
Prescribed-time consensus of multi-agent systems
with distributed time-varying dynamic

event-triggered strategy
Meilin Li

School of Automation Engineering
University of Electronic Science and Technology of China

Chengdu, China
meilinli0126@163.com

Tieshan Li
School of Automation Engineering

University of Electronic Science and Technology of China
Chengdu, China

tieshanli@126.com

Abstract—In this paper, the prescribed-time consensus control
problem for multi-agent systems under undirected communi-
cation topology is considered. First, in order to save com-
munication resource among agents, a dynamic event-triggered
mechanism based on intermittent communication strategy is
proposed. Additionally, the triggering conditions can be evaluated
without real-time monitoring of neighboring agents’ states and
the communication resources of the whole closed-system can be
greatly reduced. Then, a distributed control protocol based on
a time-varying gain formulated by the parametric Lyapunov
equation is presented to achieve the prescribed-time consensus
control. Furthermore, the expression of the minimum inter-event
time which has a strict positive lower bound is derived. Finally,
the feasibility of the designed control method is validated through
simulation results.

Index Terms—Multi-agent systems, prescribed-time control,
consensus, dynamic event-triggered mechanism, intermittent
communication.

I. INTRODUCTION

In recent decades, due to its numerous applications, such as
smart grids [1], maritime transportation [2], multi-robot opera-
tion [3], etc., the problem of coordinated control has attracted
significant interest from researchers. Consensus control is a
typical problem in coordinated control, where the goal is to
design a control protocol so that all agents’ states can converge
to a uniform value. Currently, various consensus protocols
have been designed to tackle this problem [4]–[7]. However,
only asymptotic consensus can be achieved by these protocols,
whereas in engineering practice, a faster convergence rate than
exponential convergence is usually required. Therefore, how to
solve this problem has garnered significant attention of many
scholars.

Fortunately, prescribed-time control methods have been
introduced to address the aforementioned issue. Since the
convergence time of the prescribed-time control does not
depend on the initial states and can be precisely specified by
the user, the prescribed-time coordinated control problem of
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multi-agent systems (MASs) has attracted wide attention. In
order to solve the prescribed-time consensus control problem
of nonlinear MASs, distributed and fully distributed adaptive
prescribed-time consensus control methods were proposed in
[8], respectively. For the nonlinear MASs whose states are
unmeasurable and affected by deception attacks, in [9], an
observer was designed to estimate the unusable states, and a
controller based on attack compensator was proposed to realize
the prescribed-time consensus control. In [10], for the MASs
with uncertain nonlinear terms, a prescribed-time consensus
protocol based on adaptive neural network was proposed,
which realized the consensus control in the prescribed-time.
In [11], a distributed observer and a control protocol based
on prescribed-time were proposed to realize the prescribed-
time formation-containment control of MASs suffer from
actuator faults. In [12], the output regulation of heterogeneous
MASs under directed graph was studied. By designing the
prescribed-time observer and the distributed prescribed-time
control protocol, the prescribed-time output regulation control
was finally realized.

It is important to note that the aforementioned control
methods rely on continuous communication, which will in-
crease the communication load of the controlled system.
To address this issue, the event-triggered control methods
were proposed [13]–[17]. In [18], the quantized consensus
control of MASs with DOS attacks, bandwidth constraints and
network delay was studied. By designing a quantized event-
triggered secure consensus protocol, the consensus control was
realized with less communication transmission and bit rate. To
realise the consensus control of double integrator MASs with
prescribed performance, an event-triggered framework and a
self-triggered framework which can guarantee the prescribed
performance specifications were proposed in [19]. For the
sake of further prolong the average event-triggered time,
dynamic event-triggered methods were proposed [20]–[22].
Subsequently, the researches of dynamic event-triggered con-
trol are extended to MASs. In [23], a dynamic event-triggered
fuzzy controller was designed for the MASs with parameter
uncertainties to realized the consensus control. The average



consensus control problem of MASs in the presence of false
data injection attacks and privacy eavesdroppers was consid-
ered in [24]. By designing a dynamic event-triggered privacy
protection method, consensus control was finally realized. In
[25], the output regulation problem of nonlinear MASs under
the condition of saving system resources and convergence in
prescribed-time was considered. The control objectives were
achieved by designing a novel dynamic event-triggered control
method. In [26], the problem of prescribed-time control for
first-order MASs was studied. The bipartite consensus was
achieved within a prescribed-time by designing an event-
triggered control method that does not require continuous
communication.

Inspired by the above discussion, our goal is to address the
prescribed-time consensus control problem for MASs under
undirected communication topology. First, a novel dynamic
time-varying event-triggered mechanism based on state esti-
mators is designed. Through this way, the triggering conditions
can be evaluated without continuously monitoring the states
of neighboring agents and the communication resources of
the whole closed-system can be greatly reduced. Then, a
distributed prescribed-time consensus protocol based on a
time-varying gain formulated by the parametric Lyapunov
equation is designed. Finally, by the proposed dynamic event-
triggered mechanism, we can derive the expression of the
minimum inter-event time which has a strict positive lower
bound.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Algebraic Graph Theory

Consider there is an undirected graph G. The Laplacian

matrix of G is L =

{
lii =

∑N
j=1 aij , i = j

lij = −aij , i ̸= j
, where aij = 1

if agent i can obtains information from agent j, otherwise
aij = 0. Note that, the eigenvalues of the connected undirected
graph G are 0 = λ1 < . . . ≤ λN .

B. Problem Formulation

Consider a MAS which consists of N agents, and the
dynamic of each agent is

ẋi (t) = Axi (t) +Bui (t) , i = 1, ..., N, (1)

where xi (t) ∈ Rm is the state vector; ui (t) ∈ Rn is the
control input; A ∈ Rm×m and B ∈ Rm×n are system
matrixes.

Note that, the following Assumptions and Lemma are
necessary for realizing the consensus control.

Assumption 1: All the eigenvalues of matrix A are on the
imaginary axis.

Assumption 2: The undirected graph G is connected.
Lemma 1 [27]: Let Assumption 1 hold, a parametric

Lyapunov equation is shown as below:

ATP + PA− σ−1PBBTP = −γP , (2)

where γ > 0, P > 0 and 0 < σ−1 ≤ λ2.

Consider there is a Lyapunov equation

M(γ)(A+
γ

2
In)

T + (A+
γ

2
In)M(γ) = σ−1BBT, (3)

where M(γ) > 0 and satisfying P = M−1(γ). In addition,
one can obtain that αP

nγ ≥ dP
dγ ≥ P

nγ > 0, α ≥ 1, PBBTP ≤
σnγP , ν = (nγ + ( 12 (nγ)

2 − 1
2nγ

2 − tr(A2))
1
2 )2 −nγ2 > 0,

ATPA ≤ νP .

III. MAIN RESULTS

In this section, a time-varying dynamic event-triggered ap-
proach is proposed for solving the prescribed-time consensus
control of the MASs.

A. Prescribed-time dynamic event-triggered control strategy
design

First, we design a state estimator for agent i

x̃i (t) = eA(t−til)xi

(
til
)
,∀t ∈

[
til, t

i
l+1

)
,

where til is the lth event-triggered instant of agent i. The
event-triggered instants ti0, ti1, . . . will be determined by the
triggering condition provided later.

Next, define a state threshold as

wi (t) =

N∑
j=1

aij (x̃i (t)− x̃j (t)) . (4)

With (4), one has

w (t) = (L⊗ In) x̃ (t) . (5)

Define a vector η =
[
ηT1 , ..., η

T
N

]T
, we have

ηi (t) = xi (t)−
1

N

N∑
j=1

xj (t) . (6)

We can further get that

η (t) = (Q⊗ In)x (t) , (7)

where Q = IN − 1
N 1 · 1T and 1 = [1, ..., 1]

T
.

Define another vector η̃ =
[
η̃T1 , ..., η̃

T
N

]T
, we have

η̃i (t) = x̃i (t)−
1

N

N∑
j=1

x̃j (t) , (8)

and
η̃ (t) = (Q⊗ In) x̃ (t) . (9)

Then, define an error ei (t) as

ei (t) = x̃i (t)− xi (t) . (10)

With (7) and (9), one has

η (t) = η̃ (t)− (Q⊗ In) e (t) . (11)

Recalling (5) and (9), one has

w (t) = (L⊗ In) η̃ (t) , (12)

where QL = LQ = L.



Then, we design

γ0 =
1

θT
, (13)

and
γ =

T

T − t
γ0,∀t ∈ [0, T ) , (14)

where 0 < T < ∞, γ0 > 0, ρ = λ2

2λN
, θ = ρn

n+α .
Design the distributed time-varying dynamic event-triggered

mechanism as

tik+1 = inf
{
t > tik

∣∣ fi (t) ≤ 0
}
, (15)

where

fi (t) =
γλ2

2λN
ξi (t) +

γ

4λN
wT

i (t)Pwi (t) (16)

−
(

γ

2λN
+ σnγ

)
λ2
NeTi (t)Pei (t) ,

and

ξ̇i (t) = − γλ2

2λN
ξi (t) +

γ

4λN
wT

i (t)Pwi (t) (17)

−
(

γ

2λN
+ σnγ

)
λ2
NeTi (t)Pei (t) .

With (16) and (17), we can get that

ξ̇i (t) ≥ −γλ2

λN
ξi (t) . (18)

Then, we can further get that

ξi (t) ≥ e
− γλ2

λN
t
ξi (0) > 0,∀t ∈

[
til, t

i
l+1

)
. (19)

The prescribed-time consensus protocol is designed as

ui (t) = Kwi (t) , (20)

where K = −BTP .
Then, we can conclude the main results as shown below.
Theorem 1: Consider the MASs (1), let Assumption 1

and Assumption 2 hold, the prescribed-time consensus can be
realised with the dynamic event-triggered intermittent commu-
nication mechanism (15) and the prescribed-time consensus
protocol (20).

Proof: First, we choose a Lyapunov function

V (t) = γ

(
ηT (t) (L⊗ P ) η (t) +

N∑
i=1

ξi (t)

)
. (21)

Taking the time derivative of V (t), one has

V̇ (t) =γ̇

(
ηT (t) (L⊗ P ) η (t) +

N∑
i=1

ξi (t)

)
+ 2γηT (t) (L⊗ P ) η̇ (t)

+
α

n
γ̇ηT (t) (L⊗ P ) η (t)

+ γ

N∑
i=1

ξ̇i (t) . (22)

Recalling (1) and (20), one has

η̇ (t) = (Q⊗ In) ẋ (t)

=
(
IN ⊗A− L⊗BBTP

)
η (t)

−
(
L⊗BBTP

)
e (t) . (23)

By substituting (23) into the term 2ηT (t) (L⊗ P ) η̇ (t), one
has

2ηT (t) (L⊗ P ) η̇ (t)

≤ηT (t)
(
L⊗

(
ATP + PA

)
− 2L2 ⊗ PBBTP

)
η (t)

− 2ηT (t)
(
L2 ⊗ PBBTP

)
e (t)

≤ηT (t)
(
L⊗

(
ATP + PA

)
− L2 ⊗ PBBTP

)
η (t)

+ eT (t)
(
L2 ⊗ PBBTP

)
e (t) . (24)

Define η̂ (t) =
(
MT ⊗ In

)
η (t) = col (η̂1 (t) , ..., η̂N (t))

and L = MUMT, where M is an orthogonal matrix which
satisfies MTM = IN and U = diag {λ1, ..., λN}. Then,
recalling (24) we have

2ηT (t) (L⊗ P ) η̇ (t)

≤
N∑
i=1

λiη̂
T
i (t)

(
ATP + PA− λiPBBTP

)
η̂i (t)

+ eT (t)
(
L2 ⊗ PBBTP

)
e (t) . (25)

Recalling (2), one has

ATP + PA− λ2PBBTP

≤ATP + PA− σ−1PBBTP

=− γP. (26)

Then, we can get that

2ηT (t) (L⊗ P ) η̇ (t)

≤− γ

N∑
i=1

λiη̂
T
i (t)P η̂i (t)

+ eT (t)
(
L2 ⊗ PBBTP

)
e (t)

≤− γ

λN
ηT (t)

(
L2 ⊗ P

)
η (t)

+ eT (t)
(
L2 ⊗ PBBTP

)
e (t) . (27)

By substituting (27) into (22), one has

V̇ (t) =γ̇

(
ηT (t) (L⊗ P ) η (t) +

N∑
i=1

ξi (t)

)

− γ2

λN
ηT (t)

(
L2 ⊗ P

)
η (t)

+ γeT (t)
(
L2 ⊗ PBBTP

)
e (t)

+
α

n
γ̇ηT (t) (L⊗ P ) η (t)

+ γ

N∑
i=1

ξ̇i (t) . (28)



With (11) and Young’s inequality, the term
− γ2

λN
ηT (t)

(
L2 ⊗ P

)
η (t) can be rewritten as follows

− γ2

λN
ηT (t)

(
L2 ⊗ P

)
η (t)

≤− γ2λ2

2λN
ηT (t) (L⊗ P ) η (t)

− γ2

2λN
η̃T (t)

(
L2 ⊗ P

)
η̃ (t)

− γ2

2λN
eT (t)

(
L2 ⊗ P

)
e (t)

+
γ2

λN
η̃T (t)

(
L2 ⊗ P

)
e (t)

≤− γ2λ2

2λN
ηT (t) (L⊗ P ) η (t)

− γ2

2λN
η̃T (t)

(
L2 ⊗ P

)
η̃ (t)

− γ2

2λN
eT (t)

(
L2 ⊗ P

)
e (t)

+
γ2

4λN
η̃T (t)

(
L2 ⊗ P

)
η̃ (t)

+
γ2

λN
eT (t)

(
L2 ⊗ P

)
e (t)

=− γ2λ2

2λN
ηT (t) (L⊗ P ) η (t)

− γ2

4λN
η̃T (t)

(
L2 ⊗ P

)
η̃ (t)

+
γ2

2λN
eT (t)

(
L2 ⊗ P

)
e (t) . (29)

Then, one has

V̇ (t) =γ̇

(
ηT (t) (L⊗ P ) η (t) +

N∑
i=1

ξi (t)

)

− γ2λ2

2λN
ηT (t) (L⊗ P ) η (t)

− γ2

4λN
η̃T (t)

(
L2 ⊗ P

)
η̃ (t)

+

(
γ

2λN
+ σnγ

)
γeT (t)

(
L2 ⊗ P

)
e (t)

+
α

n
γ̇ηT (t) (L⊗ P ) η (t)

+ γ

N∑
i=1

ξ̇i (t)

≤n+ δc
nγ

γ̇V (t)− γ2λ2

2λN
ηT (t) (L⊗ P ) η (t)

− γ2

4λN
wT (t) (IN ⊗ P )w (t)

+

(
γ

2λN
+ σnγ

)
γλ2

NeT (t) (IN ⊗ P ) e (t)

+ γ

N∑
i=1

ξ̇i (t) . (30)

Substituting (17) into (30), one has

V̇ (t) ≤
(
n+ α

nγ
γ̇ − γρ

)
V (t)

=

(
(n+ α) γ̇ − nγ2ρ

nγ

)
V (t)

=

(
(n+ α) γ̇ − θ (n+ α) γ2

nγ

)
V (t)

=
(n+ α)

(
γ̇ − θγ2

)
nγ

V (t) . (31)

Recalling (13) and (14), we can get that

γ̇ = θγ2. (32)

Then, we have
V̇ (t) ≤ 0. (33)

With (21) and (33), one has∥∥∥∥∥∥
N∑
i=1

N∑
j=1

aij (xi (t)− xj (t))

∥∥∥∥∥∥
≤

√√√√2γ (0)
(
λmax (L)λmax (P ) ∥xT (0)∥2 +

∑N
i=1 ξi (0)

)
γ (t)λmin (P )

,

(34)

where ξi (0) = 0.
With (34), we can easily get a conclusion that

limt→T

∥∥∥∑N
i=1

∑N
j=1 aij (xi (t)− xj (t))

∥∥∥ = 0.
Remark 1: Recalling (14), we can observe that as t

approaches T , the γ approaches infinity, which makes it
impossible to implement in real world situations. Fortunately,
this problem can be solved by redesign the parameter γ as
follows {

γ (t) = T̄
T̄+ε−t

γ0,∀t ∈
[
0, T̄

)
,

γ̄ = γ (t) = T̄
ε γ0,∀t > T̄ ,

(35)

where ε is a very small positive constant. Reaclling (31) and
(35), we have

V̇ (t) ≤ − (n+ α) θγ̄

n
V (t) . (36)

Then, we can get that∥∥∥∥∥∥
N∑
i=1

N∑
j=1

aij (xi (t)− xj (t))

∥∥∥∥∥∥
≤

√√√√2V
(
T̄
)
e−

(n+α)θγ̄
n (t−T̄)

γ̄ (t)λmin (P )
.

B. Minimum inter-event time analysis

Theorem 2: With the dynamic event-triggered mechanasim
(15), the minimum inter-event time has a strict positive lower
bound

τi =

∫ κ

4

(
1

2λN
+σn

)
λ3
N

0

1

ϕ(τi)
dτi > 0, (37)



where ϕ(τi) = σnγ∗ + (2υ (γ∗) + 2 + σnγ∗ + 2ργ∗) τi +(
γ∗

2λN
+ σnγ∗

)
λ2
Nτ2i .

Proof: First, recalling the dynamic event-triggered function
(16), one has that

fi (t) ≥
γκ

4λN

(
ξi (t) + wT

i (t)Pwi (t)
)

−
(

γ

2λN
+ σnγ

)
λ2
NeTi (t)Pei (t) , (38)

where κ = min {1, 2λ2}.
Then, we can get that the inter-event times are constrained

by the function

Ξi (t) =
eTi (t)Pei (t)

ξi (t) + wT
i (t)Pwi (t)

going from 0 to κ

4
(

1
2λN

+σn
)
λ3
N

.

Taking time derivative of Ξi (t) over interval t ∈
[
til, t

i
l+1

)
,

one obtains

Ξ̇i (t) =
2eTi (t)P ėi (t) + γ̇eTi (t) dP

dγ ei (t)

ξi (t) + wT
i (t)Pwi (t)

− Ξi (t)
ξ̇i (t) + 2wT

i (t)Pẇi (t) + γ̇wT
i (t) dP

dγ wi (t)

ξi (t) + wT
i (t)Pwi (t)

.

(39)

Recalling (4) and (10), one has

ėi (t) = Ax̃i (t)−Axi (t)−Bui (t)

= Aei (t) +BBTPwi (t) , (40)

and
ẇi (t) = Awi (t) . (41)

With (40), we can further get that

2eTi (t)P ėi (t)

=2eTi (t)PAei (t) + 2eTi (t)PBBTPwi (t)

≤eTi (t)ATPAei (t) + eTi (t)Pei (t)

+ eTi (t)PBBTPei (t) + wT
i (t)PBBTPwi (t)

= (υ + 1 + σnγ) eTi (t)Pei (t) + σnγwT
i (t)Pwi (t) , (42)

and

γ̇eTi (t)
dP

dγ
ei (t)

≤γ̇
α

nγ
eTi (t)Pei (t)

=α2γ
α

n
eTi (t)Pei (t)

≤ργeTi (t)Pei (t) . (43)

With (41), one has that

− 2wT
i (t)Pẇi (t)

=− 2wT
i (t)PAwi (t)

≤wT
i (t)ATPAwi (t) + wT

i (t)Pwi (t)

= (υ + 1)wT
i (t)Pwi (t) , (44)

and

− γ̇wT
i (t)

dP

dγ
wi (t)

≤− γ̇

nγ
wT

i (t)Pwi (t)

=− θγ

n
wT

i (t)Pwi (t) . (45)

Substituting (42)-(45) into (39), we can get that

Ξ̇i (t) ≤
(υ + 1 + σnγ + ργ) eTi (t)Pei (t) + σnγwT

i (t)Pwi (t)

ξi (t) + wT
i (t)Pwi (t)

+ Ξi (t)
ργξi (t) + (υ + 1)wT

i (t)Pwi (t)

ξi (t) + wT
i (t)Pwi (t)

+ Ξi (t)

(
γ

2λN
+ σnγ

)
λ2
NeTi (t)Pei (t)

ξi (t) + wT
i (t)Pwi (t)

≤σnγ + (2υ + 2 + σnγ + 2ργ) Ξi (t)

+

(
γ

2λN
+ σnγ

)
λ2
NΞ2

i (t)

≤σnγ∗ + (2υ (γ∗) + 2 + σnγ∗ + 2ργ∗) Ξi (t)

+

(
γ∗

2λN
+ σnγ∗

)
λ2
NΞ2

i (t) . (46)

Then, let’s define

Φ̇i (t) =σnγ∗ + (2υ (γ∗) + 2 + σnγ∗ + 2ργ∗) Φi (t)

+

(
γ∗

2λN
+ σnγ∗

)
λ2
NΦ2

i (t) , (47)

where Ξi

(
til
)
= Φi

(
til
)
= 0. Through (46) and (47), we can

easily get that Ξi (t) ≤ Φi (t) .
Define Φi

(
til + τi

)
= κ

4
(

1
2λN

+σn
)
λ3
N

and recalling (47), we

can get that

τi = til + τi − til

=

∫ κ

4

(
1

2λN
+σn

)
λ3
N

0

1

ϕ(τi)
dτi > 0. (48)

As Φi (t) is a monotonically increasing function, it holds
that Ξi (t) ≤ Φi (t) ≤ κ

4
(

1
2λN

+σn
)
λ3
N

, ∀t ∈
[
til, t

i
l + τi

)
.

Hence, we can conclude that no event is triggered when
t ∈

[
til, t

i
l + τi

)
, and a strict positive lower bound can be

obtained through (48).

IV. SIMULATIONS

To verified the effectiveness of the time-varying dynamic
event-triggered-based prescribed-time control strategy, the
simulation results are given.

Consider there are 4 agents of the MAS and the communi-
cation topology is given in Fig. 1. Design the system matrices
are A = [0, 1; − 2, 0] and B = [0; 1]. Some necessary
initial values are defined as x1(0) = [−0.2; − 0.3], x2(0) =
[0.7; − 0.5], x3(0) = [0.2; − 0.8], x4(0) = [−0.3; 0.4],
η1(0) = 3, η2(0) = 3, η3(0) = 3, η4(0) = 3. Choose the
sampling interval as 0.0001s and T̄ is chosen as 3s.



Fig. 1. The undirected graph of the MASs.
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Fig. 2. The states of xi1 of all the agents.

From Figs. 2 and 3, it can be seen that the states of all the
agents eventually convergence to a same value, indicating that
the prescribed-time consensus has been achieved under the
control method we proposed. Fig. 4 shows the evolution of ui

of each agent. As illustrated in Fig. 5, the value of ξi always
remains greater than zero. To demonstrate the efficacy of the
dynamic event-triggered method, Table I is given. From the
event-triggered numbers, we can see that the communication
transmissions among agents have been greatly reduced, which
effectively conserving the communication resources of the
MAS.

V. CONCLUSION

In this paper, a prescribed-time consensus control method
based on dynamic event-triggered intermittent communication
strategy has been discussed. For the sake of reducing commu-
nication transmissions among agents and avoiding real-time
monitoring of neighboring agents’ states, a distributed time-
varying dynamic event-triggered mechanism was proposed.
Then, a distributed control protocol with time-varying control
gain was given. Finally, the consensus control was realized
with a prescribed-time. Additionally, it has been proven that

TABLE I
THE EVENT-TRIGGERED NUMBERS OF EACH AGENT

Agent 1 2 3 4
Event-triggered numbers 305 127 94 163
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Fig. 4. The evolution of ui of all the agents.

the Zeno phenomenon does not occur. In the future, we will
focus on addressing the issue of prescribed-time consensus
control under randomly switching topologies.
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