

000
001
002
003
004
005

HALLUCINATION BEGINS WHERE SALIENCY DROPS

006
007
008
009
010
011
012**Anonymous authors**

Paper under double-blind review

ABSTRACT

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

Recent studies have investigated attention dynamics in large vision language models (LVLMs), yet existing methods remain limited in reliably distinguishing hallucinated from correct outputs — primarily because they rely solely on forward-pass attention, ignoring gradient-based signals that reveal how token influence propagates through the model. To bridge this gap, we introduce **LVLMs-Saliency**, an *gradient-aware diagnostic tool* that quantifies the grounding strength of each output token by fusing attention weights with their gradients. Through analysis, we identify a decisive pattern: *Hallucinations occur when prior output tokens shows low saliency to the next token prediction*, indicating a failure of contextual memory. Building on this insight, we propose a dual-mechanism inference-time framework: (1) Saliency-Guided Rejection Sampling (SGRS), which dynamically filters candidate tokens during decoding by rejecting those with saliency below a context-adaptive threshold, thereby preventing coherence-breaking tokens from entering the sequence; and (2) Local Coherence Reinforcement (LocoRE), a lightweight plug-and-play module that strengthens attention from the current token to its most recent outputs, actively counteracting the “forgetting” behavior identified by LVLMs-Saliency. Experimental results demonstrate that our method significantly reduces hallucinations across multiple LVLMs, offering a robust and interpretable solution to improve model reliability.

1 INTRODUCTION

035
036
037
038
039
040
041
042
043

Large Vision Language Models (LVLMs) have made significant strides in cross-modal tasks. However, hallucinations remain a key challenge, particularly in visual question answering and image captioning. Current mitigation strategies such as incorporating external knowledge, retraining with additional data Li et al. (2023a); Liu et al. (2023); Park et al. (2024) or training-free methods Neo & Chen (2024); Li et al. (2025a;b); Zhang et al. (2025a); Wu et al. (2025a); Liu et al. (2024c); Gong et al. (2024); Zhou et al. (2024); Shang et al. (2024); Min et al. (2024); Liu et al. (2024b); Fang et al. (2025); Wu et al. (2025b). Although the above methods have made great progress, their interpretability is insufficient, especially without a clear explanation of the causes of hallucinations in the autoregressive generative model.

044
045
046
047
048
049
050
051
052
053

Recent studies on attention sinks have provided new perspectives for understanding hallucinations. For example, OPERA Huang et al. (2024), DOPRA Wei & Zhang (2024), PAI Liu et al. (2024d), FastV Chen et al. (2024b), EAH Zhang et al. (2024a), TAME Tang et al. (2025a) and Farsight Tang et al. (2025b) have revealed the relationship between attention sinks and hallucinations. They prove that when a token continues to attract high attention weights in subsequent tokens, this over-reliance may cause hallucinations in the model output. However, the relationship between attention maps and hallucinated tokens remains inadequately explained. This is because attention maps only reflect the model’s decision-making in the forward pass, without capturing how changes in input tokens influence the final output. Moreover, existing methods often overlook gradient information, which is essential for understanding the interdependencies among different tokens during the generation process. As illustrated in Figure 1, it is nearly impossible to discern meaningful patterns in attention maps that distinguish correct outputs from hallucinated ones. Therefore, a token-level, interpretable observation

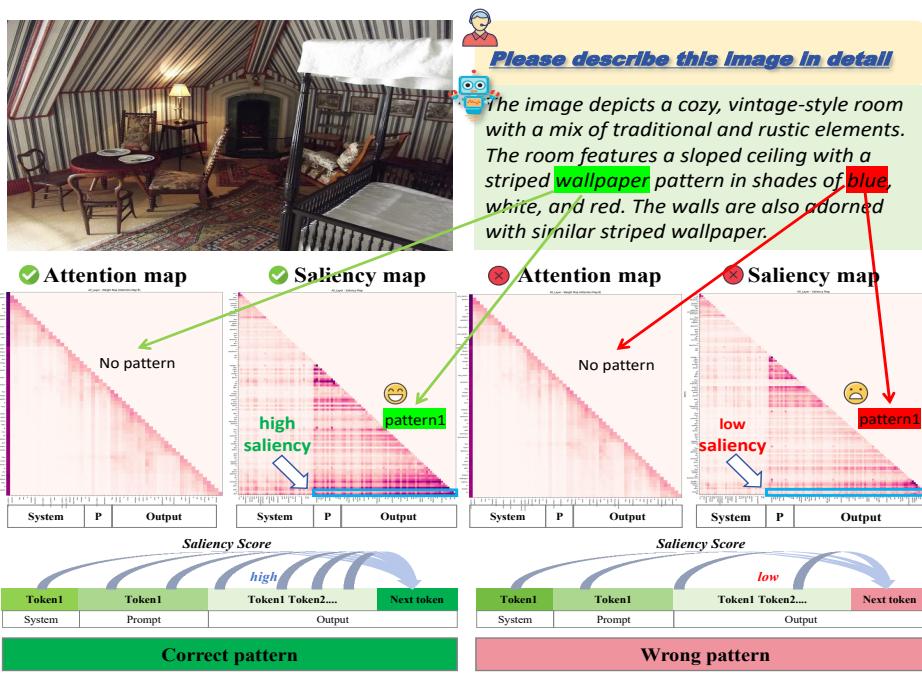


Figure 1: **Attention vs. Saliency Maps for Correct and Hallucinated Tokens (Qwen2-VL-7B).** Left (correct token **wallpaper**): Attention maps show no distinctive pattern, while our LVLMs-Saliency maps reveal strong, structured grounding to prior outputs. Right (hallucinated token **blue**): Attention maps remain visually similar, but saliency maps collapse, signaling loss of contextual dependency.

tool is essential to uncover the mechanistic origins of hallucinations in large vision-language models, revealing not just when they occur, but why and where in the generation process they emerge.

To address this limitation mentioned above, we draw inspiration from the concept of information flow introduced in “Label Words” Wang et al. (2023), which highlights how information within LLMs tends to converge on specific user-specified tokens. Adapting this insight to the autoregressive generation setting of LVLMs, we propose an **unsupervised metric called LVLMs-Saliency**, defined as the element-wise product of attention weights and their corresponding gradients. This measure quantifies how strongly each previously generated output token influences the prediction of the next token, offering a fine-grained, token-level view of contextual grounding — or its absence — during generation. As shown in Figure 1 and Figure 2, we observe saliency patterns in Qwen2-VL and LLaVA-1.5 that are distinct from conventional attention maps:

Pattern: Hallucinations occur when prior output tokens shows low saliency to the next token.

which reveals a breakdown in contextual grounding that attention-only methods fail to capture. When generating the correct token, the model maintains high saliency on previous related tokens, thereby ensuring the coherence of context tokens. However, hallucinations occur when the model “forgets” the past context, resulting in weak dependencies between tokens and low saliency of previous output. By the way, although there is a noticeable difference in the saliency of user prompts for correct versus hallucinated tokens, our analysis of 500 samples indicates that these saliency scores do not significantly affect the model’s predictive accuracy. This finding suggests that although prompt saliency plays a role in the model’s behavior, it is not the primary cause of hallucinations.

Unlike previous methods of intervening in image attention (Zhang et al., 2024a; Liu et al., 2024d; Jiang et al., 2024; Tang et al., 2025a;b) to alleviate hallucinations, we focus exclusively on the dynamics of **output token saliency** during autoregressive generation. To mitigate hallucinations caused by context loss when the model outputs tokens, we propose a dual-intervention approach in the inference phase that incorporates saliency:

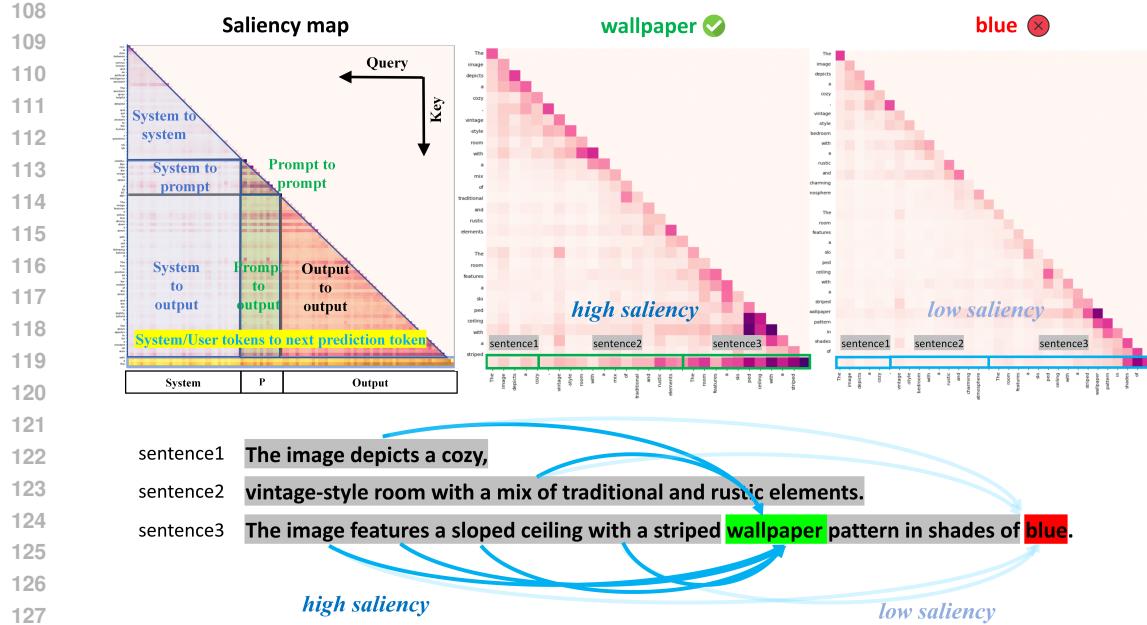


Figure 2: **Output Token Saliency Patterns in Qwen2-VL-7B.** When generating a correct token (e.g., **wallpaper**), the current token assigns high saliency to recent output tokens, typically decaying with distance. In contrast, when generating a hallucinated token (e.g., **blue**), saliency toward all prior outputs collapses — signaling contextual disconnection.

Saliency-Guided Rejection Sampling (SGRS): A proactive filtering mechanism that evaluates the grounding quality of each candidate output token *before* it is committed to the sequence. By computing the token’s saliency, SGRS rejects candidates that exhibit weak contextual dependencies (i.e., low saliency), forcing the model to resample until a contextually grounded token is selected. This directly prevents the injection of “coherence-breaking” tokens that trigger cascading hallucinations.

Local Coherence Reinforcement (LocoRE): A reactive stabilization mechanism that activates after a token is accepted. LocoRE strengthens the attention weights from the current query token to the most recent w_s output tokens, using a distance-aware gain factor $\gamma_j^{(P)} = 1 + \beta \cdot \mathbb{I}((P - j) \leq w_s)$. This ensures that even as the sequence grows, the model maintains strong attentional links to its immediate past, counteracting the “forgetting” behavior observed in Pattern 1.

Together, SGRS and LocoRE form a closed-loop coherence preservation system: SGRS acts as a gatekeeper, blocking low-salency tokens at the point of entry; LocoRE acts as a stabilizer, reinforcing contextual dependencies after commitment. With extensive experiments, our method demonstrates significant hallucination-mitigating performance across different LVLMs on image hallucination and generation benchmarks, proving its effectiveness. Our contributions are as follows:

- We propose LVLMs-Saliency, an unsupervised, gradient-based metric for quantifying token-level hallucination in autoregressive LVLMs. Through systematic analysis, we establish a direct causal link between low output token saliency and hallucination: when the model fails to maintain attention on recently generated tokens (Pattern 1), contextual memory collapses, leading to semantically inconsistent outputs.
- We introduce Saliency-Guided Rejection Sampling (SGRS), the first inference-time mechanism that dynamically filters candidate tokens based on their saliency with respect to prior output context. By rejecting low-salency tokens before commitment, SGRS proactively prevents the injection of coherence-breaking elements into the generation stream — directly mitigating the root cause of context-drift hallucinations.
- We introduce Local Coherence Reinforcement (LocoRE), a lightweight, plug-and-play module that strengthens attention from the current token to its most recent w_s predecessors. Unlike prior methods that rebalance cross-modal attention, LocoRE operates purely within the output stream. SGRS ensures only coherent tokens enter, LocoRE ensures they are not forgotten.

162 **2 ANALYSIS AND MOTIVATION**
 163

164 **2.1 HALLUCINATION TOKEN SALIENCY ANALYSIS**
 165

166 We propose a gradient-based attention analysis framework for quantifying token-level hallucination
 167 saliency in autoregressive language models. Given an input sequence $x \in \mathcal{V}^n$, where \mathcal{V} denotes the
 168 vocabulary space and n represents the sequence length, we process x through the model \mathcal{M} to obtain:

169
$$(y, \{\mathbf{A}^{(l,h)}\}_{l=1,h=1}^{L,H}, s) = \mathcal{M}(x), \quad (1)$$

 170

171 where $\mathbf{A}^{(l,h)} \in [0, 1]^{n \times n}$ denotes the attention weight matrix at layer $l \in \{1, \dots, L\}$ and head $h \in$
 172 $\{1, \dots, H\}$, $s \in \mathbb{R}^{|\mathcal{V}|}$ represents the logits corresponding to the target hallucination token, $y \in \mathbb{R}^{|\mathcal{V}|}$
 173 is the model's output probability distribution. The cross-entropy loss function $\mathcal{L} : \mathbb{R}^{|\mathcal{V}|} \times \mathbb{R}^{|\mathcal{V}|} \rightarrow \mathbb{R}^+$
 174 is defined as:

175
$$\mathcal{L}(y, s) = - \sum_{t=1}^T y_t \log \sigma(s_t), \quad (2)$$

 176
 177

178 where $\sigma(\cdot)$ denotes the softmax function and t indexes the token position in the sequence. The
 179 gradient of the loss with respect to attention matrices is computed as:

180
$$\nabla \mathbf{A}^{(l,h)} = \frac{\partial \mathcal{L}}{\partial \mathbf{A}^{(l,h)}} \in \mathbb{R}^{n \times n}. \quad (3)$$

 181
 182

183 The saliency matrix $\mathbf{S}^{(l,h)} \in \mathbb{R}^{n \times n}$ for each attention head is obtained through the Hadamard product
 184 followed by triangular masking:

185
$$\mathbf{S}^{(l,h)} = \text{tril} \left(\left| \mathbf{A}^{(l,h)} \odot \nabla \mathbf{A}^{(l,h)} \right| \right), \quad (4)$$

 186
 187

188 where $\text{tril}(\cdot) : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ preserves the lower triangular portion to maintain causal structure,
 189 and \odot denotes element-wise multiplication. The layer-wise normalized saliency $\bar{\mathbf{S}}^{(l)} \in \mathbb{R}^{n \times n}$ is
 190 computed by averaging across attention heads and applying ℓ_2 -normalization:

191
$$\bar{\mathbf{S}}^{(l)} = \frac{\sum_{h=1}^H \mathbf{S}^{(l,h)}}{\left\| \sum_{h=1}^H \mathbf{S}^{(l,h)} \right\|_2}. \quad (5)$$

 192
 193
 194

195 As demonstrated in Figures 1, 2, and 6, our quantitative analysis reveals statistically significant
 196 differences in saliency patterns between veridical and hallucinated tokens across both Qwen2-VL-
 197 7B Yang et al. (2024) and LLaVA1.5-7B Liu et al. (2024a) architectures.

198
 199 **3 METHODOLOGY**
 200

201 **3.1 SALIENCY-GUIDED REJECTION SAMPLING (SGRS)**
 202

203 SGRS dynamically evaluates the grounding quality of each candidate token before commitment; the
 204 complete algorithm is formalized in Algorithm 1. At the decoding step corresponding to absolute
 205 position P , given context $\mathbf{x}_{<P}$ and image \mathcal{I} , the model produces logits $s^{(P)} \in \mathbb{R}^{|\mathcal{V}|}$. We sample K
 206 candidates $\mathcal{C}^{(P)}$ via top- K sampling. For each $c_i \in \mathcal{C}^{(P)}$, we compute its hallucination saliency $\mathcal{S}(c_i)$
 207 as:

208
$$\mathcal{S}(c_i) = \frac{1}{|\mathcal{L}_{\text{target}}| \cdot |\mathcal{J}|} \sum_{l \in \mathcal{L}_{\text{target}}} \sum_{j \in \mathcal{J}} \bar{\mathbf{S}}_{P,j}^{(l)}, \quad (6)$$

 209
 210

211 where $\bar{\mathbf{S}}^{(l)}$ is the layer-wise normalized saliency matrix defined in Section 2.1, $\mathcal{L}_{\text{target}}$ denotes the set
 212 of target layers (e.g., middle-to-deep layers), and $\mathcal{J} = \{j \mid \text{Sys}_L + \text{Img}_L \leq j < P\}$ is the set of
 213 positions corresponding to previously generated output tokens, with $\text{Sys}_L = 35$ and $\text{Img}_L = 576$ for
 214 LLaVA-1.5.

215 A candidate is accepted only if $\mathcal{S}(c_i) \geq \tau^{(P)}$, where the adaptive threshold is computed over the
 216 most recent W output tokens:

216
217
218
219

$$\tau^{(P)} = \alpha \cdot \frac{1}{|\mathcal{H}|} \sum_{j \in \mathcal{H}} \mathcal{S}(x_j), \quad \mathcal{H} = \{j \in \mathcal{J} \mid (P-1) - j \leq W\}, \quad (7)$$

220 with $\alpha \in (0, 1)$ controlling sensitivity and W the history window size. It scales the historical average
 221 saliency to control: "How many times the saliency of the current candidate token needs to reach
 222 the historical average before it is accepted". If all candidates are rejected, we fall back to selecting
 223 the token with the highest saliency score. This mechanism directly operationalizes our finding in
 224 Pattern 1: low output-token saliency precedes hallucination. By rejecting such tokens, SGRS enforces
 225 a generation path grounded in *textual context* — specifically, the model's own prior outputs.

226
227

3.1.1 LOCAL COHERENCE REINFORCEMENT (LOCORE)

228
229
230
231
232
233

While SGRS ensures token-level grounding, LocoRe addresses sequence-level context drift by explicitly reinforcing attention dependencies among output tokens, the complete algorithm is formalized in Algorithm 2. Formally, at absolute position P (where $P > \text{Sys}_L + \text{Img}_L$), let $\mathcal{J}_P = \{j \in \mathbb{N} \mid \text{Sys}_L + \text{Img}_L \leq j < P\}$ denote the set of positions corresponding to previously generated output tokens. For the prediction of token at position $P + 1$, we enhance the attention weights from query $P + 1$ to keys in \mathcal{J}_P within a local window of size w_s .

234
235

Define the distance-weighted gain for each $j \in \mathcal{J}_P$ as:

236
237
238
239
240

$$\gamma_j^{(P)} = 1 + \beta \cdot \mathbb{I}((P - j) \leq w_s), \quad (8)$$

where $\beta \geq 0$ is the reinforcement strength, and $\mathbb{I}(\cdot)$ is the indicator function. Let $\mathbf{A}^{(P+1)} \in \mathbb{R}^{B \times n_h \times (P+1) \times (P+1)}$ denote the attention weight matrix computed during the forward pass for position $P + 1$. We modify the submatrix corresponding to attention from query $P + 1$ to keys in \mathcal{J}_P :

241
242

$$\mathbf{A}^{(P+1)}[b, h, P + 1, j] \leftarrow \mathbf{A}^{(P+1)}[b, h, P + 1, j] \cdot \gamma_j^{(P)}, \quad \forall b \in [B], h \in [n_h], j \in \mathcal{J}_P. \quad (9)$$

243
244
245
246

Equivalently, in vectorized form, let $\boldsymbol{\gamma}^{(P)} \in \mathbb{R}^{|\mathcal{J}_P|}$ be the gain vector with entries $\gamma_j^{(P)}$, and let $\mathbf{A}_{P+1, \mathcal{J}_P}^{(P+1)} \in \mathbb{R}^{B \times n_h \times |\mathcal{J}_P|}$ denote the slice of attention weights from query $P + 1$ to keys in \mathcal{J}_P . The update is:

247

$$\mathbf{A}_{P+1, \mathcal{J}_P}^{(P+1)} \leftarrow \mathbf{A}_{P+1, \mathcal{J}_P}^{(P+1)} \odot \boldsymbol{\gamma}^{(P)}, \quad (10)$$

248
249
250
251
252
253
254

where \odot denotes element-wise multiplication broadcasted over batch and head dimensions. The modified attention weights are then used in the softmax and weighted sum operations of the self-attention mechanism, ensuring that the model's prediction for token $P+1$ is more strongly grounded in its recent output history. This operation amplifies the influence of recent context on the prediction of token $P + 1$, directly countering the saliency decay observed in Pattern 1. Crucially, LocoRE operates purely on the attention structure — no gradient computation or model parameter modification is required.

255
256
257
258
259

Synergistic Workflow. SGRS and LocoRE operate sequentially at each decoding step: SGRS filters and selects the current token x_P based on its saliency to prior outputs; LocoRE then modifies the attention weights used in the *next* forward pass (for position $P + 1$) to reinforce dependencies on recent tokens. This closed-loop design ensures that each accepted token is both well-grounded (SGRS) and unlikely to be forgotten (LocoRE).

260
261

4 EXPERIMENTS

262
263

4.1 EXPERIMENTAL SETUPS

264
265
266
267
268

Baselines. To demonstrate the broad applicability of our method in LVLM architecture, we applied and evaluated the latest models, including LLaVA-v1.5-7/13B Liu et al. (2024a), Qwen2-VL-7B Wang et al. (2024) and Intern-VL-7/13B Chen et al. (2024d). This study used the following data sets as evaluation sets, representing the expertise in reducing hallucination and general fields.

269

Evaluation Benchmarks. We conduct evaluations on image benchmarks. For image benchmarks, we assess three categories: (1) Comprehensive benchmarks (LLaVA^W Liu et al. (2024a), MM-Vet

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298**Algorithm 1** SGRS

Require: $\mathcal{M}, \mathbf{x}, K, R, \alpha, W, \mathcal{L}, S=35, I=576, H$
Ensure: x_P : accepted token at position P

- 1: logits $\leftarrow \mathcal{M}(\mathbf{x}_{\text{input}}, \mathbf{KV})[:, -1, :]$
- 2: $\mathcal{C} \leftarrow \text{TopK}(\text{softmax}(\text{logits}), K)$, accepted \leftarrow False
- 3: **for** $r = 1$ to R **do**
- 4: $c \sim \text{Sample}(\mathcal{C})$
- 5: $\mathcal{S}(c) \leftarrow \text{SALIENCY}(\mathcal{M}, c, \mathcal{L}_{\text{target}}, P, S, I)$ \triangleright Eq. (1)
- 6: $\mathcal{J}_P \leftarrow \{j \mid S + I \leq j < P\}$ \triangleright Output token positions
- 7: $\mathcal{H}_P \leftarrow \{j \in \mathcal{J}_P \mid (P - 1) - j \leq W\}$ \triangleright Recent W outputs
- 8: $\tau \leftarrow \alpha \cdot \frac{1}{|\mathcal{H}_P|} \sum_{j \in \mathcal{H}_P} H[j]$ \triangleright Eq. (2)
- 9: **if** $\mathcal{S}(c) \geq \tau$ **then**
- 10: $x_P \leftarrow c$, $H.\text{append}(\mathcal{S}(c))$, accepted \leftarrow True, **break**
- 11: **else**
- 12: $\mathcal{C} \leftarrow \mathcal{C} \setminus \{c\}$
- 13: **end if**
- 14: **end for**
- 15: **if** not accepted **then**
- 16: $x_P \leftarrow \arg \max_{c \in \text{original } \mathcal{C}} \mathcal{S}(c)$ \triangleright Fallback: best saliency
- 17: **end if**
- 18: **return** x_P

Algorithm 2 LocoRE

Require: $\mathbf{A}^{(P+1)} \in \mathbb{R}^{B \times n_h \times (P+1) \times (P+1)}$: attention weights for step $P + 1$

- 2: $S = 35, I = 576$: system and image token lengths
- 3: w_s : local window size, $\beta \geq 0$: gain strength
- Ensure:** $\mathbf{A}^{(P+1)}$: modified attention weights for step $P + 1$
- 4: $P \leftarrow$ current position \triangleright Last generated token position
- 5: $t \leftarrow P - (S + I)$
- 6: **if** $t \leq 0$ **then return** $\mathbf{A}^{(P+1)}$
- 7: **end if** \triangleright No output yet
- 8: $\mathcal{J}_P \leftarrow \{j \mid S + I \leq j < P\}$ \triangleright Historical output positions
- 9: **if** $\mathcal{J}_P = \emptyset$ **then return** $\mathbf{A}^{(P+1)}$
- 10: **end if**
- 11: **for all** $j \in \mathcal{J}_P$ **do**
- 12: $d_j \leftarrow P - j$ \triangleright Distance to current position
- 13: $\gamma_j \leftarrow 1 + \beta \cdot \mathbb{I}(d_j \leq w_s)$ \triangleright Eq. (3)
- 14: **for all** $b \in [B], h \in [n_h]$ **do**
- 15: $\mathbf{A}^{(P+1)}[b, h, P] + [1, j] \leftarrow \mathbf{A}^{(P+1)}[b, h, P + 1, j] \cdot \gamma_j$ \triangleright Eq. (4)
- 16: **end for**
- 17: **end for**
- 18: **return** $\mathbf{A}^{(P+1)}$

Table 1: **Compare results of LocoRE with other SOTA methods on POPE, CHAIR and MME datasets.** The best performances within each setting are **bolded**, baseline: LLaVA-1.5-7B.

Method	Venue	POPE		CHAIR			length	MME		Color \uparrow	Total \uparrow
		F1 \uparrow	Acc \uparrow	C $S\downarrow$	C $I\downarrow$	Recall \uparrow		Exist. \uparrow	Count \uparrow		
Beam Search	-	85.4	84.0	51.0	15.2	75.2	102.2	175.67	124.67	114.00	151.00
Dola Chuang et al. (2023)	ICLR 2024	80.2	83.1	57.0	15.2	78.2	97.5	180.10	127.40	119.30	154.60
VCD Leng et al. (2024)	CVPR 2024	85.3	85.0	51.0	14.9	77.2	101.9	184.66	137.33	128.67	153.00
OPERA Huang et al. (2024)	CVPR 2024	84.2	85.2	47.0	14.6	78.5	95.3	180.67	133.33	111.67	123.33
DOPRA Wei & Zhang (2024)	MM 2024	84.6	84.3	46.3	13.8	78.2	96.1	185.67	138.33	120.67	133.00
HALC Chen et al. (2024c)	ICML 2024	83.9	84.0	50.2	12.4	78.4	97.2	190.00	143.30	128.30	160.00
CCA-LLaVA Xing et al. (2024)	NeurIPS 2024	86.4	86.5	43.0	11.5	80.4	96.6	190.00	148.33	128.33	153.00
RITUAL Woo et al. (2024)	Arxiv 2024	85.2	84.3	45.2	13.2	78.3	99.2	187.50	139.58	125.00	164.17
EAH Zhang et al. (2024a)	EMNLP 2025	85.7	86.0	36.4	9.9	74.9	97.7	190.00	108.33	145.00	160.66
SID Huo et al. (2025)	ICLR 2025	85.6	85.8	44.2	12.2	73.0	99.4	183.90	132.20	127.80	155.90
TAME Tang et al. (2025a)	ICLR 2025	85.4	85.7	41.3	12.2	74.4	98.8	193.00	137.33	139.00	164.67
Vissink Kang et al. (2025)	ICLR 2025	86.0	86.5	52.4	14.5	79.1	103.0	190.00	148.33	138.33	155.00
CausalLLM Zhou et al. (2025)	ICLR 2025	86.0	86.5	-	-	-	-	195.00	156.00	135.00	170.00
AGLA An et al. (2024)	CVPR 2025	84.6	85.5	43.0	14.1	78.9	98.8	195.00	153.89	129.44	161.67
FarsightTang et al. (2025b)	CVPR 2025	-	-	41.6	13.2	75.5	100.6	-	-	-	-
MemVR Zou et al. (2024)	ICML 2025	87.1	87.4	46.6	13.0	80.8	99.6	190.00	155.00	133.33	170.60
ONLY Wan et al. (2025)	ICCV 2025	85.5	85.1	49.8	14.3	75.9	99.7	191.67	145.55	136.66	161.66
Reverse-VLM Wu et al. (2025b)	NeurIPS 2025	-	-	35.3	9.3	75.2	70.4	-	-	-	-
LocoRE	-	86.9	87.3	38.4	11.2	75.4	98.2	190.00	158.33	133.33	175.00
SGRS + LocoRE	-	87.0	87.5	35.6	8.2	75.4	98.2	195.00	158.33	140.00	175.00

Yu et al. (2023), MME Yin et al. (2023); (2) General VQA benchmarks (VizWiz Gurari et al. (2018), ScienceQA Lu et al. (2022); (3) Hallucination benchmarks (POPELi et al. (2023b), CHAIR Rohrbach et al. (2018)).

4.2 EVALUATION RESULTS ON HALLUCINATION BENCHMARKS

CHAIR and POPE Evaluations. As shown in Table 1, methods for mitigating hallucinations can be broadly categorized into third groups. The first group, including OPERA Huang et al. (2024), DOPRA Wei & Zhang (2024), DOLACHuang et al. (2023), VCD Leng et al. (2024), HALC Chen et al. (2024c), An et al. (2024), ICD Zhang et al. (2023), RITUAL Woo et al. (2024), AGLA An et al. (2024), SID Huo et al. (2025), Only Wan et al. (2025), focuses on modifying the decoding process to

324
 325 **Table 2: Comparison of different LVLMs and LocoRE across all image benchmarks.** Notably, in
 326 the Hallucination Benchmark, lower scores on CHAIR_I and CHAIR_S indicate better performance,
 327 while higher scores are preferable for other metrics.

328 Method	329 Comprehensive Benchmark		330 General VQA		331 Hallucination Benchmark				
	332 LLaVA ^W	333 MM-Vet↑	334 VizWiz↑	335 SQA↑	336 $\text{CHAIR}_S \downarrow$	337 $\text{CHAIR}_I \downarrow$	338 $\text{POPE-R} \uparrow$	339 $\text{POPE-F1} \uparrow$	340 $\text{POPE-A} \uparrow$
329 LLaVA-1.5-7B	72.5	30.5	48.5	65.5	48.0	13.9	87.0	85.4	84.0
330 +ICD	69.7	30.4	46.9	62.8	47.7	13.6	87.9	84.9	84.0
331 +VCD	70.9	29.5	43.4	63.3	46.8	13.2	87.0	85.3	85.0
332 +OPERA	72.0	31.4	50.0	64.9	45.2	12.7	88.8	84.2	85.2
333 +SID	73.4	31.2	50.9	67.8	44.2	14.0	89.4	85.6	85.8
334 +TAME	73.9	30.5	51.6	66.0	41.3	12.2	88.9	85.4	85.7
335 +Vissink	74.1	33.5	53.8	67.0	52.4	14.5	87.7	84.9	85.8
336 +FarSight	74.7	32.5	50.8	67.4	41.6	13.2	90.5	85.5	85.8
337 +LocoRE	74.8 (+2.3)	33.8 (+3.3)	54.8 (+6.3)	67.5 (+2.0)	38.4 (+9.6)	10.2 (+3.7)	89.5 (+2.5)	86.9 (+1.5)	87.3 (+3.3)
338 +SGRS+LocoRE	76.7 (+4.2)	36.0 (+5.5)	54.9 (+6.4)	67.8 (+2.3)	35.6 (+12.4)	8.2 (+5.7)	89.8 (+2.8)	87.0 (+1.6)	87.5 (+3.5)
339 LLaVA-1.5-13B	72.5	36.1	60.5	71.6	47.2	13.6	82.5	86.6	87.2
340 + LocoRE	74.0 (+1.5)	38.4 (+2.3)	62.1 (+1.6)	72.5 (+0.9)	43.8 (+3.4)	12.8 (+0.8)	87.8 (+5.3)	87.7 (+1.1)	87.4 (+0.2)
341 SGRS + LocoRE	76.8 (+4.3)	42.0 (+5.9)	64.0 (+3.5)	75.5 (+3.4)	39.8 (+7.4)	8.8 (+4.8)	88.0 (+5.5)	88.1 (+1.5)	87.6 (+0.4)
342 Intern-VL-7B	51.6	31.2	51.7	66.2	46.6	12.4	80.0	85.3	86.2
343 + LocoRE	52.8 (+1.2)	33.7 (+2.5)	54.5 (+2.8)	66.4 (+0.2)	40.2 (+6.4)	10.5 (+1.9)	85.8 (+5.8)	87.2 (+1.9)	87.3 (+1.1)
344 SGRS + LocoRE	55.5 (+3.9)	35.0 (+5.0)	56.2 (+4.5)	67.9 (+1.7)	34.4 (+12.2)	7.5 (+3.9)	86.0 (+6.0)	87.6 (+2.3)	87.7 (+1.5)
345 Intern-VL-13B	53.2	33.7	47.4	70.1	45.4	12.7	82.8	86.4	86.9
346 + LocoRE	54.1 (+0.9)	35.4 (+1.7)	50.1 (+2.7)	70.4 (+0.3)	43.6 (+1.8)	12.5 (+0.2)	86.3 (+3.5)	87.2 (+0.8)	87.3 (+0.4)
347 SGRS + LocoRE	56.8 (+3.6)	37.3 (+3.6)	52.0 (+4.6)	71.0 (+0.9)	45.2 (+3.4)	14.0 (+2.7)	87.0 (+4.2)	88.1 (+1.7)	88.8 (+1.9)
348 Qwen2-VL-7B	75.6	63.2	57.3	74.1	25.0	7.3	79.1	86.6	87.6
349 + LocoRE	77.8 (+2.2)	64.8 (+1.6)	59.4 (+2.1)	74.2 (+0.1)	23.5 (+1.5)	6.8 (+0.5)	81.3 (+2.2)	87.5 (+0.9)	88.2 (+0.6)
350 SGRS + LocoRE	79.7 (+4.1)	67.7 (+4.5)	60.3 (+3.0)	75.3 (+1.2)	19.3 (+5.7)	5.1 (+2.2)	82.6 (+3.5)	88.0 (+1.4)	89.0 (+1.4)
351 Qwen2.5-VL-7B	76.8	62.2	60.9	79.0	27.2	9.0	80.4	87.4	88.4
352 + LocoRE	77.9 (+1.1)	64.8 (+2.6)	61.6 (+0.7)	80.8 (+1.8)	23.0 (+4.2)	8.5 (+0.5)	80.9 (+0.5)	87.8 (+0.4)	88.7 (+0.3)
353 SGRS + LocoRE	80.0 (+3.2)	66.2 (+4.0)	62.7 (+1.8)	82.1 (+3.1)	21.0 (+6.2)	6.5 (+2.5)	81.5 (+0.5)	88.3 (+0.9)	89.5 (+1.1)
354 Qwen2.5-VL-32B	81.2	72.2	70.8	89.0	43.6	9.5	79.1	86.7	87.8
355 +LocoRE	82.7 (+0.5)	73.1 (+0.9)	71.2 (+0.4)	89.3 (+0.3)	41.8 (+1.8)	8.5 (+1.0)	79.5 (+0.4)	86.9 (+0.2)	88.0 (+0.2)

349
 350 address hallucinations. The second group, represented by SFT methods such as LESS is more
 351 Yue et al. (2024), CCA-LLaVA Xing et al. (2024) and Reverse-VLM Wu et al. (2025b), adjusts the logits
 352 of the end-of-sequence (EOS) symbol to control its positioning, allowing the model to terminate
 353 earlier, thus reducing hallucinations. The third group includes Vissink Kang et al. (2025), EAH
 354 Zhang et al. (2024a), TAME Tang et al. (2025a), MemVR Zou et al. (2024) and Farsight Tang et al.
 355 (2025b), which aim to enhance the truthfulness of the model’s output during inference by adjusting
 356 attention heads. Among these methods, reaching SOTA on the POPE dataset, and achieved significant
 357 results second only to EAH on descriptive datasets such as CHAIR. Compared with EAH’s approach
 358 of directly replacing the attention head, LocoRE has a higher recall because it does not change the
 359 internal representation of the model, and therefore does not affect the diversity of the model output.

360 Compared to Vissink Kang et al. (2025) and TAME Tang et al. (2025a), which also allocate attention,
 361 LocoRE’s CHAIR performance is more prominent. TAME allocates the attention on the system
 362 token to other tokens, but still ignores the visual information, while Vissink only intervenes with
 363 the visual attention sink and ignores the contextual association of the text output. As a result, both
 364 of them perform not that well on long text output datasets such as CHAIR, while this also proves
 365 the effectiveness of our approach, which is able to address the shortcomings of both of them, i.e.,
 366 enhancing the visual information as well as enhancing the contextual dependencies between text
 367 outputs.

368 4.3 EVALUATION RESULTS ON GENERATION BENCHMARK

369 **MME and Other Benchmarks Evaluations.** As shown in Table 1 and Table 2, we tested on several
 370 popular LVLMs’ general ability benchmarks. MME comprises ten subtasks to evaluate models’
 371 perceptual capabilities and four subtasks for assessing cognitive abilities in the form of yes/no
 372 questions. LocoRE can maintain and improve the multimodal capability on LVLMs benchmarks. Our
 373 method achieve a much higher score (corresponds to less hallucination) across all categories. This
 374 underscores its effectiveness in addressing a broader range of multimodal hallucination challenges
 375 beyond objects. Combining SGRS with LocoRE further improves reasoning-intensive tasks, as
 376 demonstrated by the cognitive categories of MME. This performance is particularly pronounced on
 377 the “**Existence**” and “**Position**” tasks, as SGRS directly suppresses hallucinations while LocoRE
 378 focuses solely on contextual coherence.

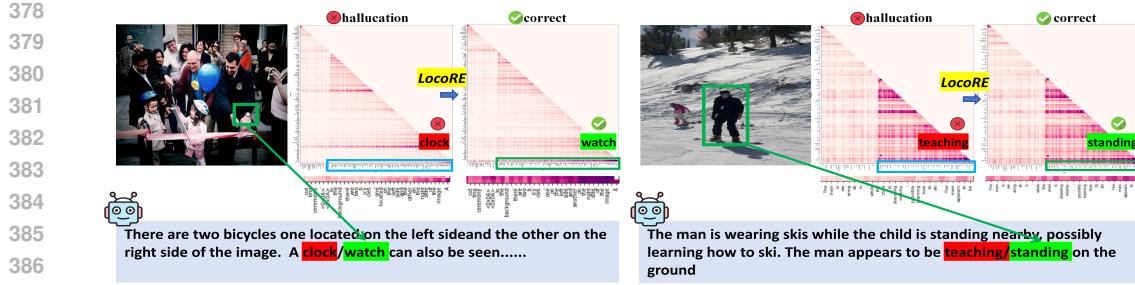


Figure 3: **Effect of LocoRE on output token saliency map (Qwen2-VL-7B).** Without LocoRE: When generating an incorrect token(**clock**), saliency scores assigned to prior output tokens are low — indicating weak contextual grounding. With LocoRE: The same position now generates a correct token(**watch**), accompanied by significantly higher saliency scores to recent outputs — demonstrating LocoRE’s ability to restore contextual coherence and prevent hallucination via attention reinforcement.

4.4 ABLATION STUDY

Effect of LocoRE on other LVLMs As shown in Table 2, the integration of LocoRE as a plug-in into LLaVA-1.5-7B/13B Liu et al. (2024a), Qwen2-VL-7B/13B/32B Wang et al. (2024) and Intern-VL-7/13B Chen et al. (2024d), was effective in improving results in both integrated and generalized VQA tasks. In addition, it achieved a significant improvement in hallucination metrics. These results indicate that LocoRE is effective in reducing hallucinations in both structured and unstructured environments.

Saliency map Visualization with LocoRE. As shown in Figure 3, which visualizes the LVLMs-Saliency maps from prior output tokens to the current token, applying LocoRE significantly increases the saliency scores assigned to recently generated context tokens — particularly those within the local coherence window. This demonstrates that LocoRE effectively strengthens the model’s dependency on its immediate output history, counteracting the “forgetting” behavior observed in the baseline. The saliency boost under LocoRE confirms our design principle: by explicitly reinforcing attention to recent outputs, the model maintains stronger contextual links during autoregressive generation. This prevents the decay of intra-output saliency that leads to hallucinations, ensuring that each new token remains grounded in its textual predecessors.

4.4.1 INFERENCE-TIME EFFICIENCY

While our full framework (SGRS + LocoRE) achieves the strongest hallucination suppression, it incurs higher latency due to the backward pass required for saliency computation in SGRS — typically adding 30–40% overhead per token compared to standard greedy decoding. While the full SGRS+LocoRE framework achieves the strongest hallucination suppression, its reliance on gradient computation introduces non-negligible latency overhead — making it less suitable for real-time applications. In practice, however, **LocoRE alone serves as a highly effective compromise**: as a forward-only module that manipulates attention weights in-place, it incurs <2% latency increase while still significantly mitigating context-drift hallucinations.

As shown in Figure 4, compared to prior plug-and-play methods — such as VCD Leng et al. (2024), OPERA Huang et al. (2024), Far-sight Tang et al. (2025b), HALC Chen et al. (2024c), and EAH Zhang et al. (2024a) — LocoRE requires no auxiliary models, no external detectors, and no multi-pass decoding. By operating entirely within the standard autoregressive loop, it achieves superior speed-efficiency trade-offs.

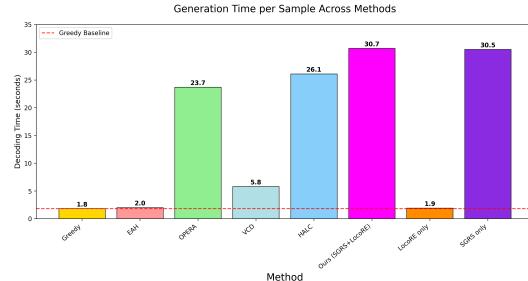


Figure 4: Generation time of a single response.

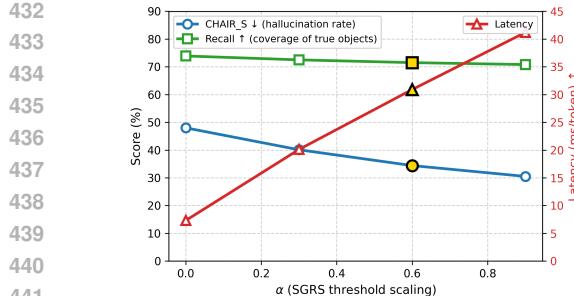


Figure 5: Ablation study of α : trade-offs between hallucination rate, recall, and latency.

4.5 ABLATION STUDY ON KEY HYPERPARAMETERS

We evaluate α (SGRS) and β (LocoRE) on both CHAIR and POPE benchmarks. As shown in Table 3 and Figure 5, our full method ($\alpha = 0.6, \beta = 0.15$) reduces CHAIR hallucination rate by 28.3% (LLaVA-1.5) and 22.8% (Qwen2-VL) compared to baseline. SGRS alone ($\alpha = 0.6, \beta = 0.0$) contributes most of the improvement, but LocoRE adds further gains (e.g., POPE $F1 - score$ from 85.4% to 86.9% in LLaVA-1.5). Increasing α to 0.9 yields marginal improvement at high latency cost (+33%). We recommend $\alpha = 0.6, \beta = 0.15$ as the optimal balance. While increasing α to 0.9 further reduces hallucination rates (CHAIR_S: 35.6% \rightarrow 30.0%; POPE: 87.0% \rightarrow 87.1%), it incurs a 33% higher latency cost (30.8 ms/token \rightarrow 41.2 ms/token) and risks degrading generation fluency due to over-rejection. In extreme cases, correct but moderately salient tokens may be rejected, leading to fallback-generated outputs that are less diverse or natural. We thus recommend $\alpha = 0.6$ as the optimal trade-off — it suppresses 28.3%+ of hallucinations while maintaining practical inference speed and output quality.

5 RELATED WORK

5.1 NEXT TOKEN PREDICTION

After obtaining the next token probability, different decoding strategies are proposed to predict the next token. The decoded token Huang et al. (2024); Chuang et al. (2023); Chen et al. (2024a) is concatenated with the last of the original input text for the next-token generation until the generation ends.

5.2 INFORMATION FLOW OF IN LVLMS

Some research Huang et al. (2024); Wei & Zhang (2024); Zhang et al. (2024b; 2025c;b) uses Grad-CAM and attention maps to visualize the interaction between images and text in complex reasoning tasks. Attention scores highlight relevant areas through forward propagation. The EAH Zhang et al. (2024a) identifies that most hallucinations stem from the attention sink pattern marked by images in the attention matrix. Based on this insight, EAH proposes a method that enhances attention heads without additional training. TAME Tang et al. (2025a) and Farsight Tang et al. (2025b) investigate the causes of hallucinations by analyzing local self-attention patterns of “anchor tokens” and defines the degree of attentional localization as the probability of token propagation.

6 CONCLUSION

In this work, we revisit the conventional explanations linking attention sinks to hallucinations and propose a saliency-based framework to complement existing analyses. Our findings reveal that hallucinations frequently correlate with weak saliency in prior output tokens. To this end, we introduce SGRS and LocoRE, a plug-and-play intervention that dynamically boosts visual attention and reinforces local coherence during text generation. Experiments confirm that LocoRE consistently improves output accuracy across various benchmarks without requiring model retraining.

α	β	LLaVA-1.5				Qwen2-VL-7B			
		CHAIR		POPE		CHAIR		POPE	
		S \downarrow	I \downarrow	F1 \uparrow	Acc \uparrow	S \downarrow	I \downarrow	F1 \uparrow	Acc \uparrow
0.0	0.0	48.0	13.9	85.4	84.0	25.0	7.3	86.6	87.6
0.0	0.15	38.4	10.2	86.9	87.3	—	—	—	—
0.0	0.20	—	—	—	—	23.5	6.8	87.5	88.2
0.6	0.0	36.5	9.0	86.9	87.4	20.5	5.6	87.9	88.9
0.6	0.15	35.6	8.2	87.0	87.5	—	—	—	—
0.6	0.20	—	—	—	—	19.3	5.1	88.0	89.0
0.6	1.0	50.2	20.9	60.3	57.8	37.5	18.5	55.3	54.6

Table 3: **Ablation study on α (SGRS) and β (LocoRE).** Best in **bold**. β : 0.15 (LLaVA-1.5), 0.20 (Qwen2-VL).

486 REFERENCES
487

488 Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, QianYing Wang, Guang Dai, Ping
489 Chen, and Shijian Lu. Agla: Mitigating object hallucinations in large vision-language models with
490 assembly of global and local attention. *arXiv preprint arXiv:2406.12718*, 2024.

491 Liang Chen, Zekun Wang, Shuhuai Ren, Lei Li, Haozhe Zhao, Yunshui Li, Zefan Cai, Hongcheng
492 Guo, Lei Zhang, Yizhe Xiong, Yichi Zhang, Ruoyu Wu, Qingxiu Dong, Ge Zhang, Jian Yang,
493 Lingwei Meng, Shujie Hu, Yulong Chen, Junyang Lin, Shuai Bai, Andreas Vlachos, Xu Tan,
494 Minjia Zhang, Wen Xiao, Aaron Yee, Tianyu Liu, and Baobao Chang. Next token prediction
495 towards multimodal intelligence: A comprehensive survey, 2024a. URL <https://arxiv.org/abs/2412.18619>.

496 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
497 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
498 language models. *18th European Conference on Computer Vision ECCV 2024*, 2024b.

499 Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object
500 hallucination reduction via adaptive focal-contrast decoding. *arXiv preprint arXiv:2403.00425*,
501 2024c.

502 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
503 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
504 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
505 Vision and Pattern Recognition*, pp. 24185–24198, 2024d.

506 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
507 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
508 audio understanding in video-lmms. *arXiv preprint arXiv:2406.07476*, 2024.

509 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
510 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint
511 arXiv:2309.03883*, 2023.

512 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
513 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

514 Hao Fang, Changle Zhou, Jiawei Kong, Kuofeng Gao, Bin Chen, Tao Liang, Guojun Ma, and Shu-Tao
515 Xia. Grounding language with vision: A conditional mutual information calibrated decoding
516 strategy for reducing hallucinations in lvlms. *arXiv preprint arXiv:2505.19678*, 2025.

517 Xuan Gong, Tianshi Ming, Xinpeng Wang, and Zhihua Wei. Damro: Dive into the attention
518 mechanism of lvlm to reduce object hallucination. *arXiv preprint arXiv:2410.04514*, 2024.

519 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
520 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
521 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
522 2018.

523 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
524 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
525 via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference
526 on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024.

527 Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao.
528 Self-introspective decoding: Alleviating hallucinations for large vision-language models. In
529 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=rsZwwjYHuD>.

530 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle
531 layers of large vision-language models: Interpreting, detecting and mitigating object hallucinations
532 via attention lens. *arXiv preprint arXiv:2411.16724*, 2024.

540 Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and Edwin Zhang. Why language models
 541 hallucinate. *arXiv preprint arXiv:2509.04664*, 2025.

542

543 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 544 attention sink in large multimodal models. 2025.

545

546 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 547 Mitigating object hallucinations in large vision-language models through visual contrastive decod-
 548 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 549 pp. 13872–13882, 2024.

550

551 Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, and Guanbin Li. Mitigating hallucination for
 552 large vision language model by inter-modality correlation calibration decoding. *arXiv preprint*
 553 *arXiv:2501.01926*, 2025a.

554

555 Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao, Wei Ji, Wenqiao Zhang, Tat-Seng Chua, Siliang
 556 Tang, Hanwang Zhang, and Yueting Zhuang. Fine-tuning multimodal llms to follow zero-shot
 557 demonstrative instructions. In *The Twelfth International Conference on Learning Representations*,
 558 2023a.

559

560 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 561 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

562

563 Zhuowei Li, Haizhou Shi, Yunhe Gao, Di Liu, Zhenting Wang, Yuxiao Chen, Ting Liu, Long Zhao,
 564 Hao Wang, and Dimitris N Metaxas. The hidden life of tokens: Reducing hallucination of large
 565 vision-language models via visual information steering. *arXiv preprint arXiv:2502.03628*, 2025b.

566

567 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 568 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 569 2023.

570

571 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
 572 multi-modal model with robust instruction tuning. *arXiv preprint arXiv:2306.14565*, 2023.

573

574 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 575 *neural information processing systems*, 36, 2024a.

576

577 Sheng Liu, Haotian Ye, and James Zou. Reducing hallucinations in vision-language models via latent
 578 space steering. *arXiv preprint arXiv:2410.15778*, 2024b.

579

580 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 581 for alleviating hallucination in lvlms. In *European Conference on Computer Vision*, pp. 125–140.
 582 Springer, 2024c.

583

584 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method for
 585 alleviating hallucination in lvlms. *arXiv preprint arXiv:2407.21771*, 2024d.

586

587 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 588 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 589 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 590 2022.

591

592 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 593 Towards detailed video understanding via large vision and language models. *arXiv preprint*
 594 *arXiv:2306.05424*, 2023.

595

596 Kyungmin Min, Minbeom Kim, Kang-il Lee, Dongryeol Lee, and Kyomin Jung. Mitigating
 597 hallucinations in large vision-language models via summary-guided decoding. *arXiv preprint*
 598 *arXiv:2410.13321*, 2024.

599

600 Dexter Neo and Tsuhan Chen. Vord: Visual ordinal calibration for mitigating object hallucinations in
 601 large vision-language models. *arXiv preprint arXiv:2412.15739*, 2024.

594 Dongmin Park, Zhaofang Qian, Guangxing Han, and Ser-Nam Lim. Mitigating dialogue hallucination
 595 for large multi-modal models via adversarial instruction tuning. *arXiv preprint arXiv:2403.10492*,
 596 2024.

597

598 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 599 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.

600

601 Yuying Shang, Xinyi Zeng, Yutao Zhu, Xiao Yang, Zhengwei Fang, Jingyuan Zhang, Jiawei Chen,
 602 Zinan Liu, and Yu Tian. From pixels to tokens: Revisiting object hallucinations in large vision-
 603 language models. *arXiv preprint arXiv:2410.06795*, 2024.

604

605 Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
 606 models. *arXiv preprint arXiv:2402.17762*, 2024.

607

608 Feilong Tang, Zile Huang, Chengzhi Liu, Qiang Sun, Harry Yang, and Ser-Nam Lim. Intervening
 609 anchor token: Decoding strategy in alleviating hallucinations for MLLMs. In *The Thirteenth*
 610 *International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=zGb4WgCW5i>.

611

612 Feilong Tang, Chengzhi Liu, Zhongxing Xu, Ming Hu, Zile Huang, Haochen Xue, Ziyang Chen,
 613 Zelin Peng, Zhiwei Yang, Sijin Zhou, et al. Seeing far and clearly: Mitigating hallucinations
 614 in mllms with attention causal decoding. In *Proceedings of the Computer Vision and Pattern
 Recognition Conference*, pp. 26147–26159, 2025b.

615

616 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 617 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 618 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

619

620 Zifu Wan, Ce Zhang, Silong Yong, Martin Q Ma, Simon Stepputtis, Louis-Philippe Morency,
 621 Deva Ramanan, Katia Sycara, and Yaqi Xie. Only: One-layer intervention sufficiently mitigates
 622 hallucinations in large vision-language models. *arXiv preprint arXiv:2507.00898*, 2025.

623

624 Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
 625 words are anchors: An information flow perspective for understanding in-context learning. *arXiv
 preprint arXiv:2305.14160*, 2023.

626

627 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 628 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 629 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 630 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

631

632 Jinfeng Wei and Xiaofeng Zhang. Dopra: Decoding over-accumulation penalization and re-allocation
 633 in specific weighting layer. *Proceedings of the 32nd ACM International Conference on Multimedia*,
 2024.

634

635 Sangmin Woo, Jaehyuk Jang, Donguk Kim, Yubin Choi, and Changick Kim. Ritual: Random image
 636 transformations as a universal anti-hallucination lever in lvlms. *arXiv preprint arXiv:2405.17821*,
 2024.

637

638 Jiarui Wu, Zhuo Liu, and Hangfeng He. Mitigating hallucinations in multimodal spatial relations
 639 through constraint-aware prompting. *arXiv preprint arXiv:2502.08317*, 2025a.

640

641 Tsung-Han Wu, Heekyung Lee, Jiaxin Ge, Joseph E Gonzalez, Trevor Darrell, and David M Chan.
 642 Generate, but verify: Reducing hallucination in vision-language models with retrospective resam-
 643 pling. *arXiv preprint arXiv:2504.13169*, 2025b.

644

645 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 646 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

647

648 Yun Xing, Yiheng Li, Ivan Laptev, and Shijian Lu. Mitigating object hallucination via concentric
 649 causal attention. *arXiv preprint arXiv:2410.15926*, 2024.

648 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 649 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 650 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 651 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 652 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 653 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 654 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 655 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 656 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

657 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 658 multimodal large language models. *arXiv preprint arXiv:2306.13549*, 2023.

659 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 660 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
 661 *preprint arXiv:2308.02490*, 2023.

662 Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin.
 663 Unveiling and harnessing hidden attention sinks: Enhancing large language models without training
 664 through attention calibration. *arXiv preprint arXiv:2406.15765*, 2024.

665 Zihao Yue, Liang Zhang, and Qin Jin. Less is more: Mitigating multimodal hallucination from an eos
 666 decision perspective. *The 62nd Annual Meeting of the Association for Computational Linguistics*,
 667 2024.

668 Ce Zhang, Zifu Wan, Zhehan Kan, Martin Q Ma, Simon Stepputtis, Deva Ramanan, Russ Salakhut-
 669 dinov, Louis-Philippe Morency, Katia Sycara, and Yaqi Xie. Self-correcting decoding with
 670 generative feedback for mitigating hallucinations in large vision-language models. *arXiv preprint*
 671 *arXiv:2502.06130*, 2025a.

672 Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng,
 673 Kaijie Wu, and Jieping Ye. Seeing clearly by layer two: Enhancing attention heads to alleviate
 674 hallucination in lmlms. *arXiv preprint arXiv:2411.09968*, 2024a.

675 Xiaofeng Zhang, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang, Chaochen
 676 Gu, Hao Tang, and Jieping Ye. From redundancy to relevance: Enhancing explainability in
 677 multimodal large language models. *arXiv preprint arXiv:2406.06579*, 2024b.

678 Xiaofeng Zhang, Fanshuo Zeng, and Chaochen Gu. Simignore: Exploring and enhancing multimodal
 679 large model complex reasoning via similarity computation. *Neural Networks*, 184:107059, 2025b.

680 Xiaofeng Zhang, Fanshuo Zeng, Yihao Quan, Zheng Hui, and Jiawei Yao. Enhancing multimodal
 681 large language models complex reason via similarity computation. *AAAI*, 2025c.

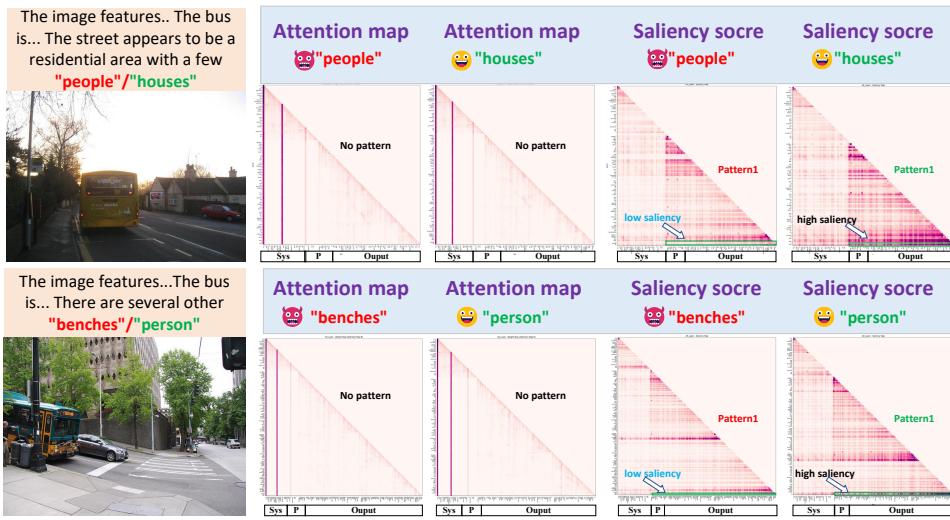
682 Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language
 683 models through induced hallucinations. *arXiv preprint arXiv:2312.15710*, 2023.

684 Guanyu Zhou, Yibo Yan, Xin Zou, Kun Wang, Aiwei Liu, and Xuming Hu. Mitigating modality prior-
 685 induced hallucinations in multimodal large language models via deciphering attention causality.
 686 *arXiv preprint arXiv:2410.04780*, 2024.

687 Guanyu Zhou, Yibo Yan, Xin Zou, Kun Wang, Aiwei Liu, and Xuming Hu. Mitigating modality prior-
 688 induced hallucinations in multimodal large language models via deciphering attention causality. In
 689 *The Thirteenth International Conference on Learning Representations*, 2025.

690 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 691 hancing vision-language understanding with advanced large language models. *arXiv preprint*
 692 *arXiv:2304.10592*, 2023.

693 Xin Zou, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Kening Zheng, Sirui Huang, Junkai Chen, Peijie
 694 Jiang, Jia Liu, Chang Tang, et al. Look twice before you answer: Memory-space visual retracing for
 695 hallucination mitigation in multimodal large language models. *arXiv preprint arXiv:2410.03577*,
 696 2024.



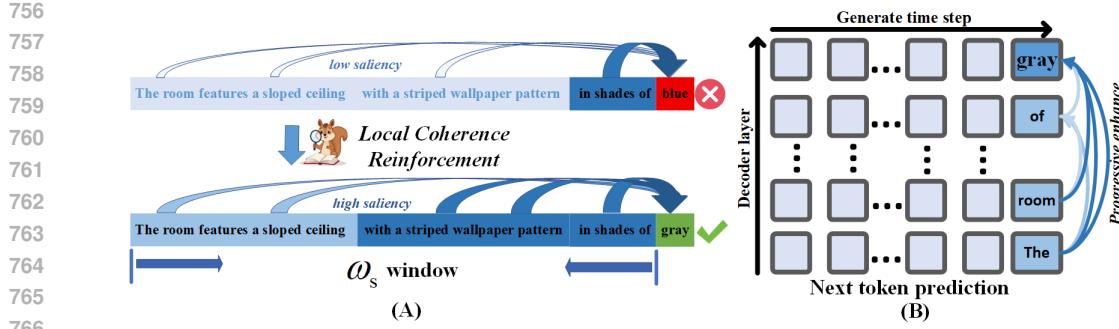


Figure 7: The structure of Local Coherence Reinforcement (LocoRe): attention from the next token to recent outputs is enhanced to preserve contextual coherence.

at the onset of lexical elements and the first "strong separator" word (e.g. ".", "/n"), or (c) occurring at the onset, separator words (e.g., ".", "/n"), and the first "strong separator" word, as well as some semantically weaker words (e.g., "and", "from", "of").

A.3 INFORMATION FLOW OF IN LVLMs

LLAVA-CAM Zhang et al. (2024b; 2025c;b); Wei & Zhang (2024) utilizes Grad-CAM and attention maps to visualize the interaction between images and text in complex reasoning tasks. Attention scores highlight relevant areas through forward propagation, while Grad-CAM captures gradient changes through backpropagation, revealing the salience of image features. These complementary approaches provide a comprehensive understanding of the dynamics of information flow by assessing the importance of input and demonstrating their specific impact on model predictions.

The EAH study Zhang et al. (2024a) identifies that most hallucinations stem from the attention sink pattern marked by images in the attention matrix. To address this, EAH proposes a method that enhances attention heads without additional training. By strengthening attention heads with visual depression characteristics in shallow layers, the method improves attention distribution for image tokens, effectively reducing hallucinations across various LVLMs.

TAME Tang et al. (2025a) investigates the causes of hallucinations by analyzing local self-attention patterns of "anchor points" and defines the degree of attentional localization as the probability of token propagation. The analysis reveals that over-propagation of anchor tokens occurs when the eigenvalue distributions of the query and key matrices exhibit a non-zero mean and polarized variance, leading to an over-reliance on anchor tokens while ignoring visual information, resulting in hallucinations.

As illustrated in Figure 8, in summary, EAH Zhang et al. (2024a) differs from existing methods while remaining non-conflicting and even complementary. Existing methods primarily adjust decoding strategies by modifying logits. OPERA Huang et al. (2024) and DOPRA Wei & Zhang (2024) identify that anchor output tokens can lead to hallucinated token generation and try to penalize anchor tokens' logits. TAME Tang et al. (2025a) focuses on the propagation of the anchor token in all layers, dynamically adjusting these anchor tokens.

A.4 LIMITATIONS

The primary limitation of our Saliency-Guided Rejection Sampling (SGRS) framework lies in its computational demands: computing token-level saliency requires storing intermediate activations and performing backward passes during inference, which consumes significant GPU memory. As a result, we are currently unable to deploy SGRS on very large models such as 72B-parameter LLMs, where gradient computation exceeds the memory capacity of even high-end GPUs (e.g., A100 80GB). This restricts our evaluation to models up to 7B–13B parameters (e.g., LLaVA-1.5, Qwen2-VL-7B), limiting the generalizability of our full framework to the largest-scale architectures.

However, we emphasize that our **LocoRE module remains fully applicable to any model size**, as it operates purely in the forward pass and requires no gradient computation. For large models

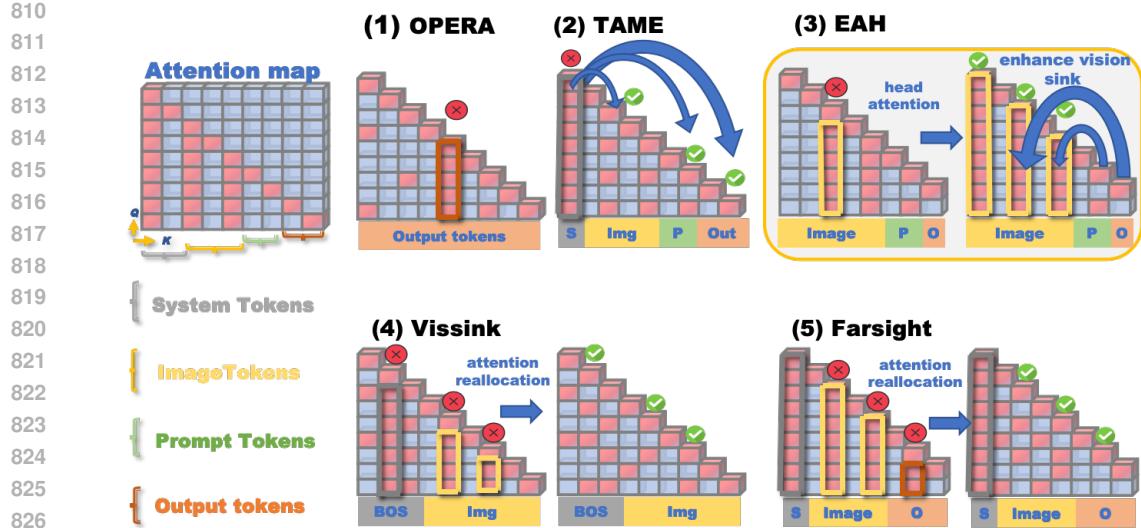


Figure 8: The information flow of different models.

where SGRS is infeasible, LocoRE alone provides a lightweight, plug-and-play solution that still significantly mitigates context-drift hallucinations.

A.5 VIDEO BENCHMARKS EVALUTION

In Zero-Shot Video Question Answering Tasks, LocoRE achieves significant improvements over video MLLM such as Video-LLaVA Lin et al. (2023) and Video-LLaMA2 Cheng et al. (2024) in three key benchmark datasets. As shown in Table 4, on the MSRVTT-QA dataset, our method delivers an average accuracy gain.

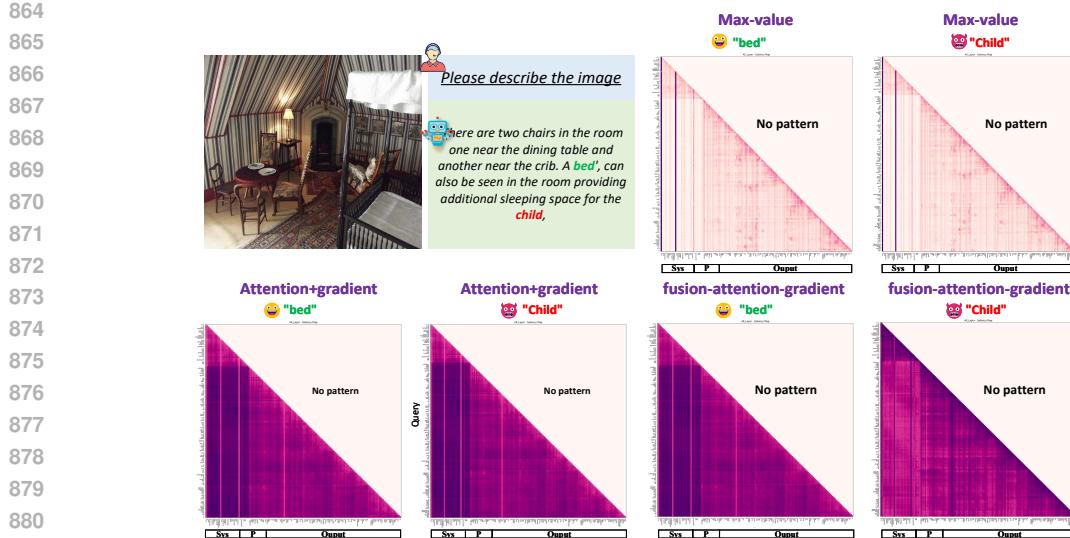
Table 4: **Comparison of different Video LVLMs and LocoRE across all video benchmarks.** In the Video-Based Text Generation Benchmark, five scores are assessed: Cr. (Correctness of Information), Cs. (Consistency), De. (Detail Orientation), Ct. (Contextual Understanding) and Te. (Temporal Understanding). Following Maaz et al Maaz et al. (2023), we use the GPT-3.5 Turbo model to assign a relative score to the model outputs, with scores ranging from 0 to 5.

Method	MSVD-QA		MSRVIT-QA		ActivityNet-QA		Video-Based Text Generation				
	Accuracy \uparrow	Score \uparrow	Accuracy \uparrow	Score \uparrow	Accuracy \uparrow	Score \uparrow	Cr. \downarrow	Cs. \downarrow	De. \downarrow	Ct. \downarrow	Te. \downarrow
Video-LLaVA	64.8	3.7	59.0	3.5	41.5	3.3	2.32	2.34	2.65	2.75	2.09
+ LocoRE (Ours)	65.9 (+1.1)	3.8	61.3 (+2.3)	3.5	41.9 (+0.4)	3.5	2.36	2.42	2.88	2.87	2.12
Video-LLaMA2	70.9	3.8	67.2	3.6	49.9	3.3	3.13	3.23	2.70	3.42	2.45
+ LocoRE (Ours)	71.8 (+0.9)	3.9	69.9 (+2.7)	3.7	52.2 (+2.3)	3.6	3.36	3.41	2.91	3.55	2.66

Differences with other fusion strategies: We compared the other three fusion strategies:

- Addition: After the attention and gradient are added, the visualized image shows an overall high state, and the pattern cannot be distinguished at all. It is a meaningless pattern. The fusion scores of many tokens are concentrated in the middle range, and the overall appearance is "gray", making it difficult to distinguish the key tokens.
- Maximum value (Max): Take the larger of the attention and gradient. Although it can amplify individual high values, the visualization result still cannot distinguish the effective pattern.
- Concat + MLP: Gradient and attention are spliced and then adaptively fused through the neural network. The score distribution is rich. The visualization is similar to the addition. The lower triangle shows a color close to the same, and the effective pattern cannot be distinguished.

In contrast, attention*gradient fusion is: clearer in distinguishing important from unimportant tokens.



USE OF LLM

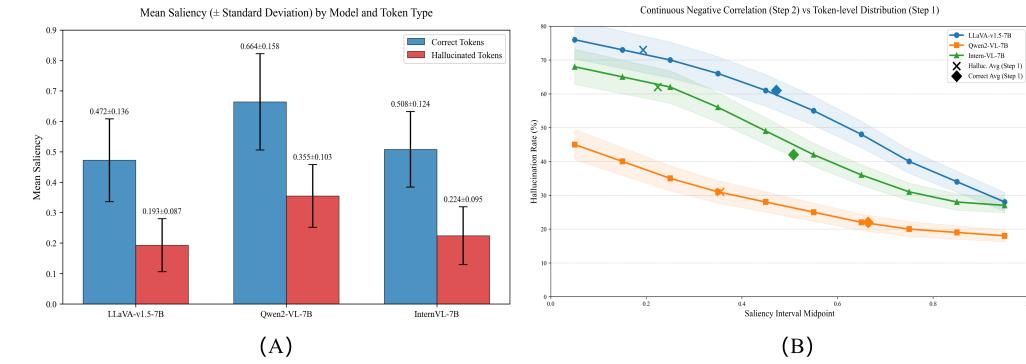
The authors used generative AI tools (e.g., Grammarly, ChatGPT) solely for grammar checking and language polishing of the manuscript. All technical content, experimental design, data analysis, and conclusions were generated and verified exclusively by the human authors. The use of AI tools does not affect the originality or authorship of this work.

B ETHICS STATEMENT

This work focuses on improving the reliability of large vision-language models (LVLMs) by mitigating hallucination through inference-time interventions. Our method, SGGRS+LocoRE, operates solely on publicly available models (e.g., LLaVA-1.5, Qwen2-VL) and benchmark datasets (e.g., CHAIR, POPE, MME), without collecting or using any private, sensitive, or human-subject data. The proposed techniques do not introduce new biases beyond those already present in the base models, and they are designed to enhance — not replace — human oversight in critical applications. We acknowledge that while our method reduces hallucination, it does not eliminate all risks of harmful or misleading outputs. Users should exercise caution when deploying LVLMs in high-stakes scenarios such as medical diagnosis, legal advice, or autonomous decision-making.

C REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the following resources: (1) **Code:** Complete implementation of SGGRS and LocoRE, including saliency computation, rejection sampling, and attention reinforcement modules, will be released publicly on GitHub upon publication. (2) **Hyperparameters:** All key hyperparameters ($\alpha = 0.6$, $\beta = 0.15$ for LLaVA-1.5; $\beta = 0.20$ for Qwen2-VL-7B) and training-free inference protocols are detailed in Section 4.5. (3) **Evaluation:** We use standard, publicly available benchmarks (CHAIR, POPE, MME) with official evaluation scripts. All results are averaged over 500 samples with fixed random seeds. (4) **Compute:** Experiments are conducted on NVIDIA A100 80GB GPUs; average latency is reported in ms/token (Figure 5). (5) **Models:** We evaluate on open-source LVLMs: LLaVA-1.5 (13B) and Qwen2-VL-7B, using official checkpoints from Hugging Face Model Hub. No proprietary data or models are used in this work.

918 **D MORE EXPERIMENTS IN REBUTAL**
919920 **D.1 STATISTICAL VALIDATION OF THE SALIENCY-HALLUCINATION RELATIONSHIP**
921

936 **Figure 10: Statistical analysis of output-token saliency vs. hallucination.** (a) Mean saliency for
937 correct vs. hallucinated tokens across three models. (b) Hallucination probability as a function of
938 saliency bin (per model average).

939 To rigorously test our core hypothesis: *"The saliency score of hallucination tokens is often relatively
940 low."* — we conduct three complementary quantitative analyses at the token level across three diverse
941 VLMs: LLaVA-v1.5-7B, Qwen2-VL-7B, and InternVL-7B. All experiments are performed on the
942 POPE and CHAIR benchmarks, with hallucination labels assigned via human annotation.

943 **(1) Token-level saliency distribution: hallucinated vs. correct tokens.** For each generated token y_t
944 in our dataset ($\sim 12,000$ tokens total), we compute the saliency score from the immediately preceding
945 output token to the current token. We then group tokens by label (correct or hallucinated) and report
946 mean \pm standard deviation.

947 As shown in Figure 10(a) and Table 5, a consistent and statistically significant pattern emerges across
948 all models:

949 **Table 5: Mean saliency scores for correct vs. hallucinated tokens across models.**

Model	Correct Tokens	Hallucinated Tokens
LLaVA-v1.5-7B	0.472 ± 0.136	0.193 ± 0.087
Qwen2-VL-7B	0.664 ± 0.158	0.355 ± 0.103
InternVL-7B	0.508 ± 0.124	0.224 ± 0.095

950 These results confirm that the significantly lower saliency scores of hallucinated tokens, compared
951 with correct tokens, is a phenomenon that generalizes across different model architectures.

952 **(2) Saliency score and negative correlation with hallucination:** As shown in Figure 10(b), we
953 divide the saliency score of the previous output token into 10 equally wide intervals and calculate
954 the conditional probability P of hallucination in each interval. All three models (LLaVA-v1.5-7B,
955 Qwen2-VL-7B, and InternVL-7B) showed a strong negative correlation: the hallucination
956 rate systematically decreased with increasing saliency. A clear, smooth, and monotonic negative
957 correlation is evident: **<1>** In the lowest saliency [0.0, 0.1), hallucination rates reach **68%–76%**;
958 **<2>** In the highest [0.9, 1.0], rates drop to **18%–28%**. The trend holds across all models, with no
959 non-monotonic jumps or plateaus.

960 **(3) Saliency Intervention Experiment:** As shown in Table 6, we also conducted an intervention
961 experiment on the LLaVA-v1.5-7B model. For each sample in the POPE and CHAIR datasets, highly
962 significant correct tokens were selected for intervention (these tokens came from the correct tokens
963 with saliency > 0.45 in Step 1). The intervention method was as follows: after generating the target
964 token, its saliency output in the decoder was scaled (multiplied by a factor $r \in [1.0, 0.8, 0.6, 0.4, 0.2]$) to

972
973
974 Table 6: Hallucination experiments that artificially lower saliency scores
975
976
977
978
979

Decay rate r	CHAIRs \downarrow	POPE-F1 \uparrow	POPE-A \uparrow
1.0	35.6	87.0	87.5
0.8 (decay 20%)	37.9	86.5	86.8
0.6 (decay 40%)	42.1	85.4	85.6
0.4 (decay 60%)	47.8	84.8	84.0
0.2 (decay 80%)	56.0	83.0	83.8

980
981
982 simulate the process of its saliency being weakened. The results showed that after the saliency value
983 was artificially reduced, the hallucination rate increased significantly."

984
985 **Conclusion.** These findings support our claim that hallucinations are not triggered by a single
986 threshold event, but rather emerge gradually as contextual saliency decays. This gradient nature
987 suggests that saliency can serve as a continuous diagnostic signal.

988 D.2 FAILURE CASE: HIGH-SALIENCY HALLUCINATION



Figure 11: **Failure example.** Even though it's an hallucination token, the output saliency is still high.

Regarding our core claim that hallucinated tokens overwhelmingly exhibit low saliency, although this is strongly supported by extensive statistical evidence, we also identify several failure cases in which hallucinated tokens instead display relatively high saliency scores. Figure 11(a) illustrates such an instance: on Qwen2-VL-7B, the ground-truth answer is "a traffic cone". This contradicts the low-saliency hypothesis and reveals two fundamental limitations:

(1) Context-independent generated content: The effectiveness of the method may decrease when the content generated by the model deviates significantly from or is inconsistent with the current context. Specifically, when the saliency of a candidate token is low, indicating that the currently generated content lacks relevance to the previously generated content, SGRS will reject these tokens. However, in some cases, if the context itself is ambiguous or the input information is insufficient, the model may generate irrelevant content, which may not pass the SGRS filter even if it conforms to the rules of language generation.

(2) Some incorrect tokens may have high saliency because the model believes that the token it outputs at this time is correct (high confidence). This observation is consistent with the conclusion proposed by Adam et al. of Openai Kalai et al. (2025): "The model will make mistakes with confidence". The reason for this problem is that <1> the model is trained to output seemingly reasonable answers (high confidence) instead of expressing "I don't know". <2> after human RLHF, the model becomes overconfident.

1026
1027

D.3 LONG SEQUENCE HALLUCINATION TOKEN AND LAYER EXPERIMENT

1028
1029

As shown in Figure 12, we performed a token-level magnified visualization of the following hallucination case:

1030
1031
1032
1033
1034

(1) **Long sequence experiments:** As shown in Figure 12, in the generated sequence, a hallucination token (e.g., "few") appears in the third sentence, while the first sentence (e.g., "preparing") and the fourth sentence (e.g., "significant") are both correct outputs. This shows that even in different sentences and adjacent positions, the saliency of hallucination tokens is significantly lower than that of the correct tokens preceding and following them.

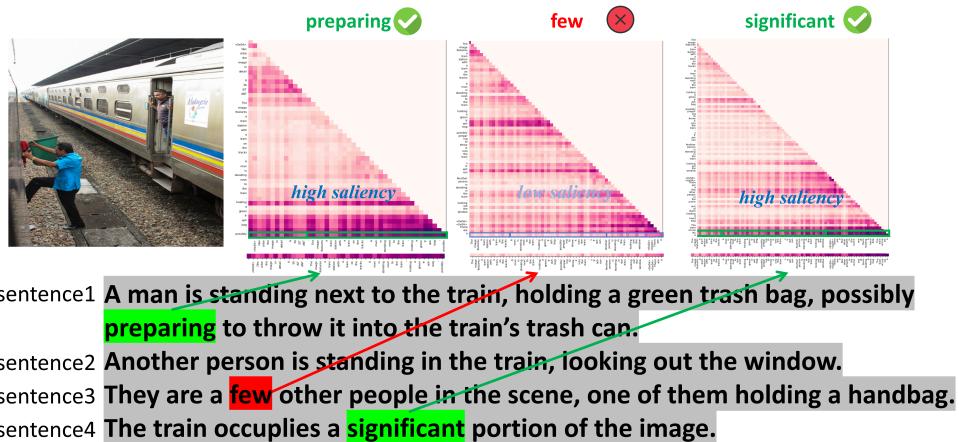
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

Figure 12: **Long sequence example.** A comparison of the saliency of the correct tokens before and after the hallucination token shows that the saliency of the correct tokens before and after the hallucination token is still greater than that of the original token.

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

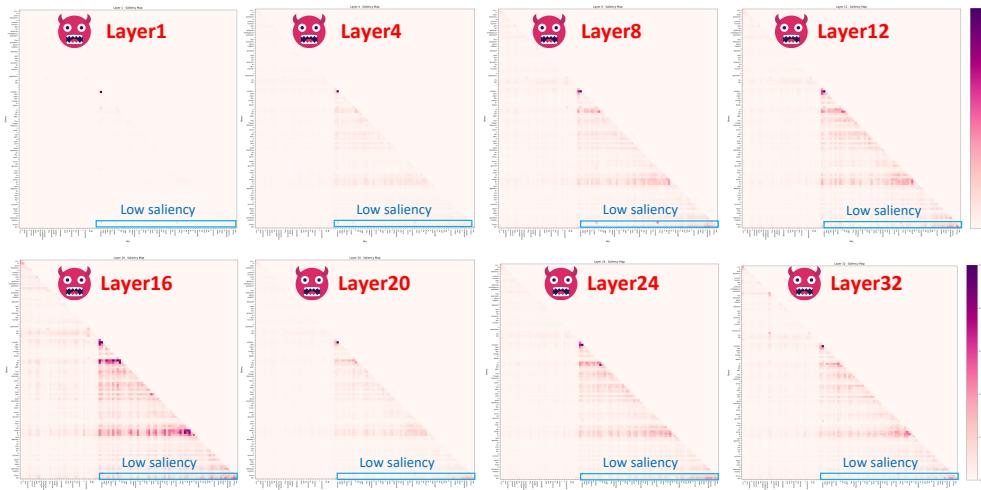


Figure 13: Saliency map of LLaVA1.5 from layer1 to layer32 (hallucination pattern).

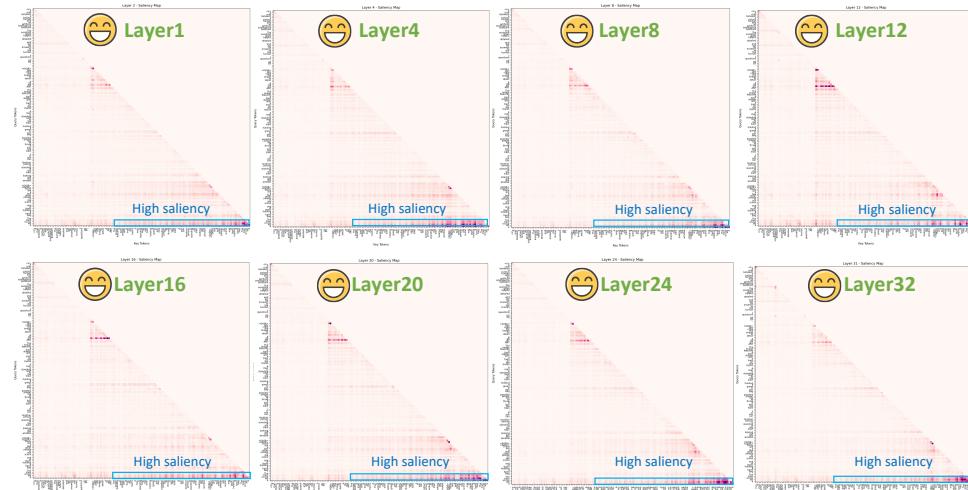


Figure 14: Saliency map of LLaVA1.5 from layer1 to layer32 (correct pattern).