers
(high confidence) instead of expressing "I don’t know". <2> after human RLHF, the model becomes
overconfident.
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D.3 LONG SEQUENCE HALLUCINATION TOKEN AND LAYER EXPERIMENT

As show in Figure 12, we performed a token-level magnified visualization of the following hallucina-
tion case:

(1)Long sequence experiments: As shown in Figure 12, in the generated sequence, a hallucination
token (e.g., "few") appears in the third sentence, while the first sentence (e.g., "preparing") and
the fourth sentence (e.g., "significant") are both correct outputs. This shows that even in different
sentences and adjacent positions, the saliency of hallucination tokens is significantly lower than that
of the correct tokens preceding and following them.

Figure 12: Long sequence example. A comparison of the saliency of the correct tokens before
and after the hallucination token shows that the saliency of the correct tokens before and after the
hallucination token is still greater than that of the original token.

(2) Layer experiment:As shown in Figure 13 and Figure 14, we show the saliency distribution
of correct and hallucination tokens across different layers. We observe that the saliency of correct
tokens is relatively high across both shallow and deep layers, while the saliency of hallucination
tokens is relatively low across all layers. Regarding attention heads, they serve only as intermediate
computational units and are not individually dependent. The LVLMs-Saliency calculation logic in
our paper is as follows: first, calculate the saliency matrix for each attention head (Equation 4), then
average it across all heads (Equation 5), finally outputting the layer-normalized saliency. Our entire
method does not bind to any specific attention head, nor does it claim that any particular head/type of
head is key to the connection between saliency and hallucination. We only use attention heads as the
basic carrier of attention weights, and after aggregation, they are no longer considered individually.
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Figure 13: Saliency map of LLaVA1.5 from layer1 to layer32 (hallucination pattern).
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Figure 14: Saliency map of LLaVA1.5 from layer1 to layer32 (correct pattern).
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