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ABSTRACT

Spiking neural networks (SNNs) have emerged as a transformative paradigm
in artificial intelligence, offering event-driven computation and exceptional en-
ergy efficiency. However, conventional SNN training methods predominantly
rely on backpropagation with surrogate gradients, often neglecting biologically
plausible mechanisms such as spike-timing-dependent computations and dynamic
excitation-inhibition balance—key features that underpin the brain’s remarkable
efficiency and adaptability. To bridge this gap, we propose Brain-Inspired Recur-
rent Iterative Learning (BIRIL), a novel hybrid learning framework that synergis-
tically integrates biologically realistic spike transmission with adaptive excitation-
inhibition dynamics. BIRIL not only emulates the temporal precision of biologi-
cal neurons but also dynamically modulates neuronal activity to enhance learning
efficiency. Extensive experiments on benchmark datasets—including CIFAR-10,
CIFAR-100, MNIST, and DVS128 Gesture—demonstrate that BIRIL outperforms
state-of-the-art SNN models, achieving superior accuracy while maintaining low
computational overhead. Our work provides a principled approach to advancing
neuromorphic learning, paving the way for more brain-like and energy-efficient
Al systems.

1 INTRODUCTION

Artificial Neural Networks (ANN5s) have driven transformative progress in machine learning, achiev-
ing state-of-the-art performance in domains such as computer vision and natural language pro-
cessing. Yet, their reliance on high-precision floating-point computations and global error back-
propagation [Werbos| (1990), diverges fundamentally from the brain’s efficient, event-driven mech-
anisms. In contrast, Spiking Neural Networks (SNNs)—the third generation of neural networks
Maass| (1997)—offer a biologically grounded paradigm, combining event-driven sparsity with ultra-
low energy consumption. These properties position SNNs as a compelling alternative to conven-
tional ANNSs for next-generation Al hardware. However, despite their neuromorphic potential, most
deep SNN training methods remain tethered to surrogate gradient backpropagation Wu et al.|(2018),
mirroring ANN limitations. This approach not only overlooks the critical role of spike-timing-
dependent computations but also fails to incorporate dynamic excitation-inhibition balance, a hall-
mark of biological learning. Consequently, existing SNNs underutilize their inherent spatiotemporal
processing capabilities and face barriers in deploying adaptive on-chip learning for neuromorphic
hardware. To bridge this gap, we propose a hybrid learning framework for deep SNNs that syn-
ergistically integrates local spike-driven plasticity with global error modulation. By co-optimizing
biologically plausible dynamics and task-driven performance, our approach unlocks the full poten-
tial of SNNss for efficient, hardware-friendly neuromorphic systems.

Local and global learning paradigms offer complementary advantages for training SNNs. On one
hand, local learning rules, such as spike-timing-dependent plasticity (STDP) [Song et al. (2000),
closely mimic biological synaptic plasticity by updating weights based on precise temporal rela-
tionships between pre- and post-synaptic spikes. These biologically inspired mechanisms enable
fully local credit assignment, eliminating dependence on a global loss function while enhancing
robustness and hardware compatibility for on-chip learning. On the other hand, global learning
methods like spatio-temporal backpropagation (STBP) [Wu et al.| (2018)) leverage surrogate gradi-
ents to achieve competitive performance in deep SNNGs, albeit at the cost of biological plausibility.
While these approaches differ fundamentally, their synergistic integration presents a promising av-
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enue for developing efficient and versatile SNN training frameworks. Recent work has explored this
hybrid approach, such as EICIL [Shao et al.|(2023)), which dynamically combines STDP-based local
learning with STBP-driven global updates using an excitation-inhibition gating mechanism. How-
ever, while EICIL demonstrates the feasibility of hybrid learning, its performance remains limited in
deep SNN architectures, highlighting the need for more scalable and adaptive integration strategies.

Decades of neuroscientific research have revealed that biological neural networks operate through
sophisticated synaptic mechanisms [Raichle & Mintun| (2006), where information is encoded and
transmitted via dynamic electro-chemical signal conversion. A fundamental feature of this system
is the balanced interplay between excitatory and inhibitory neurons [Lauritzen et al.| (2012)), which
modulates downstream neural activity through precisely regulated neurotransmitter release. This
delicate excitation-inhibition (E-I) balance is crucial for maintaining stable yet adaptable network
dynamics. Therefore, we consider alternating excitation and inhibition during the learning process
and designan iterative hybrid global and local learning mechinism in deep SNNs.

In this paper, we propose a novel training framework named Brain-Inspired Recurrent Iterative
Learning (BIRIL) for deep SNNs. BIRIL employs a three-cycle training strategy. The strategy com-
prises an excitation, an inhibition, and an excitation-inhibition mechanism. By mixing these three
mechanisms in different proportions, the distribution of excitatory and inhibitory training iterations
can be dynamically rebalanced. Hence BIRIL can realistically simulate the excitation/inhibition
state of biological neurons, and integrate a parameter update mechanism for both the time and spatial
dimension during training. Thus, the BIRIL training framework has better biological interpretability
and resembles the real working structure of the human brain.

The contributions of this paper are summarized as follows:

* This paper proposes a novel hybrid training framework based on BIRIL, which enhances
the performance of deep SNNs trained with hybrid learning.

* We propose a novel three-cycle training strategy that integrates excitation, inhibition, and
the excitation/inhibition mechanism, enhancing the spatiotemporal dynamics of SNNs
through the dynamic adjustment of excitatory and inhibitory training iterations.

* Experimental results demonstrate that BIRIL significantly outperforms locally/globally
learned SNNs onmultiple benchmark datasets. The results show that theappropriate dis-
tribution ratio of BIRIL is quite close to the excitation-inhibition property in the human
brain.

2 RELATED WORK

2.1 LEARNING METHODS OF SNNs

Spiking Neural Networks (SNNs) employ two principal learning paradigms: unsupervised lo-
cal learning and supervised global learning. The first category is exemplified by Spike-Timing-
Dependent Plasticity (STDP), a biologically inspired mechanism that adjusts synaptic weights based
on temporal correlations between pre- and postsynaptic spikes [Song et al.| (2000)Nessler et al.
(2009). STDP strengthens connections when presynaptic neurons fire before postsynaptic neurons,
while weakening them in the reverse temporal order. Recent extensions, such as reward-modulated
STDP (R-STDP), incorporate global neuromodulatory signals to enhance learning efficiency Moza-
fari et al.|(2018)). However, these biologically plausible approaches often face computational limita-
tions due to their local nature and increased energy demands from reward-processing mechanisms.

The second category addresses supervised learning through adaptations of backpropagation for spik-
ing networks. While conventional backpropagation Werbos| (1990) is incompatible with SNNs’ dis-
crete spiking dynamics, the Spatio-Temporal Backpropagation (STBP) algorithm overcomes this
by employing surrogate gradients to enable differentiable training [Wu et al.| (2018). STBP effec-
tively captures both spatial and temporal information flow, but its reliance on global error signals
and computationally intensive backpropagation through time presents scalability challenges. This
fundamental trade-off between biological plausibility and computational efficiency remains a key
consideration in SNN learning algorithm design.



Under review as a conference paper at ICLR 2026

2.2  BRAIN-INSPIRED HYBRID TRAINING

Unlike purely local or global training methods for Spiking Neural Networks (SNNs), hybrid ap-
proaches that integrate global Spatio-Temporal Backpropagation (STBP) with local Spike-Timing-
Dependent Plasticity (STDP)|Yan et al.|(2021) provide a more biologically plausible framework by
better emulating the spiking dynamics of biological neurons. These methods leverage both STBP
and STDP to update synaptic weights, combining the strengths of global gradient-based optimization
with local, biologically inspired plasticity rules. For instance, the EICIL method Shao et al.| (2023)
alternates between STDP and STBP during training, capturing excitatory and inhibitory neuronal be-
haviors to enhance learning. However, EICIL’s sequential application of STDP and STBP—rather
than concurrent optimization—Ilimits its effectiveness, often yielding suboptimal performance. An-
other approach, Hybrid Plasticity (HP) [Wu et al.|(2022), separately updates parameters using STBP
and STDP before integrating them into the final model. While HP improves accuracy, its dual-
parameter optimization introduces significant computational overhead. To address these limitations,
we propose an efficient hybrid training method that synergistically combines STDP and STBP, en-
hancing SNN performance while more faithfully replicating the brain’s biological learning mecha-
nisms.

3 PRELIMINARY

3.1 INTEGRATE-AND-FIRE NEURON MODEL

Integrate-and-Fire (IF) |Gerstner et al|(2014) is an important module that simulates the activity of
biological neurons in SNNs. IF neurons receive pulse inputs from other neurons and send output
pulses to other neurons based on the accumulated charges. As a discrete-time model, IF neurons
accumulate each input pulse to generate the membrane potential. If the membrane potential reaches
the firing threshold, the neuron outputs a pulse and resets the membrane potential.

At each time step, the membrane potential of an IF neuron accumulates membrane charges from
other neurons. The calculation formula of the IF neuron is as follows:

V() =V(E-1)+ ) L), (1)

where V(t) represents the membrane potential at the current time step, V(¢ — 1) represents the
membrane potential at the previous time step, and ), I;(t) represents the input current from the
other neuron.

When the membrane potential exceeds a threshold V4, the IF neuron fires a pulse:

1,ifV(t) >V
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where S(t) represents the spike train, denoting whether the neuron releases a spike at the current
time step, and Vj, is the threshold that triggers the spike release. If the IF neuron fires a spike, it
resets the membrane potential.

3.2 NEURONAL EXCITATION AND INHIBITION

Neurons in the human brain are connected by synapses, which transmit impulse signals mainly by
releasing neurotransmitters. Excitatory neurons and inhibitory neurons produce different effects by
releasing different neurotransmitters. The two types of neurons form complex and sophisticated
local circuits that play a vital role in regulating the higher brain functions of the cerebral cortex.
In different areas of the human brain, the number of excitatory neurons and inhibitory neurons has
different ratios. For example, the ratio of excitatory neurons to inhibitory neurons in the cerebral
cortex is roughly 4:1. Excitatory neurons promote the strength of synapses through mechanisms
such as long-term potentiation (LTP) to strengthen memory. Inhibitory neurons prevent excitatory
neurons from overactivity and reduce interference between new information and existing memories,



Under review as a conference paper at ICLR 2026

making memory retrieval more explicit. The interaction between neuronal excitatory and inhibitory
properties plays a vital role in the ability of the human brain’s nervous system to process information.
Motivated by the above, we think that the training process of SNNs could be adjusted according to
the inhibitory and excitatory distribution.

3.3 SPIKE-TIMING-DEPENDENT PLASTICITY(STDP)

STDP is widely believed to be a fundamental way of learning and information storage in the human
brain. STDP is attractive because of its excellent biological interpretability. In the human brain,
action potentials often change very precisely according to external stimuli, and STDP simulates this
process very well. Specifically, STDP adjusts the strength of the connection based on the relative
timing of the action potential input and output of a particular neuron. If an input to a neuron occurs
before the output of the neuron, the synapse becomes stronger and becomes a Long-Term Potentia-
tion (LTP) synapsgMalenka & Nicoll| (1999)), while if an input occurs after the output of the neuron,
the synapse becomes weaker and becomes a Long-Term Depression (LTD) synapselto| (1989).

The following equation formulates this process:

Aw _ {A+ . e_(tpt‘\l_tpl.c)/7+7 Zf tpost > tp]'ev (3)
A_ - ef(tpm*tpom)/"—* , ’Lf tpre > tpogt,

where Aw represents the change in synaptic weight, positive values indicate an increase in weight,
and negative values indicate a decrease in weight, ¢, and ¢,05 represent the time when the pre-
neuron and post-neuron fire pulses, respectively, A, and A_ represent the amplitude of the increase
and decrease in the regulating weight, and changing them can change the strength of synaptic plas-
ticity changes, 7, and 7_ are the time constants of weight enhancement and weakening, respectively,
which determine the decay rate of synaptic weight changes.

This means that the smaller the time difference between the pulses, the more "important" the synapse
is, and the greater the change in weight is. The larger the time difference between the previous and
next pulses, the more "unimportant” the synapse is, and the smaller the change in weight is. If the
time difference between the two pulses is large enough, the weight of the synapse may not change
significantly.

3.4 SPATIO-TEMPORAL BACKPROPAGATION(STBP)

Spatio-Temporal Backpropagation is a method that combines the powerful capabilities of the tradi-
tional Backpropagation (BP) algorithm with good biological interpretability.

In back propagation, the loss function is formulated as follows:

1o L v
L:ﬁZHys*?ZO; |2 “4)
=1 =1

where L is a function of weights and biases, where .S is the number of samples in this batch, y; is
the sample label, 0%V is the output at time step ¢, and the gradient propagates along the time domain
and space domain respectively.

Since the discrete spikes in SNNs result in non-differentiable gradients during backpropagation,
alternative gradient functions are required to approximate continuous gradients from the discrete
spike events, known as surrogate gradient methods for SNNs.

Among them, the derivative of the sigmoid function is a common and effective gradient substitute
function: 1

TTver ©

sigmoid(x)

When solving the derivative of the sigmoid function, we scale it by factor o to make the gradient cal-

culated during backpropagation larger or smaller, thereby effectively accelerating the convergence
process:

grad(x) = « - sigmoid(x) - (1 — sigmoid(x)). (6)
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Figure 1: The figure above shows the training model framework, including the backbone network
and the residual network, which ensures that the excitation mechanism and the inhibition mechanism
can give full play to their respective advantages during training.

4 METHODS

4.1 MULTI-LAYER STDP

Due to challenges such as the high computational cost, the nature of neuronal activity, and the
complexity of synaptic plasticity mechanisms, traditional STDP is typically applied to a single layer
within a neural network, limiting the scope of parameter updates to that specific layer. However,
with the advancement of research, multi-layer STDP |Vignoud et al.| (2018)) has gained increasing
attention as a means to extend the applicability of STDP to deeper network architectures.

To bridge this gap, we propose a hybrid STDP-STBP framework that integrates the biological plau-
sibility of STDP with the global optimization capabilities of STBP. In this framework, STBP is
used to update local synaptic weights, while STDP leverages the gradient information from STBP
to perform backpropagation. This cyclic gradient update mechanism ensures effective error propa-
gation to earlier layers, addressing the limitations of pure STDP in deep networks. Additionally, we
incorporate biologically inspired mechanisms, such as synaptic normalization and spike gating, to
further enhance the robustness and efficiency of deep SNN training. By combining the strengths of
STDP and STBP, our approach not only preserves the biological principles of human brain learning
and feedback but also achieves state-of-the-art performance in deep SNNs without reducing network
depth.

4.2 STDP-STBP GRADIENT UPDATE MECHANISM

In the learning and memory mechanism of the human brain, there is not only unidirectional pulse
transmission but also reverse pulse transmission. The pulse transmission between the neural net-
works in the human brain is a forward-reverse cycle mode. Previous studies tended to use only
one STDP or STBP for unidirectional pulse transmission, which obviously does not conform to the
information processing mechanism of the human brain. Therefore, we combined the characteristics
of excitatory neurons and inhibitory neurons and the mechanism of neuronal pulse transmission in
the human brain and used STDP and STBP to update the weights of neuronal connections. Among
them, STDP is used to represent the inhibitory state of neurons, and STBP is used to represent the
excitatory state of neurons. Using the different characteristics of STDP and STBP to update the
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Algorithm 1 STDP-STBP cyclic gradient update mechanism

Require: The connection weights between neurons w, Weights updated by STDP Awgqp,
Weights updated by STBP Awgp,The time when the front neuron fires a pulse ¢,,.,The time
when the rear neuron fires a pulse ¢s;.
for i = 1 to epoch do
Neural Network Forward Propagation
if ¢, < tpost,Presynaptic spike early then
Use STBP to update the connection weights between neurons in all layers
W 4= W + Awgpp
Next use STDP to update the gradient information of the convolutional layer according to
Eq.
W 4= W + Awgtap
else
Same as above, but this time the presynaptic impulse is delayed
W 4= W + AwWgrap + AWsrpp
end if
end for

gradient information separately can give full play to the performance of the SNN network and make
it have better biological interpretability. For STBP, Aw;; represents the change in the connection
weight between neuron sand neuron j:

AV (t N
c;f( ) - ; Aw;; D(V(t) — s;(t) - Vinr), (7)

where D(-) represents the neural model of STBP, V' (¢) represents the membrane voltage of neuron
J» s; and s; represent whether the neuron ¢ and neuron j emit pulses respectively, and V;y,. is the
threshold value of the neuron to emit a pulse. Similarly, for STDP, P(-) represents the neural model
of STDP, and it is necessary to consider the pulse emission of the front neuron ¢ and the back neuron
J at the same time:

dv;(t) =, | |
7 —;Awmw—<sj<t>+sz<t>>-v;hr>. )

In the STDP-STBP cyclic gradient update mechanism, we use STBP to update the connection
weights between all neurons including the convolutional layers, and then use STDP to update all
convolutional layers in the network to implement a cyclic gradient update mechanism.

In the experiment, we also made more attempts, such as using STDP to update the connection
weights between neurons in all convolutional layers and fully connected layers in the network and
using STBP to update the connection weights between neurons in other layers except convolutional
layers and fully connected layers. In this way, STDP and STBP will update the gradients of different
layers, reflecting the dynamic combination of neuronal excitability and inhibition.

4.3 BRAIN-INSPIRED RECURRENT ITERATIVE LEARNING

In addition to using the STDP-STBP cyclic gradient update mechanism, a certain proportion of
STDP and STBP can be added during the training process to update the connection weights between
neurons separately. In this way, the excitatory and inhibitory behaviors of neurons can be distin-
guished during training, and the problem of gradient information not being able to be updated to
earlier layers when using STDP can be effectively avoided.

In the human brain, excitatory neurons account for approximately 85%, while inhibitory neurons
account for approximately 15%. The fact that excitatory neurons connect to a large number of
neurons aligns with the properties of STBP; the fact that inhibitory neurons connect to only a small
number of neurons aligns with the properties of STDP. Therefore, in our model, we use STBP to
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Figure 2: The figure above shows the training model framework, including the backbone network
and the residual network, which ensures that the excitation mechanism and the inhibition mechanism
can give full play to their respective advantages during training.

represent excitatory neurons and STDP to represent inhibitory neurons. We also use the STDP-
STBP cyclic gradient update mechanism to represent excitatory neurons that are closely connected
to inhibitory neurons.

In the framework of network model, we use ResNet as the model and build our own network, in-
cluding convolution layer, normalization layer, activation layer, pooling layer, residual fast and fully
connected layer. We use average pooling layers instead of maximum pooling layers to reduce data
noise to a certain extent, capture the global information of some features, and make the features
smoother. Each residual block contains two sets of convolutional layers, two sets of normalization
layers, and two sets of activation layers. For the final output of the model, we expand the single
fully connected layer to two sets of fully connected layers plus one set of activation layers, which
can effectively extract more advanced features and improve the performance of the model, and can
also effectively improve the training effect of STDP.

5 EXPERIMENT

5.1 DATASETS

We evaluate our approach on a workstation equipped with a 16-core Intel(R) Xeon(R) Platinum
8352V CPU and 4 NVIDIA 4090 GPUs. The network architecture used in the experiment is ResNet,
and the experimental datasets are: CIFAR-10 Krizhevsky et al.| (2010), CIFAR-100 [Lin| (2013)),
MNIST Deng| (2012), DVS128 Gesture |Hu et al.[(2022)), and Tiny-imagenet Le & Yang|(2015).

CIFAR-10 and CIFAR-100 are classic image classification datasets. They are commonly used for
the evaluation and comparison of models in the fields of deep learning and computer vision.The
MNIST dataset is one of the most well-known datasets in the field of handwritten digit recognition.
DVS128 Gesture is a dynamic vision dataset focused on gesture recognition, captured by a dynamic
vision sensor. Due to its address-event representation, DVS128 Gesture is very suitable for SNNs.

5.2 EXPERIMENTAL COMPARISON

In this section, we use STDP, STDP-STBP and BIRIL to train our ResNet and compare with other
methods. When using STDP training, we use STDP to update the parameters of all convolutional
layers in the neural network. STDP-STBP uses STBP to update the parameters of all layers and
then uses STDP to update the parameters of the convolutional layer to complete a parameter update
loop. BIRIL uses different proportions of STDP, STBP and STDP-STBP for parameter update. In
addition, we choose Resnet-18 from STDP-BW-GS |Shao et al.| (2023 as our base model and draw
Figure [3] for comparison. STDP-BW-GS uses STDP to update the parameters of some layers of
the neural network, which has certain biological inspiration. Our experimental results are shown in
table Il
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Table 1: Comparison of test accuracy of STDP, STDP-STBP and BIRIL with other methods

Dataset STDP STDP-STBP(ours) BIRIL(ours) Improvement Baseline Methods
(Acc. %) (Acc. %) (Acc. %) (A Acc. %) (Accuracy Gains)
+2.30 * SSTDP: (91.30% — 93.60%)
CIFAR 10 4223 93.60 93.40 +1.06 * Diet-SNN: (92.54% — 93.60%)
+4.46 * STDP-BW-GS: (89.14% — 93.60%)
+1.63 * S-ResNet: (70.62% — 72.25%)
CIFAR 100 11.54 72.25 70.89 +0.56 * STBP-tdBN: (71.69% — 72.25%)
+18.15 * STDP-BW-GS: (54.10% — 72.25%)
+0.40 « EMSTDP: (98.90% — 99.30%)
MNIST 89.16 99.26 99.30 +0.29 * BPR: (99.01% — 99.30%)
+0.06 * STDP-BW-GS: (99.24% — 99.30%)
+0.89 ¢ SNN: (94.60% — 95.49%)
DVS128Gesture 24.31 94.80 95.49 +4.97 * R-STDP: (90.52% — 95.49%)
+8.68 * STDP-BW-GS: (86.81% — 95.49%)

Note: Improvement (A) shows the accuracy gain of STDP-STBP or BIRIL compared with others.
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(a) Test accuracy onCIFAR 10 (b) Test accuracy onDVS128Gesture

Figure 3: Performance of test accuracy of STDP, STDP-BW-GS, STDP-STBP and BIRIL

On CIFAR-10, BIRIL achieves an accuracy of 93.40%. STDP-STBP reaches a maximum of 93.60%
, which is 2.30% higher than SSTDP |[Liu et al.| (2021), 1.06% higher than Diet-SNN Rathi & Roy
(2021), and 4.46% higher than STDP-BW-GS. As shown in fig. E} STDP-STBP and BIRIL can
enhance the expressiveness of neurons and perform well on relatively large datasets such as CIFAR-
10.

On CIFAR-100, BIRIL achieves a maximum accuracy of 70.89%. STDP-STBP achieves an accu-
racy of 72.25% , which is 1.63% higher than S-ResNet|Hu et al.| (2021), 0.56% higher than STBP-
tdBN [Zheng et al.| (2021)), and 18.15% higher than STDP-BW-GS. As shown in fig. [3] experiments
show that STDP-STBP and BIRIL have excellent performance on different large datasets and have
better biological interpretability.

On MNIST, STDP-STBP achieves an accuracy of 99.26%. BIRIL achieves a maximum of 99.30%,
which is 0.40% higher than EMSTDP |Shrestha et al.| (2021), 0.29% higher than BPR [Zhang et al.
(2021), and 0.06% higher than STDP-BW-GS. As shown in fig. E], BIRIL and STDP-STBP have
strong model generalization capabilities on the MNIST dataset.

On DVS128 Gesture, STDP-STBP achieves an accuracy of 94.80%. BIRIL achieves a maximum of
95.49% on the test set, which is 0.89% higher than the SNN reported in|Amir et al.| (2017), 4.97%
higher than R-STDP [Nadafian et al.| (2024), and 8.68% higher than STDP-BW-GS. As shown in
fig. |3} this shows that STDP-STBP and BIRIL not only have good performance on static datasets,
but also have good generalization ability in processing event-driven data.

Compared with other methods, STDP-STBP alone has an advantage on CIFAR-10 and CIFAR-100,
while BIRIL, which combines STDP, STBP, and STDP-STBP, has an advantage on MNIST and
DVS128 Gesture. Our STDP-STBP and BIRIL combine the excitation mechanism and inhibition
mechanism of neurons, which is more in line with the neuronal structure of the human brain and
performs well on different datasets.
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Table 2: Experiments on different ratios between STDP, STBP, and STDP-STBP of BIRIL
\ Ratio of STDP to STBP to STDP-STBP

‘ Best Ratio

Dataset
\ 1:4:1(Acc. %) 1:6:2(Acc. %) 2:6:1(Acc.%) 1:8:3(Acc. %) 3:8:1(Acc.%) \
CIFAR 10 ‘ 93.21 93.36 93.08 93.40 92.96 ‘ 1:8:3
CIFAR 100 ‘ 70.30 70.48 69.70 70.89 69.40 ‘ 1:8:3
MNIST ‘ 99.28 99.30 99.29 99.22 99.23 ‘ 1:6:2
DVS128Gesture ‘ 89.93 88.89 95.49 87.50 89.58 ‘ 2:6:1
it f,/*
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= STDP :STBP :STDP-STBP=1:4:1 STDP : STBP : STDP-STBP=1:6:2 STDP : STBP : STDP-STBP=1:4:1 = STDP:STBP:STDP-STBP=1:6:2
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(a) Test accuracy onCIFAR 10 (b) Test accuracy onDVS128Gesture

Figure 4: Performance of test accuracy of different ratios between STDP, STBP, and STDP-STBP

5.3 MIXING RATIO TRAINING OF BIRIL

In this section, we examine the impact of different proportions of STDP, STBP, and STDP-STBP
cyclic gradient update mechanisms. These different training methods enriched the framework of
BIRIL. Through a large number of experiments, we concluded that the optimal ratio of the sum of
STDP and STDP-STBP used in the network model to STBP is 1:2. A training framework with this
ratio can achieve both excellent performance and good biological interpretability.

As shown in table[2]and Figure[d] we employ a series of ratios (STDP to STBP to STDP-STBP). On
CIFAR-10, the highest accuracy is 93.40%, the lowest is 92.96%, and their difference is 0.44%. On
CIFAR-100, the highest accuracy is 70.89%, the lowest is 69.40%, and their difference is 1.49%.
The best training ratio on both datasets is 1:8:3, indicating that more inhibitory neurons improve
performance. On MNIST, the highest accuracy is 99.30%, the lowest is 99.22%, and their difference
is only 0.08%, indicating that BIRIL has a wider range of applicability on smaller datasets. On
DVS128 Gesture, the highest accuracy is 95.49%, the lowest is 87.50%, and their difference is
7.99%. The best training ratio is 2:6:1. However, increasing the ratio to 3:8:1 reduces accuracy. This
shows that a more excited model is more suitable for this dataset, but an overexcited model reduces
the model’s expressiveness. In addition, if the proportion of STDP or STDP-STBP continues to
increase unilaterally on the basis of 1:8:3 or 3:8:1, the network will gradually enter an over-excited
or over-inhibited state, which is not conducive to the training results. The different ratios of STDP,
STBP, and STDP-STBP make the BIRIL framework both flexible and biologically interpretable.
Different ratios can construct BIRIL with different degrees of excitation/inhibition. We can build
the most adaptable framework in a targeted manner on different datasets, which greatly enhances
the versatility of our model.

6 CONCLUSION

By simulating the excitatory and inhibitory mechanisms of neurons in the human brain, our proposed
Bidirectional Inhibitory and Regulatory Integrative Learning (BIRIL) model significantly enhances
the performance of Spiking Neural Networks (SNNs). Experimental results demonstrate that the
BIRIL model exhibits strong expressiveness, superior biological interpretability, and robust gener-
alization capabilities across both small- and large-scale datasets. In future work, we aim to further
investigate the dynamic balance between excitation and inhibition in biological neural systems.
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A APPENDIX

A.1 USE OF LLMs

Large Language Models (LLMs) were used solely to assist with polishing the text.

A.2 CODE OF ETHICS AND ETHICS STATEMENT

The research conducted in the paper conform, in every respect, with the ICLR Code of Ethics
https://iclr.cc/public/CodeOfEthicsl
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